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Several classes of stationary points for rank regularized
minimization problems
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Abstract

For the rank regularized minimization problem, we introduce several classes of
stationary points by the problem itself and its equivalent reformulations including
the mathematical program with an equilibrium constraint (MPEC), the global exact
penalty of the MPEC, and the surrogate yielded by eliminating the dual part of the
exact penalty. A clear relation chart is established among these stationary points,
which offers a guidance to choose an appropriate reformulation for seeking a low-
rank solution. As a byproduct, for the positive semidefinite (PSD) rank regularized
minimization problem, we also provide a weaker condition for a local minimizer of its
MPEC reformulation to be the M-stationary point by characterizing the directional
limiting normal cone to the graph of the normal cone mapping of the PSD cone.

Keywords: Rank regularized minimization problems; stationary points; matrix MPECs;
calmness; directional limiting normal cone

Mathematics Subject Classification(2010): 90C26, 49J52, 49J53

1 Introduction

Let R™*™ be the linear space of all m xn (m < n) real matrices equipped with the trace
inner product (-,-) and its induced norm || - || g, i.e., (X, Y) = tr(X'Y) for X, Y € R™*",
Given a function f: R™*"™ — R, we are interested in the rank regularized problem:

XéquRingan(X) = vf(X) +rank(X) + dq(X) (1)

where v > 0 is the regularization parameter and  C R™*" is a closed convex set.

Unless otherwise stated, we assume that f is locally Lipschitz and df(X) = 8f(X) for
any X € Q, where 0f(X) and 9f(X) are the regular and limiting subdifferential of f
at X, respectively; see Section 2.1 for their definitions. Such a model is frequently used
to seek a low-rank matrix under the scenario where a tight estimation is unavailable for
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the rank of the target matrix, and is found to have a host of applications in a variety
of fields such as statistics [26], control and system identification [8,9], signal and image
processing [3], finance [30], quantum tomography [12], and so on.

Owing to the combinatorial property of the rank function, the problem (1) is generally
NP-hard and it is impossible to achieve a global optimal solution by using an algorithm
with polynomial-time complexity. So, it is common to obtain a desirable local optimal
even feasible solution by solving a convex relaxation or surrogate problem. Although
the nuclear-norm convex relaxation method [7] is very popular, it has a weak ability to
promote low-rank solutions and even fails to yielding low-rank solutions in some cases [23].
After recognizing this deficiency, some researchers pay their attentions to the nonconvex
surrogates of low-rank optimization problems such as the log-determinant surrogate (see
[8,24]) and the Schatten p (0 < p < 1)-norm surrogate [15]. As illustrated in [27], the
efficiency of nonconvex surrogates depends on its approximation effect.

Recently, by the variational characterization of the rank function, the authors of [1,21]
reformulated the rank regularized problem (1) as an equivalent MPEC and derived an
equivalent surrogate from its global exact penalty. In order to illustrate this, let .# denote
the family of proper lower semi-continuous (lsc) convex functions ¢: R — (—o0, +-00| with

int(dom¢) D [0,1], ¢(1) =1 > t* := argminp(t) and ¢(t*) =0, (2)
0<t<1

and for each ¢ € .Z let ¢h: R — (—o00, +00| be the associated lsc convex function given

by ‘
w(t) ::{ o(t) iftelo,1], (3)

+o0o otherwise.

With ¢ € %, the rank regularized problem (1) can be equivalently reformulated as
i X " (W 0o (X
min vf(X) + S 6((W)) + 00 (X)
s.b | Xl = (W, X) =0, [W] <1 (4)

which is a matrix MPEC since the constraints || X |« — (W, X) = 0 and ||W]| < 1 are
equivalent to X € Np(W) with B:= {Z € R™*" ||| Z| < 1}, i.e., the optimality condition
of W € argmaxycg(X,Z). Under a mild condition, it was shown in [1,21] that the
following penalized problem
i VPO + S 6o (W) + p(X .~ (W, X))
st. Xeq, [W|<1 (5)

is a global exact penalty of the MPEC (4) in the sense that there exists p > 0 such that
the problem (5) associated to each p > 7 has the same global optimal solution set as (4)
does. With the conjugate function ¢*(s) := sup;cp {st — w(t)} of 1, one may eliminate
the dual variable W in (5) and get the following equivalent surrogate of the problem (1)

min {vf () + ol Xl = 0" (poi(X)) }- (6)
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As well known, when an algorithm is applied to nonconvex and nonsmooth optimiza-
tion problems, one generally expects to achieve a stationary point, while the stationary
points of equivalent reformulations may have a big difference. Thus, it is necessary to
clarify the relation among the stationary points of (1) defined by its equivalent reformula-
tions. Moreover, such a clarification is prerequisite to describe the landscape of stationary
points for the rank regularized problem (1). Motivated by this, in Section 3 we introduce
the R(egular)-stationary point, the M-stationary point, the EP-stationary point and the
DC-stationary point by the problem (1) itself and its reformulation (4)-(6), respectively,
and explore the relation among the four classes of stationary points. Figure 1 in Section
3 shows that the set of M-stationary points is almost same as that of R-stationary points,
the latter includes that of EP-stationary points under a rank condition, and the set of
EP-stationary points coincides with that of DC-stationary points for some appropriate
¢. As a byproduct, for the PSD rank regularized minimization problem, we also provide
a weaker condition than the one in [5] for a local minimizer of its MPEC reformulation
to be the M-stationary point, by the directional limiting normal cone to the graph of the
normal cone mapping of the PSD cone S} .

We notice that some active research has been done for the stationary points of zero-
norm constrained optimization problems (see, e.g., |2,10,28|); for example, Burdakov et
al. [2] discussed the relation between the M-stationary point and the S-stationary point
of their equivalent MPEC reformulation; and Pan et al. [28] characterizes the first-order
optimality condition which actually defines a class of stationary points by the tangent
cone to the zero-norm constrained set. To the best of our knowledge, there are few works
to study the stationary points of rank regularized optimization problems. For the special
case () C S, the rank regularized problem (1) can reduce to a mathematical program
with semidefinite conic complementarity constraints (MPSCCC) and Ding et al. [5] have
established the connection among several class of stationary points for the MPSCCC,
which are defined by the equivalent reformulations of the complementarity constraints.
However, this work is concerned with the relation among the stationary points defined
by different equivalent reformulations of the rank regularized problem (1), and aims to
establish a clear relation chart for these stationary points so that the user can be guided
to choose an appropriate reformulation to seek a low-rank solution.

2 Notation and preliminaries

Throughout this paper, a hollow capital means a finite dimensional vector space equipped
with the inner product (-,-) and its induced norm || - ||. The notation S™ denotes the
vector space of all n x n real symmetric matrices equipped with the Frobenius norm, and
S’ means the set of all positive semidefinite matrices in S”. Let O"*™ be the set of m xn
matrices with orthonormal columns and denote Q™*™ by Q™. For a given X € R"*"
we denote by || X ||« and || X || the nuclear norm and the spectral norm of X, respectively,
and by o(X) € R™ the singular value vector arranged in a nonincreasing order; and write
0™"(X) = {(U,V) € O™ x O"| X = UDiag(c(X))VT}. For a given X € R™*" and
two index sets a C {1,...,m} and 8 C {1,...,n}, X,3 means the submatrix consists



of those entries X;; with ¢ € o and j € 3. We denote by F and e the matrix and the
vector of all ones respectively whose dimension are known from the context, and by I
an identity matrix whose dimension is known from the context. For a given set S, dg
denotes the indicator function of S, i.e., dg(z) = 0 if x € S, otherwise dg(z) = +o00. For
a given vector space Z, Bz denotes the closed unit ball centered at the origin of Z, and
Bs(z) means the closed ball of radius § centered at z € Z.

2.1 Normal cones and generalized differentials

Let S C Z be a given set. The regular normal cone to S at a point Z € S is defined by

o~ ) (v,2 —Z)
Ns(Z) :=1veZ| limsup ——- <0
sz ={vez| ma }

where the symbol z ? Z signifies z — Z with z € S, while the limiting normal cone to S

at Z is defined as the outer limit of /VS(Z) as z ? z, l.e.,
Ns(Z) := {v c€Z|32" . zZ, 0" = v with % e /\A/'g(zk)} (7)
The limiting normal cone Ng(Z) is generally not convex, but the regular normal Ng(z)
is always closed convex which is the negative polar of the contingent cone to S at =:
Ts(z) :=={h € Z | 3t L 0, h* — h with z + t;h* € S}.

When S is convex, Ng(z) and Ng(z) are the normal cone in the sense of convex analysis
[31]. The directional limiting normal cone to S at Z in a direction u € X is defined by

Ns(zZ;u) = {z* €Z |3ty l0, uF =, 2P 2 with M e /\Afs(§+tkuk)}.

By comparing with the definition of Ng(z), clearly, Ns(z;u) C Ng(Z) for any u € X.
Let g: Z — [~00, +00] be an extended real-valued lsc function with g(%) finite. The
regular subdifferential of g at Z, denoted by dg(%Z), is defined as
dg(z) := {z* € X | liminf 9(z) = 9(2) = ", 2 = 7) > 0};

e [
2#£Z

and the (limiting) subdifferential of g at Z, denoted by dg(%), is defined as
0g9(z) = {z* €X |38 5 2,28 = 2* suchthat 2M* € 5g(zk)} (8)
g
From [32, Theorem 8.9] we know that there is close relation between the subdifferentials
of g at Z and the normal cones of its epigraph at (Z, g(z)). Also, from [32, Exercise 8.14],
Ns(z) = 865(z) and Ng(z) = dds(z) for z € S.

In the sequel, we call a point z at which 0 € dg(z) (respectively, 0 € 59(2)) is called a
limiting (respectively, regular) critical point of g. By [32, Theorem 10.1], a local minimizer
of g is necessarily a regular critical point of g, and then a limiting critical point.



2.2 Lipschitz-like properties of multifunctions

Let F:Z = W be a given multifunction. Consider an arbitrary point (z,w) € gphF at
which F is locally closed, where gphF denotes the graph of . We recall from [6,32] the
concepts of the Aubin property, calmness and metric subregularity of F.

Definition 2.1 The multifunction F is said to have the Aubin property at Z for w with
modulus k > 0, if there exist € > 0 and § > 0 such that for all z, 2" € B.(Z),

F(2) NBs(w) C F(2') + kl|z — 2| Bw.

Definition 2.2 The multifunction F is said to be calm at Z for w with modulus k > 0
if there exist € > 0 and § > 0 such that for all z € B.(Z),

F(z) NBs(w) C F(Z) + k||z — Z|| Bw.
If in addition F(Z) NBs(w) = {w}, F is said to be isolated calm at Z for w.
By [6, Exercise 3H.4], the restriction on z € B.(%) in Definition 2.2 can be removed.
It is easily seen that the calmness of F is a “one-point” variant of the Aubin property,
and the calmness of F at (Z,w) € gphF is implied by its Aubin property or isolated

calmness at this point. Notice that the calmness of F at z for w € F(Z) is equivalent to
the metric subregularity of F=! at w for z € F~!(w) by [6, Theorem 3H.3].

The coderivative and graphical derivative of F are an convenient tool to characterize
the Aubin property and the isolated calmness of F, respectively. Recall from [32] that
the coderivative of F at Z for w is the mapping D*F(Z|w): W =% Z defined by

u € D*F(Z|E)(’U) — (U, 7U) € ngh]:(zv @)7
and the graphical derivative of F at Z for w is the mapping DF(Z|w): Z = W given by
v € DF(z|w)(u) <= (u,v) € Tgph 7 (7, 0).

Lemma 2.1 (See [25, Theorem 5.7] or [32, Theorem 9.40]) Suppose that F is locally
closed at (Z,w). Then F has the Aubin property at Z for w iff D*F(z|w)(0) = {0}.

Lemma 2.2 (See [14, Proposition 2.1] or [18, Proposition 4.1]) Suppose that F is locally
closed at (Z,w). Then F is isolated calm at z for w iff DF(Z|w)(0) = {0}.

2.3 Coderivative of the subdifferential mapping 9| - ||.
For a given X € R™" with SVD as U[Diag(c(X)) 0]VT, by [35, Example 2| we have

I 0

olxl. = {ion vy

ERERIEIESY )

where U; and V; are the submatrix consisting of the first 7 = rank(X) columns of U and
V', respectively, and Us and V5 are the submatrix consisting of the last m—r columns and



n —r columns of U and V', respectively. In this part we recall from [22| the coderivative
of the subdifferential mapping 0| - ||«. For this purpose, in the sequel for two positive
integers k1 and ko with ko > k1, we denote by [ki, ka] the set {k1,ki1+1,...,ko}. For a
given Z € R™*"_ define the following index sets associated to its singular values:

a:={i€[l,m] | 0:(Z2)>1}, B:={ic[l,m] | 0:(Z)=1}, ¢ = [m+1,n], (10a)
~v =1 U~ for v1:= {16 [1,m] | 0 < 0:(Z) <1} ’yo—{ze [1,m] | 0s(Z —O} (10b)

and let Q1,0 € ™ and Q3 € R™*("=m) he the matrices associated to o(Z) given by

min(l,04(%))—min(l,0,(%)) .. 7 N
(), :={ T N A LY SO )

otherwise

0i(Z)+o;(Z)
0 otherwise

i,je{1,2,...,m},

(11Db)

min(1,0;(Z))+min(1,0;(Z
@byﬁz{ S i it i(Z) +0i(7) £,

min(Loi(2) ¢ (77
(Q3)ij::{ n@ T F0 e nem).  (ll0)

0 otherwise

With the matrices 21,9 € S™ and €23 € Rmx(”_m), we define the following matrices

Oaa Oaﬁ (Ql)a'y Eaa Eaﬁ Eoz'y_(Ql)oz’y
@1 = Oga 055 E/g,y s @2 = Eﬁa 055 0/37 ,
(Ql)’Ya Eyp By Eyo—()qa 045 Oy~
(QQ)aa (QQ)QB (QZ)a'y Eaa*(QZ)aa ocB (92)046 Ea’y*(QQ)a'y
V1= (Q2)sa Ops Epy |, 32:= | Epa—(2)pa Opgs O+
(Q2)ya  Eyp Eyy Eya—(22)ya 045 Oyy

For the index set 3, we denote the set of all partitions of 8 by &?(/3). Define the set
R'fl {ZGRWI >Z|5‘ >0}

For any z € ]le ‘, let D(z) € Sl denote the first generalized divided difference matrix of
h(t) = min(1,t) at z, which is defined as

mintla) min2) ¢ [0,1] if 5 # 25,

(D(2))yy = 0 ooy > 1, (13)
1 otherwise.

Write U g := {ﬁ eslhtl: Q= limy,_,oo D(2F), 2% — €8s 2k e Rf'}. For each =1 € UYg),
by equation (13) there exists a partition (84, 8o, B—) € Z(3) such that

Oﬁ+5+ 05+50 (51)5#37
Hoﬁqﬂ/?# 08080 Egyp_ ) (14)
E1)s . Esp Esp

1
I
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where each entry of (21)g, 3. belongs to [0,1]. Let Zy be the matrix associated to Z:

Eg, s, Eg 5, Epip-—(E1)p8-
=2 = Eﬁoﬁ+ T 05050 05057 . (15)
Es 5, — 1)z, 08_8 Op_p_

Now we are in a position to give the coderivative of the subdifferential mapping 9| - ||«

Lemma 2.3 (See [22, Theorem 3.2]) Fixz an arbitrary (X, W) €gph |- ||« and let o, 3,7
and ¢ be defined by (10a)-(10b) with Z= X+W . Let (U,V) € O™"(Z) with V = [V1 Vsl
where Vi € Q™™ and Vo € O"*(=™) and for each H € R™*" write H=TUHV and
Hy = UTHvl. Then, (G, H) € Ngph |- (X, W) iff the following relations hold

©108(H;) + ©308(G1) + Sy 0 X(Hy) + Bg0 X(Gy) =0, (16a)
Gac+ (3)ac © (Hoe — Gac) = 0, Hpo = 0, Hye = 0, (16b)
_dloN-I-_‘QoS( ) L_,QOX( ) 0
(Ges Hag) € | § (M,N) with N = QTNQ, M = QTMQ, (16¢)
gsg Q5 MQs, <0, Q% NQg, = 0

where S: R™*™ — §™ and X : R™*™ — R™*™ qre linear the mappings defined by

SY):=Y+Y"/2 and X(Y):=(Y-YT)/2 VY ecR™™ (17)

and the notation “o” denotes the Hardmard product operator of two matrices.

3 Four classes of stationary points and their relations

To introduce the four classes of stationary points for the problem (1), with each ¢ €.Z,
we write ¢(t) := ¢(|t|) for t € R and ®(z) := Zl 1¢(z) for x € R™; and with the
associated v, write (t) :=1(|t|) for t € R and \I/( )=y 11#(3:1) for z € R™. Clearly,
® and U are absolutely symmetrlc Le., , ®(Pz) = ®(z) and U(Pz) = U(x) for any m xm
signed permutation matrix P. Also, <I> o ¢ is globally Lipschitz continuous over the ball
B. The following equivalent relations are often used in the subsequent analysis
[X|ls = (X, W) =0,|W| <1<=W € argmax (Z, X) <= X € Ng(W) (18a)
ZeB
=W D] [(X) = (X,W) egph] -]l (18b)

3.1 R-stationary point

Recall that X € R™*" is a regular critical point of F if 0 € OF (X). Since the rank
function is regular by [37, Lemma 2.1] and [19, Corollary 7.5], by combining with the
assumption on f, from [32, Corollary 10.9] we have OF (X) 2 9f (X )+0rank(X)+Nq(X).
In view of this, we introduce the following R-stationary point of the problem (1).



Definition 3.1 A matriz X € R™*" is called a R-stationary point of the problem (1) if
0 € vOf(X) + drank(X) + N (X).

Remark 3.1 Clearly, every R-stationary point of (1) is a regular critical point of F.
By the given assumption on f and [32, Ezercise 10.10], for any X € Q it holds that

OF(X) C vOf (X) + d(rank + 5q)(X).

Thus, when d(rank + 6q)(X) C drank(X) + No(X), the limiting critical point of F is
same as its reqular critical point, and coincides with the R-stationary point of (1).

3.2 M-stationary point
By invoking the relation (18b), clearly, the MPEC (4) can be compactly written as

pmin {ﬁ(x, W) = vf(X) + (a(W)) + 60(X) + Sgpnof. (X, W)}. (19)

Moreover, under a suitable constraint qualification (CQ), the following inclusion holds:
OF (X, W) C [vdf (X) + Na(X)] x 0(® 0 0) (W) + Nypoy.. (X, W).
Motivated by this, we introduce the M-stationary point of the problem (1) as follows.

Definition 3.2 A matriz X € R™ " is called an M-stationary point of the problem (1)
associated to ¢ € L if there exist W € 9| - ||«(X) and AW € 9(® o o)(W) such that

0 € vIf (X) + No(X) + D*0 - |«(X|W)(AW). (20)
Remark 3.2 When Q C S, the rank regularized problem (1) can be reformulated as
i X m i 0q(X
pin vf(X) + 2052, 6(0i(W)) + 0a(X)

st. (I—W,X)=0,Wes", [-Wes". (21)

Notice that (I —W,X) =0, X € ST, W €St and I - W €S} iff ( X,W—-1) ¢ gph,/\/gi
and W € 8. So, for this case, X € Q is an M-stationary point if and only if there exist
(Y,AY) e ST xS" withY —1 € Nsn (X) and AY € d(® o 0)(Y) + Nsn (Y) such that

0 € vf (X) + No(X) + D*Nay (XY — I)(~AY),

or equivalently, there exist Y € S withY—1 € Nsn (X) and (T1,T3) € S" x S™ such that

0 € vIf (X) + 1 + Na(X), (22a)
0€0(®00)(Y) -T2+ N (Y), (22b)
Ty € D*Ngn (X|Y = I)(-Ty). (22¢)
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For this class of stationary points, we have the following proposition that is the key
to achieve the relation between the M-stationary point and the R-stationary point.

Proposition 3.1 Let % denote the family of those ¢ € L that is differentiable on (0,1].
If X is an M-stationary point of the problem (1) associated to ¢ € %, then there evist
W € 9| |+(X) and AT € vof (X) + Na(X) such that for the index sets o, 3, ¢,7,v1 and
Yo defined as in (10a)-(10b) with Z = X + W and (U,V) € Q™" (Z),

Oaa 004,3 ngy Oac

AT=T 030 (AD)gs (AT)g, (AD)pe|V' for AT=T AI'V,S[(AT)zs]=0. (23)
0o (AT)ys (AD)yy (Al

In particular, if ¢'(t) # 0 for allt € (0,1), then v3 = 0; and if 0 ¢ 35(0), then o = 0.

Proof: Let X be an M-stationary point of the problemA(l) associated to ¢ € Z. By
Definition 3.2, there exist W € 9|| - ||«(X) and AW € §(® o ¢)(W) such that (20) holds.
So, there exists AT € vdf(X) + Nq(X) such that —AT' € D*9|| - ||«(X|W)(AW). We
argue that AT has the form of (23). Since (U,V) € Q™"*(Z), from W € 9| - ||«(X),

~_ [Diag(0a(Z)—€a) 0Oap Oay Oac .

X=U 08a Ogg Oy Oge| V', (24a)
L Uya Oy Oyy O

o [Tna 04 Oay Oac o

W =U |0 Igs 0y Oge| V. (24b)
10va 0,5 Diag(c,(Z)) Oqc

Since ® is absolutely symmetric and AW € (P o J)(W), by [20, Corollary 2.5] and
equation (24b) there exist (U, V) € O™"(W) and w € d®(o(W)) such that

AW = U[Diag(w) 0]V". (25)
From w € 9®((W)), the definition of ® and equation (24b), it follows that
W =¢'(1) fori € aU B; w; = ¢/ (04(2)) for i € v1; w; € dp(0) for i € v9.  (26)

Without loss of generality, we assume that the matrix Z has r distinct singular values
belonging to (0,1). Let fi; > fig > - -+ > @1, be the r distinct singular values and write

ag = {Z € | ai(f)zﬂk} for k=1,2,...,r.

Since ((7 , 17) € @m’”(W), from equation (24b) and [4, Proposition 5|, there exist a
block diagonal matrix Q = Diag(Qo, Q1,...,Q,) with Qo € Ol**Al and @, € Ol for
k=1,2,...,r, and orthogonal matrices @’ € Ol and Q” € QoY such that

ﬁ:U[@ O] and V:V[Cg Cg”]'

9



Together with equations (25) and (26), it is not difficult to obtain that

— Diag(wauﬁu ) 0 :| —T
AW =U n . V-,
[ 0 Q'Diag(wy, ) (Q%,)"
and consequently
~ T — Diag(Waupuy, ) 0 }
AW:=U AWV = n o . 27
PP g 27

Since (—ATL, —AW) € Ngph |1 (X, W), by equation (16a)-(16b) of Lemma 2.3, we get
©1 0 S(AW) + O3 0 S(AT) + T1 0 X(AWL) + 25 0 X(AL) =0, (28a)

(AD)ac + (28)ac © [(AW )ae — (AD)ac] = 0, (AW)g =0, (AW),e=0  (28h)
where Al'; := UTAFVQUBUW, AWl = UTAWVQUBU,Y, and the matrices ©1,04,3; and

Yo are defined as in Section 2.3. Notice that [AI/IN/l]OéUgU%70[U,3UAY1 is a diagonal matrix by
equation (27). Together with (28a)-(28b) and (11a)-(11c), it follows that

(AW )ae = 0, (AD)ge = 0, (AW)., = 0, (29a)
[S(ATD)]aa + (Z2)aa © [X(AT))]aa = 0, (29b)
(©2)ag © [S(AT))]ag + (Z2)ag © [X(AT1)]ag = 0, (29¢)
(©2)g0 © [S(AT1)] g0 + (Z2) g0 © [X(AT1)]ga = 0, (29d)
(©2)ay © [S(AT)]ay + (S2)ay © [X(AT1)]ay =0, (29e)
(@2)704 ° [S(Afl)]va + (22)704 0 [X(Afl)]va =0. (29f)

Notice that (29b) is equivalent to (E + $2)aa (AL )aa + (B — $2)aa(ALT)qq = 0 which,
by the fact that the entries of X9 belongs to (0,1), implies that (AI'1)aa = 0. Notice
that equations (29¢) and (29d) can be equivalently written as

(©2 4 B2)ap © (AT'1)ap = (S2 — O2)ap © (AT )ap, (30a)
(©2 + 32)a © (AT1)ga = (X2 — O2)ga © (ATT) ga. (30D)

Since [(Afl)ﬁa]T = (Aﬁf)aﬁ and [(Aﬂr)ga]'f = (Afl)ag, by imposing the transpose to
the both sides of equality (30b) we immediately obtain that

(AT])ag = [(Z2 — O2)ap @ (O2 + X2)ag] © (AT1)agp

where “©” denotes the entries division operator of two matrices. Substituting this equal-
ity into (30a) yields that (AI'1)ag = 0, and then (AI'1)go = 0. Similarly, from (29¢) and
(29f), we can obtain (AI'1)ay = 0 and (AI'y)gy = 0. Thus,

Oaa 004,3 Oa'y Oac

U ALV = AT = |050 (AD)gs (AD)g, (AD)se

0va (AF)’YB (AF)’W (AF>70
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Thus, to complete the proof of the first part, we only need to argue that S[(Af)gg] =0.
Since (—AL, —AW) EnghaH.”*(Y,W), by (16¢) there exist @ € Ol and Z; € Upg
having the form (14) for some partition (54, 5o, 8—) of 8 such that

Z10 QT (AW)5Q + E2 0 S[QT(AT)3sQ] + E2 0 X [QT(AW)55Q] =0,  (31)
Q5. (AD)55Q5, = 0, Q5 (AW)55Qp, < 0 (32)

where the matrix =y associated with Z; has the form of (15). From (27) and the first
equality in (26), (AW)gg = Diag(wg) = ¢'(1)1. Notice that ¢/(1) > 0 by (2). We deduce
Bo = 0 from the second inequality of (32). Since X[QT(AW)z5Q] = 0, (31) reduces to

E1 0 (Q"Diag(Ws)Q) + E2 0 S[QT(AT)5Q] = 0.

Since QTDiag(ﬁg)Q = 0, by using the expressions of Z; and Z5 we have S_ = (), and
then the last equality reduces to 0 = S[QT(AF)%Q} = S[(Af)gﬁ]. Thus, we complete
the proof of the first part. By combining (AW)W = 0 with (27) and (26), it is easy to
see that if ¢/(t) # 0 for any t € (0,1), then 1 = 0; and if 0 ¢ 9$(0), then v = 0. O

Now we state the relation between the M-stationary point and the R-stationary point.

Theorem 3.1 If X is an M-stationary point of the problem (1) associated to ¢ € L,
then it is also a R-stationary point. Conversely, if X is a R-stationary point of (1), then
it is an M-stationary point associated to those ¢ € L with 0 € 0¢(0).

Proof: Let X be an M-stationary point of (1) associated to ¢ € .Z;. By Proposition
3.1, there exist W € 9| - [|«(X) and AT € vdf(X) + Nqo(X) such that for the index
sets a, 3, ¢,7,71,70 defined as in (10a)-(10b) with Z = X + W and (U,V) € Q™"(Z),
(AT)gs (AD)gy (AT)ge
(AT (AD)yy  (AD)Ae

(P, P') € @~ leln=lel(AZ). Write U = [Un Usuy Pl and V = [V, VguqueP']. Then,

the matrix AL takes the form of (23). Let AZ = . Take

r7 Oaar Oa LU Oac :| T
Al'=U . PR V-,
0guy,a Diag(o(AZ)) 0puy.c

By the definitions of U and V and (24a), it is easy to check that (U,V) € Q™"(X).
Notice that rank(X) = |a|. From [17, Theorem 4|, we have —ATl' € drank(X). Thus,
0 € Orank(X) + v0f (X) + Nq(X). From Definition 3.1, X is a R-stationary point.

Now let X be a R-stationary point of (1) with rank(X) = 7. Suppose that 7 > 1.
Take ¢ €.% with 0 € ¢(0). By Definition 3.1, there is AT' € v9f(X) + N (X) such that
—AT € drank(X). Along with [17, Theorem 4], there exists (U, V) € Q™" (X) such that

—AT = U[Diag(z) 0]V with 7; =0 for i =1,2,...,7.

Next we proceed the arguments by t* = 0 and ¢* # 0, where t* is same as in (2).
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Case 1: t* = 0. Take W := U1V111‘, where U; and V are the matrix consisting of the
first 7 columns of U and V, respectively. Clearly, W € 9|| - ||«(X) and (U, V) € Q™"(Z)
with Z = X + W. Let a, 3, ¢, 70,71 be defined as before. Clearly, 3 = () = ;. Take

W, =¢ (1) fori € a and w; =0 € 0p(0) for i € . (33)
Since ¢ is convex, from [32, Proposition 10.19(i)] it follows that w; € GQAS(l) for i € a.
Then AW = U |[Diag(w) O]Vr[r € 0(Poo)(W). Let AT := U ATV and AW :=T AWV.
Clearly, X(Afl) = X(AW7) = 0 where AT = UTAI’Vl and AW, = UTval with
V1 being the matrix consisting of the first m columns of V; Together with ©3 and X
defined as in Section 2.3, it is immediate to verify that (—AL', —AW) satisfies
©1 0 S(AW}) + O3 0 S(AT}) + 21 0 X(AW)) + Sg 0 X(AL) = 0,
(AD)ac + (28)ac 0 [(AW )ae — (AD)ac = 0, (AW)ge =0, (AW), = 0.
Since 8 = 0, from Lemma 2.3 it follows that (—AT,—AW) € ngha”_H*(Y, W), ie.,
—AT € D*9)| - ||«(X|W)(AW). By Definition 3.2, X is M-stationary associated to ¢.

Case 2: t* # 0. Now t* € (0,1). Take W := U1V1T + t*UQV;T, where Uy and Vg are the
matrix consisting of the last m — 7 and n — 7 columns of U and V, respectively. Clearly,
W e d|-||«(X) and (U,V) € Q™" (Z) with Z = X +W. Let a, 3,c and v = vy U1 be
defined as before. Then 3 = () and 7o = 0. Let AW = U|[Diag(w) O]VT with

w; = ¢ (1) fori € a and w; =0 € Ip(t*) for i € ;. (35)

Using the same arguments as those for Case 1 can prove that X is M-stationary.

When 7 = 0, choose W = 0. Clearly, W € 9||- ||*(X) since X = 0. Write ZA: X+W.
Then, a = 3 = () = ;. Take AW = 0. Since 0 € 9¢(0), we have AW € 9(® o o)(W).
Moreover, by Lemma 2.3 it is easy to check that D*9)|| - ||« (X|W)(AW) = R™*". Thus,
X is M-stationary associated to ¢. The proof is then completed. O

To close this subsection, we provide a condition for a local minimizer of the MPEC
(4) associated with ¢ €.Z to be an M-stationary point associated to ¢.

Proposition 3.2 Let (W, X) be a local minimizer of the MPEC (4) associated to ¢ € £ .
Then X is an M-stationary point of the problem (1) associated to ¢, provided that

Neph Nan@mxn sy (W, X) € Ngpnaz (W, X) + {0} x No(X) (36)
where B := {Z € R™*" ||| Z|| < 1}, and if in addition ¢ € L, X is a R-stationary point.

Proof: By invoking the relation (18a), (W, X) is a feasible point of (4) if and only if
(W, X) € gph Ng N (R™*™ x Q). This implies that (4) can be compactly written as

uin A F () 4 B () 4 Gy n(ern ey (W X)
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From the local optimality of (W, X), the assumption on f, the Lipschitz continuity of
® o o over the ball B, and [32, Theorem 10.1 & Exercise 10.10], it follows that

0 € Of (W, X) + (P 0 0)(W) x {0} + Nypn ey (W, X)
where f(W, X) = vf(X). Together with the inclusion (36) and [32, Exercise 10.10],
0 € {0} x 1OS () + N (7, ) + {0} x Noy(X) + 0B 0 0) (W) x {0} (37)
which is equivalent to saying that there exists (—AW, AX) € Ngpnag (W, X) such that

0€d(Poo)(W)—AW
0€vdf(X)+ AX + No(X).
Notice that (—AW,AX) € Ngpna, (W, X) if and only if AX € D*9|| - ||.(X|W)(AW).
So, equation (37) is equivalent to saying that there exists AW € 8(® o ¢)(W) such that
0 € vOf(X) + Na(X) + D*0| - [l (X W) (AW).

In addition, notice that X € Ng(W) which is equivalent to 9| - ||«(X) by (18b). Thus,
by Definition 3.2, X is an M-stationary point of the problem (1) associated to ¢. The
second part is a direct consequence of Theorem 3.1. The proof is completed. O

Remark 3.3 (i) If Q = R™*" the inclusion (36) automatically holds. If Q C R™*™ by
[13, Page 211] the inclusion (36) is implied by the calmness of the following multifunction

M(Y1,Ys) = {(W, X) € R™" x Q| (W, X) € gph N — (Yl,YQ)}. (38)

at the origin for (W, X), where (W, X) is an arbitrary feasible point of the MPEC (4).
(ii) When ©Q C S, together with (21) and the Lipschitz continuity of Doc inB, in order
to achieve the conclusion of Proposition 3.2, we need to replace the inclusion (36) by

NC(W X)CnghNgn(XW I)+NS"( )XNQ( )

where C := {(W, X) € S} x Q | (X, W —I) € gphNs» }. By invoking [15, Page 211],
this inclusion is implied by the calmness of the following multifunction

M(Y1,Y2) 1= {(W, X) € 8} x Q| (X, W = 1) € gpbiAyy — (V1,Y2) ] (39)

at the origin for (W, X), where (W, X) is an arbitrary feasible point of the MPEC (21).
By the definition of calmness, il is easy to check that the calmness of M at the origin for
(W, X) is implied by that of M in (48) with Q; = Q and Q, =S at the corresponding
point, while by Theorem /.2 the latter holds if for any 0 # H = (Hy; Hs) € To(X) x
Tsn (W) such that (Hy, Hz) € Tgphnn (X, W —1), the following implication relation holds:
+
Iy € —No(X; Hi), T2€ —Nsy (W; Ha) T
< T _ = =0. (40)
(I'1,Tg) Gngh/\/Si((X7W—I)»(H1,H2)) Iy

For the characterization of Ngphnin (X, W —I); (Hy, Hy)), please refer to Appendiz.
+
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3.3 EP-stationary points

By the definition of the function \f/, clearly, the problem (5) can be compactly written as

cumin (v () +6a(X) + B (o (W) 4 p(| X1~ (W, X)) }. (41)

Based on this equivalent reformulation, we introduce the following stationary point.

Definition 3.3 A matriz X € R™*" is said to be an EP-stationary point of the problem
(1) associated to ¢ €. L if there exist a constant p > 0 and W € B such that

pX € (W o o) (W) and 0 € vdf(X) + No(X) + p[O| - [|«(X) — W]. (42)

Remark 3.4 By the given assumption on f and the Lipschitz continuity of(foa in B, if
(X, W) is a limiting critical point of the objective function of (41), it is an EP-stationary
point of (1). Thus, every local optimal solution of (5) is an EP-stationary point of (1).

The following proposition characterizes a key property of the EP-stationary point.

Proposition 3.3 Suppose that X € R™*" is an EP-stationary point of (1) associated
to ¢ € L. Then, there exist W € B and (U,V) € Q™"(W) N O™"(X) such that
rank(X) > |{i | o3(W) > t*}|, and there exists AT € vOf(X) + N(X) such that
ATl € {U [8 pOZ] V' Z e Rm=10Dx(n=101) with 0, = {i | o3(W) = 1}, || Z]| < 1} .
(43)

Proof: Since X is an EP-stationary point of the problem (1), there exist a constant
p > 0 and a matrix W € B such that the inclusions in (42) hold. Define the index sets

02 :={i | o;(W) € (0,1)} and 6y :={i | o;(W)=0}.
Since pX € (W o o) (W), by [20, Corollary 2.5] there exists (U, V) € Q™"(W) such that
pX = U[Diag(c(X)) 0]V and o(X) € 03 (c(W)).

Notice that o1(X) > -+ > 0, (X) with ¢;(X) € 9¢(1) for i € 61, 0:(X) € (o:(W))
for i € 0 and 0;(X) € 9¢(0) for i € Oy. Since OY(t) C (0,+00) for any ¢ > t*, we have
rank(X) > |{i | o;(W) > t*}|, and the first part follows. Since (X, W) satisfies the second
inclusion of (42), there exist AT € v f(X)+Nq(X) such that —AL € p[d||- ||(X) — W].

Write 7 = rank(X). From the SVD of X in the last equation and equation (9), we have
Ol 11-(X) = {Ulﬁf + TV, | |ID < 1,T € R<m—?>x<n—?>},

where U; and V' are the matrix consisting of the first 7 columns of U and V, respectively,
and Us and V5 are the matrices consisting of the last m — 7 and n — 7 columns of U and
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V, respectively. Together with —ATL € p[d) - ||+(X) — W] and W = U[Diag(c(W)) O]VT,

the inclusion in (43) holds. In fact, the matrix Z in the set of (43) has the following form

Diag(er_jg,|) 0| _ [Diag(ag,(W)) o
0 r 0 Diag(og,(WV))
for some I' € R™=7X("=7) with |T|| < 1, where 6} := {i € 0 | 0;(W) < t*}. O

Remark 3.5 If} is an EP-stationary point of (1) and the associated W € B is such
that |01| = rank(X), then by Definition 3.1 and [17, Theorem 4] X is a R-stationary point
of (1). However, when X is a R-stationary point, it is not necessarily EP-stationary.

3.4 DC-stationary point

With the conjugate T* of \/I\l, the surrogate problem (6) can be equivalently written as

cmin {0 () + 80(X) + gl X1, = @ (oo (X))}, (44)
By [20, Lemma 2.3|, we know that T* is also absolutely symmetric. Along with its lsc
and convexity, from [20, Corollary 2.6| it follows that U* o o is an absolutely symmetric
convex function on R™. Thus, dq(X)+ p|| X ||+ — (¥*o0)(pX) is a DC function on R™*".
In view of this, we present the following DC-stationary point by the reformulation (44).

Definition 3.4 A matriz X € R™*" is called a DC-stationary point of the problem (1)
associated to ¢ € Z if there exists a constant p > 0 such that

0 € vIf(X) + Na(X) + pd| - [|«(X) — pd(¥" 0 0) (pX). (45)

When f is convex, the problem (44) is a DC program, and now X € R™*" is a
DC-stationary point if and only if it is a critical point of the objective function of (44)
defined by Pang et al. [29]. It is worthwhile to point out that the limiting critical point of
the objective function of (44) is a DC-stationary point, but the converse does not hold.
For the discussion on the DC-stationary point, the reader may refer to [29]. Here, we
focus on the relation between the DC-stationary point and the EP-stationary point.

Theorem 3.2 Let X be a DC-stationary point of (1) associated to ¢ €.%. Suppose that
Ap(0) = 91(0) and ¢* is differentiable on Ry with (¢*)/(0) = (¢*)'(0). (46)

Then X is an EP-stationary point. Conversely, if X is an EP-stationary point associated
to ¢ € ® with ¢ nondecreasing on [0, 1], then X is necessarily a DC-stationary point.

Proof: From the symmetry of 4, it follows that 12*(5) = *(|s|) for any s € R. Together
with the given assumption, we have ({Z)\*)/(S) = (¢*)'(s) for any s > 0. By the differentia-
bility of 12* on R, clearly, U* is differentiable on R’*. Along with its absolute symmetry
and convexity, from |20, Theorem 3.1| it follows that U* o ¢ is differentiable in R™*™
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and consequently d(U* o ¢)(pX) = {V(¥* 0 0)(pX)}. Since X is a DC-stationary point
of (1), there exists a constant p > 0 such that (45) holds. Take (U, V) € 0™"(X). Let

W= U|Diag(@) 0]V  with @; = (") (poi(X)) fori=1,2,...,m

Since 1 is a closed proper convex function, we have range dv* C domy = [0, 1] by [31,
Section 23|, which implies that w; € [0,1] for ¢ = 1,...,m and consequently ||[W| < 1.
Combining w; = (¢¥*)(po;(X)) with [31 Corollary 23. 5 1] we obtain

poi(X) € 0y (w;) C OP(w;) for i=1,2,...,m,

where the second inclusion is due to w; € [0, 1] and 84(0) = 9¢(0). By the definition of ¥,
it is not hard to obtain pX € d(Woo)(W). Thus, by Definition 3.3 and (45), to achieve the
first part we only need to argue that W = V(¥*o0)(pX). Recall that w; € (¢*)'(po; (X))
for each ¢ and (¢¥*)'(s) = (w*) (s) for all s > 0, we have w; = (Q,D ) (poi(X)) for each i.
This along with the expression of U* means that W = V(\II* 00)(pX).

Now suppose X is a EP-stationary point associated to ¢ €. with ¢ nondecreasing on
[0,1]. Then, there exist p > 0 and W € B such that the inclusions in (42) hold. Notice
that ¢ is nondecreasing and convex. Hence, v is convex. Together with its absolute
symmetry and convexity, it follows that T is absolutely symmetric and convex. From |20,
Corollary 2.5] it follows that U o ¢ is convex over R™*™. From pX € 0(V o o)(W), we
get W e 8(‘11 00)*(pX). By the von Neumman trace inequality, it is easy to check that
(¥oo)* =U* o0, and then W € d(¥* 0 ¢)(pX). Together with the second inclusion in
(42) and Definition 3.4, we conclude that X is a DC-stationary point of (1). O

To sum up the previous discussions, we obtain the relations as shown in Figure 1,
where 6 is the index set defined as in (43) and %5 denotes the family of those ¢ € .2
that is nondecreasing on [0, 1]. We see that the set of R-stationary points is almost same
as that of M-stationary points and includes that of EP-stationary points under the rank
condition || = rank(X), while for some ¢ the set of EP-stationary points coincides with
that of DC-stationary points, for example, the following special ¢.

Example 3.1 Let ¢(t) = <2t2 + 2-t (a > 1) for t € R. Clearly, ¢ €4 N L. Also,

a+1 a+1

ey 2t if0<t<1,

el 24 if0<t<1 ~ aq2 5
W(t) = { ==} N pEa Dol = and )= G- i it 1< <0,
00 otherwise.

After an elementary calculation, the conjugate ¥* and zZ* of ¥ and 12 take the form of

0 if w <

* at+lw-2)2 . a+17 T *
Yr(w) = ¢ Lger L A G
w—1 sz>a_~_1

It is easy to check that ¢ satisfies the conditions in (46) and is nondecreasing in [0, 1].
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{DC—stationary poiut}

)

condition (46 hE L g
(16) e local minimizer of (4)

i

‘ EP-stationary point ‘

inclusion (36)

IWeB
[#1] = rank(X)
L ‘ 0 € Ap(0) 4
‘ R-stationary point | " | M-stationary point
) 0 E L

Figure 1: Relations among the four classes of stationary points

4 M-stationary point of MPSCCC

In Section 3.2, the MPEC (4) is the key to characterize the M-stationary point of (1).
When Q C §7, it corresponds to (21) which is a special case of the following MPSCCC

e, #0

st (f(z,y), 9(x,y)) € gphNs:, (47)

where €, € X and Q, C Y are the closed sets, p: X x Y — R and f,g: X xY — S"
are smooth functions. For this class of problems, since the Robinson CQ does not hold,
it is common to seek an M-stationary point which is weaker than the classical KKT
point (also called the strong stationary point). In this section, we shall provide a weaker
condition for a local minimizer of (47) to be the M-stationary point. For this purpose,
we need the multifunction M: X x Y x S” x S = X x Y defined as follows:

M(u,v,&,n) = {(x,y) eEXxY|ue—z+Q,ve—y+Q,
(&) € =(F(@,9) 9(x,1)) + £phNey |- (48)
By [5, Proposition 2.1 and Theorem 2.1], it is immediate to have the following result.

Theorem 4.1 Let (Z,y) be a local minimizer of (47). If the perturbed mapping M is
calm at the origin for (T,Y), then (Z,7y) is an M-stationary point of the problem (47).

By [11, Corollary 1], one may achieve the calmness of M at the origin for (Z,y) by
the directional limiting normal cone to gph./\/’gi. That is, the following result holds.
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Theorem 4.2 Consider an arbitrary (Z,5) € M(0,0,0,0). If for any 0 # w = (wy; ws) €
Ve
Ta, (Z) x Ta, (y) such that (f (x,y)) w € Tgpnen (f(T,7), 9(Z,7)), the implication holds:
+

J(Z,79)
di € No, (T;w1), di + Vo f (T, 9)A + Vog(T,9)A =0 dq
dz € Na, (J;w2), d2 + Vy f(Z,7)A + Vyg(T,7)A = 0 da | _ 0 49
@ = (f@ P + L@ s, go@ Pwn + gy@Pws) (7 [ a | =% @)
(A, A) € Ny ((f(.9). 9(7. 7)) w) A

then the multifunction M is calm at the origin for (Z,7y).

Remark 4.1 (i) Notice that (Axz, Ay) € DM((0,0,0,0)|(Z,7))(Au, Av, AL, An) iff

Awy = fi(T,7)Az + f,(Z,7)Ay + AL, (50a)
Aws = g, (Z,7) Az + g, (Z,7) Ay + A, (50b)
Au+ Az € T, (T), Av + Ay € To, (1), (50c)
Aws € DNsn (f(2,79)19(Z, 7)) (Aw). (50d)

Together with Lemma 2.2, there is no nonzero w = (wi;wz2) € (Ta,(T) x Ta,[)) such

/ — —~
that <§ Eﬂf y§> W € TgphNin (f(Z,9),9(Z,y)) if and only if M 1is isolated calmness at the
, i

origin for (z,y). Thus, Theorem 4.2 is stating that if M s not isolated calm and the
implication in (49) holds, then M is necessarily calm at the origin for (T,7).

(ii) Notice that (Au, Av, A¢, An) € D* M((Z,7)](0,0,0,0))(—Az, —Ay) if and only if

Az € Vi, f(T,7)A8 + Vag(T,7)An + Au, Au € No, (7), (51a)
Ay € V, f(Z,9)AE + Vyg(T,9)An + Av, Av € N, (), (51b)
A¢ € D" N (f(T,9)19(7, 7)) (—An). (5lc)

Together with Lemma 2.1, the Aubin property ova 1s equivalent to the implication

0 € V. f(Z,9)A¢ + Vo9(T,9)An + Au
0eV,f(Z,y)AE+V An+ A
yf(xAzi Efj\/gl, (yg)(xAg)e X/’Qy( 7; = (Au, Av, A§, An) = 0. (52)

(Agv AT}) € ngh./\/ﬂ (f(f; @)a g(f, @))

Since Nepuniy (((Z,9), 9(7.9)); (d1, d2)) C Ngphnir (f(7,7), 9(T, 7)) for (dr,d2) €S x

S™, the implication in (49) is weaker than the one in (52) which is precisely the M-

stationary point condition given in [5, Theorem 6.1(i)]. For the characterization of the di-

rectional normal cone Ngphnin ((f(Z,7), 9(Z,7)); (d1,d2)), the reader refers to Appendiz.
+
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To close this section, we illustrate Theorem 4.2 by the following special example
: 2 3
min T||” +
_min_ el + ]

st. (A(z)+ C, A(y) + D) € gph/\/'gi, (53)
where C' = Diag(1,0,0), D = Diag(0,0,—1), and A: R? — S3 is the linear mapping

rr T3 X2
Alx):= x5 22 = vz € R3.
Tro I1 I3

Consider 7 = (0,0,0)T and ¥ = (0,0,0)T. Write X := f(z,7) and Y := g¢(7,7).
Clearly, (X,Y) = (C,D) € gphS?. Moreover, the index sets «,3 and v defined by
(56) with A = X + Y satisfy a = {1}, = {2} and v = {3}. Fix an arbitrary
0 7'5 w = (wl;wg) S RS X R?’ with w = (wn,wlz,wls)T and wy = (’LU21,IU22,w23)T
such that (G, H) € Epwgﬁ(f(f,@),g(f,g)), where G = f(T,7)w1 + f,(Z,7)ws and
H =g (z,9)w; —i—g;(f, y)ws. Since (G, H) GEthS’i (f(Z,7y),9(Z,7)), by the expressions
of f and g it is not hard to obtain

0 0 w12 0 0 w22
G = 0 w12 0 and H = 0 w9 0
wiz 0 0 woe 0 0

with 0 < wyo 1 wey < 0 and wig + woe # 0. Then B Z:PE(G-l-H)Pﬁ = wio + waoo. Let
(di,d3) € R? x R? and (A, A) € S? x S? satisfy the conditions on the left hand side of
(49). Since Q, = Q, = R3, we have (d;,ds) = 0. Thus,

Vo f(Z, YA+ Vaog(Z,9)A = | Apa +2A13 | =0, (54)
2A19 + Ass

Vyf(@G)A+ Vyg(Z,J)A = | Az +2A13 | =0. (55)
2A19 + Ass

Case 1: wiy > 0. Now we have wgy = 0, and the index sets 7, J and v defined by (57)
with B satisfy 7 = {1},0 = ) and v = (). From Theorem 1 in Appendix, it follows that
(A, A) € Ngpnng ((X,Y); (G, H)) if and only if

+

0 0 A3 Ay App Ags
A= 0 0 Aos and A=A Ay 0 with A1z + A3 = 0.
Az Az Asz Az 0 0

Together with (54) and (55), we get A =0 and A = 0. Thus, (d1,d2, A, A) = (0,0,0,0).
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Case 2: wis = 0. Now we have wsos < 0, and consequently the index sets 7, and v
defined by (57) with B satisfy # = 0,0 = () and v = {1}. From Theorem 1 in Appendix,
it follows that (A, A) € Ngpnar, ((X,Y); (G, H)) if and only if

+

0 0 Ais A1 A Agg
A= 0 Ags Aogs and A= | A 0 0 with A1z + A3 = 0.
A1z Aoz Asg Az 0 0

Together with (54) and (55), we get A =0 and A = 0. Thus, (dy,d2, A, A) = (0,0,0,0).

The above arguments show that the implication (49) holds, and then the condition

in Theorem 4.2 is satisfied. Thus, the global minimizer (Z,y) is a M-stationary point of
(53), but by [5, Theorem 6.1(i)] we can not judge whether (Z,7) is a M-stationary or not.
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Appendix: Directional limiting normal cone to gph./\/’gi

In this part we characterize the directional limiting normal cone to gph./\/'gi. For this
purpose, for a given A € S”, we denote by A(4) € R™ the eigenvalue vector of A arranged
in a nonincreasing order and write Q" (A) := {P € Q" | A = PDiag(\(A))P"}.

Fix an arbitrary (X,Y) € gphj\fgi and write A= X+ Y. Suppose that A has the
eigenvalue decomposition A = PDiag(\(A))PT where P € Q"(A). Define the index sets

a:={i| Xi(A) >0}, B:={i] Ai(A) =0} and ~:={i[ Ai(4) <0}  (56)
For given G, H € S™, by the eigenvalues of B ::Pg (G+H)Pg we define the index sets:
mi={i € [1,B]] | \i(B)> 0},6:={i € [L,|8]] | M(B) = 0},v:={i € [1,|B8]] | \(B) < 0}.
For the index set §, we denote the set of all partitions of § by Z?(J). Define the set o0

R‘fl = {Z c Rl 21> > z‘5|}.

For any z € ]R';; ‘, let D(z) € SPI denote the first generalized divided difference matrix of
h(t) = max(t,0) at z, which is defined as

maxOz) max02) € 0,1] if 2 # 2,

(D(2))ij := 1 if 2= 2; >0, (58)
0 otherwise.

Write Ujg) == {Q € SI91: @ = limy_00 D(2F), 2% — 0, 2 € RU'}. Let 2) € Uj5). By the
definition of U, there exists a partition (d.,d0,0-) € F(9) such that

R Es.s. Es.oo (E1)5.6
2= E505+ 0 0 e sl

where every entry of (§1)5+57 belongs to [0,1]. We also write Sy = E —

~ 0 0 Es.s —(E1)s5.
By = 0 0 Esps.
(Es,o_—(Z1)s,6.)" Es_s, Es_s_

Next we provide a characterization for the direction limiting normal cone to gphj\fgi .

Theorem 1 Consider an arbitrary point (X,Y) € gph/\/'gi. Let A = X 4+Y have the
eigenvalue decomposition as above with «, 3, defined by (56). Then, for any given
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(G,H) € S" x S™ with m,0 and v defined as in (57) for B :ZPE(G—F H)Pg, it holds that
(X*,Y%) EnghNSi((X’ Y); (G, H)) if and only if (G,H) and (X*,Y™*) satisfy

Goo Gap Gay 0 0 Hay
G=P ngﬂ Gﬁg 0 PT, H=P ~0T Hﬁg Hﬁ,y PT, (59&)
T
Goz'y 0 0 H HB"/ H’Y’y
(Eay=Xay) © Gay + Yay 0 Hay = 0, Gpgg = S\ﬂ\ (Gﬁﬂ"‘Hﬁﬁ) (59b)
and
0 0 Xk Vi, Yr YE
* Y * ']1' * v \T 1r* T
X =P ~O i 3{6511, )(67 P, Y'=P (XQB)T YBB 0 | P, (60a)
(X5 (X5)™ X3, Yo 00
Yoy © X;,Y + (an—zcw) o (Y;,y) =0, (Xglﬂ, Yﬁ*ﬁ) € nghNg‘f‘ (0,0) with ~ (60b)
= Trr= = Ty /*
= U*Q)+Z20 (Q'V*Q) =0
Noon a1 (0,0) = U v ‘ 1o (@0 ' * Li60c
gp Sl_fl( ) QGLOJB ( ) Q'(]SI‘OU Q(So = O, Q?STOV Q(So =0 ( )
\ éleu‘ﬂ
where
Err ETré Try Orr Ors Ery —T'ny
== E57T = 0 and Zo := Osn =9 E]g7r
(FTI'ZI)T 0 0 (Eﬂ'V - FWV)T Equ Euu
with T'y; = maX(O’A/’\'I(_(B)g_i\n?X(? 2i(B)) for each (i,j) € m x v.

Proof: “=". Since (X*,Y™) € Ngphni, (X, Y); (G, H)), there exist sequences t;, | 0
+
and (G*, H*, X%, Y*) — (G, H,X*,Y*) with (X*,Y*) € Ngpnag, (X + t,GF, Y + t, HY)
+
for each k. Since (X + t,G*,Y + ty H*) € gph Ngn for each k, it holds that

X+ t,G* =Tlgn (X +Y + t,(GF+H")).

Notice that X = ITg» (X+Y') since (X,Y’) € gph Nsy and the projection operator Ilgy (-)
is directionally differentiable everywhere in the Hadamard sense. Taking the limit to the
last equality, we obtain G = H'i(X—i-Y; G+H). By the expression of H’n (X+Y;G+H)

in [33], it follows that G' and H satisfy (59a)-(59b). Write A¥:= (X +Y) +tk(G’k + HF).
For each k, let A* have the spectral decomposition A¥ = (P¥)TDiag(\(A%))P* with
PF € 0"(AF). Since A\(A) = limy,_,00 A(A¥), we have \;(A*) > 0 fori € a and \;(A4%) <0
for i € v when k is sufficiently large, and limg_ oo A\;(A¥) = 0 for i € B. Since {P*} is
bounded, we may assume (if necessary taking a subsequence) that {P*} converges to
P e 0"(A). Since P € Q™(A), there exists Q € 0Pl such that P = [P. P3Q P,
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We assume (if necessary taking a subsequence) that there is a partition (84, By, B—) of 8
such that

MNi(AF) >0 Vie By, M(A¥) =0 Vie By and \(A*) <0 Vie B for each k.
In addition, from [16, Theorem 7| or |34, Proposition 1.4], it follows that
Viep

Xi(AF) =t N, [PF(GP+HF)Ps) + o(ty,) (61)

where [; is the number of eigenvalues that are equal to \;(A) but are ranked before i
(including 7). Write B* := PE(GkJer)Pg for each k. Since A\(B) = limy_ oo A(B¥),
we have \;(B¥) > 0 for i € 7 and \;(B*) < 0 for i € v when k is sufficiently large,
and limy,_s00 Aj(B¥) = 0 for i € §. By further taking a subsequence if necessary, we may
assume that there exists a partition (04, dp,d—) of § such that for each k,

M(B¥) >0 Vied, M(BY)=0 Viedy and \(B¥) <0 Vied_.

This means that 7 Ud4 = 84 — |a] and v U6 = B — |af, and then o = Sy — |a|. For
convenience, we write T = 7w + |a|, d = 0 + |a| and 7 = v + |a|. Then, we have

{i] M(AF) >0} =aUTUG,, {i] M(AF) =0} =0do, {i| N(A¥) <0} =6_UDU.
Since (X*, -Y*) e ./\Afgph/\fSi (X + t,G* Y + t, H), by [36, Corollary 3.2] it follows that
Of o X* + 050 (V") =0, Xk- =0 and Y7 »0 (62)

with X* = (P*)TX* Pk and Y* = (P*)TY* Pk where ©F and O take the following form

[ Eua Euor T3 S O MU VS Vi Vi
Era Erer Ef3+ Eﬁo 2%7 E% E%w
Bs.o. Fs= Bis, Fis, Y55 S5, S5
o =1| Be Bz FBsp, 0 0 0 0 (63)
(s )" (500 (55500 0 0 0 0
)" ) (35,0 0 0 0 0
(&) ER)T (5 )T 0 0 0 0 |
11
" [ Oaa Oor 05, Oy XF  Sh BT
Ora Oz O,  Om, b SE SR
G G U5 % S S, T,
=1 050 U5z O35 055 Fss  Esx s (64)
Chs )t )7 (5507 B, B By Fs
)T ER)T )T Ep, Bp Bwo Bn
(SE)T (ST (Sk B Es By By




with Ek — max(0As ((A:,zg:ﬁ’j,?ff“‘k)) and ifj = Elkj —ij. It is immediate to have that
%, %o % V.o TLe T
QX" QTX5,Q QX3 | and P |QT(VL)T QTVLQ QY3
(X)) (X3 X* V) ()R Y*

By the expression of E for (i,5) € (¢ UTUJI4) x (6 UTU~) and equation (61),

k : k : k
klggo Yo =E3 klggo Yov= Eov, klggo Yoy = Em, hm 2 =05, 5
k . k . k
klglgo Yo =E5 ll)n(;lo Yoo = Y, kl;n;o ¥7,=0 oy | hm E = 03+,Y,
where ¥;; = max(0, A}\ 'T‘ff);_zlax‘(?(/\]) CHR (i,7) € ™ xv. Thus, there exists 2 E € U
e j—|a
such that =; and the associated matrices :2, =1 and =9 satisfy
Oaa Oaﬁ Oa’y Oaa Oaﬁ Oa'y
Jim_ OF =014+ |03 =1 0| and Jim. O =034 |0ga Z2 0
Oy O 0 Oy O 0

Taking the limit & — oo to (62), we have that (X*, Y™*) satisfies the condition (60a)-(60b).

“«=". Let (G,H) and (X*,Y™) satisfy (59a)-(59b) and (60a)-(60b), respectively. We

shall prove that there exist sequences #; | 0 and (G, H* Xk YF) - (G, H,X*,Y™)

with (X*, —=Y*) € Ngpn nin (X + t4G*, Y + t;, HF) for each k. Let B have the spectral
+

decomposition B = UDiag(A(B))UT and write P = [P, PgU P ). Since (Xgﬂ, —Yﬁ*ﬂ)

Naph A 1 (0,0), there exist an orthogonal matrix @ € Ol and = Z € Ujs) such that
S
+

E10QTX}5Q +E20 (-Q"Y55Q) =0, Q5 Xj5Qs, = 0 and Qf Y33Qs = 0.  (65)

Since = Hl € Ujs|, we know that there exists a sequence {2F} € ]R' | converging to 0 such

that = Hl = limg_,oo D(z ) Without loss of generality, we can assume that there exists a
partition (94, 00,9-) € F(0) such that for all k,

>0 Vied,, 2F=0 Vicd and 2 <0 Vies_.

For each k, with 2% = [\ (B); z§+; 05,5 05_;0,] and y* = [O; 05,5 055 Z(I;:,; Av(B)], define

~ ~ gaa Ga,B Ga'y R N R Oaa Oa@ IzOC’Y N
GF=p ggﬁ Diag(zF) 0 | PT and H*=P 0a Dizig(yk) Hp, Pt
Gg'y 0 0 HEW HE’Y H’Y’Y

Clearly, for each F, (GF, H*) satisfies equation (59a)-(59b), which is equivalent to saying
that (G*, H*) € Topnnzn (X,Y). Thus, for each k, there exist tj, | 0 and (G, H*) —
+
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(G*, H*) as j — oo such that (X, Y)—l—tk].(ékj, H*) e gph Ngn for each j. By this, we can
find sequences t | 0 and (G*, H*) — (G, H) such that (X +,G*,Y +t, H) € gph,/\/’grfr
for each k. For each k, write A¥ = X +Y +;,(G¥ 4+ H¥) and define ©F € S” and ©f € S®
as in (63) and (64), respectively, except that EZW is replaced by 4. By the proof of the
previous necessity, for all sufficiently large k (if necessary taking a subsequence of {A¥}),

{i| M(AF) > 0y =aUT Uy, {i| M(AF) =0} = 3o, {i|N(AF) <0} =6_UDU~Y
where 7 and 7 are the same as before and 6 = 6 + |al. Next for each k we shall define
the matrices X* € S® and Y* € S". Let 4,5 € {1,2,...,n}. If (i,4) and (j,1)

Case 1: (4,7) or (j,i) € a x (6_ UD). In this case, we have X;; = 0 by (60a). Define
k

1- %k
YE=Y) and X[ = S vk (66)

v

Since Ek — 1 in this case, it immediately follows that (X Z, YZ];) (X; i Yzj)

Case 2: (4,j) or (j,7) € ™ X 7. Now we have Ylj = 0 by equation (60a). Define

k

XE=X; and Y=

k
LY 1] Ek X (67)

Notice that ij — 0 in this case. It immediately follows that (X%, VF) — (X7, Y*).

ij0 1 ig ij0 1
. N Ai(AF ,(GF+HF)
Case 3: (i,j) or (j,i) € T x v. Now Efj = ,\i(Ak)fngi(Ak‘) = Al.(GkJri‘{k)—Al.(GMH’c) for
i J

each k. Together with the definition of =y, Efj — (E1)iy with i = i—|af and j' = j—|a].
Subcase 3.1: (Z1);; # 1. Then Efj # 1 for all sufficiently large k. We define

k

Xf; = Q}r)?gﬁQj and XN’ZI; =

k
- zk Xk (68)

From equation (65), it follows that 571]; — 1523..@? 55Q5 = QLY. 5@;
=04

Subcase 3.2: (Z1);; = 1. Since Efj # 0 for all sufficiently large k, we define

1—2 _
Yk— Ty* d X Yyk. 69
Q; 55@; an 5 (69)

(—ul ij QTY,BBQJ Q XBBQJ
Case 4: (i,j) or (j,i) € (8 x B)\(7 x 7). In this case we define

Xk =QIX};,Q; and Y} =QTY;,0;. (70)

From equation (65), it follows that X Xk
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Case 5: (4,j) or (j,7) ¢ (a x D) U (T x v) U (B x ). In this case we define

k — v* vk _ v

1,

Now for each k we gl\eﬁneAXk = E)Nfiﬁjr and Y* = PY*PT. Then, from (66)-(71), it
follows that (PTX*P, PTY*P) = (X*,Y*) — (X*,Y*) as k — oo, and moreover,
Ok o (PTX*P) + 0o (-PTY*P) =0, k=1,2,...

)

Moreover, from equations (70) and the last inequalities in (65), it follows that
T wk — T w* T 7k — AT 7%
QBOX ngo = QﬂoXﬂﬁQBO t 0 and QﬁOY QEO = QﬁoyﬂﬁQﬁO i 0, k= 1,2, e

By [36, Corollary 3.2], we have that (—X* Y*) € Nynns, (X, V") for cach k with
+

(X*,Y*) = limp_,00 (X*, V%), To sum up, there exist ¢ | 0 and (GF, H* XF YF) =
(G*, H*, X*,Y*) with (—X*, Y*) € Ngpnpsn (X + t,G*, Y + t,, H) for each k. m
+
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