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Abstract. A multiobjective optimization problem is simplicial if the Pareto
set and front are homeomorphic to a simplex and, under the homeomorphisms,

each face of the simplex corresponds to the Pareto set and front of a subprob-

lem. In this paper, we show that strongly convex problems are simplicial under
a mild assumption on the ranks of the differentials of the objective mappings.

We further prove that one can make any strongly convex problem satisfy the

assumption by a generic linear perturbation, provided that the dimension of
the source is sufficiently larger than that of the target. We demonstrate that

the location problems, a biological modeling, and the ridge regression can be

reduced to multiobjective strongly convex problems via appropriate transfor-
mations preserving the Pareto ordering and the topology.

1. Introduction

Multiobjective optimization arises in various fields of science and engineering
(e.g., data mining [18,19], finance [21], car design [25], and more [32]). A common
scenario in the classical decision making is that users first specify their preference,
then scalarize objective functions according to the preference, and finally solve a
scalarized problem to find the preferred Pareto solution [2,16]. In contrast to this a
priori approach, the recent computational power enables us to take an a posteriori
approach: users first solve a multiobjective problem to obtain the whole Pareto set
(or an approximation of it), then consider the trade-off between objective functions,
and finally make a choice of the preferred solution. In the a posteriori approach,
some multiobjective solvers utilize scalarization for guiding search directions in
order to obtain the entire Pareto set (see for example [1, 3, 8, 31]).

In general it becomes easier to obtain the whole Pareto set if it has a simple topo-
logical structure. For example, applying a generalized homotopy method [8] one
can find the entire connected Pareto set from a single Pareto solution. Furthermore,
we can efficiently compute a parametric-surface approximation of the entire Pareto
set, provided that the problem is simplicial [12]. Figure 1 depicts an example of
a simplicial problem with the three objective functions f1, f2, f3. As this figure
indicates, there exists a homeomorphism Φ from a simplex ∆2 to the Pareto set,
sending each face of ∆2 to the Pareto set of a subproblem (for the precise definition
of simplicial problems, see section 2.2). The property that Φ sends the faces to the
Pareto sets has a great utility: it is known that using this correspondence, we can
reduce the number of solutions to obtain an approximation of the mapping Φ, i.e.,
a parametric-surface approximation of the Pareto set (cf. [12, 24]).

In the literature, some researchers also studied hierarchical structures of solution
sets of various types. Shoval et al. pointed out that when minimizing distances from
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Figure 1. The Pareto set X∗(f) (middle) and front f(X∗(f))
(right) of a simplicial problem f = (f1, f2, f3). There exists a
homeomorphism Φ from a simplex ∆2 to X∗(f), sending each face
to the Pareto set of a subproblem. The composite f ◦ Φ : ∆2 →
f(X∗(f)) is also a homeomorphism.

given points, one can decompose the boundary of the Pareto set into the Pareto
sets of subproblems [22]. Mainly based on Wan’s results [28,29], Lovison and Pacci
showed a generic property of mappings that the local Pareto set admits a Whitney
stratification [14]. Gebken et al. investigated a situation that the Pareto critical set
can be determined by a reduced number of objectives when the number of objectives
are greater than that of variables [4]. Compared to the above studies, the theory of
simplicial problems uniquely provides efficient computation of the whole Pareto set
of some class of mappings from high-dimensional decision spaces to low-dimensional
objective spaces, which are frequently seen in practical problems.

It is therefore important to investigate what kinds of known problem classes,
such as linear problems, convex problems1, etc., are simplicial. In this paper, we
will show that problems minimizing strongly convex mappings are simplicial under
the assumption on the differentials of the mappings.

Theorem 1.1. Let f : Rn → Rm be a strongly convex Cr–mapping (2 ≤ r ≤ ∞).
The multiobjective optimization problem minimizing f is Cr−1–weakly simplicial.
Furthermore, this problem is Cr−1–simplicial if the corank of the differential dfx is
equal to 1 for any x ∈ X∗(f).

For the definitions of strong convexity and weak simpliciality, see section 2.
Under the assumptions of theorem 1.1, the weighted-sum scalarization gives an in-
stance of the aforementioned homeomorphism Φ, that is, the mapping x∗ : ∆m−1 →
X∗(f) defined by

x∗(w) = arg min
x∈Rn

(
m∑
i=1

wifi(x)

)
is a homeomorphism. Since the scalarized function

∑m
i=1 wifi : Rn → R is strongly

convex (see section 2.3), the mapping x∗ is well-defined and can be efficiently com-
puted by, e.g., gradient methods. By this property, scalarization-based subdivision
methods [3, 6, 17, 23] are able to provide solutions for parametric-surface approxi-
mation methods in [12,24] to build an approximation of Φ.

1While it has been stated that any convex problem is simplicial in the literature, it is too opti-
mistic to expect so, as one can easily find a counterexample. See e.g. example 3.4 and remark 4.4.
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Note that (strict) convexity of a mapping does not necessarily imply that the
corresponding problem is simplicial. For example, the single objective problem
minimizing the function exp(x) (defined on R) does not have a Pareto solution
(i.e. a minimizer), in particular it is not simplicial, although exp(x) is strictly
convex.

As the example given in example 3.5 indicates, we cannot drop the assumption
on the corank in theorem 1.1. Nevertheless, one can make any strongly convex
mapping satisfy the corank assumption by a generic linear perturbation, provided
that the dimension of the source is sufficiently larger than that of the target. See
theorem 4.1 for details. We will further observe that theorem 4.1 would not hold
without the assumption on the dimensions (cf. remark 4.4). Note that a small linear
perturbation of a strongly convex problem does not cause substantial changes of
the Pareto set (see remark 4.5 for details).

Applying theorem 1.1, we can show that several problems appearing in practi-
cal situations are simplicial. In 1967, Kuhn [13] showed that the Pareto set of a
location problem under the Euclidean norm is the convex hull of demand points,
which becomes a simplex when the demand points are in general position. We will
observe in section 5 that this problem can be made strongly convex by suitable
transformations on the target space preserving the Pareto ordering. In particular,
our theorem gives an alternative proof of Kuhn’s result. Shoval et al. [22] proposed
a multiobjective model for phenotypic divergence of species in evolutionary biology
and indicated that its Pareto set is a curved simplex. Again, this problem becomes
strongly convex after suitable transformations (see section 5). We can thus give a
rigorous proof for the observation in [22].

The paper is organized as follows: After preliminaries in section 2, the proof
of the main theorem will be given in section 3. In section 4, we will show that,
under some assumption on the dimensions of the source and the target, any strongly
convex problem becomes simplicial after a generic linear perturbation. Section 5
will be devoted to discussing practical problems.

2. Preliminaries

We introduce the definition of strongly convex problems and their properties
and define Cr–(weakly) simplicial problems. Throughout the paper, we denote the
index set { 1, . . . ,m } by M .

2.1. Multiobjective optimization. A multiobjective optimization problem is a
problem minimizing objective functions f1, . . . , fm : X → R over a subset X ⊆ Rn:

minimize f(x) = (f1(x), . . . , fm(x))

subject to x ∈ X(⊆ Rn).

According to the Pareto ordering, i.e.,

f(x) ≺ f(y)
def⇐=⇒ fi(x) ≤ fi(y) for all i ∈M and fj(x) < fj(y) for some j ∈M,

we basically would like to obtain the Pareto set

X∗(f) = { x ∈ X | ∀y ∈ X, f(y) 6≺ f(x) }

and the Pareto front

f(X∗(f)) = { f(x) ∈ Rm | x ∈ X∗(f) } .
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2.2. Simplicial problems. Here, we explain the definition of Cr–(weakly) sim-
plicial problems for 0 ≤ r ≤ ∞. For ε ≥ 0, we define the subset ∆m−1

ε  Rm as
follows:

∆m−1
ε =

{
(w1, . . . , wm) ∈ Rm

∣∣∣∣∣
m∑
i=1

wi = 1, wi > −ε

}
 Rm.

Note that the closure ∆m−1
0 is the standard simplex, which we will denote by

∆m−1 =

{
(w1, . . . , wm) ∈ Rm

∣∣∣∣∣
m∑
i=1

wi = 1, wi ≥ 0

}
 Rm.

We also denote a face of ∆m−1 for I ⊆M by

∆I =
{

(w1, . . . , wm) ∈ ∆m−1
∣∣ wi = 0 (i 6∈ I)

}
 Rm.

For a subset U ⊆ Rm, a continuous mapping f : ∆m−1 → U is a Cr–mapping
if there exist ε > 0 and a Cr–mapping f̃ : ∆m−1

ε → Rm satisfying f̃ |∆m−1 =
f.2 A subspace X ⊆ Rn is Cr–diffeomorphic to the simplex ∆m−1 if there exist
ε > 0 and a Cr–immersion φ : ∆m−1

ε → Rn such that φ|∆m−1 : ∆m−1 → X is a
homeomorphism. The reader can refer to [15, §.2] for more general definition of
diffeomorphisms between manifolds with corners.

Definition 2.1. Let X be a subset of Rn and f = (f1, . . . , fm) be a mapping
from X to Rm. For I = { i1, . . . , ik } ⊆ M such that i1 < · · · < ik, we put
fI = (fi1 , . . . , fik). The problem minimizing f is Cr–simplicial if there exists a Cr–
mapping Φ : ∆m−1 → X∗(f) such that both of the restrictions Φ|∆I

: ∆I → X∗(fI)
and f |X∗(fI) are Cr–diffeomorphisms for any I ⊆M . The problem minimizing f is

Cr–weakly simplicial if there exists a Cr–mapping φ : ∆m−1 → f(X∗(f)) satisfying
φ(∆I) = f(X∗(fI)) for any I ⊆M .

2.3. Pareto solutions of strongly convex mappings. In this subsection, a
characterization of Pareto solutions of strongly convex C1–mappings is given (see
proposition 2.5). We begin this subsection with quickly reviewing the definition of
(strong) convexity. A subset X of Rn is convex if tx+ (1− t)y ∈ X for all x, y ∈ X
and all t ∈ [0, 1]. Let X be a convex set in Rn. A function f : X → R is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x, y ∈ X and all t ∈ [0, 1]. A function f : X → R is strongly convex if there
exists α > 0 such that

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
αt(1− t)‖x− y‖2

for all x, y ∈ X and all t ∈ [0, 1], where ‖x− y‖ denotes the Euclidean norm of
x − y. A mapping f = (f1, . . . , fm) : X → Rm is (strongly) convex if every fi is
(strongly) convex. A problem minimizing a strongly convex mapping is called a
strongly convex problem. The followings are basic properties of (strongly) convex
mappings which will be needed later on:

Lemma 2.2 ( [20, Theorem 2.1.2 (p. 54)]). Let X ⊆ Rn be a convex open subset.
A C1–function f : X → R is convex if and only if f(x) + dfx · (y − x) ≤ f(y) for
any x, y ∈ X.

2The usual definition of a Cr–mapping on a manifold with corners is slightly different from
that given here: the latter is stronger (as a condition) than the former.
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Lemma 2.3 ( [20, Theorem 2.1.11 (p. 65)]). Let X ⊆ Rn be a convex open subset.
A C2–function f : X → R is strongly convex if and only if there exists β > 0
such that m(f)x ≥ β for any x ∈ X, where m(f)x is the minimal eigenvalue of the
Hessian matrix of f at x.

Lemma 2.4 ( [20, Theorem 2.2.6 (p. 85)]). Let f : Rn → R be a strongly convex C1–
function. Then, there exists a unique point such that the function f is minimized.

In the rest of this subsection we will prove the following proposition:

Proposition 2.5. Let f = (f1, . . . , fm) : Rn → Rm be a strongly convex C1–
mapping. Then, x ∈ X∗(f) if and only if there exists an element (w1, . . . , wm) ∈
∆m−1 such that f satisfies one (and hence both) of the following equivalent condi-
tions:

(1)
∑m
i=1 wi(dfi)x = 0.

(2) The point x ∈ Rn is a unique element such that the function
∑m
i=1 wifi is

minimized.

For the proof, we prepare some lemmas.

Lemma 2.6 ( [16, Theorem 3.1.3 (p. 79)]). Let f = (f1, . . . , fm) : Rn → Rm be
a mapping and let (w1, . . . , wm) ∈ ∆m−1 be an element. If x ∈ Rn is a unique
element such that the function

∑m
i=1 wifi is minimized, then x ∈ X∗(f).

The following is a special case of the Karush-Kuhn-Tucker necessary condition
for Pareto optimality.

Lemma 2.7 ( [16, Theorem 3.1.5 (p. 39)]). Let f = (f1, . . . , fm) : Rn → Rm be
a C1–mapping. If x ∈ X∗(f), then there exists an element (w1, . . . , wm) ∈ ∆m−1

satisfying
∑m
i=1 wi(dfi)x = 0.

Lemma 2.8. Let f = (f1, . . . , fm) : Rn → Rm be a convex C1–mapping. Let
(w1, . . . , wm) ∈ ∆m−1 be an element. Then, the following conditions for x ∈ Rn
are equivalent.

(1)
∑m
i=1 wi(dfi)x = 0.

(2) The function
∑m
i=1 wifi : Rn → R attains its minimum at x.

Proof of lemma 2.8. Set g =
∑m
i=1 wifi. Then, for any x ∈ Rn, we have
m∑
i=1

wi(dfi)x = dgx.(1)

Since g is convex, we can deduce from lemma 2.2 that the following inequality holds
for any y ∈ Rn:

g(x) + dgx · (y − x) ≤ g(y).(2)

Suppose that
∑m
i=1 wi(dfi)x = 0. We can easily deduce the assertion 2 from eq. (1)

and eq. (2). Suppose that
∑m
i=1 wifi : Rn → R attains its minimum at x. Since

dgx is equal to 0 and the equality eq. (1) holds, we have the assertion 1. �

Proof of proposition 2.5. Suppose that x ∈ X∗(f). Using lemma 2.7, we can verify
that there exists an element (w1, . . . , wm) ∈ ∆m−1 satisfying

∑m
i=1 wi(dfi)x = 0.

From lemma 2.8, the point x ∈ Rn is an element such that
∑m
i=1 wifi is mini-

mized. Since
∑m
i=1 wifi is strongly convex C1–function, by lemma 2.4, we have

the assertion 2. Finally, suppose the assertion 2. Then, from lemma 2.6, we get
x ∈ X∗(f). �
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2.4. Fold singularities. In this subsection we will briefly review the definition and
basic properties of fold singularities (for details, see [5]). For 0 ≤ k ≤ min { n,m },
we define a subset Sk  J1(Rn,Rm) as follows:

Sk =

{
j1g(x) ∈ J1(Rn,Rm)

∣∣∣∣ x ∈ Rn, g : Rn → Rm : C2–mapping,
min { n,m } − rank(dgx) = k

}
,

where j1g : Rn → J1(Rn,Rm) is the 1–jet extension of g. Let g : Rn → Rm be a
C2–mapping, S ⊆ J1(Rn,Rm) be a submanifold, and x ∈ Rn. The mapping j1g is
transverse to S at x if either of the following conditions holds:

• j1g(x) is not contained in S,
• j1g(x) ∈ S and d(j1g)x(TxRn) + Tj1g(x)S = Tj1g(x)J

1(Rn,Rm).

The mapping j1g is transverse to S if it is transverse to S at any point in Rn.
Suppose that n is greater than or equal to m. For a C2–mapping f : Rn → Rm,

we denote the critical point set of f by Crit(f) ⊆ Rn. A point x ∈ Crit(f) is called
a fold if the following conditions hold:

(1) j1f is transverse to S1 at x0.
(2) Tx0S1(f)⊕ ker dfx0 = Tx0Rn, where S1(f) = (j1f)−1(S1).

Note that we can easily deduce from the condition 2 that the restriction f |Crit(f) is
an immersion around a fold.

Remark 2.9. Let f : Rn → Rm be a C∞–mapping and x ∈ Crit(f) be a fold. One
can take coordinate neighborhoods (U,ϕ) and (V, ψ) at x and f(x), respectively, so
that they satisfy:

ψ ◦ f ◦ ϕ−1(x1, . . . , xn) =

(
x1, . . . , xm−1,

n∑
k=m

±x2
k

)
.

In what follows we will give a useful criterion for detecting fold singularities. Let
f = (f1, . . . , fm) : Rn → Rm be a C2–mapping and x0 ∈ Crit(f). Suppose that the

corank 3 of dfx0
is 1 and the matrix

(
∂fi
∂xj

(x0)
)

1≤i,j≤m−1
is regular. We define the

function λf : Rn → Rn−m+1 as follows:

λf (x) = (J1(x), . . . , Jn−m+1(x)),

where

Ji(x) = det



∂f1

∂x1
(x) · · · ∂fm

∂x1
(x)

...
. . .

...
∂f1

∂xm−1
(x) · · · ∂fm

∂xm−1
(x)

∂f1

∂xm−1+i
(x) · · · ∂fm

∂xm−1+i
(x)


.

Lemma 2.10. Under the situation above, x0 is a fold if and only if the following
conditions hold:

(1) the differential (dλf )x0
has rank n−m+ 1,

(2) ker(dλf )x0
⊕ ker dfx0

= Tx0
Rn.

3For a linear mapping ϕ : V → W the non-negative number dimW − rank(ϕ) is called the
corank of ϕ.
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Remark 2.11. The two conditions in lemma 2.10 are equivalent to those in the
original definition above. Indeed, the first condition is equivalent to the condition
that j1f is transverse to S1 at x0, and Tx0S1(f) is equal to ker(dλf )x0 .

3. Proof of the main result

In this section we will show that strongly convex problems are simplicial. Let
f = (f1, . . . , fm) : Rn → Rm be a strongly convex Cr–mapping (2 ≤ r ≤ ∞). Since∑m
i=1 wifi is strongly convex for any (w1, . . . , wm) ∈ ∆m−1, there exists a unique

point x ∈ Rn such that
∑m
i=1 wifi is minimized (see lemma 2.4). We denote this

minimizing point by arg minx∈Rn(
∑m
i=1 wifi(x)) ∈ Rn, which is contained in X∗(f)

by lemma 2.6. We can thus define a mapping x∗ : ∆m−1 → X∗(f) as follows:

x∗(w) = arg min
x∈Rn

(
m∑
i=1

wifi(x)

)
.

Theorem 3.1. Let f = (f1, . . . , fm) : Rn → Rm be a strongly convex Cr–mapping
(2 ≤ r ≤ ∞).

(1) The mapping x∗ : ∆m−1 → X∗(f) (and thus f ◦ x∗ : ∆m−1 → f(X∗(f)))
is a surjective mapping of class Cr−1.

(2) Suppose that the corank of dfx is equal to 1 for any x ∈ X∗(f).
A. The mapping x∗ : ∆m−1 → X∗(f) is a Cr−1–diffeomorphism.
B. The restriction f |X∗(f) : X∗(f)→ Rm is a Cr−1–embedding.

Note that this theorem obviously holds for m = 1. For this reason, in the rest
of this section we will assume m ≥ 2.

theorem 1.1 follows from this theorem as follows: It is easy to see that any
subproblem of a strongly convex problem is again strongly convex. In particular,
by applying theorem 3.1 to each subproblem, we can show that the image of the
restriction x∗ on ∆I is equal to X∗(fI) for any I ⊆ M . Thus a strongly convex
problem is weakly simplicial. We can further deduce from the assertion 2 of theo-
rem 3.1 that a strongly convex problem is simplicial under the assumption on the
coranks of differentials.

Remark 3.2. The corank assumption in 2 implies that n is greater than or equal
to m− 1. As we will show in the proof, under this assumption any point in X∗(f)
for a mapping f is a fold4 if n ≥ m.

Remark 3.3. In general, the mapping x∗ for a strongly convex problem (without
the corank assumption) is not necessarily a diffeomorphism. We will give an explicit
example of such a problem with a non-injective x∗ in example 3.4.

Proof of 1 in theorem 3.1. First of all, we can immediately deduce from proposi-
tion 2.5 that x∗ is surjective. Let δ′ > 0 be a positive number and g : ∆m−1

δ′ ×Rn →
Rn be a Cr−1–mapping defined by g(w, x) =

∑m
k=1 wk(dfk)x. We can easily deduce

from lemma 2.8 that x∗ is an implicit function of the equation g(w, x) = 0 defined

on ∆m−1. Differentiating g, we have ∂gi
∂xj

=
∑m
k=1 wk

∂fk
∂xi∂xj

. Thus the matrix(
∂gi
∂xj

)
1≤i,j≤n

is equal to
∑m
k=1 wkH(fk)x, where H(fk)x is the Hessian matrix of

4It is indeed a “definite” fold.
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fk at x. Since fk is strongly convex, the Hessian matrix H(fk)x is positive defi-

nite (see lemma 2.3). Thus, the matrix
(
∂gi
∂xj

)
1≤i,j≤n

is regular on ∆m−1. By the

implicit function theorem, for any y ∈ ∆m−1 there exists an open neighborhood
Uy ⊆ ∆m−1

δ′ and a (unique) Cr−1–mapping x∗y : Uy → Rn such that x∗y(y) = x∗(y)
and g(w, x∗y(w)) = 0 for any w ∈ Uy. We can further deduce from uniqueness of an

implicit function that x∗y coincides with x∗y′ on Uy ∩ Uy′ for distinct y, y′ ∈ ∆m−1.

Since U =
⋃
y∈∆m−1 Uy is an open neighborhood of ∆m−1, one can take δ < δ′ so

that ∆m−1
δ is contained in U .5 We can define x̃∗ : ∆m−1

δ → Rn by x̃∗(w) = x∗y(w)

for w ∈ Uy. It is easy to see that x̃∗ is a Cr−1–mapping and is an extension of x∗.
Thus x∗ is a Cr−1–mapping. �

Proof of 2.A in theorem 3.1. For ε ≥ 0, we define a subset Dm−1
ε  Rm−1 by

Dm−1
ε =

{
(z1, . . . , zm−1) ∈ Rm−1

∣∣∣∣∣ ∑
i

zi < 1 + ε, zi > −ε

}
.

We denote the closure Dm−1
0 by Dm−1. It is easy to check that the projection

p : ∆m−1
ε → Dm−1

ε defined by p(w1, . . . , wm) = (w1, . . . , wm−1) is a diffeomorphism.
In what follows we will identify ∆m−1

ε with Dm−1
ε by p.

Since x̃∗ constructed in the proof above is an implicit function of the equation
g(w, x) = 0, the following equality holds:

0 =

m∑
k=1

wk(dfk)x̃∗(w) =

m−1∑
k=1

zk(dfk)x̃∗(z) +

(
1−

m−1∑
k=1

zk

)
(dfm)x̃∗(z),

where (z1, . . . , zm−1) ∈ Dm−1
δ is a point corresponding to w ∈ ∆m−1

δ . Differentiat-
ing the both sides of the equation above by zj (j = 1, . . . ,m − 1), we obtain the
following equality:

0 =

m−1∑
k=1

zk

(
H(fk)x̃∗(z)

∂x̃∗

∂zj

)
+ (dfj)x̃∗(z)

+

(
1−

m−1∑
k=1

zk

)(
H(fm)x̃∗(z)

∂x̃∗

∂zj

)
− (dfm)x̃∗(z).

We thus obtain:

∂x̃∗

∂zj
= −

(
m−1∑
k=1

zkH(fk)x̃∗(z) +

(
1−

m−1∑
k=1

zk

)
H(fm)x̃∗(z)

)−1(
(dfj)x̃∗(z) − (dfm)x̃∗(z)

)
= −A(z)

(
(dfj)x̃∗(z) − (dfm)x̃∗(z)

)
,

where we denote the matrix
(∑m−1

k=1 zkH(fk)x̃∗(z) +
(

1−
∑m−1
k=1 zk

)
H(fm)x̃∗(z)

)−1

by A(z), which is positive definite for z ∈ Dm−1. Since Dm−1 is compact and the
corank of dfx̃∗(z) is equal to 1 for any z ∈ Dm−1, by retaking δ if necessary, we can

assume that the corank of dfx̃∗(z) is equal to 1 and A(z) is positive definite, and

5 If not, we can take xn ∈ Uc∩∆m−1
1/n

for any n ∈ N. Since ∆m−1
1 is compact, { xn }n∈N has a

cluster point x, which is contained in ∆m−1. However, x is also contained in Uc since it is closed,
contradicting the fact that ∆m−1  U .
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thus regular, for any z ∈ Dm−1
δ . (Note that the condition corank(dfx) = 1 is an

open condition in Crit(f).)
We will show that the matrix

(3)
(
(df1)x̃∗(z) − (dfm)x̃∗(z) · · · (dfm−1)x̃∗(z) − (dfm)x̃∗(z)

)
has rankm−1 for any z ∈ Dm−1. If not so, there exists ai ∈ R with (a1, . . . , am−1) 6=
0 such that

m−1∑
i=1

ai

(
(dfi)x̃∗(z) − (dfm)x̃∗(z)

)
= 0.

On the other hand, by the definition of x̃∗, we obtain

m−1∑
j=1

zj(dfj)x̃∗(z) +

(
1−

m−1∑
i=1

zi

)
(dfm)x̃∗(z) = 0.

Thus, two vectors
(
z1, . . . , zm−1, 1−

∑m−1
i=1 zi

)
and

(
a1, . . . , am−1,−

∑m−1
i=1 ai

)
are

contained in ker dfx̃∗(z). However, these are linearly independent and contradict the

assumption corank
(
dfx̃∗(z)

)
= 1. Therefore, the matrix in eq. (3) has rank m − 1

for any z ∈ Dm−1. Since the condition that the matrix in eq. (3) has rank m − 1
is an open condition for z, we can assume that this condition holds for any Dm−1

δ

by making δ sufficiently small. The differential

dx̃∗z = −A(z)
(

(df1)x̃∗(z) − (dfm)x̃∗(z), . . . , (dfm−1)x̃∗(z) − (dfm)x̃∗(z)

)
also has rank m− 1 since A(z) is regular for any z ∈ Dm−1

δ .
We next show that the mapping x∗ is injective. Assume that x∗(w) is equal to

x∗(w′) for w,w′ ∈ ∆m−1. Since the corank of dfx∗(w) is 1 and
∑m
j=1 wj(dfj)x∗(w) =

0, we can obtain Im(dfx∗(w)) = 〈w〉⊥. In the same way, we can also prove that

Im(dfx∗(w′)) is equal to 〈w′〉⊥. From the assumption, we can deduce that 〈w〉⊥ is

equal to 〈w′〉⊥ and thus w = w′.
We have shown that x∗ is an injective immersion. Since ∆m−1 is compact, x∗

is a homeomorphism and thus a diffeomorphism to its image, which is equal to
X∗(f). �

Proof of 2.B in theorem 3.1. We first prove that f |X∗(f) is injective. Let w, z ∈
∆m−1, x = x∗(w) and y = x∗(z). Suppose that f(x) is equal to f(y). Then
(
∑m
i=1 wifi)(x) is also equal to (

∑m
i=1 wifi)(y). Since the function

∑m
i=1 wifi is

strongly convex, the point minimizing
∑m
i=1 wifi is unique (see lemma 2.4). Thus,

x is equal to y.
As we noted in remark 3.2, the corank assumption implies that n is greater than

or equal to m − 1. If n = m − 1, this assumption further implies that f is an
immersion at any point in X∗(f). The restriction f |X∗(f) is thus an embedding
since any injective immersion on a compact manifold is an embedding. In what
follows we will assume n ≥ m.

We next show that any point x ∈ X∗(f) is a fold of f . The following transfor-
mations preserve strong convexity of f :

• (f1, . . . , fm) 7→ (fσ(1), . . . , fσ(m)) (σ ∈ Sm),
• (f1, . . . , fm) 7→ (f1, . . . , fm + αfi) (α > 0, i = 1, . . . ,m− 1), and
• linear transformations of the source of f ,
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where Sm is the symmetric group of degree m. By applying these transformations
if necessary, we can assume the followings:

(dfm)x = 0,

(
∂fi
∂xj

(x)

)
1≤i,j≤m−1

= Im−1,
∂fi
∂xj

(x) = 0

(
i = 1, . . . ,m
j = m, . . . , n

)
.

Let λf : Rn → Rn−m+1 be the mapping defined in section 2.4. By lemma 2.10, it
suffices to show the followings:

(A) the rank of (dλf )x is n−m+ 1,
(B) ker(dλf )x ⊕ ker dfx = TxRn.

By the assumptions above, we can calculate (dλf )x as follows:

(dλf )x = ±
(

∂2fm
∂xj∂xm−1+i

(x)

)
1≤i≤n−m+1,1≤j≤n

= ±
(

0(n−m+1)×(m−1) In−m+1

)
H(fm)x.

Since fm is strongly convex, the Hessian matrix H(fm)x is positive definite, in par-
ticular regular by lemma 2.3. Thus, the condition (A) holds. The above calculation
also implies the following equality:

ker(dλf )x =
〈
H(fm)−1

x e1, . . . ,H(fm)−1
x em−1

〉
.

Let v ∈ ker(dλf )x ∩ ker(df)x. From the equality above, we can find w ∈ Rm−1 ×
{ 0 }  Rm such that v = H(fm)−1

x w. Thus the following holds:

0 = dfx(v) =

(
Im−1 0

0 0

)
H(fm)−1

x w.

We can deduce the following from this equality:
twH(fm)−1

x w = 0.

Since H(fm) is positive definite by lemma 2.3, w is equal to 0. Since the corank of
dfx is equal to 1, we can deduce the following from the condition (A):

dim ker(dλf )x + dim ker(dfx) = n.

Thus the condition (B) also holds. We can eventually conclude that f |X∗(f) is an
immersion. �

3.1. Examples. One of the most simple and representative instances of strongly
convex problem is the multiobjective location problem under the Euclidean norm.
It is well known that the Pareto set (resp. the Pareto front) of this problem is a
convex hull of minimizing points (resp. their values) of individual objective func-
tions [13]. Thus, if these minimizing points are in general position, then the convex
hull becomes a simplex and this problem is a C0–simplicial problem.

In this section we will show that in the strongly convex case, the condition that
minimizing points are in general position is no longer necessary nor sufficient to
ensure Cr–simpliciality, and the corank assumption is still essential to determine
the topology of the Pareto set and the Pareto front. To this end, we will give two
examples of strongly convex mappings from R3 to R3, and discuss the configurations
of Pareto sets of them. As we mentioned in the beginning of section 3, for any
strongly convex mapping f : R3 → R3 we can define a mapping x∗ : ∆2 → X∗(f).
The first example (given in example 3.4) has a corank 2 differential at a point
in the Pareto set, and the corresponding x∗ is not a diffeomorphism (despite the
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fact that the minimizing points of the three component functions are in general
position). This example implies that we cannot drop the corank assumption in the
assertion 2 of theorem 3.1. The second example (given in example 3.5) satisfies the
corank assumption, and thus the corresponding x∗ is a diffeomorphism (although
the minimizing points of the three component functions are not in general position).

Example 3.4 (general position with corank 2). Define a mapping f = (f1, f2, f3) :
R3 → R3 as follows:

f1(x, y, z) = x2 + y2 + z2,

f2(x, y, z) = x+ y + x2 + y2 + z2,

f3(x, y, z) = −(x+ y) + x2 + 2y2 + z2.

The mapping f is strongly convex. We will check that X∗(f) contains a singularity
of corank 2, and is not diffeomorphic to ∆2. The differentials at p = (x, y, z) ∈ R3

are

df1,p = (2x, 2y, 2z)

df2,p = (1 + 2x, 1 + 2y, 2z)

df3,p = (−1 + 2x,−1 + 4y, 2z),

and thus the corank of df0 is 2. Since f is strongly convex, the mapping x∗ :
∆2 → X∗(f) is surjective by the assertion 1 of theorem 3.1. Regarding ∆2 as
D2 = { (w2, w3) | w2, w3 ≥ 0, w2 + w3 ≤ 1 }, we obtain

x∗(w2, w3) =

(
−w2 − w3

2
,− w2 − w3

2(1 + w3)
, 0

)
.

Obviously x∗ maps the line defined by w2−w3 = 0 in ∆2 = D2 into single point (the
origin), while it is injective at points outside the above line. Thus X∗(f)(= x∗(∆2))
is not diffeomorphic to ∆2. Figure 2 describes the Pareto set of f , together with
the contours of the functions f1 (red), f2 (blue) and f3 (green).

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 2. The Pareto set of f . The union of two domains colored
with orange and blue is the Pareto set.
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For ε ∈ R− { 0 }, we define another mapping hε : R3 → R3 as follows:

hε(x, y, z) = (f1(x, y, z) + εz, f2(x, y, z), f3(x, y, z)).

Note that the mapping hε is a linear perturbation of f . It is easy to verify that
the mapping hε is strongly convex and never has corank 2 critical points. Thus the
problem minimizing hε is simplicial. We will see in section 4 that in general any
strongly convex problem becomes simplicial after a generic linear perturbation (see
theorem 4.1).

Example 3.5 (non-general position without corank 2). We define a mapping f =
(f1, f2, f3) : R3 → R3 as follows:

f1(x, y, z) = x2 + (−y + x)2 + z2,

f2(x, y, z) = 2(x− 1)2 + (−y + x− 1)2 + z2,

f3(x, y, z) = (x− 2)2 + (y + x− 2)2 + z2.

The mapping f is strongly convex. We will check that f satisfies the assumption in
the assertion 2 of theorem 3.1 (although the minimizing points of f1, f2, f3 are not
in general position). Let p = (x, y, z) be a point in X∗(f). It is easy to see that z
is equal to 0. Thus the differentials at p are calculated as follows:

(df1)p = (4x− 2y,−2x+ 2y, 0),

(df2)p = (6x− 2y − 6,−2x+ 2y + 2, 0),

(df3)p = (4x+ 2y − 8, 2x+ 2y − 4, 0).

Suppose that the corank of dfp is greater than or equal to 2. Then the following
equalities hold:

0 = det

(
4x− 2y −2x+ 2y

6x− 2y − 6 −2x+ 2y + 2

)
= 4

(
x− y

2
− 1

2

)2

− (y − 3)
2

+ 8,(4)

0 = det

(
4x− 2y −2x+ 2y

4x+ 2y − 8 2x+ 2y − 4

)
= 2

(
8(x− 1)

2 − 4

(
y − 3

2

)2

+ 1

)
.(5)

These equalities give rise to two hyperbolas given in fig. 3(a) (the red hyperbola is
defined by eq. (4), while the blue one is defined by eq. (5)). As shown in fig. 3(a),
the two hyperbolas intersect at two points. One is the origin 0 and let q = (x′, y′)
be the other. Since the rank of ((df1)0, (df2)0, (df3)0) is 2, (x, y) is not equal to
(0, 0). Thus we obtain (x, y) = (x′, y′). However, since y′ − x′ > 1 and x′, y′ > 1,
all of the three values −2x′ + 2y′,−2x′ + 2y′ + 2 and 2x′ + 2y′ − 4 are greater
than 0, contradicting proposition 2.5. Hence we can conclude that there is no point
p ∈ X∗(f) with corank(dfp) ≥ 2. Figure 3(b) describes the Pareto set of f , together
with the contours of the functions f1 (red), f2 (blue) and f3 (green).

4. Generic linear perturbations of strongly convex mappings

In this section, we will investigate the multiobjective optimization problem min-
imizing a generically linearly perturbed strongly convex mapping. Let L(Rn,Rm)
be the space consisting of all linear mappings from Rn into Rm. In what follows
we will regard L(Rn,Rm) as the Euclidean space (Rn)m in the obvious way. The
purpose of this section is to show the following theorem:
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(a) Two hyperbolas. (b) The Pareto set of f (projected on the xy–

plane).

Figure 3. The dotted lines in fig. 3(a) are asymptotes of the hyperbolas.

Theorem 4.1. Let f : Rn → Rm (n ≥ m) be a strongly convex Cr–mapping
(2 ≤ r ≤ ∞). If n − 2m + 4 > 0, then there exists a subset Σ  L(Rn,Rm) with
Lebesgue measure zero such that for any π ∈ L(Rn,Rm) − Σ the mapping f + π
never has differential with corank greater than 1 on its Pareto set. In particular,
the multiobjective optimization problem minimizing f + π : Rn → Rm is Cr−1–
simplicial.

We begin with observing that strong convexity is preserved under linear pertur-
bations.

Lemma 4.2. Let f : Rn → Rm be a strongly convex mapping. Then, for any
π ∈ L(Rn,Rm), the mapping f + π : Rn → Rm is also a strongly convex mapping.

Proof of lemma 4.2. Obviously, it is sufficient to show the statement under the
assumption that f is a function (i.e. m = 1). For x, y ∈ Rn and t ∈ [0, 1], the
following holds:

t((f + π)(x)) + (1− t)((f + π)(y))− (f + π)(tx+ (1− t)y)

= t(f(x) + π(x)) + (1− t)(f(y) + π(y))− f(tx+ (1− t)y)− π(tx+ (1− t)y)

= tf(x) + (1− t)f(y)− f(tx+ (1− t)y),

where the last equality holds since π is linear. Since f is strongly convex, there
exists α > 0 satisfying the following inequality for any x, y ∈ Rn and t ∈ [0, 1]:

tf(x) + (1− t)f(y)− f(tx+ (1− t)y) ≥ 1

2
αt(1− t)‖x− y‖2.

Hence, the mapping f + π is also strongly convex. �

Before proving theorem 4.1, we will briefly review the result in [10] needed here.
Let Sk  J1(Rn,Rm) be the subset defined in section 2.4. It is known that Sk is a
submanifold of J1(Rn,Rm) satisfying the following (see [5]):

codimSk = (n− v + k)(m− v + k)
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where codimSk = dim J1(Rn,Rm) − dimSk and v = min { n,m }. The following
lemma is merely a special case of [10, Theorem 1]:

Lemma 4.3 (cf. [10]). Let f : Rn → Rm be a Cr–mapping. Let k be an integer
satisfying 1 ≤ k ≤ min { n,m }. If r > max { n− codimSk, 0 } + 1, then there
exists a subset Σ  L(Rn,Rm) with Lebesgue measure zero such that for any π ∈
L(Rn,Rm)− Σ, the mapping j1(f + π) : Rn → J1(Rn,Rm) is transverse to Sk.

Proof of theorem 4.1. In the case m = 1, it is clearly seen that theorem 4.1 holds.
Hence, we will consider the case m ≥ 2. Since n ≥ m, the codimension of S2 is
equal to 2(n − m + 2). By the assumption n − 2m + 4 > 0, we can obtain the
inequality codimS2 > n. Let k be an integer with 2 ≤ k ≤ m. It follows that

n− codimSk ≤ n− codimS2 < 0.

In particular, for a mapping g : Rn → Rm, transversality of j1g to Sk is equivalent
to the condition that j1g(Rn) ∩ Sk = ∅, that is, g has no corank k critical points
(see [5, Ch. II, Proposition 4.2]). Furthermore, the following inequality holds:

r ≥ 2 > max { n− codimSk, 0 }+ 1.

We can deduce from lemma 4.3, together with the observations above, that there
exists Σk  L(Rn,Rm) with Lebesgue measure zero such that the mapping f + π
has no corank k critical points for any π ∈ L(Rn,Rm) − Σk. Set Σ =

⋃m
l=2 Σl  

L(Rn,Rm), which also has Lebesgue measure zero. Lastly, we can easily verify that
Σ satisfies the conditions in theorem 4.1. �

Remark 4.4. We cannot drop the assumption n− 2m+ 4 > 0 in theorem 4.1. Let
G(x) = (g1(x)− x3, g2(x)− x4, g1(x) + x3, g2(x) + x4) be a map from R4 to R4,
where

g1(x) = x2
1 + x3x2 +

1

2

(
x2

2 + x4x1

)
+ x2

3 + x2
4,

g2(x) = x2
2 + x4x1 +

1

2

(
x2

1 + x3x2

)
+ x2

3 + x2
4.

The mapping G is strongly convex and has a corank 2 critical point at the origin.
In what follows, we will see that the Pareto set of any small linear perturbation of
G contains a corank 2 critical point. (Note that the inequality n− 2m+ 4 > 0 does
not hold when n = m = 4.)

The Jacobi matrix of G at the origin is dG0 =
(
O O
−I I

)
, where I and O are 2× 2

unit matrix and zero matrix, respectively. Define the cokernel of dG0 as

coker dG0 =

{
(v1, v2, v3, v4) ∈ R4

∣∣∣∣∣
4∑
i=1

vi(dGi)0 = 0

}
,

then, the subspace coker dG0 is equal to 〈(1, 0, 1, 0), (0, 1, 0, 1)〉. In particular, the
subspace coker dG0 intersects with the interior of ∆3.

For (x, π) ∈ R4 × L(R4,R4), put d(G + π)x =
(
A(x,π) B(x,π)
C(x,π) D(x,π)

)
where A(x, π),

B(x, π), C(x, π), and D(x, π) are 2×2 matrices. We can take an open neighborhood
U of (0, 0) ∈ R4×L(R4,R4) so that the matrix D(x, π) is invertible for any (x, π) ∈
U . By multiplying the matrix

(
I O

−D−1(x,π)C(x,π) I

)
to d(G+π)x from the right, we
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obtain the matrix
(
A(x,π)−B(x,π)D−1(x,π)C(x,π) B(x,π)

O D(x,π)

)
. Put E(x, π) = A(x, π) −

B(x, π)D−1(x, π)C(x, π). The matrix E(0, 0) is the zero matrix, and

∂E(x, π)

∂x1

∣∣∣∣
(x,π)=(0,0)

=

(
4 2
0 0

)
,

∂E(x, π)

∂x2

∣∣∣∣
(x,π)=(0,0)

=

(
0 0
2 4

)
,

∂E(x, π)

∂x3

∣∣∣∣
(x,π)=(0,0)

=

(
0 0
2 1

)
,

∂E(x, π)

∂x4

∣∣∣∣
(x,π)=(0,0)

=

(
1 2
0 0

)
hold. These equalities imply that the rank of the Jacobi matrix of E with respect
to x is 4. Therefore, applying the implicit function theorem we can obtain x̂ :
V → R4, where V is an open neighborhood of 0 ∈ L(R4,R4), such that the equality
E(x̂(π), π) = O holds for any π ∈ V . Note that x̂(π) is continuous with respect to π.
Then, we can define a continuous mapping coker d(G+ ·)x̂(·) : V → Gr(2,R4) where

Gr(2,R4) is all 2-dimensional linear subspaces of R4. Since coker dG0 intersects with
the interior of ∆3, so does coker d(G+ π)x̂(π) if π is sufficiently small. This proves
that x̂(π) is a Pareto solution to G+ π with corank 2 differential for a sufficiently
small π.

Remark 4.5. Let f = (f1, . . . , fm) : Rn → Rm be a strongly convex Cr–mapping
(2 ≤ r ≤ ∞). We can deduce from lemma 4.2 that the mapping

∑m
i=1 wi(fi + πi)

is strongly convex for any (w, π) ∈ ∆m−1 × L(Rn,Rm), where π = (π1, . . . , πm).
By the same argument as in section 3, we can define a mapping Γ : ∆m−1 ×
L(Rn,Rm)→ Rn as follows:

Γ(w, π) = arg min
x∈Rn

(
m∑
i=1

wi(fi + πi)(x)

)
.

Then the mapping Γ is continuous, and thus, for any ε > 0 there exists an
open neighborhood U of 0 ∈ L(Rn,Rm) satisfying the following inequality for any
(w, π) ∈ ∆m−1 × U :

‖Γ(w, π)− Γ(w, 0)‖ < ε.

This inequality implies that the Pareto set of a linearly perturbed mapping is close
to that of the original one. For the proof of the statement here, see appendix A.

5. Applications

As we have seen, strongly convex problems have a variety of desirable proper-
ties which make their Pareto sets easy to understand. Although lots of practical
problems are not necessarily strongly convex, we can apply suitable “structure-
preserving” transformations to some of these problems so that they become strongly
convex. In this section, we will give several examples of such problems.

5.1. Location problems. One of the most traditional examples is the location
problem, which requires to find the best place x ∈ Rn for a facility so that the
weighted sum

∑m
i=1 wi‖x− pi‖ (for given w ∈ ∆m−1) of distances from demand

points p1, . . . , pm ∈ Rn is minimized. Its multiobjective version [13] is the following
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problem:6

minimize f(x) = (f1(x), . . . , fm(x)) subject to x ∈ Rn

where fi(x) = ‖x− pi‖ (i = 1, . . . ,m).
(6)

The mapping f is called a distance mapping [11], which is not differentiable. Each
fi is convex but not strongly convex, and thus so is the problem eq. (6).

Let us consider the transformation of the target T : [0,∞)m → [0,∞)m defined
by T (y1, . . . , ym) = (y2

1 , . . . , y
2
m), which preserves the Pareto ordering of [0,∞)m.

We have a transformed problem

(7) minimize T ◦ f(x) subject to x ∈ Rn.

The mapping T ◦ f (called a distance-squared mapping [11]) is differentiable and
strongly convex, in particular the problem eq. (7) is strongly convex. Since T
preserves the Pareto ordering, the Pareto sets of eqs. (6) and (7) are identical and
the Pareto fronts are homeomorphic.

For the original problem eq. (6), there is a weight with which the weighted sum
scalarization has non-unique solutions (e.g. the problem minimizing

∑m
i=1 wi‖x− pi‖

with w1 = w2 = 1/2, w3 = · · · = wm = 0 has solutions tp1 + (1− t)p2 for t ∈ [0, 1]),
in particular we cannot define a mapping x∗ given in section 3. On the other hand,
for the transformed problem eq. (7), every scalarized problem has a unique solution
and the entire Pareto set consists of such elements by the assertion 1 of theorem 3.1.
It is further easy to verify that the corank of d(T ◦ f)x is 1 for any x ∈ X∗(T ◦ f),
provided that n ≥ m−1 and p1, . . . , pm are in general position. Thus, the assertion
2 of theorem 3.1 guarantees that the problem eq. (7) is (C∞–)simplicial. Since T
preserves the Pareto ordering, one can easily see that the problem eq. (6) is also
(C0–)simplicial.

5.2. Phenotypic divergence model. Another example minimizing distances from
points arises in evolutionary biology. Let Ai be a symmetric, positive definite ma-
trix of size n and pi ∈ Rn (i = 1, . . . ,m). Shoval et al. [22] provided a model for
describing phenotypic divergence of species, which is an extension of the location
problem:

minimize f(x) = (f1(x), . . . , fm(x)) subject to x ∈ Rn

where fi(x) = ‖Ai(x− pi)‖ (i = 1, . . . ,m)
(8)

As before, the problem minimizing eq. (8) is convex but not strongly convex. We
can again apply the transformation T used in the previous subsection and obtain

(9) minimize T ◦ f(x) subject to x ∈ Rn.

Since affine transformations of the source space preserve strong convexity of a prob-
lem, each component of T ◦ f (and thus the problem eq. (9)) is strongly convex.
Applying the assertion 1 of theorem 3.1 we can conclude that both of the problems
eqs. (8) and (9) are weakly simplicial. In order to further show that these problems
are simplicial, we have to check the corank condition in the assertion 2 of theo-
rem 3.1, which would be a hard task, even if the demand points p1, . . . , pm are in
general position. Indeed, problems appearing in section 3.1 are special cases of the

6While Kuhn [13] originally considered a planar case (n = 2), we consider the problem in
general dimension.
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problems we are dealing with here. As discussed in section 3.1, generality of the
configuration of demand points does not necessarily imply the corank condition.

5.3. Ridge regression. The ridge regression [9] can be reformulated as a multi-
objective strongly convex problem. Let us consider a linear regression model

y = θ1x1 + θ2x2 + · · ·+ θpxp + ε

where x1, . . . , xp are predictor variables, y is a response variable, ε is a Gaussian
random variable expressing noise, and θ1, . . . , θp are the predictors’ coefficients to
be estimated from observations. Given n observations of x1, . . . , xp and y, which are
denoted by xi1, . . . , xip and yi (i = 1, . . . , n), an observation matrix and a response
vector are formed as

X =

x11 . . . x1p

...
. . .

...
xn1 . . . xnp

 , y =

y1
...
yn

 .

The ridge regressor is the solution to the following problem:

(10) minimize gλ(θ) =
∥∥Xθ − y∥∥2

+ λ‖θ‖2 subject to θ ∈ Rp

where ‖·‖ is the Euclidean norm and λ is a positive number predetermined by
users. To obtain a good regressor, users have to find an appropriate value of λ by
repeatedly solving the problem eq. (10) with various candidates of λ.

We consider the following multiobjective reformulation of the eq. (10):

minimize fµ(θ) = (fµ1 (θ), f2(θ)) subject to θ ∈ Rp

where fµ1 (θ) =
∥∥Xθ − y∥∥2

+ µ‖θ‖2 (µ > 0),

f2(θ) = ‖θ‖2.

(11)

Notice that
∥∥Xθ − y∥∥2

is convex but not ensured to be strongly convex. We thus

add µ‖θ‖2 to guarantee strong convexity of fµ1 . By theorems 1.1 and 3.1, this
problem is weakly simplicial and the mapping

(12) θ∗(w) = arg min
θ

(w1f
µ
1 (θ) + w2f2(θ))

is well-defined and continuous on ∆1, satisfying θ∗(∆I) = X∗(fµI ) for all I ⊆ { 1, 2 }.
Note that for w = (w1, w2) ∈ ∆1 − { (0, 1) }, the point θ∗(w) is the minimizer of

the function gλ(w), where λ(w) = µ+ w2

w1
. In particular, we can obtain the solutions

to the original problems eq. (10) for any hyper-parameter λ ≥ µ by solving the
multiobjective problem eq. (11). Since the problem eq. (11) is weakly simplicial,
the mapping θ∗ : ∆1 → Rp in eq. (12) can be approximated by a Bézier simplex
with small samples (see [24, Section 4]).

Remark 5.1. As the ridge regression problem is a special case of `p–regularized
regression problems, it is quite natural to expect that one can apply the same
idea to solve various sparse modeling problems, including the lasso [26], the group
lasso [30], the fused lasso [27], the smooth lasso [7], and the elastic net [33]. For
example, the group lasso [30]

minimize
∥∥Xθ − y∥∥2

+ λ

m∑
i=1

∥∥θ(i)

∥∥ subject to θ ∈ Rp
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is reformulated as

minimize f(θ) = (f0(θ), . . . , fm(θ)) subject to θ ∈ Rp

where f0(θ) =
∥∥Xθ − y∥∥2

,

fi(θ) =
∥∥θ(i)

∥∥2
(i = 1, . . . ,m).

Here, θ(i) is a coefficient vector corresponding to the i-th group of variables. Each

group-wise regularization term is squared to be a C2–function without changing the
Pareto ordering. Note that the original formulation uses the single regularization
constant λ for all the groups but our reformulation makes us possible to use different
regularization constants for different groups and investigate their consequences.
Unfortunately, the functions f0, . . . , fm appearing in the reformulated problem are
not always strongly convex. In order to apply our technique, we have to take
other strongly convex functions f̃0, . . . , f̃m approximating to the original ones (say,

f̃i = fi + µ‖θ‖2 for small µ > 0) so that the resulting Pareto set and front are
close to those for the original problem. The issue arising here will be addressed in
a forthcoming project.

6. Conclusions

In this paper, we have shown that Cr–strongly convex problems are Cr−1–weakly
simplicial. We have further proved that they are Cr−1–simplicial under some mild
assumption on the coranks of the differentials of the objective mappings. The
example given after the proof has illustrated the necessity of the corank assumption.

We have also shown that one can always make any strongly convex problem
satisfy the corank assumption by a generic linear perturbation, provided that the
dimension of the decision space is sufficiently larger than that of the objective space.
Note that this theorem would not hold without the assumption on the dimension
pair. We have proved that a small linear perturbation does not change the Pareto
set considerably.

While lots of multiobjective optimization problems appearing in practice are not
strongly convex, we have demonstrated that several examples of such problems can
be reduced to strongly convex problems via transformations preserving the Pareto
ordering and the topology. The location problems, a phenotypic divergence model,
and the ridge regression have been reformulated into multiobjective strongly convex
problems and shown to be (weakly) simplicial.

We plan to extend the theorems to those for C1–mappings. To do this, we will
require different techniques since one cannot define the Hessian matrices for C1–
mappings. Another interesting research project is to find a transformation that
makes problems strongly convex without causing substantial changes of the Pareto
set.
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Appendix A. The effect of linear perturbations on the Pareto sets

In this appendix we will show the following statement mentioned in remark 4.5:

Proposition A.1. The mapping Γ defined in remark 4.5 is continuous. Moreover,
for any ε > 0, there exists an open neighborhood U of 0 ∈ L(Rn,Rm) satisfying the
following inequality for any (w, π) ∈ ∆m−1 × U :

‖Γ(w, π)− Γ(w, 0)‖ < ε.

Proof of proposition A.1. Let (w̃, π̃) ∈ ∆m−1×L(Rn,Rm) be an arbitrary element.
We will show that Γ is continuous at the point (w̃, π̃).

Now, let γ : Rm−1 × L(Rn,Rm)× Rn → Rn be the mapping defined by

γ(w1, . . . , wm−1, π, x) = d

(
m−1∑
i=1

wi(fi + πi) +

(
1−

m−1∑
i=1

wi

)
(fm + πm)

)
x

.

Then, γ is a Cr−1–mapping. Set x̃ = Γ(w̃, π̃). By the definition of Γ, we have

d

(
m∑
i=1

w̃i(fi + π̃i)

)
x̃

= 0,
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where w̃ = (w̃1, . . . , w̃m) and π̃ = (π̃1, . . . , π̃m). Since w̃m = 1 −
∑m−1
i=1 w̃i, we get

γ(p(w̃), π̃, x̃) = 0, where p : ∆m−1 → Rm−1 is the mapping defined by

p(w1, . . . , wm) = (w1, . . . , wm−1).

Let γ(p(w̃),π̃) : Rn → Rn be the mapping defined by γ(p(w̃),π̃)(x) = γ(p(w̃), π̃, x).
It is easy to verify that the following equality holds:

d(γ(p(w̃),π̃))x̃ = H

(
m∑
i=1

w̃i(fi + π̃i)

)
x̃

,

where H(
∑m
i=1 w̃i(fi + π̃i))x̃ is the Hessian matrix of

∑m
i=1 w̃i(fi + π̃i) at x̃. Since

the function
∑m
i=1 w̃i(fi + π̃i) is strongly convex, we can deduce from lemma 2.3

that the determinant det d(γ(p(w̃),π̃))x̃ is not equal to 0. Therefore, by the implicit

function theorem, there exist an open neighborhood W of (p(w̃), π̃) ∈ Rm−1 ×
L(Rn,Rm) and a mapping ϕ : W → Rn satisfying

γ(z, π, ϕ(z, π)) = 0

for any (z, π) ∈ W ⊆ Rm−1 × L(Rn,Rm). Thus the mapping Γ is continuous at
(w̃, π̃) since Γ(w, π) is equal to ϕ(p(w), π) for any (w, π) ∈ (p× id)−1(W ).

Let ε > 0 be an arbitrary real number. Since Γ is continuous and ∆m−1 is

compact, there exist an open covering {Vi }li=1 of ∆m−1 and open neighborhoods
U1, . . . , Ul of 0 ∈ L(Rn,Rm) satisfying

‖Γ(w, π)− Γ(w, 0)‖ < ε

for any (w, π) ∈ Vi × Ui (1 ≤ i ≤ l). The intersection U =
⋂l
i=1 Ui is an open

neighborhood of 0 ∈ L(Rn,Rm) with the desired property. �
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