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Abstract. We treat the so-called scenario approach, a popular probabilistic approxim-
ation method for robust minmax optimization problems via independent and indentically
distributed (i.i.d) sampling from the uncertainty set, from various perspectives. The scen-
ario approach is well-studied in the important case of convex robust optimization problems,
and here we examine how the phenomenon of concentration of measures affects the i.i.d
sampling aspect of the scenario approach in high dimensions and its relation with the
optimal values. Moreover, we perform a detailed study of both the asymptotic behaviour
(consistency) and finite time behaviour of the scenario approach in the more general setting
of nonconvex minmax optimization problems. In the direction of the asymptotic behaviour
of the scenario approach, we present an obstruction to consistency that arises when the
decision set is noncompact. In the direction of finite sample guarantees, we establish a
general methodology for extracting “probably approximately correct” type estimates for the
finite sample behaviour of the scenario approach for a large class of nonconvex problems.

§1. The problem, prior results, perspectives and prelude to our results

§ 1.1. Minmax optimization and scenario approximation. The minmax optimization
problem is typically phrased as follows: Let d be a positive integer and (Θ, ρ) be a metric
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space. Let X be a nonempty subset of Rd and (Θ,B(Θ),P) be a probability space where
B(Θ) is the Borel σ-algebra on Θ induced by the metric ρ. Let f : X×Θ −→ R be a lower
semicontinous (l.s.c) function.1 We are interested in the following robust optimization
problem:

(1.1) y∗ B inf
x∈X

sup
θ∈Θ

f (x, θ).

Here on the one hand, x plays the role of the decision variable, andX is the set of variables
from which a choice of one decision has to be made. On the other hand, θ plays the role of
a parameter that affects the cost associated with each decision variable, and takes a fixed,
albeit unknown, value in the set Θ. In problem (1.1), in effect, we pick a decision variable
that incurs the least cost assuming that the worst possible value of θ corresponding to each
value of the decision variable is realised.

If Θ is an infinite set, then the minmax optimization problem (1.1) is an example of
a semi-infinite optimization problem. Semi-infinite problems have been reported to be
computationally intractable to solve in general [BTN98, BTN99, BTN01]. Nevertheless,
such optimization problems are of great importance in engineering, and, consequently,
there is a natural need to find computationally tractable tight approximations to the problem
(1.1). The central object of study in this work is the following approximation to (1.1):

(1.2) y∗m B inf
x∈X

max
i=1,..,m

f (x, θi),

where (θi)mi=1 is an independent and identially distributed (i.i.d) sequence of elements
sampled from Θ. This approximation is also known as the scenario approximation to the
minmax optimization problem (1.1) [CC05]. We call each instance of the optimization
problem (1.2) corresponding to the sample (θi)mi=1 a scenario optimization problem. Ob-
serve that each scenario optimization problem is no longer semi-infinite since the inner
maximum involves only finitely many variables. This makes the scenario optimization
problem computationally more tractable, at least for moderate values of m, than otherwise;
and this is an attractive feature of (1.2).

§ 1.2. Desirable properties of scenario approximation. Before proceeding further we
record the two following definitions for future reference:

(1.3)
f̂ (x) B sup

θ∈Θ
f (x, θ), and

f̂m(x) B max
i=1,..,m

f (x, θi).

We note that f̂m involves an abuse of notation since f̂m depends on the sample (θi)mi=1 and
not just on its size m; however, we suppress the explicit mention of this dependence in the
interest of brevity. It follows immediately from the definition that f̂m(x) 6 f̂ (x) for all x ∈
X and m ∈ N∗, which means that
(1.4) y∗m = inf

x∈X
f̂m(x) 6 inf

x∈X
f̂ (x) = y∗.

In other words, the value of each scenario approximation (1.2) is always an approximation
of y∗ from below.

There naturally arises questions about the goodness of such approximations. One natural
notion of goodness of the scenario approximation scheme is qualified in the form of:

1Recall that a function F : Θ −→ R is lower semicontinous (l.s.c.) if every sublevel sets of F is closed, i.e.,{
z ∈ Θ

�� F(z) 6 t
}
is closed for all t ∈ R.
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(G1) Consistency: Recall that a numerical approximation procedure is said to be consistent
if, intuitively as the level of approximation is made “finer”, the approximate solution it
computes converges to the actual solution of the problem being approximated. Consistency
is a very rudimentary property that most sound numerical approximation procedures are
expected to possess, and we say that the scenario approach is consistent if

P∞
({
(θi)+∞i=1

��� lim
m→+∞

y∗m = y
∗
})
= 1.

To wit, the scenario approach is consistent if for almost every (countable) sequence of
samples from Θ, the approximate solution computed by the scenario approach using only
a finite inital segment of the sequence converges to the solution of the original problem
with the length of the initial segment. We will study consistency of the scenario approach
in greater detail in the later sections. In particular, we will establish an obstruction to
consistency that arises when the setX is noncompact, a condition under which the scenario
approach is guaranteed to be inconsistent.

A second desirable property of the scenario approximation is a good quality of:

(G2) Finite sample behaviour: Observe that the condition of consistency is purely asymp-
totic; it gives us no information about the nature of the approximate solution computed
after drawing only a finite number of samples. But in the real world, information regarding
the finite sample behaviour of the scenario approach is crucial and the behaviour of the
scenario approach after drawing finitely many samples also warrants attention. In addition,
it is desirable that this information is available to us a priori, before the approximation
procedure is executed so that the number of samples drawn can be determined based on
the accuracy demanded by the application before executing the approximation scheme. We
start our study of finite sample behaviour by quantifying levels of approximation and bad
samples associated with scenario approximations. For ε > 0 define the set of “bad” samples
of size m as those that give at least ε-bad estimates of y∗, that is, those for which y∗m is at
least ε away from y∗:

(1.5) B (m, ε) B
{
(θi)mi=1 ∈ Θ

m
��� inf
x∈X

f̂m(x) 6 y∗ − ε
}
.

Defining

(1.6)
B̄ (m, ε) B

{
(θi)mi=1 ∈ Θ

m
��� there exist x ∈ X such that f̂m(x) 6 y∗ − ε

}
=

⋃
x∈X

{
(θi)mi=1 ∈ Θ

m
��� f̂m(x) 6 y∗ − ε

}
,

we immediately get the sandwich relation

(1.7) B̄ (m, ε) ⊂ B (m, ε) ⊂ B̄
(
m,
ε

2

)
.

We find it easier to work with B̄ (m, ε) than B (m, ε), and since these two sets are sandwiched
between each other, estimates for the probability of one will naturally lead to estimates for
probability of the other. Note that there is nothing special about the factor 2ε in (1.7), the
relation holds with any factor strictly greater than 1, we chose 2 for convenience. Since{

(θi)mi=1 ∈ Θ
m

��� f̂m(x) 6 y∗ − ε
}
=

{
(θi)mi=1 ∈ Θ

m
��� max
i=1,..,m

f (x, θi) 6 y∗ − ε
}

=

m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ − ε

}
,
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the set defined in (1.6) is, in fact,

(1.8) B (m, ε) =
⋃
x∈X

m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ − ε

}
.

Since we already have the obvious bound (1.4) that y∗m 6 y∗, if y∗m > y∗ − ε , then we
also get |y∗m − y∗ | < ε . In other words, if a sample lies outside the bad set B (m, ε), then
the difference between the approximate infimum and the actual infimum is less than than
ε . Naturally, it is desirable that the bad set is as ‘small’ as possible.

As mentioned earlier, in the real world a priori quantitative information regarding the
finite sample behaviour of the scenario approach is crucial. We are especially interested in
results that provide an upper bound on the probability of occurence of the bad set B (m, ε)

(1.9) β(m, ε) B Pm(B (m, ε)),

before the approximation procedure begins. Such quantitative bounds provide a PAC
(“probably approximately correct”) type guarantee that the scenario approximation (1.2)
computed using m i.i.d. samples from Θ has an accuracy ε with probability at least as
much as 1− β(m, ε). Given an accuracy level ε and a confidence level β, from such a bound
we may determine the number of samples that are required to ensure that the approximate
minimum is at most ε away from the actual minimumwith a probability at least 1− β. In the
subsequent sections we will prove such PAC type guarantees for a large class of nonconvex
minmax optimization programs.

§1.3. A technical look at the sampling probability. Since the scenario approximation
procedure involves i.i.d sampling according to an arbitrary probability distribution, it is
not reasonable to expect that the sampled maximum approximates the supremum. If
the probability distribution has large “holes” in regions of Θ where the supremum is
achieved, these regions are never explored and consequently the sampled maximum does
not approximate the supremum. We refer the reader to [Ram18, §1] for a more detailed
discussion on this matter. A more meaningful notion of a supremum that we expect the
sampled maximum to approximate is that of the essential supremum:

(1.10) ess sup
θ∈Θ

f (x, θ) := inf
{
z ∈ R

��� P
(
{θ ∈ Θ | f (x, θ) 6 z}

)
= 1

}
.

While the supremum of a set of numbers is its least upper bound, the essential supremum
is the least “almost” upper bound. If the probability distribution has “holes” in certain
regions, the essential supremum avoids considering the value of the function in these
regions automatically, and therefore avoiding these regions while trying to approximate the
essential supremum does not create any technical issues. However, the supremum posesses
a lot of nice properties that the essentail supremum does not posess, and in order to avoid
having to deal with the additional complications brought by the essential supremum, we
would like to ensure that the supremum and the essential supremum are one and the same.
Fortunately, it turns out that the assumption of lower semicontinuity of f that we made at
the start is sufficient for this, and to verify this statement, we start with a standard definition
from measure theory.

Definition 1.1 ([Par67, Definition 2.1, p. 28]). The support of the measure P is

Θs :=
{
θ ∈ Θ

��� P
(
Nθ

)
> 0 for every open neighbourhood Nθ of θ

}
.
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It can be shown that Θs is the smallest (w.r.t set inclusion) closed subset of Θ that has
P-measure 1.

Lemma 1.2. Consider the problem (1.1) with its associated data. If f : X × Θ −→ R is
lower semicontinuous, then for each x ∈ X

ess sup
θ∈Θ

f (x, θ) = sup
θ∈Θs

f (x, θ).

A proof of this result is provided in Appendix A. Lemma 1.2 says that lower semicon-
tinuity of f ensures that the essential supremum is equal to the supremum on a certain
subset of probability 1. For the sake of brevity of notation in the following discussion, we
assume that Θs = Θ; all the results that we derive below carry over to the situation when
Θs ( Θ.

Assumption 1.3. We stipulate that P is a fully supported probability measure, that is,

Θs = Θ.

This is equivalent to stipulating that

P(U) > 0 for all open subsets U ⊂ Θ.

Assumption 1.3 ensures that it is not unreasonable to expect that the sampled maximum
approximates the supremum, and this is the content of the next lemma:

Lemma 1.4. Consider the problem (1.1) with its associated data. If Assumption 1.3 holds,
then

(1.11) sup
θ∈Θ

f (x, θ) = ess sup
θ∈Θ

f (x, θ).

All the assumptions made until this point will remain in force throughout the article,
unless specifically mentioned otherwise; for the convenience of the reader, we recollect
them here.
◦ X is a subset of Rd and Θ is a metric space.
◦ f : X × Θ −→ R is a lower semicontinous function.
◦ P is a fully supported probability measure on Θ.

§1.4. Prior work and contributions. The scenario approach has been studied extensively
in the literature in the particular case where X is a convex set and f (·, θ) : X −→ R

is a convex function for each θ ∈ Θ. We will henceforth refer to the problem as a
random convex program. We review two recent representative results related to scenario
approximations of random convex programs: one on consistency and the other on finite
sample behaviour of the scenario approach, and compare the contributions of this article
with the two results. We point out that both of these results rely crucially on the results
established in [CC05, CC06, CG08].

The first result from [Ram18] establishes the consistency of the scenario approach
for random convex programs, under an additional stipulation of an appropriate notion of
coercivity on the class of functions f (·, θ) : X −→ R. Recall that if Ξ is a metric space a
function F : Ξ −→ R is weakly coercive if for each t > 0 there exists a compact set Ct ⊂ Ξ
such that the t-sublevel set of F is contained in Ct , that is,

{
x ∈ Ξ

�� F(x) 6 t
}
⊂ Ct . In

particular, if Ξ is compact, every function F is weakly coercive.
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Theorem 1.5 ([Ram18, Theorem 14 on p. 154]). Consider the problem (1.1) with its
associated data. Suppose there exists an N̄ ∈ N∗ such that

(1.12) PN̄
({
(θi)N̄i=1

��� f̂N̄ is weakly coercive
})
> 0.

In addition, if f (·, θ) : X −→ R is convex for all θ ∈ Θ, the scenario approach is consistent
in the sense that

P∞
({
(θi)+∞i=1

��� lim
m→+∞

y∗m = y
∗
})
= 0.

Under the additional Assumption of (1.12), Theorem 1.5 establishes the consistency of
the scenario approach for random convex programs. When the setX itself is compact (1.12)
holds trivially since any function on a compact set is weakly coercive. IfX is non-compact
(1.12) may fail to hold, and consequently the consistency of the scenario approach may
also be jeopardized. We study this situation in detail, and the first main contribution of
the article will be identifying an obstruction to consistency of the scenario approach when
X is non-compact, that is, a condition that guarantees that the scenario approach will not
be consistent.

We now review the main result from [ESL15] that establishes finite sample guarantees
for the scenario approach applied to random convex programs.

Theorem 1.6 ([ESL15, Theorem 14 on p. 5]). The tail probability for worst case violation
is the function pw : X × ]0,+∞[ −→ [0, 1] defined by

(1.13) pw(x, ε) = P
({
θ ∈ Θ

��� f (x, θ) > f̂ (x) − ε
})
.

Moreover, let
(1.14) pw∗ (ε) = inf

x∈X
pw(x, ε).

The function h : [0, 1] −→ ]0,+∞[ is called a uniform level set bound (ULB) of pw∗ if for
every ε ∈ [0, 1],

(1.15) h(ε) > sup
{
δ > 0

��� pw∗ (ε) 6 δ
}
.

Define

(1.16) N(ε, β) B min
{

N ∈ N∗
���� d−1∑

i=0

(
N
i

)
ε i(1 − ε)N−i 6 β

}
.

Given a ULB h and numbers ε, β ∈ ]0, 1], for all N > N(ε, β) we have

(1.17) PN
({
(θi)Ni=1 ∈ Θ

N
��� y∗ − y∗m 6 h(ε)

})
> 1 − β.

Theorem 1.6 provides a guarantee that if N(ε, β) number of points are sampled in an i.i.d
fashion from Θ and the corresponding scenario approximation problem is solved to obtain
an approximate minimum, then one can say with confidence 1 − β that the approximate
minimum y∗

N (ε,β) is at most h(ε) away from the true minimum y∗. Note that the guarantee
is a priori: one does not need any information related to the actual samples drawn (θi)mi=1
in order to compute N(ε, β), and consequently, one can use Theorem 1.6 to determine the
number of samples required to be drawn in order to obtain a solution of the given accuracy
fixed at the beginning of the optimization procedure. One of the crucial ingredients in
the proof of Theorem 1.6 is a result from [CG08] which is valid only for random convex
programs. In the light of recent extensions of [CG08] to the nonconvex case in [CGR18],



SCENARIO APPROACH 7

one can extend some results of [ESL15], including Theorem 1.6, to nonconvex robust
optimization problems. However, the results of [CGR18] in the nonconvex regime are of
an a posteriori nature, meaning that the guarantees given depend on the sample (θi)mi=1
drawn, and the extension of Theorem 1.6 to the nonconvex case via that route inherits
this same a posteriori property. This means that one cannot determine the number of
samples that give an approximate solution of desired accuracy before the approximation
procedure begins. However, once a sample (θi)mi=1 is drawn and the correspoding scenario
approximation is found, then one can find the accuracy of the computed approximate
solution. In other words, one can only assess the quality of a scenario approximate solution
after the solution is computed. In contrast, the second main contribution of the present
article is a methodology to establish a priori PAC type finite sample guarantees similar to
Theorem 1.6 that is applicable to scenario approximations of a large class of nonconvex
minmax optimization problems.

§1.5. Numerical experiments in high dimensions. We devote this subsection to examine
in detail, with the aid of numerical experiments, a simple minmax optimization problem
and the quality of scenario approximations of it. Recall that for a given vector v ∈ Rn

the quantity ‖v‖∞ denotes its infinity norm defined by ‖v‖∞ = max
i=1,...,n

|vi |. Consider the
optimization problem:

(1.18) y∗ = inf
x∈[0,1]

sup
θ∈[−1,1]n

(
x ‖θ‖∞ − ‖θ‖2∞

)
.

In the language of the problem (1.1), here we have chosen X = [0, 1], Θ = [−1, 1]n, and
the continuous function f (x, θ) = x ‖θ‖∞ − ‖θ‖2∞ . Observe that for each θ ∈ Θ, f (·, θ) is a
convex function on the convex set X. In other words, (1.18) is a random convex program.
Moreover the set X is compact and therefore (1.18) satisfies all the conditions of Theorem
1.5, and the latter guarantees that the scenario approximations will almost surely converge
to y∗.

To study the finite sample behaviour of scenario approximations of (1.18), we first
compute the optimal value y∗. This can be done by observing that

(1.19) sup
θ∈[−1,1]n

(
x ‖θ‖∞ − ‖θ‖2∞

)
= sup
‖θ ‖∞∈[−1,1]

(
x ‖θ‖∞ − ‖θ‖2∞

)
=

x2

4
.

Consequently,

(1.20) y∗ = inf
x∈[0,1]

sup
θ∈[−1,1]n

(
x ‖θ‖∞ − ‖θ‖2∞

)
= inf

x∈[0,1]

x2

4
= 0.

Since we have the optimal value y∗ in (1.18) and the scenario approximate solution y∗m
can be computed numerically on a computer, we can compute the error associated with
the scenario approximations of (1.18). In Figure 1 we present the results of our numerical
experiments that give the error in the scenario approximation (1.2) of (1.18) and its variation
with the dimension n of the uncertainty set and the number m of samples. We sampled
independently from the uniform distribution on Θ = [−1, 1]n to obtain these scenario
approximations. The error shown in the figure for each value of m and n was computed by
taking the average error of the scenario approximations over 25 sets of samples of length
m from Θ = [−1, 1]n.
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Figure 1. Variation of the error in scenario approximations of the
problem (1.18) with respect to the dimension (n) of the uncertainty
set and number (m) of i.i.d samples drawn from the uncertainty set.
The i.i.d samples were drawn according to the uniform distribution on
Θ = [−1, 1]n. The numbers reported here correspond to the average error
of the scenario approximations over 25 sets of samples of length m from
Θ = [−1, 1]n.

Figure 1 follows the expected trend that the error decreases as the number of samples
increases and the dimension of the uncertainty set decreases. A closer look at the value
of the error shows that even for a moderate dimension of n = 20 (see Figure 2) of the
uncertainty set, even after sampling as much as a million scenarios, one still gets an error
as large as 0.25. To put this in perspective, observe that the value of the cost f (x, θ) varies
between −1 and +1 as x and θ vary over X and Θ, respectively, which means that this is
an error of about 12.5%. The results are much worse for higher dimensions; for instance,
when the dimension of the uncertainty set is 50 and a million scenarios are drawn, the error
in the scenario approximation is around 0.5 in absolute units, which puts the relative error
at around 25%.

We get even worse results if we consider the slightly modified problem

(1.21) y∗ = inf
x∈[0,1]

sup
θ∈Rn

(
x ‖θ‖∞ − ‖θ‖2∞

)
,
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Figure 2. Variation of the error in scenario approximations of the prob-
lem (1.18) with respect to the number (m) of i.i.d samples drawn from
the uncertainty set when the dimension (n) of the uncertainty set is fixed
at 20. The i.i.d samples were drawn according to the uniform distribution
on Θ = [−1, 1]n. The numbers reported here correspond to the average
error of the scenario approximations over 25 sets of samples of length m
from Θ = [−1, 1]n.

where the uncertainty set is noncompact. The optimal value is y∗ = 0 in this case as well;
indeed,

(1.22) sup
θ∈Rn

(
x ‖θ‖∞ − ‖θ‖2∞

)
= sup
‖θ ‖∞∈R

(
x ‖θ‖∞ − ‖θ‖2∞

)
=

x2

4
,

and consequently,

(1.23) y∗ = inf
x∈[0,1]

sup
θ∈Rn

(
x ‖θ‖∞ − ‖θ‖2∞

)
= inf

x∈[0,1]

x2

4
= 0.

In Figure 3 we present the results of our numerical experiments that give the error
in the scenario approximation (1.2) of (1.21) and its variation with the dimension n of
the uncertainty set and the number m of samples. We sampled independently from the
Gaussian distribution with mean 0 and variance In on Θ = Rn to obtain these scenario
approximations. The error shown in the figure for each value of m and n was computed by
taking the average error of the scenario approximations over 25 sets of samples of length
m from Θ = Rn. We see that even for a moderate dimension of n = 20 (see Figure 4) of
the uncertainty set, even after sampling as much as a million scenarios, one still gets an
error as large as 0.45 in absolute units. As expected, the results are much worse for higher
dimensions: for instance, when the dimension of the uncertainty set is 50 and a million
scenarios are drawn, the error in the scenario approximation is around 1.3 in absolute units.

Of course, the measuring stick in the scenario approximations of the example immedi-
ately above the current paragraph is the probability measure corresponding to the Gaussian
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Figure 3. Variation of the error in scenario approximations of the prob-
lem (1.21) with respect to the dimension (n) of the uncertainty set and
number (m) of i.i.d samples drawn from the uncertainty set. The i.i.d
samples were drawn according to the Gaussian distribution with mean 0
and variance In on Θ = Rn. The numbers reported here correspond to
the average error of the scenario approximations over 25 sets of samples
of length m from Θ = Rn.

employed for sampling, and the specific concentration properties of this measure naturally
affects the outcome of the experiment as a consequence. Whether these estimates are
satisfactory or not is difficult to assess unilaterally and uniformly across the spectrum of
robust minmax optimization problems, and such conclusions are best left to the judgment
of the practitioners concerned.

The main culprit in the examples above is the fact that scenario approximations rely on
i.i.d samples, and i.i.d samples of high dimensional random vectors tend to concentrate
with high probability around certain regions of the space leaving the rest of the space
unexplored; this feature leads to a preference for certain (typically thin) regions of the
sample space of the algorithm, and unless the optimizers are in these thin sets, the quality
of approximation may be low. The preceding observations clearly point to the fact that
there is still scope to develop general, computationally feasible, and tight approximation
schemes for robust optimization problems, especially in high dimensions insofar as the
optimal value is concerned; one such approximation method involving better sampling will
be reported subsequently elsewhere.
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Figure 4. Variation of the error in scenario approximations of the prob-
lem (1.21) with respect to the number (m) of i.i.d samples drawn from the
uncertainty set when the dimension (n) of the uncertainty set is fixed at
20. The i.i.d samples were drawn according to the Gaussian distribution
with mean 0 and variance In on Θ = Rn. The numbers reported here
correspond to the average error of the scenario approximations over 25
sets of samples of length m from Θ = Rn.

§2. An obstruction to consistency

Consistency of the scenario approach is not guaranteed, in general, for all problems of
the form (1.1). Even in the particular case of random convex programs, observe that the
statement of Theorem 1.5 has the additional requirement of coercivity, which is not always
satisfied if the set X is not compact. We begin with a simple example that illustrates this
effect.

Example 2.1. LetX = R andΘ = R. Assume thatΘ is endowedwith the standard Gaussian
probability measure with mean 0 and variance 1. Consider, in the language of (1.1) the
cost function

(2.1) f (x, θ) B


0 if x > θ,
θ − x if θ − 1 6 x 6 θ,
−1 if x 6 θ − 1.

All the requirements of the problem (1.1) are satisfied by (2.1) in addition to Assumption
1.3. Yet we show that the scenario approach is inconsistent in this situation. For a given
sample (θi)mi=1 we define θ̂m B mini=1,...,m θi . One checks that

(2.2)
f̂ (x) B sup

θ∈Θ
f (x, θ) = 0, and

f̂m(x) B max
i=1,..,m

f (x, θi) = f (x, θ̂m),
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which imply that

y∗ = inf
x∈X

f̂ (x) = 0, and(2.3)

y∗m = inf
x∈X

f̂m(x) = −1 for all m ∈ N∗.(2.4)

This means that limm→+∞ y∗m = −1 for any sequence of samples (θi)+∞i=1, which shows that
consistency fails to hold.

It is clear from Example 2.1 that the set X being noncompact can readily lead to
inconsistency of the scenario approach. In this section we study this issue further and
characterize one possible obstruction to the consistency of the scenario approach when the
set of optimization variables X is noncompact. We begin with the following definition that
will be need in both the current and the next section:

Definition 2.2. The tail probability is the function p : X × ]0,+∞[ −→ [0, 1] defined by

p(x, ε) B P
(
{θ ∈ Θ | f (x, θ) > y∗ − ε}

)
.

For each ε > 0, we define the infimum of p(x, ε) over all x ∈ X by

p∗(ε) B inf
x∈X

p(x, ε).

The following theorem is the key result of this section.

Theorem 2.3. Consider the problem (1.1) with its associated data, and suppose that
Assumption 1.3 holds. If there exists some ε > 0 satisfying p∗(ε) = 0, then

P∞
({
(θi)+∞i=1

��� lim
m→+∞

y∗m = y
∗
})
= 0.

Proof. Since y∗m is monotone non-decreasing in m, recalling the definition of B (m, ε) from
(1.8) we see that{

(θi)∞i=1 ∈ Θ
��� lim
m→+∞

y∗m 6 y
∗ − ε

}
=

⋂
m∈N

B (m, ε) ⊃
⋂
m∈N

B̄ (m, ε) .

This means that

P∞
({
(θi)+∞i=1 ∈ Θ

��� lim
m→+∞

y∗m 6 y
∗ − 2ε

})
> P∞

(⋂
m∈N

B̄ (m, ε)
)

= inf
m∈N

Pm (
B̄ (m, ε)

)
.

However, in view of (1.8) and the fact that the θi’s are sampled independently,

Pm (
B̄ (m, ε)

)
= Pm

(⋃
x∈X

m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ − ε

})
,

> sup
x∈X

Pm

(
m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ − ε

})
,

> sup
x∈X

(
P

({
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ − ε

}))m
,

> sup
x∈X

(
1 − p(x, ε)

)m
= 1 by our assumption.
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In other words,

P∞
({
(θi)+∞i=1 ∈ Θ

��� lim
m→+∞

y∗m 6 y
∗ − ε

})
= 1,

and the assertion follows. �

Remark 2.4. It is clear from the proof of Theorem 2.3 that the set {θ ∈ Θ | f (x, θ) > y∗−ε}
is precisely the set from which one needs to sample in order to get a solution with ε
accuracy; if the sampled sequence (θi)+∞i=1 does not contain any element from the set
{θ ∈ Θ | f (x, θ) > y∗ − ε} corresponding to any one value of x, then the approximate
solution y∗m is going to be atleast ε far away from y∗. In the light of this fact, the condition
that p∗(ε) = 0 amounts to saying that the sets from which one needs to sample in order to
get an approximation of accuracy ε are arbitrarily small regions of Θ; consequently and in
restrospect the above result appears to be natural.

Remark 2.5. The function p∗(·) is very similar to an object we have encountered before:
cf. the function pw∗ (·) defined in (1.14). These two functions p∗ and pw∗ are weakly related
to each other. In general, one can say that p∗(ε) 6 pw∗ (ε) for every ε > 0. Indeed, observe
that for each x ∈ X, since y∗ 6 f̂ (x),

{θ ∈ Θ | f (x, θ) > y∗ − ε} ⊂
{
θ ∈ Θ

��� f (x, θ) > f̂ (x) − ε
}

since y∗ 6 f̂ (x). This implies that p(x, ε) 6 pw(x, ε) for each x ∈ X and ε > 0, which
further implies that

p∗(ε) = inf
x∈X

p(x, ε) 6 inf
x∈X

pw(x, ε) = pw∗ (ε).

In subsequent sections (see Remark 3.4) we will see further evidence pointing to the
fundamental nature of p∗(·) in relation to the scenario approach .

Example 2.1 (Continued). We checkwhether the type of obstruction introduced in Theorem
2.3 arises in the situation given in example 2.1. Since we know that y∗ = 0, if we take
ε = 1, we get

{θ ∈ Θ | f (x, θ) > y∗ − ε} = {θ ∈ R | f (x, θ) > −1}
= {θ ∈ R | θ 6 x − 1},

which implies that 2

p(x, 1) = P({θ ∈ Θ | θ 6 x − 1}) = erfc(1 − x),
and therefore,

p∗(1) = inf
x∈R

erfc(1 − x) = 0.

It is now evident that the obstruction pointed out by Theorem 2.3 that prevents consistency
in this example as well.

The result of Theorem 2.3 is equally valid in the case where X is compact. However,
we started the discussion claiming that the obstruction arises when X is a noncompact set,
and the next proposition affirms this statement: we show that when the set X is compact,
the obstruction presented in Theorem 2.3 cannot arise.

2Recall that the function R 3 z 7−→ erfc(z) B 2√
π

∫ +∞
z

exp(−t2)dt is equal to the P({θ ∈ R | θ 6 −z })
when P is the standard Gaussian measure (normal with mean 0 and variance 1) onR. Clearly, limz→+∞ erfc(z) =
infz∈R erfc(z) = 0.
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Proposition 2.6. Consider the problem (1.1) along with its associated data. If Assumption
1.3 holds, then for every ε > 0, p(·, ε) : X −→ [0, 1] is a positive lower semi continuous
function, and consequently, for each ε > 0,

p∗(ε) = inf
x∈X

p(x, ε) = min
x∈X

p(x, ε) > 0.

A proof of Proposition 2.6 is provided in Appendix A.

§3. Finite sample performance guarantees in the nonconvex setting

In this section, for a large class of nonconvex minmax problems, we prove a general
positive result that gives an upper bound on the a priori probability of the bad set (1.8)
for finite samples of the scenario approach. In other words, we establish a finite sample
performance guarantee in a general nonconvex setting. Of course, in the presence of
more detailed structure, we may be able to refine these preliminary estimates, and as an
illustration of this scheme we then discusss several special cases of this result.

§3.1. General performance guarantees. The first order of business is making the word
nonconvexity precise. The class of nonconvex functions is vast, and it appears that very little
can be said about a priori estimates under the scenario method at this level of generality;
indeed, it is natural to expect, at least in principle, that the greater the regularity of the
functions under consideration, tighter the bounds that should be possible to obtain. Physical
considerations point us towards focussing our investigations on classes of functions that
arise naturally in physical systems, e.g., trigonometric polynomials of finite bandwidth,
smooth functions restricted to compact sets, etc. Our approach here follows standard
principles of functional analysis and approximation theory via estimates involving covering
numbers à la [CZ07]; the techniques exposed here are fairly general, and conform to the
following simple steps:

Summary of our approach

(I) We find upper bounds on the covering number of the family of functions
K f B

{
f (x, ·) : Θ −→ R

�� x ∈ X
}

in the supremum norm topology defined below. This step provides us with
a finite collection of representatives from the (possibly infinite dimensional)
class of functions under consideration.

(II) The i.i.d property of the sampling in the scenario approach permits us to employ
the bounds on the covering number found in the preceding step in standard
probabilistic inequalities to arrive at bounds on the probability β(m, ε).

§3.1.1. Background. The class of nonconvex functions is vast, and we consider only a few
reasonable classes of finite and infinite dimensional subsets of this class in the article at
hand. The primary difficulty with infinite dimensionality of function classes is overcome in
a standard way by the consideration of covering numbers. Recall that given a metric space
(M, d) and a subset K ⊂ M , a set K ′ ⊂ K is called an ε cover of K if for every element
a ∈ K , there exist a′ ∈ K ′ such that d(a, a′) 6 ε . We define the covering number N (K, ε)
of K to be the smallest number n ∈ N such that there exists an ε cover of K of cardinality



SCENARIO APPROACH 15

n. It is a standard result that K ⊂ M is precompact iff for all ε > 0, the covering number
N (K, ε) is finite.

Recall that if Θ is compact, the set C(Θ) of continuous real valued functions on Θ is
a metric space when endowed with the metric d(g1, g2) B ‖g1 − g2‖u inherited from the
supremum norm given by ‖g‖u B supθ∈Θ |g(θ)|.

§ 3.1.2. Main Result. The following theorem is the key result of this section. Given the
problem (1.1) and its associated notation, let K f denote the family of functions

(3.1) K f B
{

f (x, ·) : Θ −→ R
�� x ∈ X

}
.

Theorem 3.1. Consider the problem (1.1) along with its associated data, and suppose
that Assumption 1.3 holds. Let K f be as defined in (3.1), and recall from (1.9) that
β(m, ε) = Pm(B (m, ε)). If Θ is compact and the set of functions K f ⊂ C(Θ) defined in
(3.1) is precompact in C(Θ), then

(3.2) β(m, ε) 6 N
(
K f ,

ε

4

)
exp

(
− mp∗

( ε
4

))
.

Proof. Fix ε > 0 and m ∈ N∗. By definition ofN
(
K f ,

ε
4
)
, there exists a subset (xi)

N(K f ,
ε
4 )

i=1
of X such that for each x ∈ X there exists xi that satisfies

sup
θ∈Θ
| f (x, θ) − f (xi, θ)| <

ε

4
.

Recalling the definition of B̄ (m, ε) from (1.8), we see that

B̄
(
m,
ε

2

)
=

⋃
x∈X

m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (x, θi) 6 y∗ −

ε

2

}
⊂
N(K f ,

ε
4 )⋃

j=1

m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (xj, θi) 6 y∗ −

ε

4

}
.

This means, in view of the definition of β(m, ε) in (1.9)

β(m, ε) = Pm(B (m, ε)) 6 Pm
(
B̄

(
m,
ε

2

))
(†)
6

N(K f ,
ε
4 )∑

j=1
Pm

(
m⋂
i=1

{
(θi)mi=1 ∈ Θ

m
��� f (xj, θi) 6 y∗ −

ε

4

})

6

N(K f ,
ε
4 )∑

j=1
P

({
θ ∈ Θ

��� f (xj, θ) 6 y∗ −
ε

4

})m
6

N(K f ,
ε
4 )∑

j=1

(
1 − P

({
θ ∈ Θ

��� f (xj, θ) > y∗ − ε
4

}))m
(‡)
6

N(K f ,
ε
4 )∑

j=1
exp

(
−mp

(
xj,

ε

4

))
6 N

(
K f ,

ε

4

)
exp

(
−mp∗

( ε
4

))
,
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as asserted, where we have employed the standard union bound in step (†) and the inequality
1 − z 6 e−z for z ∈ [0, 1] in step (‡) above. �

Remark 3.2. In the absence of any further structure in the various sets that appear in the
definition of B (m, ε) in the proof of Theorem 3.1, it appears that the standard union bound
employed in step (†) in the proof above is a reasonable option. However, in certain specific
cases it may be possible to refine this particular step further to arrive at tighter bounds.

Remark 3.3. Theorem 3.1 can be rewritten in the following way. Suppose we are given a
desired accuracy level ε and confidence level β. We define

m(ε, β) B 1
p∗( ε4 )

(
ln

(
1
β

)
+ lnN

(
K f ,

ε

4

))
.(3.3)

If the number m of i.i.d samples (scenarios) drawn from Θ under P is at least m(ε, β), then
the probability of occurence of the bad set B (m, ε) is guaranteed to be at most β. Let us
compare this estimate with that of Theorem 1.6. We begin by noting that N(ε, β) defined
in (1.16) can be rewritten explicitly as (see [CGP09, Theorem 1])

(3.4) N(ε, β) > 2
ε

(
ln

(
1
β

)
+ d

)
.

With this in mind, we can rewrite the result of Theorem 1.6 in the language of its statement
as follows: If the number m of i.i.d samples drawn from Θ under P is at least N(ε, β),
then the probability of occurence of the bad set B (m, h(ε)) is guaranteed to be at most β.
Observe that N(ε, β) samples guarantee an accuracy of h(ε) as opposed to ε . To remove this
dependency on h(ε) and to obtain an explicit result, recall the definitions in (1.13), (1.14)
and (1.15). If h(·) has a well defined inverse h−1(·), then sampling N(h−1(ε), β) number of
elements would guarantee an accuracy of ε for each ε . However such an inverse function
may not always exist. Neverthless, the right hand side of (1.15) in the definition of h(·)
is a pseudo inverse of the function pw∗ . Indeed, if pw∗ is monotonically increasing, then
sup

{
δ > 0

�� infx∈X pw(x, ε) 6 δ
}
is its inverse in the usual sense. Due to this fact, if we

employ pw∗ as the inverse of h(·), define

mc(ε, β) B
2

pw∗ (ε)

(
ln

(
1
β

)
+ d

)
,(3.5)

and sample mc(ε, β) number of i.i.d. samples fromΘ, then Theorem 1.6 guarantees that the
probability of occurence of the bad set B (m, ε) is at most β.

Remark 3.4. Theorem 2.3 along with the estimate of Theorem 3.1 in the form given in (3.3)
points to the fundamental nature of the function p∗(·). On the one hand, Theorem 2.3 says
that if p∗(ε) is equal to zero, then the scenario approach is not consistent and even as the
number of i.i.d samples drawn approach infinity, the scenario approximation remains at least
ε away from the true minimum. On the other hand, according to Theorem 3.1, even if p∗(ε)
is nonzero, the number of samples that need to be drawn to guarantee an approximation
of accuracy ε grows increasingly large as p∗(ε) goes to zero. This is reminiscent of the
condition number of a matrix in linear algebra; recall that a square matrix is singular only if
its condition number is infinite. However, even if the condition number is finite, it becomes
increasingly harder to numerically compute the inverse of a matrix as its condition number
increases, to the extent that a matrix with a very large condition number is practically
singular from a numerical standpoint. In this sense, p∗(ε) is a measure of how well behaved
the scenario approximations of a robust optimization problem are: as p∗(ε) decreases, the
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finite sample behaviour of the scenario approximations also deteriorate, and finally, when
p∗(ε) becomes zero, the performance deteriorates so much that even consistency is lost.

§3.2. Scenario bounds for bandlimited trigonometric functions. Here we employ The-
orem 3.1 of the previous section to derive bounds on the probability of the “bad set”
B (m, ε) in the situation where Θ is an n-dimensional hypercube and the set of functions
K f = { f (x, ·) : Θ −→ R}x∈X ⊂ C(Θ) is a bounded subset of the linear subspace of trigo-
nometric polynomials of bandwidth M . More precisely, our premise for this subsection is
the following:

Assumption 3.5. In the context of the problem (1.1) and its associated data, we stipulate
that:
(i) Θ = [−1, 1]n ⊂ Rn,
(ii) For each x ∈ X, the function f (x, ·) : Θ −→ R is a trigonometric polynomial of

bandwidth M . In other words,

f (x, θ) =
∑

k∈[−M,M]n∩Zn

bk(x) sin (2π 〈k, θ〉) + ck(x) cos (2π 〈k, θ〉) ,

(iii) supx∈X ‖ f (x, ·)‖2 C B < +∞.

The set of trigonometric polynomials of bandwidth M is a (2M + 1)n dimensional
subspace of C(Θ), and therefore, any bounded subset of it is precompact. Consequently,
Theorem 3.1 applies to this situation. In the following Lemma, whose proof is deferred to
Appendix B, we provide estimates of the covering number N

(
K f , ε

)
.

Lemma 3.6. Suppose that Assumption 3.5 holds. Let K f be as defined in (3.1) and define
D B (2M + 1)n. Then

N
(
K f , ε

)
6

1
D

(
πD2

2

)D ( ε
2B

)−2D
.

Lemma 3.6 in conjunction with Theorem 3.1 give us the following bound on the prob-
ability of the “bad set” B (m, ε) defined in (1.8).

Theorem 3.7. Consider the problem (1.1) along with its associated data and suppose that
Assumption 1.3 holds. In addition, suppose that the family of functions K f defined in (3.1)
satisfies Assumption 3.5, and define D B (2M + 1)n. Then, for β(m, ε) as defined in (1.9),
we have

β(m, ε) 6 1
D

(
πD2

2

)D ( ε
8B

)−2D
exp

(
− mp∗

( ε
4

))
.

Proof. The assertion follows readily after substituting the estimate for the covering number
N

(
K f , ε

)
given in Lemma 3.6 in Theorem 3.1. �

Remark 3.8. Asmentioned in Remark 3.3, we can rewrite the result of Theorem 3.7 in terms
of the number of samples required to achieve a desired level of accuracy and confidence.
As before, suppose we are given an accuracy level ε and a confidence level β. If we draw

m(ε, β) B 1
p∗( ε4 )

(
ln

( 1
β

)
+ 2D ln

(1
ε

)
+ (2D − 1) ln D + D ln

(
32B2π

) )
.(3.6)

number of i.i.d samples from Θ under P, then the probability of occurence of the bad set
B (m, ε) is guaranteed to be less than β.
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§3.3. Scenario bounds for smooth functions on the n-torus. We apply Theorem 3.1 to
the problem of determining bounds on the probability of the “bad set” B (m, ε) when the
uncertainty set is an n-dimensional torus Tn and the cost function f is smooth with respect
to the uncertain parameters. Formally, we ask:

Assumption 3.9. In the context of the problem (1.1) and its associated data, we stipulate
that:
(i) Θ = Tn;
(ii) there exists an integer p > n

2 such that for each x ∈ X, the function f (x, ·) : Θ −→ R

is a p-times continuously differentiable function on Θ;
(iii) supx∈X ‖ f (x, ·)‖2 C B < +∞;
(iv) supx∈X

∑n
i=1

 ∂p f (x, ·)
∂θ

p
i


2
C Bd < +∞.

In the following Lemma, whose proof is provided in Appendix B, we provide estimates
of the covering number N

(
K f ,

ε
2
)
that show that under Assumption 3.9, Theorem 3.1

applies to K f .

Lemma 3.10. Suppose that Assumption 3.9 holds. Let K f be as defined in (3.1) and define

D(ε) B
(
2
⌈(

12
√

2Bd2n

(2π)pε

) 1
p− n

2

⌉
+ 1

)n
. Then,

N
(
K f ,

ε

4

)
6

1
D(ε)

(
πD(ε)2

2

)D(ε ) ( ε

24B

)−2D(ε )
.

Lemma 3.10 in conjunction with Theorem 3.1 give us the following bound on the
probability of the “bad set” B (m, ε).

Theorem 3.11. Consider the problem (1.1) along with its associated data and suppose
that Assumption 1.3 holds. In addition, suppose that the family of functions K f defined in
(3.1) satisfies Assumption 3.9. Then for β(m, ε) as defined in (1.9), we have

(3.7) β(m, ε) 6 1
D(ε)

(
πD(ε)2

2

)D(ε ) ( ε

24B

)−2D(ε )
exp

(
− mp∗

( ε
4

))
,

where D(ε) =
(
2
⌈(

12
√

2Bd2n

(2π)pε

) 1
p− n

2

⌉
+ 1

)n
.

Proof. The result follows by substituting the estimate for the covering number N
(
K f , ε

)
given in Lemma 3.6 in Theorem 3.1. �

Remark 3.12. As mentioned in Remark 3.3, we can rewrite the result of Theorem 3.11
in terms of the number of samples required to achieve a desired level of accuracy and
confidence. As before, suppose we are given an accuracy level ε and a confidence level β.
If we draw

m(ε, β) B 1
p∗( ε4 )

(
ln

( 1
β

)
+ 2D(ε) ln

(1
ε

)
+ (2D(ε) − 1) ln D(ε) + D(ε) ln

(
72B2π

) )
.

number of i.i.d samples from Θ under P, then the probability of occurence of the bad set
B (m, ε) is guaranteed to be less than β.



SCENARIO APPROACH 19

Appendix A. Proofs of Lemma 1.2 and Proposition 2.6

Proof of Lemma 1.2. We first show that ess supθ∈Θ f (x, θ) 6 supθ∈Θs
f (x, θ). Indeed,

since

Θs ⊂
{
θ ∈ Θ

���� f (x, θ) 6 sup
θ∈Θs

f (x, θ)
}
,

we have

P

({
θ ∈ Θ

���� f (x, θ) 6 sup
θ∈Θs

f (x, θ)
})
> P(Θs) = 1,

which implies that

ess sup
θ∈Θ

f (x, θ) 6 sup
θ∈Θs

f (x, θ).

Now we demonstrate that ess supθ∈Θ f (x, θ) + δ > supθ∈Θs
f (x, θ) for any δ > 0. Indeed,

by definition of the essential supremum,

P

({
θ ∈ Θ | f (x, θ) 6 ess sup

θ∈Θ
f (x, θ) + δ

})
= 1.

Lower semicontinuity of f shows that the set{
θ ∈ Θ

���� f (x, θ) 6 ess sup
θ∈Θ

f (x, θ) + δ
}

is closed. Since Θs is the smallest closed set of probability 1,

Θs ⊂
{
θ ∈ Θ

���� f (x, θ) 6 ess sup
θ∈Θ

f (x, θ) + δ
}
,

which in turn means that

sup
θ∈Θs

f (x, θ) 6 ess sup
θ∈Θ

f (x, θ) + δ.

Since the preceding statement is valid for any δ > 0, we have

ess sup
θ∈Θ

f (x, θ) > sup
θ∈Θs

f (x, θ),

yielding the assertion and completing the proof. �

Proof of Proposition 2.6. Firstly, we show that for each fixed x ∈ X the set{
θ ∈ Θ

�� f (x, θ) > y∗ − ε
}
⊂ Θ

is open and nonempty. Since f is l.s.c, this set is clearly open since its complement is the
sublevel set of a l.s.c function with the variable x held fixed. By definition of the supremum,
there exists θ ∈ Θ such that f (x, θ) > f̂ (x) − ε . Along with the fact that f̂ (x) > y∗ for
all x, this implies that the set is also nonempty. By Assumption 1.3 we see that the tail
probability p(x, ε) = P ({θ ∈ Θ | f (x, θ) > y∗ − ε}) > 0.

Second, we show that the tail probability p(x, θ) is l.s.c in x. To this end, fix ε ∈ [0, 1]
and observe that for each fixed x ∈ X,

p(x, ε) = P ( f (x, ·) > y∗ − ε) = E
[
1{ f (x, ·)>y∗−ε }

]
.
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Fix x ∈ X and pick a sequence (xn)+∞n=1 in X converging to x, i.e., limn→+∞ xn = x. We
claim that

lim inf
n→+∞

1{ f (xn, ·)>y∗−ε } > 1{ f (x, ·)>y∗−ε } .

Fix θ ∈ Θ. If f (x, θ) 6 y∗ − ε , then the preceding inequality is obvious, so let us assume
that f (x, θ) > y∗ − ε . By lower semicontinuity of f ,

lim inf
n→+∞

f (xn, θ) > f (x, θ) > y∗ − ε,

which means that for all n sufficiently large,

f (xn, θ) > y∗ − ε,
and this in turn means

lim inf
n→+∞

1{ f (xn, ·)>y∗−ε } = 1 = 1{ f (x, ·)>y∗−ε } .

It follows that
E
[

lim inf
n→+∞

1( f (xn, ·)>y∗−ε )
]
> E

[
1( f (x, ·)>y∗−ε )

]
.

By Fatou’s lemma [DiB16, Lemma 8.1, Chapter IV] we have

lim inf
n→+∞

E
[
1{ f (xn, ·)>y∗−ε }

]
> E

[
lim inf
n→∞

1{ f (xn,θ)>y∗−ε }
]
,

and combining the inequalities we see that

lim inf
n→+∞

E
[
1{ f (xn, ·)>y∗−ε }

]
> E

[
1{ f (x, ·)>y∗−ε }

]
,

thereby establishing that lim infn→+∞ p(xn, ε) > p(x, ε). Since (xn)+∞n=1 and x were arbitrary,
lower semicontinuity of p(·, ε) follows for each fixed ε . This completes the proof of the first
claim.

Finally, since p(·, ε) is l.s.c for each fixed ε , it attains its minimum on any compact subset
of X by Weierstrass’ theorem [DiB16, Theorem 7.1, Chapter II] , which proves the second
statement of our theorem. �

Appendix B. Proofs of Lemma 3.6 and Lemma 3.10

Proof of Lemma 3.6. We estimate the covering number N
(
K f , ε

)
under the conditions of

Assumption 3.5. To start, we define the set of trigonometric polynomial of bandwidth M:

PM B

{
p : Θ −→ R

����� p(θ) =
∑

k∈[−M,M]∩Zn

ak sin (2π 〈k, θ〉) + bk cos (2π 〈k, θ〉)
}
,

and define the L2-ball of radius B in PM by

PB
M B

{
p ∈ PM

�� ‖p‖2 6 B
}
,

where the L2-norm is defined in the standard way.

The following technical lemma is needed to prove our estimate of the covering number
N

(
K f , ε

)
:

Lemma B.1. Let (M, ρ) be a metric space and let U ⊂ M be a subset. Then, for each
ε > 0,

N (U, ε) 6 2N
(
M,

ε

2

)
.



SCENARIO APPROACH 21

Proof. Pick U ⊂ M and let (ai)
N(M, ε2 )
i=1 ⊂ M be an ε

2 -cover of M . After reordering these
points if necessary, suppose that for i = 1, . . . , p 6 N

(
M, ε2

)
, there exists a bi ∈ U such that

ρ(ai, bi) < ε
2 and that for each i > p there exists no b ∈ U such that ρ(ai, b) < ε

2 . We claim
that (bi)pi=1 ⊂ U is an ε-cover of U. Take an arbitrary element b ∈ U. By definition of a
cover, there exists an ai with i 6 p such that ρ(ai, b) < ε

2 . We also know that ρ(ai, bi) 6 ε
2 .

Then, by the triangle inequality,
ρ(b, bi) 6 ρ(b, ai) + ρ(ai, bi) 6 ε .

Therefore, (bi)pi=1 ⊂ U is an ε-cover of U and consequently

N (U, ε) 6 p 6 N
(
M,

ε

2

)
. �

Continuing with our proof of Lemma 3.6, we see that the conditions of Assumption 3.5
are equivalent to saying that K f ⊂ PB

M , and we know [BG04, pg. 787] that

N
(
PB
M,

ε

2

)
6

1
D

(
πD2

2

)D ( ε
2B

)−2D
.

These observations in conjunction with Lemma B.1 proves that

N
(
K f , ε

)
6

1
D

(
πD2

2

)D ( ε
2B

)−2D
,

as asserted. �

The rest of this section will be devoted to proving Lemma 3.10 that provides the key
estimate of the covering number N

(
K f , ε

)
, where K f , the family of functions defined in

(3.1), satisfies Assumptions 3.9. We will need some preliminaries on Fourier analysis on
tori in order to determine these estimates.

We realize T1 as the quotientR/Z; this way we get on Tn a measure, henceforth denoted
by µ, induced by the Lebesgue measure on R. If L is the R-vector space of measurable
functions g : Tn −→ R such that ∫

Tn

|g(x)|2 dµ < +∞,

then by identifying functions in L that differ on sets of µ-measure 0, we get the space
L2(Tn) of square-integrable R-valued functions on Tn. It is a standard fact that L2(Tn) is
a Hilbert space when equipped with the inner product

L2(Tn) × L2(Tn) 3 (g1, g2) 7−→ 〈g1, g2〉 B
∫
Tn

g1(x)g2(x) dµ,

and the corresponding inducedL2-norm ‖g‖L2(Tn) is defined by ‖g‖L2(Tn) B
√
〈g, g〉. For

a positive integer p we denote p-times continuously differentiable functions on the torus
Tn by Cp(Tn).

For ξ = (ξ1, . . . , ξn) ∈ Zn the ξ-th Fourier coefficients of g ∈ L2(Tn) is defined by

(B.1) ĝ (ξ) B
∫
Tn

g(x) e−2πi 〈ξ,x 〉 dµ,

which permit us to represent g via its Fourier series given by

g](x) B
∑
ξ ∈Zn

ĝ (ξ) e2πi 〈ξ,x 〉,
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where the convergence of the aforementioned sum is understood in the L2-norm sense. It
is well known [DM72] that when g ∈ C1(Tn), then its Fourier series converges pointwise
and g = g](x). Moreover, the following Plancherel identity is valid for all g ∈ L2(Tn):

(B.2) ‖g‖2L2(Tn) =
∑
ξ ∈Zn

|ĝ (ξ) |2.

If g ∈ L2(Tn)∩C1(Tn), then the Fourier series of g is related to that of its partial derivative
∂g
∂θ j

along the j-th direction by the formula

(B.3)
∂̂g

∂θ j
(ξ) = −2πiξj ĝ (ξ) .

If p is a positive integer and g ∈ L2(Tn) ∩ Cp(Tn), then applying the preceding formula
repeatedly p-times we get

(B.4)

������∂pg∂θ
p
j

(ξ)
����� = |2πξj |p |ĝ (ξ)| .

We will also make use of the following result regarding covering numbers in our discus-
sion in this section.

Lemma B.2. Let (M, ρ) be a metric space and let φ : M −→ M be a map satisfying

ρ(a, φ(a)) 6 ε for all a ∈ M .

If U ⊂ M is a subset, then
N (U, 3ε) 6 N (φ(U), ε) .

Proof. PickU ⊂ M and let
(
φ(ai)

)N(φ(U),ε )
i=1 ⊂ φ(U) be an ε-cover of φ(U). We demonstrate

that (ai)N(φ(U),ε )i=1 ⊂ U is a 3ε-cover of U. To see this, let a be an arbitrary element of U.
Then for some i, we have

ρ(a, ai) 6 ρ(a, φ(a)) + ρ(φ(a), φ(ai)) + ρ(φ(ai), ai) 6 3ε .

The assertion follows. �

Recall that for ξ ∈ Zn, the infinity norm is defined as ‖ξ‖∞ B max
i=1,...,n

|ξi |. For a

multiindex ξ, we define ξ∞ is any element in arg max
i=1,...,n

|ξi |. It is a standard fact that for a

given m ∈ N∗, the number of ξ ∈ Zn with ‖ξ‖∞ = m is given by

(B.5)

c (m) B (2m + 1)n − (2m − 1)n =
n∑
j=0

(
n
j

)
2n−jmn−j(1 − (−1)j)

=

d n2 e∑
j=0

(
n

2 j + 1

)
2n−2jmn−2j−1 6 4nmn−1.

Recalling the definitions of p and n in Assumption 3.9, we will have occasion to employ
the fact that

(B.6)
∑
m>N

1
m2p−n+1 6

2
N2p−n .
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To see why this is true, observe that∑
m>N

N2p−n

m2p−n+1 6
∑
m>N

N2p−n

m2p−n+1 =
1
N

∑
m>0

N2p−n+1

(N + m)2p−n+1

=
1
N

∑
m>0

1(
1 + m

N

)2p−n+1 .(B.7)

The right-hand side of (B.7) is the upper Darboux sum of the function x 7−→
(

1
1+x

)2p−n+1
,

and hence decreases with increasing N; in particular, if N = 1, it is equal to
∑

m>1
1

m2p−n+1 .
Consequently,

(B.8)
∑
m>N

N2p−n

m2p−n+1 6
∑
m>1

1
m2p−n+1

(†)
6

∑
m>1

1
m2 6 2,

where the inequality in step (†) follows from the assumption that 2p − n > 1. (B.6) now
follows directly from (B.8).

We begin our proof of Lemma 3.10 with the following Lemma.

Lemma B.3. Consider the problem (1.1), and suppose that the set of functions K f defined
in (3.1) and the uncertainty set Θ satisfy Assumption 3.9. Then, for every ε > 0, if N ∈ Z

is picked such that N >
(√

2Bd2n

(2π)pε

) 1
p− n

2 , then

sup
x∈X

 f (x, ·) −
∑

ξ ∈[−N,N ]n∩Zn

�f (x, ·) (ξ) e2πi 〈ξ, ·〉


u

6 ε .

Proof. For any x ∈ X and θ ∈ Θ,������ f (x, θ) − ∑
ξ ∈[−N,N ]n∩Zn

�f (x, ·) (ξ) e2πi 〈ξ,θ 〉

������ =
������ ∑
‖ξ ‖∞>N

�f (x, ·) (ξ) e2πi 〈ξ, ·〉

������
6

∑
‖ξ ‖∞>N

����f (x, ·) (ξ)��� = ∑
‖ξ ‖∞>N

����� �∂p f (x, ·)
∂θ

p
ξ∞

(ξ)
����� ���� 1
(2π ‖ξ‖∞)p

���� ,
where the last equality follows from (B.4). From the Schwarz inequality and Assumption
3.9 we get the estimate

(B.9)
∑

‖ξ ‖∞>N

����� �∂p f (x, ·)
∂θ

p
ξ∞

(ξ)
����� ���� 1
(2π ‖ξ‖∞)p

����
6

√√√√ ∑
‖ξ ‖∞>N

����� �∂p f (x, ·)
∂θ

p
ξ∞

(ξ)
�����2
√√√ ∑
‖ξ ‖∞>N

���� 1
(2π ‖ξ‖∞)p

����2

6

√√√√√ ∑
‖ξ ‖∞>N

©«
∑

16 j6n

����� �∂p f (x, ·)
∂θ

p
j

(ξ)
�����ª®¬

2√√√ ∑
‖ξ ‖∞>N

���� 1
(2π ‖ξ‖∞)p

����2
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6
∑

16 j6n

√√√√ ∑
‖ξ ‖∞>N

����� �∂p f (x, ·)
∂θ

p
j

(ξ)
�����2
√√√ ∑
‖ξ ‖∞>N

���� 1
(2π ‖ξ‖∞)p

����2
6 Bd

√√√ ∑
‖ξ ‖∞>N

���� 1
(2π ‖ξ‖∞)p

����2.
To estimate the sum on the right hand side of (B.9), we recall the definition of c (m) in (B.5)
and arrive at

(B.10)

√√√ ∑
‖ξ ‖∞>N

���� 1
‖ξ‖p∞

����2 = √ ∑
m>N

c (m) 1
m2p 6

√
4n

∑
m>N

1
m2p−n+1

6

√
4n2

N2p−n .

Putting all the above estimates together, we get

(B.11) sup
x∈X

 f (x, ·) −
∑

ξ ∈[−N,N ]n∩Zn

�f (x, ·) (ξ) e2πi 〈ξ, ·〉


u

6

√
2Bd2n

(2π)p

√
1

N2p−n .

Since N >
(√

2Bd2n

(2π)pε

) 1
p− n

2 , by hypothesis, (B.11) gives us

(B.12) sup
x∈X

 f (x, ·) −
∑

ξ ∈[−N,N ]n∩Zn

�f (x, ·) (ξ) e2πi 〈ξ, ·〉


u

6 ε,

proving the assertion. �

We are finally ready for the Proof of Lemma 3.10.

Proof of Lemma 3.10. Pick ε > 0, and consider the family of functions

Kε
f B

{ ∑
ξ ∈[−N,N ]n∩Zn

�f (x, ·) (ξ) e2πi 〈ξ, ·〉 : Θ→ R

����� x ∈ X
}
,

where N =
⌈(

12
√

2Bd2n

(2π)pε

) 1
p− n

2

⌉
with the various constants as defined in Lemma B.3 and the

discussion before it. Lemma B.3 in conjunction with Lemma B.2 gives us

(B.13) N
(
K f ,

ε

4

)
= N

(
Kε

f ,
ε

12

)
.

Observe that by the Plancherel’s identity (B.2), for each x ∈ X we have∑
ξ ∈[−N,N ]n∩Zn

|�f (x, ·) (ξ) |2 6 ∑
ξ ∈Zn

|�f (x, ·) (ξ) |2 6 ‖ f (x, ·)‖L2(Tn) 6 B.

This means that Kε
f
is a family of bandlimited trigonometric polynomials with bounded

L2-norm. Consequently, Lemma 3.6 applies to Kε
f
, and we have the estimate

N
(
K f ,

ε

2

)
6 N

(
Kε

f ,
ε

12

)
6

1
D(ε)

(
πD(ε)2

2

)D(ε ) ( ε

12B

)−2D(ε )
,
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where D(ε) =
(
2
⌈(

12
√

2Bd2n

(2π)pε

) 1
p− n

2

⌉
+ 1

)n
. This proves the assertion, thereby completing

our proof. �
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