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On the Convergence of Stochastic Gradient Descent

for Nonlinear Ill-Posed Problems

Bangti Jin∗ Zehui Zhou† Jun Zou†.

Abstract

In this work, we analyze the regularizing property of the stochastic gradient descent for the efficient numer-

ical solution of a class of nonlinear ill-posed inverse problems in Hilbert spaces. At each step of the iteration,

the method randomly chooses one equation from the nonlinear system to obtain an unbiased stochastic esti-

mate of the gradient, and then performs a descent step with the estimated gradient. It is a randomized version

of the classical Landweber method for nonlinear inverse problems, and it is highly scalable to the problem size

and holds significant potentials for solving large-scale inverse problems. Under the canonical tangential cone

condition, we prove the regularizing property for a priori stopping rules, and then establish the convergence

rates under suitable sourcewise condition and range invariance condition.
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1 Introduction

This work is concerned with the numerical solution of the system of nonlinear ill-posed operator equations

Fi(x) = y†i , i = 1, . . . , n, (1.1)

where each Fi : D(Fi) → Y is a nonlinear mapping with its domain D(Fi) ⊂ X , and X and Y are Hilbert
spaces with inner products 〈·, ·〉 and norms ‖ · ‖, respectively. The number n of nonlinear equations in (1.1) can

potentially be very large. The notation y†i ∈ Y denotes the exact data (corresponding to the reference solution
x† ∈ X to be defined below, i.e., y† = F (x†)). Equivalently, problem (1.1) can be rewritten as

F (x) = y†, (1.2)

with the operator F : X → Y n (Y n denotes the product space Y × · · · × Y ) and y† ∈ Y n defined by

F (x) =
1√
n





F1(x)
. . .

Fn(x)



 and y† =
1√
n





y†1
. . .
y†n



 ,

respectively. The scaling n− 1
2 above is introduced for the convenience of later discussions. In practice, instead

of the exact data y†, we have access only to the noisy data yδ of a noise level δ ≥ 0, namely

‖yδ − y†‖ = δ .

Nonlinear inverse problems of the form (1.1) arise naturally in many real-world applications, especially pa-
rameter identifications for partial differential equations, e.g., (multifrequency) electrical impedance tomography,
inverse scattering and diffuse optical spectroscopy. Due to the ill-posed nature of problem (1.1), regularization
is needed for their stable and accurate numerical solutions, and many effective techniques have been proposed
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over the past few decades (see, e.g., [5, 13, 22, 10, 23]). Among existing techniques, iterative regularization rep-
resents a very powerful and popular class of numerical solvers for problem (1.1), including Landweber method,
(regularized) Gauss-Newton method, conjugate gradient methods, multigrid methods, and Leverberg-Marquardt
method etc; see the monographs [13] and [23] for overviews on iterative regularization methods in the Hilbert
space and Banach space settings, respectively. In this work, we are interested in the convergence analysis of
a stochastic iterative technique for problem (1.1) given in Algorithm 1. In the algorithm, the index ik of the
equation at the kth iteration is drawn uniformly from the index set {1, . . . , n}, and ηk > 0 is the corresponding
step size. This algorithm has demonstrated very encouraging numerical results in [2] for diffuse optical tomogra-
phy (with radiative transfer equation). It is also worth noting that a variant of the algorithm, i.e., randomized
Kaczmarz method (RKM) (see, e.g., [20, 11] for the equivalence result between RKM and Algorithm 1), has been
extremely successful in the computed tomography community [7, 8] (see, e.g., [24] and [26] for interesting linear
convergence results of the RKM for least-squares regression and phase retrieval with “well-conditioned” matrix
and exact data).

Algorithm 1 Stochastic gradient method for problem (1.1).

1: Given initial guess x1.
2: for k = 1, 2, . . . do
3: Randomly draw an index ik;
4: Update the iterate xδ

k by
xδ
k+1 = xδ

k − ηkF
′
ik
(xδ

k)
∗(Fik (x

δ
k)− yδik); (1.3)

5: Check the stopping criterion.
6: end for

The algorithm is commonly known as stochastic gradient descent (SGD), pioneered by Robbins and Monro in
statistical inference [21] (see the monograph [15] for results on asymptotic convergence in the context of stochastic
approximations). Algorithmically, SGD can be viewed as a randomized version of the classical Landweber method
[16], which is given by

xδ
k+1 = xδ

k − ηkF
′(xδ

k)
∗(F (xδ

k)− yδ). (1.4)

It can be viewed as the gradient descent applied to the following quadratic functional

J(x) =
1

2
‖F (x)− yδ‖2 = 1

n

n
∑

i=1

1

2
‖Fi(x) − yδi ‖2.

Compared with the Landweber method (1.4), SGD (1.3) requires only evaluating one randomly selected (non-
linear) equation at each iteration, instead of the whole nonlinear system, which substantially reduces the com-
putational cost per iteration and enables excellent scalability to truly massive data sets (i.e., large n), which
are increasingly common in practical applications due to advances in data acquisition technologies. This highly
desirable property has attracted significant recent interest in the machine learning community, especially the
training of deep neural networks, where currently SGD and its variants are the workhorse for many challenging
training tasks [30, 25, 14, 1].

In the context of nonlinear inverse problems, the Landweber method is relatively well understood, since the
influential work [6] (see also [18, 28] for linear inverse problems), and the results were refined and extended in
different aspects [13]. In contrast, the stochastic counterparts, such as SGD, remains largely under-explored for
inverse problems, despite their computational appeals. The theoretical analysis of stochastic iterative methods
for inverse problems has just started only recently, despite the empirical successes (e.g., RKM in computed
tomography), and some first theoretical results were obtained in [11, 12] for linear inverse problems. In particular,
in the work [12], the regularizing property of SGD for linear inverse problems was established, by drawing on
relevant developments in statistical learning theory (see, e.g., the works [29, 4, 17] for regression in reproducing
kernel Hilbert spaces), whereas in [11], the preasymptotic convergence behavior of RKM was analyzed. In this
work, we study in depth the regularizing property and convergence rates of SGD for a class of nonlinear inverse
problems, under an a priori choice of the stopping index and standard assumptions on the nonlinear operator
F ; see Section 2 for further details and discussions. The analysis borrows techniques from the works [12, 6], i.e.,
handling iteration noise [12] and coping with the nonlinearity of forward map [6]. To the best of our knowledge,
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this work is the first attempt to conduct a solid analysis of the stochastic iterative method for nonlinear inverse
problems, and may shed insights into popular variants of SGD in other practical applications.

Throughout, we denote the iterate for the exact data y† by xk. The notation Fk denotes the filtration
generated by the random indices {i1, . . . , ik−1} up to the (k − 1)th iteration. The notation c, with or without
a subscript, denotes a generic constant, which may differ at each occurrence, but it is always independent of
the noise level δ and the iteration number k. The rest of the paper is organized as follows. In Section 2 we
state the main results and provide relevant discussions. Then in Sections 3 and 4, we give the detailed proofs
on the regularizing property and convergence rate analysis, respectively, and additional discussions. The paper
concludes with further discussions in Section 5. In the appendix, we collect some useful inequalities.

2 Main results and discussions

To analyze the convergence of Algorithm 1 for nonlinear inverse problems, suitable conditions are needed. For
example, for Tikhonov regularization, both nonlinearity and source conditions are often employed to derive
convergence rates [5, 9, 23, 10]. Below we shall make a number of assumptions on the nonlinear operators Fi

and the reference solution x†. Since the solution to problem (1.1) may be nonunique, the reference solution x†

is taken to be the minimum norm solution (with respect to the initial guess x1), which is known to be unique
under Assumption 2.1(ii) below [6].

Assumption 2.1. The following conditions hold:

(i) The operators Fi, i = 1, . . . , n, are continuous, with continuous and bounded derivatives on X.

(ii) There exists an η ∈ (0, 1
2 ) such that for any x, x̃ ∈ X,

‖F (x)− F (x̃)− F ′(x̃)(x− x̃)‖ ≤ η‖F (x) − F (x̃)‖. (2.1)

(iii) There are a family of uniformly bounded operators Ri
x such that for any x ∈ X,

F ′
i (x) = Ri

xF
′
i (x

†)

and Rx = diag(Ri
x) : Y

n → Y n, with (with ‖ · ‖ denoting the operator norm on Y n)

‖Rx − I‖ ≤ cR‖x− x†‖.

(iv) The following source condition holds: there exist some ν ∈ (0, 1
2 ) and w ∈ X such that

x† − x1 = (F ′(x†)∗F ′(x†))νw.

The conditions in Assumption 2.1 are standard for analyzing iterative regularization methods for nonlinear
inverse problems [6, 13], and Assumptions 2.1(ii) and (iii) have been verified for a class of nonlinear inverse
problems [6], e.g., parameter identification for PDEs and nonlinear integral equations. The inequality (2.1) in
Assumption 2.1(ii) is commonly known as the tangential cone condition, and it controls the degree of nonlinearity
of the forward operator F . The fractional power (F ′(x†)∗F ′(x†))ν in Assumption 2.1(iv) is defined by spectral
decomposition (e.g., via Dunford-Taylor integral). It represents a certain smoothness condition on the exact
solution x† (relative to the initial guess x1). The restriction ν < 1

2 on the smoothness index ν is largely due
to technical reasons, and even for linear inverse problems, it remains unclear how to improve the convergence
rate beyond ν = 1

2 [12]. Note that Assumptions 2.1(i) and 2.1(ii) are sufficient for the convergence of SGD
(cf. Section 3), while Assumptions 2.1(iii) and 2.1(iv) are needed for proving the desired convergence rate of SGD
(cf. Section 4).

We shall make one of the following assumptions on the step sizes ηk. The step size schedule is viable since
maxi supx ‖F ′

i (x)‖ < ∞, by Assumption 2.1(i). The choice in Assumption 2.2(i) is more general than that in
Assumption 2.2(ii). The choice in Assumption 2.2(ii) is very popular in practice, and it is often known as a
polynomially decaying step size schedule in the literature. Intuitively, the decaying step size is to compensate
the variance of the estimated gradient.

Assumption 2.2. The step sizes {ηk}k≥1 satisfy one of the following properties.

3



(i) ηk maxi supx ‖F ′
i (x)‖2 < 1 and

∑∞
k=1 ηk = ∞.

(ii) ηk = η0k
−α, with α ∈ (0, 1) and η0 ≤ (maxi supx ‖F ′

i (x)‖2)−1.

Due to the random choice of the index ik, the SGD iterate xδ
k is a random variable. There are several

different ways to measure the convergence. We shall employ the mean squared norm defined by E[‖ · ‖2], where
the expectation E[·] is with respect to the filtration Fk generated by the random indices ij, j = 1, . . . , k − 1.
Clearly, the iterate xδ

k is measurable with respect to Fk.
The first result gives the regularizing property of SGD for problem (1.1) under a priori parameter choice.

The quantity
∑k

i=1 ηi is the total length of the steps taken up to the kth iteration, and the notation N (·) denotes
the kernel of a linear operator.

Theorem 2.1 (convergence for noisy data). Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. If the stopping
index k(δ) ∈ N is chosen such that

lim
δ→0+

k(δ) = ∞ and lim
δ→0+

δ2
k(δ)
∑

i=1

ηi = 0,

then there exists a solution x∗ ∈ X to problem (1.1) such that

lim
δ→0+

E[‖xδ
k(δ) − x∗‖2] = 0.

Further, if N (F ′(x†)) ⊂ N (F ′(x)), then

lim
δ→0+

E[‖xδ
k(δ) − x†‖2] = 0.

Remark 2.1. The conditions on k(δ) in Theorem 2.1 are identical with that for the standard Landweber method
[6, Theorem 2.4], under essentially identical conditions. It is interesting to note that the consistency actually
does not require a monotonically decreasing step size schedule, and in particular covers the case of a constant
step size. This is attributed to the quadratic structure of the objective functional: The gradient component

∂x‖Fi(x
δ
k)− yδi ‖2 = 2F ′

i (x
δ
k)

∗(Fi(x
δ
k)− yδi )

is of order O(δ) in the neighborhood of the solution x∗. In particular, for exact data y†, ∂x‖Fi(xk)− y†i ‖2 tends
to zero as xk → x∗.

Next we make an assumption on the degree of nonlinearity of the operator F in the stochastic sense:

Assumption 2.3. There exist some θ ∈ (0, 1] and cR > 0 such that for any function G : X → Y n and
zt = txδ

k + (1 − t)x†, t ∈ [0, 1], there hold

E[‖(I −Rzt)G(xδ
k)‖2]

1
2 ≤ cRE[‖xδ

k − x†‖2] θ2E[‖G(xδ
k)‖2]

1
2 ,

E[‖(I −R∗
zt
)G(xδ

k)‖2]
1
2 ≤ cRE[‖xδ

k − x†‖2] θ2E[‖G(xδ
k)‖2]

1
2 .

Assumption 2.3 is a stochastic variant of Assumption 2.1(iii), and strengthens the corresponding estimate in
the sense of expectation. The case θ = 0 follows trivially from Assumption 2.1(iii), in view of the boundedness
of the operator Rx, whereas with the exponent θ = 1, it recovers the latter when specialized to a Dirac measure.
The assumption will play a crucial role in the convergence rate analysis, by taking G(x) = F (x) − yδ and
G(x) = F ′(x†)(x− x†) (see the proofs in Lemmas 4.1 and 4.5), and in particular, it enables bounding the terms
involving strong conditional dependence.

The next result gives a convergence rate under a priori parameter choice, where the notation [·] denotes
taking the integral part of a real number, provided that ‖F ′(x†)∗F ′(x†)‖ ≤ 1 and η0 ≤ 1. The assumptions in
Theorem 2.2 are identical with that for the Landweber method [6]. The main idea of the error analysis is to
split the mean squared error E[‖xδ

k − x†‖2] into two parts by the bias-variance decomposition: one is the error
‖E[xδ

k]− x†‖2 of the expected iterate E[xδ
k], and the other is the variance E[‖xδ

k − E[xδ
k]‖2] of the iterate xδ

k:

E[‖xδ
k − x†‖2] = ‖E[xδ

k]− x†‖2 + E[‖xδ
k − E[xδ

k]‖2]. (2.2)
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The former is dominated by the approximation error and data error, where the source condition in Assumption
2.1(iv) plays a role, whereas the latter arises from the random choice of the index ik at each iteration. It is
interesting to observe that these two parts interact with each other closely (and also E[‖F ′(x†)(xδ

k − x†)‖2]), due
to the nonlinearity of the operator; see Theorems 4.1 and 4.2, and thus the analysis differs substantially from that
for linear inverse problems in [12] and the classical Landweber method for nonlinear inverse problems [6]. These
two parts lead to a coupled system of recursive inequalities for the quantities E[‖eδk‖2] and E[‖F ′(x†)eδk‖2], from
which we derive the desired error estimates by mathematical induction; see Section 4.3 for the detailed proofs.

Theorem 2.2. Let Assumptions 2.1, 2.2(ii) and 2.3 be fulfilled with ‖w‖ and η0 being sufficiently small, and xδ
k

be the SGD iterate defined in (1.3). Then the error eδk = xδ
k − x† satisfies

E[‖eδk‖2] ≤ c∗k−min(2ν(1−α),α−ǫ)‖w‖2 and E[‖F ′(x†)eδk‖2] ≤ c∗k−min((1+2ν)(1−α),1−ǫ)‖w‖2

for all k ≤ k∗ = [( δ
‖w‖ )

− 2
(2ν+1)(1−α) ] and small ǫ ∈ (0, α

2 ), where the constant c∗ depends on ν, α, η0, n and θ, but

is independent of k and δ.

Remark 2.2. When the exponent α ∈ (0, 1) in the polynomially decaying step size schedule is close to 1, setting
k = k∗ in the error estimates gives rise to the following bounds

E[‖eδk∗‖2] ≤ c∗‖w‖ 2
2ν+1 δ

4ν
2ν+1 and E[‖F ′(x†)eδk∗‖2] ≤ c∗‖w‖ 4ν

2ν+1 δ
2

2ν+1 .

The obtained convergence rates are comparable with that for the Landweber method in [6, Theorem 3.2] and SGD
for linear inverse problems [12, Theorem 2.2]. The restriction O(k−(α−ǫ)) is essentially due to the computational
variance, arising from the random choice of the index ik at each iteration, as the proofs in Section 4.3 indicate, and
for small α, the convergence rate can suffer from a significant loss due to the presence of pronounced computational
variance. It is noteworthy that for ν > 1/2, the convergence rate is suboptimal, just as the case of the Landweber
method, and thus SGD suffers from a saturation phenomenon. It is an interesting open question to remove the
saturation phenomenon, even in the context of linear inverse problems.

3 Convergence of SGD

In this section, we analyze the convergence of Algorithm 1, separately for exact and noisy data, including the
proof of Theorem 2.1. We need one preliminary result from [6]. The result is a useful characterization of an exact
solution x∗ [6, Proposition 2.1].

Lemma 3.1. Let Assumptions 2.1(i) and (ii) be fulfilled. Then the following statements hold.

(i) The following inequalities hold:

1

1 + η
‖F ′(x)(x − x̃)‖ ≤ ‖F (x)− F (x̃)‖ ≤ 1

1− η
‖F ′(x)(x − x̃)‖.

(ii) If x∗ is a solution of (1.1), then any other solution x̃∗ satisfies x∗ − x̃∗ ∈ N (F ′(x∗)), and vice versa.

The next result gives an (almost) monotonicity result of the iterates in the mean squared norm. This result
is crucial for proving the regularizing property of the iterates under a priori stopping rules.

Proposition 3.1. Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. Then for any solution x∗ to problem (1.1),
there holds

E[‖x∗ − xδ
k+1‖2]− E[‖x∗ − xδ

k‖2] ≤ −(1− 2η)ηkE[‖F (xδ
k)− yδ‖2] + 2ηk(1 + η)δE[‖F (xδ

k)− yδ‖2] 12 .

Proof. Completing the square gives

‖x∗ − xδ
k+1‖2 − ‖x∗ − xδ

k‖2 =2〈xδ
k − x∗, xδ

k+1 − xδ
k〉+ ‖xδ

k+1 − xδ
k‖2.

By the definition of the SGD iterate xδ
k in (1.3), there holds

‖x∗ − xδ
k+1‖2 − ‖x∗ − xδ

k‖2

5



=− 2ηk〈xδ
k − x∗, F ′

ik
(xδ

k)
∗(Fik(x

δ
k)− yδik)〉+ η2k‖F ′

ik
(xδ

k)
∗(Fik (x

δ
k)− yδik)‖2

=− 2ηk〈F ′
ik
(xδ

k)(x
δ
k − x∗), Fik (x

δ
k)− yδik〉+ η2k‖F ′

ik
(xδ

k)
∗(Fik (x

δ
k)− yδik)‖2.

Next we split the factor −F ′
ik
(xδ

k)(x
δ
k − x∗) into two terms

F ′
ik
(xδ

k)(x
δ
k − x∗) = (Fik (x

δ
k)− Fik(x

∗)) + (Fik (x
∗)− Fik(x

δ
k)− F ′

ik
(xδ

k)(x
∗ − xδ

k)).

Combining the last two identities yields

‖x∗ − xδ
k+1‖2 − ‖x∗ − xδ

k‖2

=− 2ηk〈Fik (x
δ
k)− Fik (x

∗), Fik(x
δ
k)− yδik〉+ η2k‖F ′

ik
(xδ

k)
∗(Fik(x

δ
k)− yδik)‖2

− 2ηk〈y†ik − Fik(x
δ
k)− F ′

ik
(xδ

k)(x
∗ − xδ

k), Fik (x
δ
k)− yδik〉

=− 2ηk〈Fik (x
δ
k)− yδik , Fik(x

δ
k)− yδik〉+ η2k‖F ′

ik
(xδ

k)
∗(Fik (x

δ
k)− yδik)‖2

− 2ηk〈yδik − y†ik , Fik (x
δ
k)− yδik〉

− 2ηk〈y†ik − Fik(x
δ
k)− F ′

ik
(xδ

k)(x
∗ − xδ

k), Fik (x
δ
k)− yδik〉

≤ − ηk〈Fik (x
δ
k)− yδik , Fik(x

δ
k)− yδik〉 − 2ηk〈yδik − y†ik , Fik(x

δ
k)− yδik〉

− 2ηk〈y†ik − Fik(x
δ
k)− F ′

ik
(xδ

k)(x
∗ − xδ

k), Fik (x
δ
k)− yδik〉,

where the inequality follows from the condition ηk‖F ′
ik
(x)‖2 < 1 in Assumption 2.2(i). Thus, by the measurability

of the iterate xk with respect to the filtration Fk and the Cauchy-Schwarz inequality, we have

E[‖x∗ − xδ
k+1‖2 − ‖x∗ − xδ

k‖2|Fk]

≤− ηk
n

n
∑

i=1

〈Fi(x
δ
k)− yδi , Fi(x

δ
k)− yδi 〉 − 2

ηk
n

n
∑

i=1

〈yδi − y†i , Fi(x
δ
k)− yδi 〉

− 2
ηk
n

n
∑

i=1

〈y†i − Fi(x
δ
k)− F ′

i (x
δ
k)(x

∗ − xδ
k), Fi(x

δ
k)− yδi 〉

=− ηk‖F (xδ
k)− yδ‖2 − 2ηk〈yδ − y†, F (xδ

k)− yδ〉 − 2ηk〈y† − F (xδ
k)− F ′(xδ

k)(x
∗ − xδ

k), F (xδ
k)− yδ〉

≤ − ηk‖F (xδ
k)− yδ‖2 + 2ηkδ‖F (xδ

k)− yδ‖+ 2ηkη‖F (xδ
k)− y†‖‖F (xδ

k)− yδ‖
≤ηk‖F (xδ

k)− yδ‖
(

(2η − 1)‖F (xδ
k)− yδ‖+ 2(1 + η)δ

)

,

where the second inequality follows from Assumption 2.1(i) and the triangle inequality. Last, by taking full
conditional of the inequality yields

E[‖x∗ − xδ
k+1‖2]− E[‖x∗ − xδ

k‖2]
≤− (1− 2η)ηkE[‖F (xδ

k)− yδ‖2] + 2ηk(1 + η)δE[‖F (xδ
k)− yδ‖2] 12 .

This completes the proof of the proposition.

Below we analyze the convergence of the SGD iterate for exact and noisy data separately.

3.1 Convergence for exact data

The next result is an immediate consequence of Proposition 3.1.

Corollary 3.1. Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. Then for the exact data y†, any solution x∗

to problem (1.1) satisfies

E[‖x∗ − xk+1‖2]− E[‖x∗ − xk‖2] ≤ −(1− 2η)ηkE[‖F (xk)− y†‖2],
∞
∑

k=1

ηkE[‖F (xk)− y†‖2] ≤ 1

1− 2η
‖x∗ − x1‖2.
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Remark 3.1. Corollary 3.1 does not impose any condition on the step sizes ηk, and allows constant step size.
The mean squared error E[‖xk − x∗‖2] is monotonically decreasing, but the expected residual E[‖F (xk) − y†‖2]
is not necessarily monotone. The latter is due to the random choice of the index ik: the estimated stochastic
gradient is not guaranteed to be a descent direction.

The next result shows that the sequence {xk}k≥1 is a Cauchy sequence.

Lemma 3.2. Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. Then for the exact data y†, the sequence {xk}k≥1

generated by Algorithm 1 is a Cauchy sequence.

Proof. The argument below follows closely [6, Theorem 2.3], which can be traced back to [19]. Let x∗ be any
solution to problem (1.1), and let ek := xk − x∗. By Corollary 3.1, E[‖ek‖2] is monotonically decreasing to some
ǫ ≥ 0. Next we show that the sequence {xk}k≥1 is actually a Cauchy sequence. First we note that E[〈·, ·〉] defines
an inner product. For any j ≥ k, choose an index ℓ with j ≥ ℓ ≥ k such that

E[‖y† − F (xℓ)‖2] ≤ E[‖y† − F (xi)‖2], ∀k ≤ i ≤ j. (3.1)

In light of the triangle inequality

E[‖ej − ek‖2]
1
2 ≤ E[‖ej − eℓ‖2]

1
2 + E[‖eℓ − ek‖2]

1
2 ,

and the trivial identities

E[‖ej − eℓ‖2] = 2E[〈eℓ − ej, eℓ〉] + E[‖ej‖2]− E[‖eℓ‖2],
E[‖eℓ − ek‖2] = 2E[〈eℓ − ek, eℓ〉] + E[‖ek‖2]− E[‖eℓ‖2],

(3.2)

it suffices to prove that both E[‖ej − eℓ‖2] and E[‖eℓ − ek‖2] on the left hand side tend to zero as k → ∞. For
k → ∞, the last two terms on each of the right hand side of (3.2) tends to ǫ−ǫ = 0, by the monotone convergence
of E[‖ek‖2] to ǫ. Next we show that the term E[〈eℓ − ek, eℓ〉] also tends to zero as k → ∞. Actually, by the
definition of the SGD iterate xk in (1.3), we have

eℓ − ek =

ℓ−1
∑

i=k

(ei+1 − ei) =

ℓ−1
∑

i=k

ηiF
′
ii
(xi)

∗(y†ii − Fii (xi)).

By the triangle inequality, we can bound E[〈eℓ − ek, eℓ〉] by

|E[〈eℓ − ek, eℓ〉]| = |E[
ℓ−1
∑

i=k

〈ηiF ′
ii
(xi)

∗(y†ii − Fii (xi)), eℓ〉]|

≤
ℓ−1
∑

i=k

ηi|E[〈F ′
ii
(xi)

∗(y†ii − Fii(xi)), eℓ〉]|

=

ℓ−1
∑

i=k

ηi|E[〈y†ii − Fii(xi), F
′
ii
(xi)(x

∗ − xi + xi − xℓ)〉]|.

Then by the Cauchy-Schwarz inequality and triangle inequality, we obtain

|E[〈eℓ − ek, eℓ〉]| ≤
ℓ−1
∑

i=k

ηi|E[〈y† − F (xi), F
′(xi)(x

∗ − xi + xi − xℓ)〉]|

≤
ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F ′(xi)(x

∗ − xi + xi − xℓ)‖2]
1
2

≤
ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F ′(xi)(x

∗ − xi)‖2]
1
2

+

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F ′(xi)(xi − xℓ)‖2]

1
2 := I + II.
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By Assumption 2.1(ii) and Lemma 3.1(i), we have

‖F ′(x)(x − x̃)‖ ≤ (1 + η)‖F (x)− F (x̃)‖.

Substituting this inequality into the term I leads to

I ≤ (1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F (x∗)− F (xi)‖2]

1
2 = (1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2].

Likewise, by the triangle inequality and the choice of the index ℓ in (3.1),

II ≤ (1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F (xℓ)− F (xi)‖2]

1
2

≤ (1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2] + (1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2]
1
2E[‖F (xℓ)− y†‖2] 12

≤ 2(1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2].

The last two estimates together imply

|E[〈eℓ − ek, eℓ〉]| ≤ 3(1 + η)

ℓ−1
∑

i=k

ηiE[‖y† − F (xi)‖2].

Similarly, one can deduce

|E[〈ej − eℓ, eℓ〉]| ≤ 3(1 + η)

j−1
∑

i=ℓ

ηiE[‖y† − F (xi)‖2].

These two estimates and Corollary 3.1 imply that the right hand sides of (3.2) tend to zero as k → ∞. Thus,
the sequence {ek}k≥1 and also {xk}k≥1 are Cauchy sequences.

Lemma 3.3. Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. Then for the exact data y†, there holds

lim
k→∞

E[‖F (xk)− y†‖2] = 0.

Proof. By Lemma 3.2, {xk}k≥1 is a Cauchy sequence. By Assumption 2.2(i), supx ‖F ′(x)‖ ≤ η
− 1

2
0 . Further, for

any x, x̃ ∈ X , there holds

‖F (x)− F (x̃)‖ ≤ (1 − η)−1‖F ′(x)(x − x̃)‖ ≤ (1− η)−1η
− 1

2
0 ‖x− x̃‖.

Thus, {F (xk)− y†}k≥1 is a Cauchy sequence, and E[‖F (xk)− y†‖2] converges. Now we proceed by contradiction,
and assume that limk→∞ E[‖F (xk)− y†‖2] > 0. Then there exist some ǫ > 0 and k∗ ∈ N, such that E[‖F (xk)−
y†‖2] ≥ ǫ for all k ≥ k∗. Hence, by Assumption 2.2(i),

∞
∑

k=1

ηkE[‖F (xk)− y†‖2] ≥
∞
∑

k=k∗

ηkE[‖F (xk)− y†‖2] ≥ ǫ

∞
∑

k=k∗

ηk = ∞,

which contradicts the inequality
∞
∑

k=1

ηkE[‖F (xk)− y†‖2] < ∞,

from Corollary 3.1. This completes the proof of the lemma.

Now we can state the convergence of Algorithm 1 for the exact data y†. Below x† denotes the unique solution
to problem (1.1) of minimal distance to x1.
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Theorem 3.1 (Convergence for exact data). Let Assumptions 2.1(i)-(ii) and 2.2(i) be fulfilled. Then for the
exact data y†, the sequence {xk}k≥1 by Algorithm 1 converges to a solution x∗ of problem (1.1):

lim
k→∞

E[‖xk − x∗‖2] = 0.

Further, if N (F ′(x†)) ⊂ N (F ′(x)), then

lim
k→∞

E[‖xk − x†‖2] = 0.

Proof. Since {xk}k≥1 is a Cauchy sequence, there exists a limit of {xk}k≥1, denoted by x∗. Further, x∗ is a
solution, since the residual E[‖y† − F (xk)‖2] converges to zero as k → ∞, in view of Lemma 3.3.

Note that problem (1.1) has a unique solution of minimal distance to the initial guess x1 that satisfies

x† − x1 ∈ N (F ′(x†))⊥;

see Lemma 3.1. If N (F ′(x†)) ⊂ N (F ′(xk)) for all k = 1, 2, . . ., then clearly,

xk − x1 ∈ N (F ′(x†))⊥, k = 1, 2, . . . .

Consequently,
x† − x∗ = x† − x1 + x1 − x∗ ∈ N (F ′(x†))⊥.

This and the inequalities from Lemma 3.1(i) imply x∗ = x†, completing the proof.

Remark 3.2. The convergence result in Theorem 3.1 does not impose any constraint on the step size schedule
{ηk}∞k=1 directly, apart from the fact that it should not decay too fast to zero. In particular, it can be taken to
be a constant step size. This result slightly improves that in [12, Theorem 2.1], where a decreasing step size
is required (for linear inverse problems). The improvement is achieved by exploiting the quadratic structure of
objective function (and the tangential cone condition in Assumption 2.1(i)), whereas in [12] the consistency is
derived by means of bias-variance decomposition.

3.2 Convergence for noisy data

The next result gives the pathwise stability of the SGD iterate xδ
k with respect to the noise level δ (at δ = 0),

i.e., along each realization in the filtration Fk.

Lemma 3.4. Let Assumption 2.1(i) be fulfilled. For any fixed k ∈ N and any path (i1, . . . , ik−1) ∈ Fk, let xk

and xδ
k be the SGD iterates along the path for exact data y† and noisy data yδ, respectively. Then

lim
δ→0+

‖xδ
k − xk‖ = 0.

Proof. We prove the assertion by mathematical induction. The assertion holds trivially for k = 1, since xδ
1 = x1.

Now suppose that it holds for all indices up to k and any path (i1, . . . , ik−1) ∈ Fk. Next, by the definitions of
the SGD iterates xk and xδ

k, cf. (1.3):

xk+1 = xk − ηkF
′
ik
(xk)

∗(Fik (xk)− yik),

xδ
k+1 = xδ

k − ηkF
′
ik
(xδ

k)
∗(Fik (x

δ
k)− yδik).

Therefore, for any fixed path (i1, . . . , ik), we have

xδ
k+1 − xk+1 = (xδ

k − xk)− ηk
(

F ′
ik
(xδ

k)
∗(Fik (x

δ
k)− yδik)− F ′

ik
(xk)

∗(Fik (xk)− yik)
)

= (xδ
k − xk)− ηk

(

(F ′
ik
(xδ

k)
∗ − F ′

ik
(xk)

∗)(Fik (x
δ
k)− yδik)

+ F ′
ik
(xk)

∗((Fik (x
δ
k)− yδik)− (Fik(xk)− yik))

)

.

Thus, by triangle inequality,

‖xδ
k+1 − xk+1‖ ≤ ‖xδ

k − xk‖+ ηk‖F ′
ik
(xδ

k)
∗ − F ′

ik
(xk)

∗‖‖Fik(x
δ
k)− yδik‖

+ ‖F ′
ik
(xk)

∗‖‖((Fik(x
δ
k)− yδik)− (Fik (xk)− yik))‖.

Then the desired assertion follows from the continuity of the operators Fi and F ′
i in Assumption 2.1(i) and the

induction hypothesis.
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Now we can give the proof of Theorem 2.1. This result gives the regularizing property of SGD under a priori
stopping rules.

Proof of Theorem 2.1. Let {δn}n≥1 ⊂ R be a sequence converging to zero, and let yn := yδn be a corresponding
sequence of noisy data. For each pair (δn, yn), we denote by kn = k(δn) the stopping index. Without loss of
generality, we may assume that kn increases strictly monotonically with n.

By Proposition 3.1 and Young’s inequality 2ab ≤ ǫa2 + ǫ−1b2, with the choice a = E[‖F (xδ
k) − yδ‖2] 12 ,

b = (1 + η)δ and ǫ = 1− 2η > 0:

E[‖x∗ − xδ
k+1‖2]− E[‖x∗ − xδ

k‖2]

≤− (1 − 2η)ηkE[‖F (xδ
k)− yδ‖2] + 2ηk(1 + η)δE[‖F (xδ

k)− yδ‖2] 12 ≤ (1 + η)2

1− 2η
ηkδ

2.

Then for any m < n, summing the above inequality with δ = δn from km to kn − 1 (since kn is strictly increasing
with n by assumption) and applying the triangle inequality lead to

E[‖xδn
kn

− x∗‖2] ≤ E[‖xδn
km

− x∗‖2] + (1 + η)2

1− 2η
δ2n

kn−1
∑

j=km

ηj

≤ 2E[‖xδn
km

− xkm
‖2] + 2E[‖xkm

− x∗‖2] + (1 + η)2

1− 2η
δ2n

kn−1
∑

j=1

ηj .

By Theorem 3.1 we can fix m so large that the term E[‖xkm
− x∗‖2] is sufficiently small. Since the index km is

fixed, we may apply Lemma 3.4 to conclude that the term E[‖xδn
km

− xkm
‖2] must go to zero as n → ∞. The last

term also tends to zero under the condition on the index kn, i.e., limn→∞ δ2n
∑kn

i=1 ηi = 0. This completes the
proof of the first assertion. The case for N (F ′(x†)) ⊂ N (F ′(x)) follows similarly as Theorem 3.1.

Remark 3.3. In practice, the domain D(F ) ⊂ X is often not the whole space X, especially for parameter iden-
tifications for partial differential equation, where box constraints arise naturally due to the physical restrictions.
When the domain D(F ) ⊂ X is a closed convex set, it can be incorporated into the algorithm by a projection
operator P [27], i.e.,

xδ
k+1 = P (xδ

k − ηkF
′
ik
(xδ

k)
∗(Fik(x

δ
k)− yδik)).

This step does not change much the overall analysis of the regularizing property, since the projection operator is
a contraction, i.e.,

‖P (x)− P (x̃)‖ ≤ ‖x− x̃‖.
Further, we note that the Hilbert space Y may differ for each operator Fi, and the analysis in this section still
applies with minor modifications.

4 Convergence rates

In this section, we prove convergence rates for SGD under Assumptions 2.1, 2.2(ii) and 2.3. The main results
are given in Theorem 4.3 and 2.2 for exact and noisy data, respectively. These results represent the second main
contributions of the work. We shall employ some shorthand notation. Let

Ki = F ′
i (x

†), K =
1√
n







K1

...
Kn






and B = K∗K =

1

n

n
∑

i=1

K∗
i Ki.

Further, we frequently adopt the shorthand notation

Πk
j (B) =

k
∏

i=j

(I − ηiB), (4.1)

(and the convention Πk
j (B) = I for j > k), and to shorten lengthy expressions, we define for s ≥ 0 and j ∈ N,

s̃ = s+ 1
2 and φs

j = ‖BsΠk
j+1(B)‖.
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Also recall that the operator Rx denotes the diagonal operator Rx = diag(R1
x, . . . , R

n
x) from Assumption 2.1(iii).

The rest of this section is structured as follows. In view of the standard bias-variance decomposition (2.2), we
first derive two important recursion formulas for the mean ‖Bs(x† −E[xδ

k])‖ and variance E[‖Bs(xδ
k −E[xδ

k])‖2],
for any s ≥ 0, in Sections 4.1 and 4.2, respectively, and then use the recursions to derive the desired convergence
rates under a priori parameter choice in Section 4.3.

4.1 Recursion on the mean

In this part, we derive a recursion for the upper bound on the error of the mean E[xδ
k] of the SGD iterate xδ

k.
We shall need the following elementary bound on the linearization error under Assumption 2.1(ii).

Lemma 4.1. Under Assumption 2.1(iii), there holds

‖F (x)− F (x†)−K(x− x†)‖ ≤ cR
2
‖K(x− x†)‖‖x− x†‖.

Further, under Assumption 2.3, there holds

E[‖F (xδ
k)− F (x†)−K(xδ

k − x†)‖2] 12 ≤ cR
1 + θ

E[‖K(xδ
k − x†)‖2] 12E[‖xδ

k − x†‖2] θ2 .

Proof. Actually, with zt = tx+ (1− t)x†, by the mean value theorem and Assumption 2.1(iii),

‖F (x)− F (x†)−K(x− x†)‖ ≤ ‖
∫ 1

0

(F ′(zt)−K)(x− x†)dt‖

≤
∫ 1

0

‖(Rzt − I)K(x− x†)‖dt ≤ cR
2
‖K(x− x†)‖‖x− x†‖.

This shows the first estimate. Similarly, under Assumptions 2.1(iii) and 2.3 with the choice G(x) = K(x− x†),

E[‖F (xδ
k)− F (x†)−K(xδ

k − x†)‖2] 12 ≤
∫ 1

0

E[‖(Rzt − I)K(xδ
k − x†)‖2] 12dt

≤cRE[‖K(xδ
k − x†)‖2] 12

∫ 1

0

E[‖zt − x†‖2] θ2 dt ≤ cR
1 + θ

E[‖K(xδ
k − x†)‖2] 12E[‖xδ

k − x†‖2] θ2 .

This completes the proof of the lemma.

The next result gives a useful representation of the mean E[eδk] of the error eδk = xδ
k − x†.

Lemma 4.2. Let Assumption 2.1(iii) be fulfilled. Then for the SGD iterate xδ
k, the error eδk = xδ

k − x† satisfies

E[eδk+1] = Πk
1(B)e1 +

k
∑

j=1

ηjΠ
k
j+1(B)K∗(−(y† − yδ) + E[vj ]),

with the vector vk ∈ Y n given by

vk = −(F (xδ
k)− F (x†)−K(xδ

k − x†)) + (I −R∗
xδ
k
)(F (xδ

k)− yδ). (4.2)

Proof. By the definition of the SGD iterate xδ
k in (1.3), there holds

eδk+1 = eδk − ηkF
′
ik
(xδ

k)
∗(Fik(x

δ
k)− yδik)

= eδk − ηkK
∗
ik
Kik(x

δ
k − x†)− ηkK

∗
ik
(y†ik − yδik)

− ηkK
∗
ik
(Fik(x

δ
k)− Fik (x

†)−Kik(x
δ
k − x†))− ηk(F

′
ik
(xδ

k)
∗ −K∗

ik
)(Fik (x

δ
k)− yδik).

Then by Assumption 2.1(iii),
F ′
ik
(xδ

k)
∗ = (Rik

xδ
k

F ′
ik
(x†))∗ = K∗

ik
Rik∗

xδ
k

,

and consequently,

eδk+1 = eδk − ηkK
∗
ik
Kik(x

δ
k − x†)− ηkK

∗
ik
(y†ik − yδik) + ηkK

∗
ik
vk,ik ,
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with the random variable vk,i defined by

vk,i = −(Fi(x
δ
k)− Fi(x

†)−Ki(x
δ
k − x†)) + (I −Ri∗

xδ
k
)(Fi(x

δ
k)− yδi ). (4.3)

Thus, by the measurability of the iterate xδ
k (and thus eδk) with respect to the filtration Fk, the conditional

expectation E[eδk+1|Fk] is given by

E[eδk+1|Fk] = eδk −
ηk
n

n
∑

i=1

K∗
i Ki(x

δ
k − x†)− ηk

n

n
∑

i=1

K∗
i (y

†
i − yδi ) +

ηk
n

n
∑

i=1

K∗
i vk,i.

Using the definitions of operators K, F and B and the random variable vk, we can rewrite this identity as

E[eδk+1|Fk] = (I − ηkB)eδk − ηkK
∗(y† − yδ) + ηkK

∗vk.

Then taking full conditional, the mean E[eδk] satisfies

E[eδk+1] = (I − ηkB)E[eδk]− ηkK
∗(y† − yδ) + ηkK

∗
E[vk].

Thus, applying the recursion repeatedly (and using the notation Πk
j (B) from (4.1)) yields

E[eδk+1] = Πk
1(B)eδ1 +

k
∑

j=1

ηjΠ
k
j+1(B)K∗(−(y† − yδ) + E[vj ]).

This completes the proof of the lemma.

Remark 4.1. The term vk in (4.2) includes both the linearization error (F (xδ
k) − F (x†) −K(xδ

k − x†)) of the
nonlinear operator F and the range invariance of the derivative operator F ′(x) in Assumptions 2.1(ii) and (iii),
which is the new contribution when compared with linear inverse problems.

The next result gives a useful bound on the mean E[vj ].

Lemma 4.3. Let Assumptions 2.1(i)–(iii) be fulfilled. Then for vj defined in (4.2) and eδj = xδ
j −x†, there holds

‖E[vj ]‖ ≤ (3− η)cR
2(1− η)

E[‖eδj‖2]
1
2E[‖B 1

2 eδj‖2]
1
2 + cRE[‖eδj‖2]

1
2 δ.

Proof. By the triangle inequality, there holds

‖E[vj ]‖ ≤ ‖E[F (xδ
j)− F (x†)−K(xδ

j − x†)]‖+ ‖E[(I −R∗
xδ
j
)(F (xδ

j)− yδ)]‖ := I + II.

Next we bound the terms I and II separately. First for I, it follows from Assumption 2.1(iii) and Lemma 4.1 that

‖F (xδ
j)− F (x†)−K(xδ

j − x†)‖ ≤ cR
2
‖eδj‖‖Keδj‖,

and then, the Cauchy-Schwarz inequality implies

I ≤ E[‖F (xδ
j)− F (x†)−K(xδ

j − x†)‖] ≤ cR
2
E[‖eδj‖‖Keδj‖] ≤

cR
2
E[‖eδj‖2]

1
2E[‖Keδj‖2]

1
2 .

For the second term II, by the triangle inequality and Lemma 3.1 (under Assumption 2.1(ii)), there holds

‖(I −R∗
xδ
j
)(yδ − F (xδ

j))‖ ≤ ‖(I −R∗
xδ
j
)(y† − F (xδ

j))‖ + ‖(I −R∗
xδ
j
)(yδ − y†)‖

≤ cR
1− η

‖eδj‖‖Keδj‖+ cR‖eδj‖δ.

Then the triangle inequality and the Cauchy-Schwarz inequality imply

II := ‖E[(I −Rxδ
j
)(yδ − F (xδ

j))]‖ ≤ E[‖(I −Rxδ
j
)(yδ − F (xδ

j))‖]

≤ cR
1− η

E[‖eδj‖‖Keδj‖] + cRE[‖eδj‖]δ ≤ cR
1− η

E[‖eδj‖2]
1
2E[‖Keδj‖2]

1
2 + cRE[‖eδj‖2]

1
2 δ.

Combining the preceding estimates with the identity ‖Keδj‖ = ‖B 1
2 eδj‖ gives the desired bound.
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Last, we present a bound on the error E[eδk] in the weighted norm. The two cases s = 0 and s = 1
2 will be

employed for deriving convergence rates in Section 4.3.

Theorem 4.1. Let Assumption 2.1 be fulfilled, and eδk = xδ
k − x†. Then for any s ≥ 0, there holds

‖Bs
E[eδk+1]‖ ≤φs+ν

0 ‖w‖ +
k
∑

j=1

ηjφ
s̃
j

((3− η)cR
2(1− η)

E[‖eδj‖2]
1
2E[‖B 1

2 eδj‖2]
1
2 + cRE[‖eδj‖2]

1
2 δ + δ

)

. (4.4)

Proof. By Lemma 4.2 and triangle inequality,

‖Bs
E[eδk+1]‖ ≤ ‖BsΠk

1(B)(x1 − x†)‖ +
k
∑

j=1

ηj‖BsΠk
j+1(B)K∗(E[vj ]− (y† − yδ))‖ := I +

k
∑

j=1

ηjIIj .

It remains to bound the terms I and IIj . First, by Assumption 2.1(iv),

I = ‖BsΠk
1(B)Bνw‖ ≤ ‖Πk

1(B)Bs+ν‖‖w‖.

To bound the terms IIj , we have

IIj ≤ ‖BsΠk
j+1(B)K∗(E[vj ]− (y† − yδ))‖ ≤ ‖Bs+ 1

2Πk
j+1(B)‖(‖E[vj ]‖+ δ).

This, Lemma 4.3 and the shorthand notation φs
j complete the proof of the theorem.

Remark 4.2. The bound on the mean E[eδk] also depends on the variance of the iterate xδ
k (via the terms like

E[‖eδk‖2] etc.), which differs substantially from that in the linear case [12]. This is one of the new phenomena for
nonlinear inverse problems. The weighted norm ‖Bs

E[eδk]‖ (with a weight Bs) is motivated by the fact that the

right hand of the recursion (4.4) depends actually also on the term E[‖Keδk‖2] = E[‖B 1
2 eδk‖2], which corresponds

to the case s = 1
2 . Thus, such an estimate will be needed to derive the error bounds below. For linear inverse

problems, Rx = I and cR = 0, and the recursion simplifies to

‖Bs
E[eδk+1]‖ ≤ φs+ν

0 ‖w‖+
k

∑

j=1

ηjφ
s̃
jδ,

where the two terms on the right hand side represent the approximation error and data error, respectively. This
relation was used in [12] for deriving error estimates.

4.2 Stochastic error

Now we turn to the computational variance E[‖Bs(xδ
k − E[xδ

k])‖2], which arises due to the random choice of the
index ik at the kth SGD iteration. First, we give an upper bound on the variance in terms of suitable iteration
noises Nj,1 and Nj,2 (defined in (4.5) below).

Lemma 4.4. Let Assumption 2.1(iii) be fulfilled. Then for the SGD iterate xδ
k, there holds

E[‖Bs(xδ
k+1 − E[xδ

k+1])‖2] ≤
k
∑

j=1

η2j (φ
s̃
j)

2
E[‖Nj,1‖2] + 2

k
∑

i=1

k
∑

j=i

ηiηjφ
s̃
iφ

s̃
jE[‖Ni,1‖‖Nj,2‖]

+
k

∑

i=1

k
∑

j=1

ηiηjφ
s̃
iφ

s̃
jE[‖Ni,2‖‖Nj,2‖],

with the random variables Nj,1 and Nj,2 given by

Nj,1 = (K(xδ
j − x†)−Kij (x

δ
j − x†)ϕij ) + ((y† − yδ)− (y†i − yδi )ϕij ),

Nj,2 = −E[vj ] + vj,ijϕij ,
(4.5)

where the random variables vk and vk,i are defined in (4.2) and (4.3), respectively, and ϕi = (0, . . . , 0, n
1
2 , 0, . . . , 0)

denotes the ith Cartesian coordinate in R
n scaled by n

1
2 .

13



Proof. Similar to the proof of Lemma 4.2, we rewrite the SGD iteration (1.3) as

xδ
k+1 = xδ

k − ηkK
∗
ik
Kik(x

δ
k − x†)− ηkK

∗
ik
(y†ik − yδik) + ηkK

∗
ik
vk,ik , (4.6)

with the random variable vk,i defined in (4.3). Upon recalling the definition of vk in (4.2) and noting the
measurability of the iterate xδ

k with respect to the filtration Fk, we obtain

E[xδ
k+1|Fk] = xδ

k − ηk
n

n
∑

i=1

K∗
i Ki(x

δ
k − x†)− ηk

n

n
∑

i=1

K∗
i (y

†
i − yδi ) +

ηk
n

n
∑

i=1

K∗
i vk,i

= xδ
k − ηkB(xδ

k − x†)− ηkK
∗(y† − yδ) + ηkK

∗vk.

Taking full conditional yields

E[xδ
k+1] = E[xδ

k]− ηkBE[xδ
k − x†]− ηkK

∗(y† − yδ) + ηkK
∗
E[vk]. (4.7)

Thus, subtracting the recursion for E[xδ
k] in (4.7) from that for xδ

k in (4.6) indicates that the random variable
zk := xδ

k − E[xδ
k] satisfies

zk+1 = zk − ηkBzk + ηk
[

(B(xδ
k − x†)−K∗

ik
Kik(x

δ
k − x†))

+(K∗(y† − yδ)−Kik(y
†
ik
− yδik))− (K∗

E[vk]−K∗
ik
vk,ik )

]

= (I − ηkB)zk + ηkMk, (4.8)

with the initial condition z1 = 0 (since x1 is deterministic) and the random variable Mj given by

Mj =
(

(B(xδ
j − x†)−K∗

ij
Kij (x

δ
j − x†)) + (K∗(y† − yδ)−Kij (y

†
ij
− yδij ))

)

+
(

− (K∗
E[vj ]−K∗

ij
vj,ij )

)

:= Mj,1 +Mj,2,

where Mj,1 and Mj,2 are given by

Mj,1 = (B(xδ
j − x†)−K∗

ij
Kij (x

δ
j − x†)) + (K∗(y† − yδ)−K∗

ij
(y†ij − yδij )),

Mj,2 = −(K∗
E[vj ]−K∗

ij
vj,ij ).

The random variable Mk represents the iteration noise, due to the random choice of the index ik. The term
Mj,2 contains the lump sum contributions due to the presence of nonlinearity. This splitting enables separately
treating conditionally independent and dependent factors, i.e., Mj,1 and Mj,2. Repeatedly applying the recursion
(4.8) and using the initial condition z1 = 0 lead to

zk+1 =
k

∑

j=1

ηjΠ
k
j+1(B)Mj .

With the preceding decomposition of Mj , we obtain

E[‖Bszk+1‖2] =
k

∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)Mi, B

sΠk
j+1(B)Mj〉]

=

k
∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)(Mi,1 +Mi,2), B

sΠk
j+1(B)(Mj,1 +Mj,2)〉]

=

k
∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)Mi,1, B

sΠk
j+1(B)Mj,1〉]

+ 2
k
∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)Mi,1, B

sΠk
j+1(B)Mj,2〉]

+

k
∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)Mi,2, B

sΠk
j+1(B)Mj,2〉]

14



:= I + II + III.

Below we simplify the terms separately. By the measurability of xδ
j with respect to the filtration Fj, E[Mj,1|Fj] =

0, which directly implies the conditional independence

E[〈Mi,1,Mj,1〉] = 0 i 6= j.

Indeed, for i > j, E[〈Mi,1,Mj,1〉|Fi] = 〈E[Mi,1|Fi],Mj,1〉 = 0, and taking full conditional yields the desired
identity. Thus, the term I simplifies to

I =
k

∑

j=1

E[‖BsΠk
j+1(B)Mj,1‖2].

Further, for i > j, a similar argument yields E[〈Mi,1,Mj,2〉] = 0 and thus

II = 2

k
∑

i=1

k
∑

j=i

E[〈BsΠk
i+1Mi,1, B

sΠk
j+1Mj,2〉]

Now we further simplify Mj,1 and Mj,2. By the definition of Mj in (4.8) and the definitions of Nj,1 and Nj,2,
with K∗−1 being the pseudoinverse of K∗, we may rewrite K∗−1Mj as

K∗−1Mj = K∗−1
[

(B(xδ
j − x†)−K∗

ij
Kij (x

δ
j − x†))

+ (K∗(y† − yδ)−K∗
ij
(y†ij − yδij ))− (K∗

E[vj ]−K∗
ij
vj,ij )

]

=
(

(K(xδ
j − x†)−Kij (x

δ
j − x†)ϕij ) + (y† − yδ)− (y†ij − yδij )ϕij

)

− (E[vj ]− vj,ijϕij ) := Nj,1 +Nj,2,

where ϕi denotes the ith Cartesian basis vector in R
n scaled by n

1
2 . Thus, by the triangle inequality and the

identity ‖BsΠk
j+1(B)K∗‖2 = ‖Bs+ 1

2Πk
j+1(B)‖2,

E[‖Bszk+1‖2] =
k

∑

j=1

η2jE[‖Bs+ 1
2Πk

j+1(B)Nj,1‖2]

+ 2

k
∑

i=1

k
∑

j=i

ηiηjE[〈BsΠk
i+1(B)K∗Ni,1, B

sΠk
j+1(B)K∗Nj,2〉]

+
k

∑

i=1

k
∑

j=1

ηiηjE[〈BsΠk
i+1(B)K∗Ni,2, B

sΠk
j+1(B)K∗Nj,2〉]

≤
k

∑

j=1

η2jE[‖Bs+ 1
2Πk

j+1(B)‖2‖Nj,1‖2]

+ 2

k
∑

i=1

k
∑

j=i

ηiηj‖Bs+ 1
2Πk

i+1(B)‖‖Bs+ 1
2Πk

j+1(B)‖E[‖Ni,1‖‖Nj,2‖]

+

k
∑

i=1

k
∑

j=1

ηiηj‖Bs+ 1
2Πk

i+1(B)‖‖Bs+ 1
2Πk

j+1(B)‖E[‖Ni,2‖‖Nj,2‖].

This completes the proof of the lemma.

The next result bounds the iteration noises Nj,1 and Nj,2 under Assumptions 2.1(i)–(iii) and 2.3.

Lemma 4.5. Let Assumptions 2.1(i)–(iii), and 2.3 be fulfilled. Then for Nj,1 and Nj,2 defined in (4.5) and
eδj = xδ

j − x†, there hold

E[‖Nj,1‖2]
1
2 ≤ n

1
2 (E[‖B 1

2 eδj‖2]
1
2 + δ),

E[‖Nj,2‖2]
1
2 ≤ n

1
2 ( cR(2+θ−η)

(1+θ)(1−η)E[‖B
1
2 eδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2 .
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Proof. First, by the triangle inequality,

E[‖Nj,1‖2]
1
2 ≤ E[‖(K(xδ

j − x†)−Kij (x
δ
j − x†)ϕij )‖2]

1
2 + E[‖(y† − yδ)− (y†ij − yδij )ϕij ‖2]

1
2 .

By the measurability of the SGD iterate xδ
j with respect to the filtration Fj , the identity E[Kij (x

δ
j −x†)ϕij |Fj] =

K(xδ
j−x†) and bias-variance decomposition, we may bound the conditional expectation E[‖(K(xδ

j−x†)−Kij (x
δ
j−

x†)ϕij )‖2|Fj ] by

E[‖(K(xδ
j − x†)−Kij (x

δ
j − x†)ϕij )‖2|Fj ] ≤ E[‖Kij (x

δ
j − x†)ϕij ‖2|Fj ]

=n−1
n
∑

i=1

‖Ki(x
δ
j − x†)‖2n = n‖K(xδ

j − x†)‖2,

and then by taking full expectation, we obtain

E[‖(K(xδ
j − x†)−Kij (x

δ
j − x†)ϕij )‖2]

1
2 ≤ n

1
2E[‖K(xδ

j − x†)‖2] 12 .
Similarly,

E[‖(y† − yδ)− (y†ij − yδij )ϕij ‖2]
1
2 ≤ n

1
2 δ.

This shows the bound on Nj,1. Next, we bound Nj,2. Similarly, by the measurability of the SGD iterate xδ
j with

respect to the filtration Fj , the telescopic expectation identity EFj
[E[vj,ijϕij |Fj]] = EFj

[vj ] (EFj
denotes taking

expectation in Fj) and bias-variance decomposition, we deduce

E[‖(E[vj ]− vj,ijϕij )‖2] ≤EFj
[E[‖vj,ijϕij‖2|Fj ]] = nE[‖vj‖2],

i.e., E[‖(E[vj ] − vj,ijϕij )‖2]
1
2 ≤ n

1
2E[‖vj‖2] 12 . Then it follows from the triangle inequality, Assumption 2.3 and

Lemma 4.1 that

E[‖vj‖2]
1
2 ≤ E[‖(F (xδ

j )− F (x†)−K(xδ
j − x†))‖2] 12 + E[‖(I −R∗

xδ
j
)(F (xδ

j )− yδ)‖2] 12

≤ cR
1+θ

E[‖Keδj‖2]
1
2E[‖eδj‖2]

θ
2 + cR(

1
1−η

E[‖Keδj‖2]
1
2 + δ)E[‖eδj‖2]

θ
2

= ( (2+θ−η)cR
(1+θ)(1−η)E[‖Keδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2 .

This completes the proof of the lemma.

Remark 4.3. Note that the convergence analysis in [12] relies heavily on the independence E[〈Mj ,Mℓ〉] = 0 for
j 6= ℓ. This identity is no longer valid for nonlinear inverse problems, although the linear part Mj,1/Nj,1 still
satisfies the desired relation, i.e., E[〈Mj,1,Mℓ,1〉] = 0 for j 6= ℓ. The conditional dependence among the iteration
noises Mj,2s poses one big challenge in the convergence analysis, and the splitting of the conditionally dependent
and independent components will play an important role in the analysis in Section 4.3. Assumption 2.3 is precisely
to compensate the conditional dependence of the nonlinear term Mj,2/Nj,2 (and thus double summations).

Remark 4.4. The constants in Lemma 4.5 involve an unpleasant dependence on the number of equations n as
n

1
2 . This is due to the variance inflation of the stochastic gradient estimate instead of the true gradient. It can

be reduced by employing a mini-batch strategy, i.e., a fractional number of equations from the system instead of
only one equation.

Last, we give a bound on the variance E[‖Bs(xδ
k−E[xδ

k])‖2]. This result will play an important role in deriving
error estimates in Section 4.3.

Theorem 4.2. Let Assumptions 2.1(i)–(iii) and 2.3 be fulfilled. Then for the SGD iterate xδ
k, there holds for

any s ∈ [0, 12 ],

E[‖Bs(E[xδ
k+1]−xδ

k+1)‖2] ≤ n

k
∑

j=1

η2j (φ
s̃
j)

2(E[‖B 1
2 eδj‖2]

1
2 + δ)2

+ 2n
k

∑

i=1

k
∑

j=i

ηiηjφ
s̃
iφ

s̃
j(E[‖B

1
2 eδi ‖2]

1
2 + δ)( (2+θ−η)cR

(1+θ)(1−η)E[‖B
1
2 eδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2

+ n
(

k
∑

j=1

ηjφ
s̃
j(

(2+θ−η)cR
(1+θ)(1−η)E[‖B

1
2 eδj‖2]

1
2 + cRδ)E[‖eδj‖2]

θ
2

)2

.
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Proof. The assertion follows directly from Lemmas 4.4 and 4.5.

Remark 4.5. It is worth noting that the variance E[‖Bs(E[xδ
k] − xδ

k)‖2] of the SGD iterate xδ
k is essentially

independent of the source condition in Assumption 2.1(iv).

4.3 Convergence rates

This part is devoted to convergence rates analysis for Algorithm 1 with a polynomially decaying step size schedule
in Assumption 2.1(ii), where the explicit form of the step sizes allows bounding various quantities appearing in
Theorems 4.1 and 4.2. Below we analyze the cases of exact and noisy data separately, since in the case of exact
data, the convergence rate involves constants that are far more transparent in terms of the dependence on various
algorithmic parameters and the derived estimates also form the basis for analyzing the case of noisy data.

First we analyze the case of exact data y†, and the bounds essentially boil down to the approximation error
(under the source condition) and computational variance. Without loss of generality, we assume that ‖B‖ ≤ 1
and η0 ≤ 1 below, which can be easily achieved by properly rescaling the operator F and the data y†/yδ. The
analysis relies heavily on various lengthy and technical estimates given in Appendix A, especially Propositions
A.1 and A.2.

Theorem 4.3. Let Assumptions 2.1, 2.2(ii) and 2.3 be fulfilled with ‖w‖, θ and η0 being sufficiently small, and
xk be the kth SGD iterate for the exact data y†. Then the error ek = xk − x† satisfies

E[‖ek‖2] ≤ c∗‖w‖2k−min(2ν(1−α),α−ǫ) and E[‖B 1
2 ek‖2] ≤ c∗‖w‖2k−min((1+2ν)(1−α),1−ǫ),

where ǫ ∈ (0, α2 ) is small, and the constant c∗ is independent of k, but depends on α, ν, η0, n, and θ.

Proof. The standard bias-variance decomposition

E[‖Bsek‖2] = ‖Bs
E[ek]‖2 + E[‖Bs(ek − E[ek])‖2],

and Theorems 4.1 and 4.2 give the following estimate for any s ≥ 0 (recall the notation φs
j and s̃):

E[‖Bsek+1‖2] ≤
(

c0

k
∑

j=1

ηjφ
s̃
jE[‖ej‖2]

1
2E[‖B 1

2 ej‖2]
1
2 + φs+ν

0 ‖w‖
)2

+ n

k
∑

j=1

η2j (φ
s̃
j)

2
E[‖B 1

2 ej‖2]

+ 2nc0

(

k
∑

i=1

ηiφ
s̃
iE[‖B

1
2 ei‖2]

1
2

)(

k
∑

j=1

ηjφ
s̃
jE[‖B

1
2 ej‖2]

1
2E[‖ej‖2]

θ
2

)

+ nc20

(

k
∑

j=1

ηjφ
s̃
jE[‖B

1
2 ej‖2]

1
2E[‖ej‖2]

θ
2

)2

, (4.9)

with the constant c0 = (2+θ−η)cR
(1+θ)(1−η) . The recursion (4.9) forms the basis for the derivation below. With the step

size schedule ηj in Assumption 2.2(ii), Lemmas A.1 and A.2 directly give

φs+ν
0 ≤ (s+ ν)s+ν

es+ν(
∑k

i=1 ηi)
s+ν

≤ (s+ ν)s+ν(1 − α)ν+s

es+νην+s
0 (1− 2α−1)ν+s

(k + 1)−(1−α)(ν+s).

Note that the function ss

es
is decreasing in s over the interval [0, 1], and the function 1−α

1−2α−1 is decreasing in α

over the interval [0, 1] (and upper bounded by 2). Since η0 ≤ 1, for any 0 ≤ ν, s ≤ 1
2 , there holds

φs+ν
0 ≤ cν(k + 1)−(ν+s)(1−α), with cν =

2νν

η0eν
. (4.10)

Let aj ≡ E[‖ej‖2] and bj ≡ E[‖B 1
2 ej‖2]. By assumption ‖B‖ ≤ 1, we have φs

j ≤ φs̄
j for any 0 ≤ s̄ ≤ s. Then

setting s = 0 and s = 1/2 in the recursion (4.9) and applying (4.10) lead to two coupled inequalities

ak+1 ≤
(

c0

k
∑

j=1

ηjφ
1
2

j a
1
2

j b
1
2

j + cν‖w‖(k + 1)−ν(1−α)
)2

+ n

k
∑

j=1

η2j (φ
1
2

j )
2bj
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+ 2nc0

(

k
∑

i=1

ηiφ
1
2
i b

1
2
i

)(

k
∑

j=1

ηjφ
1
2
j b

1
2
j a

θ
2
j

)

+ nc20

(

k
∑

j=1

ηjφ
1
2
j b

1
2
j a

θ
2
j

)2

, (4.11)

bk+1 ≤
(

c0

k
∑

j=1

ηjφ
1
ja

1
2

j b
1
2

j + cν‖w‖(k + 1)−( 1
2+ν)(1−α)

)2

+ n
(

[ k2 ]
∑

j=1

η2j (φ
r
j )

2bj +

k
∑

j=[ k2 ]+1

η2j (φ
1
2

j )
2bj

)

+ 2nc0

(

k
∑

i=1

ηiφ
1
i b

1
2

i

)(

k
∑

j=1

ηjφ
1
jb

1
2

j a
θ
2

j

)

+ nc20

(

k
∑

j=1

ηjφ
1
jb

1
2

j a
θ
2

j

)2

, (4.12)

with the exponent r = min(12 + ν, 1−ǫ
2(1−α) ) ∈ (12 , 1). Note that the summation in the second bracket for bk+1

employs two different exponents, i.e., r and 1
2 , in order to achieve better convergence rates; see Proposition A.1

for details. The rest of the proof is devoted to deriving the following bounds

ak ≤ c∗‖w‖2k−β and bk ≤ c∗‖w‖2k−γ .

with β = min(2ν(1−α), α−ǫ) and γ = min((1+2ν)(1−α), 1−ǫ), for some constant c∗ to be specified below. The
proof proceeds by mathematical induction. For the case k = 1, the estimates hold trivially for any sufficiently
large c∗. Now we assume that the bounds hold up to the case k, and prove the assertion for the case k + 1.
Actually, it follows from (4.11) and the induction hypothesis that (with ̺ = c∗‖w‖2)

ak+1 ≤
(

c0̺
k
∑

j=1

ηjφ
1
2

j j
− β+γ

2 + cν‖w‖(k + 1)−ν(1−α)
)2

+ n̺
k
∑

j=1

η2j (φ
1
2

j )
2j−γ

+ 2nc0̺
1+ θ

2

(

k
∑

i=1

ηiφ
1
2

i i
−γ

2

)(

k
∑

j=1

ηjφ
1
2

j j
− γ+θβ

2

)

+ nc20̺
1+θ

(

k
∑

j=1

ηjφ
1
2

j j
−γ+βθ

2

)2

.

Next we bound the summations on the right hand side. By Proposition A.1 in the appendix, we have

k
∑

j=1

ηjφ
1
2

j j
−γ

2 ≤ c1(k + 1)−
β
2 and

k
∑

j=1

η2j (φ
1
2

j )
2j−γ ≤ c2(k + 1)−β,

with c1 = 2
β
2 η

1
2
0 (2

−1B(12 , ζ) + 1), ζ = (12 − ν)(1 − α) > 0, (B(·, ·) denotes the Beta function, defined in (A.1)),
and c2 = 2βη0(α

−1 + 2). Thus, we obtain

ak+1 ≤
(

(c0c1̺+ cν‖w‖)2 + nc2̺+ 2nc0c
2
1̺

1+ θ
2 + nc20c

2
1̺

1+θ
)

(k + 1)−β . (4.13)

Similarly, for the term bk, it follows from (4.10), (4.12) (with the choice r = min(12 + ν, 1−ǫ
2(1−α) ) ∈ (12 , 1)) and the

induction hypothesis that

bk+1 ≤
(

c0̺
k

∑

j=1

ηjφ
1
j j

− β+γ
2 + cν‖w‖(k + 1)−( 1

2+ν)(1−α)
)2

+ n̺
(

[ k2 ]
∑

j=1

η2j (φ
r
j )

2j−γ +
k

∑

j=[ k2 ]+1

η2j (φ
1
2

j )
2j−γ

)

+ 2nc0̺
1+ θ

2

(

k
∑

i=1

ηiφ
1
i i

− γ
2

)(

k
∑

j=1

ηjφ
1
jj

− γ+θβ
2

)

+ nc20̺
1+θ

(

k
∑

j=1

ηjφ
1
j j

− γ+θβ
2

)2

,

By Proposition A.1 in the appendix, there hold

k
∑

j=1

ηjφ
1
j j

− β+γ
2 ≤ c′1(k + 1)−

γ
2 ,

[ k2 ]
∑

j=1

η2j (φ
r
j )

2j−γ +

k
∑

j=[ k2 ]+1

η2j (φ
1
2

j )
2j−γ ≤ c′2(k + 1)−γ ,

(

k
∑

i=1

ηiφ
1
i i

−γ
2

)(

k
∑

j=1

ηjφ
1
j j

− γ+θβ
2

)

≤ c′23 (k + 1)−γ ,
k

∑

j=1

ηjφ
1
j j

− γ+θβ
2 ≤ c′4(k + 1)−

γ
2 ,
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with c′1 = 2
γ
2 (ζ−1 + 2β−1 + 1), c′2 = 2γη2−2r

0 (3α−1 + 1), c′3 = 2
γ
2 (((12 − ν − θν)(1 − α))−1 + 4(θβ)−1 + 1) and

c′4 = 2
γ
2 (ζ−1 + 2(θβ)−1 + 1). Combining the preceding estimates yields

bk+1 ≤
(

(c0c
′
1̺+ cν‖w‖)2 + nc′2̺+ 2nc0c

′2
3 ̺

1+ θ
2 + nc20c

′2
4 ̺

1+θ
)

(k + 1)−γ . (4.14)

In view of the estimates (4.13) and (4.14), upon dividing by ̺, it suffices to prove the existence of some constant
c∗ > 0 such that

(c0c1̺
1
2 + cνc

∗− 1
2 )2 + nc2 + 2nc0c

2
1̺

θ
2 + nc20c

2
1̺

θ ≤ 1,

(c0c
′
1̺

1
2 + cνc

∗− 1
2 )2 + nc′2 + 2nc0c

′2
3 ̺

θ
2 + nc20c

′2
4 ̺

θ ≤ 1.

Since the constants c2 and c′2 are proportional to η0 and η2−2r
0 (with the exponent 1 > 2− 2r > 0), respectively,

for sufficiently small η0, there holds nmax(c2, c
′
2) < 1. Now for sufficiently small ‖w‖ and large c∗ such that ρ is

small such that both inequalities hold. This completes the induction step and the proof of the theorem.

Remark 4.6. For SGD, the expected squared residual E[‖B 1
2 ek‖2] decays as

E[‖B 1
2 ek‖2] ≤ ck−min((1+2ν)(1−α),1−ǫ),

which, in the event of α close to unit, is comparable with the corresponding deterministic part (i.e., the Landweber
method) [6]

‖B 1
2 ek‖ ≤ ck−(ν+ 1

2 )(1−α).

Meanwhile, the factor k−(1−ǫ) limits the fastest possible rate, due to the random selection of the row index ik
at the kth SGD iteration. This represents one essential restriction from the computational variance. Then the
restriction limits the convergence rate E[‖ek‖2] to O(k−min(2ν(1−α),α−ǫ)). Thus for optimal decay estimates, the
largest possible smoothness index is ν = 1

2 , beyond which the error estimate suffers from suboptimality (however,
note that the suboptimality is also present under the given form of the source condition in Assumption 2.1(iv)
for nonlinear inverse problems [6]). Further, it shows the impact of the exponent α: a smaller α can potentially
restrict the reconstruction error E[‖ek‖2] to O(k−(α−ǫ)).

Remark 4.7. The exponent α in the step size schedule in Assumption 2.2(ii) enters into the constant c∗ via
the constants c1, . . . , c

′
4 etc, and the constant c0 is independent of α. The constants c1, . . . , c

′
4 blow up either

like (1 − α)−1 as α → 1−, according to the well-known asymptotic behavior of the Beta function, or like α−1

as α → 0+. These dependencies partly exhibit the delicacy of choosing a proper step size schedule in the SGD
iteration.

Remark 4.8. We briefly comment on the “smallness” conditions on w, η0 and θ in the convergence rates
analysis. The smallness assumption on the representer w in the source condition in Assumption 2.1(iv) appears
also for the classical Landweber method [6] and the standard Tikhonov regularization [5, 9], and thus it is not

very surprising. The smallness condition on η0, roughly proportional to n− 1
2−2r , is to control the influence of the

computational variance, and in a slightly different context of statistical learning theory, similar conditions also
appear in the convergence analysis of variants of SGD, e.g., SGD without replacement. The smallness condition
on the exponent θ is only for facilitating the analysis, i.e., a concise form of the constant c′3, and the assumption
can be removed at the expense of a less transparent (and actually far more benign) expression for c′3; see the proof
in Proposition A.1 and Remark A.1.

Last, we derive convergence rates for noisy data yδ in Theorem 2.2.

Proof of Theorem 2.2. The proof is similar to that of Theorem 4.3. Let aj ≡ E[‖eδj‖2] and bj ≡ E[‖B 1
2 eδj‖2].

Then with the constant c0 = (2+θ−η)cR
(1+θ)(1−η) , repeating the argument for Theorem 4.3 leads to the following two

coupled recursions:

ak+1 ≤
(

k
∑

j=1

ηjφ
1
2
j

(

c0a
1
2
j b

1
2
j + cRa

1
2
j δ + δ

)

+ cν‖w‖(k + 1)−ν(1−α)
)2

+ n
k

∑

j=1

η2j (φ
1
2
j )

2(b
1
2
j + δ)2

+ 2n
(

k
∑

i=1

ηiφ
1
2

i (b
1
2

i + δ)
)(

k
∑

j=1

ηjφ
1
2

j (c0b
1
2

j + cRδ)a
θ
2

j

)

+ n
(

k
∑

j=1

ηjφ
1
2

j (c0b
1
2

j + cRδ)a
θ
2

j

)2

,
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bk+1 ≤
(

k
∑

j=1

ηjφ
1
j

(

c0a
1
2
j b

1
2
j + cRa

1
2
j δ + δ

)

+ cν‖w‖(k + 1)−(ν+ 1
2 )(1−α)

)2

+ n

k
∑

j=1

η2j (φ
1
j )

2(b
1
2
j + δ)2

+ 2n
(

k
∑

i=1

ηiφ
1
i (b

1
2

i + δ)
)(

k
∑

j=1

ηjφ
1
j (c0b

1
2

j + cRδ)a
θ
2

j

)

+ n
(

k
∑

j=1

ηjφ
1
j (c0b

1
2

j + cRδ)a
θ
2

j

)2

.

Next we prove the following bounds

ak ≤ c∗‖w‖2k−β and bk ≤ c∗‖w‖2k−γ ,

for all k ≤ k∗ = [( δ
‖w‖)

− 2
(2ν+1)(1−α) ], with β = min(2ν(1 − α), α − ǫ) and γ = min((1 + 2ν)(1 − α), 1 − ǫ), where

the constant c∗ is to be specified below. By the choice of k∗, for any k ≤ k∗, there holds

k
1−α

2 δ ≤ k−ν(1−α)‖w‖, (4.15)

which provides an easy way to bound the terms involving δ in the recursions. Similar to Theorem 4.3, the proof
proceeds by mathematical induction. The assertion holds trivially for the case k = 1. Now assume that the
bounds hold up to some k < k∗, and we prove the assertion for the case k + 1 ≤ k∗. Upon substituting the
induction hypothesis, with the shorthand ̺ = c∗‖w‖2, we obtain

ak+1 ≤
(

k
∑

j=1

ηjφ
1
2

j

(

c0̺j
− β+γ

2 + cR̺
1
2 j−

β
2 δ + δ

)

+ cν‖w‖(k + 1)−ν(1−α)
)2

+ n

k
∑

j=1

η2j (φ
1
2

j )
2(̺

1
2 j−

γ
2 + δ)2 + 2n

(

k
∑

i=1

ηiφ
1
2

i (̺
1
2 i−

γ
2 + δ)

)(

k
∑

j=1

ηjφ
1
2

j (c0̺
1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)

+ n
(

k
∑

j=1

ηjφ
1
2
j (c0̺

1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)2

.

We bound the right hand side in Proposition A.2 in the appendix, and obtain

ak+1 ≤
(

(c1(c0̺+ (cR̺
1
2 + 1)‖w‖) + cν‖w‖)2 + 2n(c2̺+ c3‖w‖2)

+ 2nc21(̺
1
2 + ‖w‖)(c0̺

1
2 + cR‖w‖)̺

θ
2 + nc21(c0̺

1
2 + cR‖w‖)2̺θ

)

(k + 1)−β, (4.16)

where the constants c1, . . . , c3 are given in Proposition A.2. Similarly, for the term bk, it follows from the induction
hypothesis that

bk+1 ≤
(

k
∑

j=1

ηjφ
1
j

(

c0̺j
−β+γ

2 + cR̺
1
2 j−

β
2 δ + δ

)

+ cν‖w‖(k + 1)−(1−α)(ν+ 1
2 )
)2

+ n
k
∑

j=1

η2j (φ
1
j )

2(̺
1
2 j−

γ
2 + δ)2 + 2n

(

k
∑

i=1

ηiφ
1
i (̺

1
2 i−

γ
2 + δ)

)(

k
∑

j=1

ηjφ
1
j (c0̺

1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)

+ n
(

k
∑

j=1

ηjφ
1
j (c0̺

1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)2

,

from which and Proposition A.2 in the appendix, it follows that

bk+1 ≤
(

(c0c
′
1̺+ c′5(cR̺

1
2 + 1)‖w‖+ cν‖w‖)2 + 2n(c′2̺+ c3‖w‖2)

+ 2n(c′3̺
1
2 + c′5‖w‖)(c0c′3̺

1
2 + cRc

′
5‖w‖)̺

θ
2 + n(c0c

′
4̺

1
2 + cRc

′
5‖w‖)2̺θ

)

(k + 1)−γ , (4.17)

where the constants c′1, . . . , c
′
5 are given in Proposition A.2. In view of the bounds (4.16) and (4.17), for small

‖w‖ and η0, repeating the argument for the proof of Theorem 4.3 (and noting the fact that c1,c2, c3, c
′
2 tends to

zero as η0 → 0+) indicates that there exists some constant c∗ > 0 such that the desired estimates hold. This
completes the induction step and the proof of the theorem.
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5 Concluding remarks

In this work, we have provided a first convergence analysis of stochastic gradient descent for a class of nonlinear
inverse problems. The method employs an unbiased stochastic estimate of the gradient, computed from one
randomly selected equation of the nonlinear system, and admits excellent scalability to the problem size. We
proved that the method is regularizing under the traditional tangential cone condition with a priori parameter
choice rules, and also showed a convergence rate under canonical source condition and range invariance condition
(and its stochastic variant), for the popular polynomially decaying step size schedule. The analysis combines
techniques from both nonlinear regularization theory and stochastic calculus, and in particular, the results extend
the existing works [6] and [12].

There are several avenues for further research along the line. First, it is important to verify the assumptions
for concrete nonlinear inverse problems, especially nonlinearity conditions in Assumptions 2.1(ii)–(iii) and 2.3,
for e.g., parameter identifications for PDEs and deep neural network, which would justify the usage of SGD
for such problems. Several important inverse problems in medical imaging are precisely of the form (1.1), e.g.,
multifrequency electrical impedance tomography, diffuse optical spectroscopic imaging and optical tomography
with the radiative transfer equation. Second, the source condition employed in the work is canonical, and
alternative approaches, e.g., variational inequalities and approximate source condition, should also be studied for
deriving convergence rates [23], or the Frechét differentiability of the forward operator in Assumption 2.1 may be
relaxed [3]. Third, the influence of various algorithmic parameters, e.g., mini-batch, random sampling, stepsize
schedules (including adaptive rules) and a posteriori stopping rule, should be analyzed carefully to provide useful
practical guidelines. We leave these important questions on the theoretical and practical aspects to future works.

A Auxiliary estimates

In this appendix, we collect some auxiliary inequalities that have been used in the analysis of convergence rate in
Section 4.3. Most estimates follow from routine but rather tedious computations, and thus are deferred to this
appendix. We begin with a well known estimate on operator norms (see, e.g., [17] [12, Lemma A.1]).

Lemma A.1. For any j < k, and any symmetric and positive semidefinite operator S and step sizes ηj ∈
(0, ‖S‖−1] and p ≥ 0, there holds

‖
k
∏

i=j

(I − ηiS)S
p‖ ≤ pp

ep(
∑k

i=j ηi)
p
.

The notation B(·, ·) below denotes the Beta function defined by

B(a, b) =

∫ 1

0

sa−1(1− s)b−1ds (A.1)

for any a, b > 0. Note that for fixed a, the function B(a, ·) is monotonically decreasing.

Lemma A.2. If ηj = η0j
−α, α ∈ (0, 1) and r ∈ [0, 1], β ∈ [0, 1], then with γ = α+ β, there hold

k
∑

i=1

ηi ≥ (1 − 2α−1)(1 − α)−1η0(k + 1)1−α,

k−1
∑

j=1

ηj

(
∑k

ℓ=j+1 ηℓ)
r
j−β ≤ η1−r

0 B(1 − r, 1− γ)krα+1−r−γ, r ∈ [0, 1), γ < 1,

k−1
∑

j=1

ηj
∑k

ℓ=j+1 ηℓ
j−β ≤







2γ(1− γ)−1k−β , γ < 1,
4kα−1 ln k, γ = 1,
2γ(γ − 1)−1kα−1, γ > 1,

+ 21+γk−β ln k.

Proof. Using the inequality 1− (k + 1)α−1 ≥ 1− 2α−1 for k ≥ 1, we derive the first estimate readily from

k
∑

i=1

ηi = η0

k
∑

i=1

i−α ≥ η0

∫ k+1

1

s−αds = η0(1 − α)−1((k + 1)1−α − 1) ≥ η0(1− α)−1(1− 2α−1)(k + 1)1−α .

21



Next we prove the second estimate. Since ηi ≥ η0k
−α for any i = j + 1, . . . , k, we have

η−1
0

k
∑

i=j+1

ηi ≥ k−α(k − j). (A.2)

Thus, if α+ β < 1 and r < 1,

k−1
∑

j=1

ηj

(
∑k

ℓ=j+1 ηℓ)
r
j−β ≤η1−r

0 krα
k−1
∑

j=1

(k − j)−rj−(α+β) ≤ η1−r
0 krα

∫ k

0

(k − s)−rs−(α+β)ds

=η1−r
0 B(1− r, 1− α− β)krα+1−r−(α+β).

Similarly, if r = 1, it follows from the inequality (A.2) that (recall that the notation [·] denotes taking the integral
part of a real number)

k−1
∑

j=1

ηj
∑k

ℓ=j+1 ηℓ
j−β ≤ kα

k−1
∑

j=1

(k − j)−1j−(α+β)

=kα
[ k2 ]
∑

j=1

j−(α+β)(k − j)−1 + kα
k−1
∑

j=[ k2 ]+1

j−(α+β)(k − j)−1

≤2kα−1

[k2 ]
∑

j=1

j−(α+β) + 2α+βk−β

k−1
∑

j=[ k2 ]+1

(k − j)−1.

Simple computation gives

k−1
∑

j=[ k2 ]+1

(k − j)−1 ≤ 2 lnk and

[ k2 ]
∑

j=1

j−γ ≤







(1− γ)−1(k2 )
1−γ , γ ∈ [0, 1),

2 ln k, γ = 1,
γ(γ − 1)−1, γ > 1.

(A.3)

Combining the last three estimates gives the assertion for the case r = 1, completing the proof.

Next we recall two useful estimates.

Lemma A.3. For ηj = η0j
−α, with α ∈ (0, 1), β ∈ [0, 1] and r ≥ 0, there hold

[ k2 ]
∑

j=1

η2j

(
∑k

ℓ=j+1 ηℓ)
r
j−β ≤ cα,β,rk

−r(1−α)+max(0,1−2α−β),

k−1
∑

j=[ k2 ]+1

η2j

(
∑k

ℓ=j+1 ηℓ)
r
j−β ≤ c′α,β,rk

−((2−r)α+β)+max(0,1−r),

where we slightly abuse k−max(0,0) for ln k, and the constants cα,β,r and c′α,β,r are given by

cα,β,r = 2rη2−r
0











2α+β
2α+β−1 , 2α+ β > 1,

2, 2α+ β = 1,
22α+β−1

1−2α−β
, 2α+ β < 1,

and c′α,β,r = 22α+βη2−r
0







r
r−1 , r > 1,

2, r = 1,
2r−1

1−r
, r < 1.

Proof. The proof is based on the estimates (A.2) and (A.3) and essentially given in [12, Lemma A.3], but with
the constants are corrected.

The next result collects some lengthy estimates that are needed in the proof of Theorem 4.3.
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Proposition A.1. Let β = min(2ν(1−α), α−ǫ), γ = min((1+2ν)(1−α), 1−ǫ) and r = min(12+ν, 1−ǫ
2(1−α) ). Then

under the conditions in Theorem 4.3, i.e., ‖B‖ ≤ 1, η0 ≤ 1 and θ being sufficiently small, with ζ = (12 −ν)(1−α),
the following estimates hold:

k
∑

j=1

ηjφ
1
2

j j
− γ

2 ≤ 2
β
2 η

1
2
0 (2

−1B(12 , ζ) + 1)(k + 1)−
β
2 , (A.4)

k
∑

j=1

η2j (φ
1
2
j )

2j−γ ≤ 2βη0(α
−1 + 2)(k + 1)−β, (A.5)

[k2 ]
∑

j=1

η2j (φ
r
j)

2j−γ +

k
∑

j=[ k2 ]+1

η2j (φ
1
2

j )
2j−γ ≤ 2γη2−2r

0 (3α−1 + 1)(k + 1)−γ , (A.6)

k
∑

j=1

ηjφ
1
j j

− β+γ
2 ≤ 2

γ
2

(

ζ−1 + 2β−1 + 1)(k + 1)−
γ
2 , (A.7)

(

k
∑

i=1

ηiφ
1
i i

−γ
2

)(

k
∑

j=1

ηjφ
1
j j

− γ+θβ
2

)

≤ 2γ(((12 − ν − θν)(1 − α))−1 + 4(θβ)−1 + 1
)2
(k + 1)−γ , (A.8)

k
∑

j=1

ηjφ
1
j j

−γ+θβ
2 ≤ 2

γ
2 (ζ−1 + 2(θβ)−1 + 1)(k + 1)−

γ
2 . (A.9)

Proof. The estimates (A.4) and (A.5) are needed for bounding ak+1, and the others are for bk+1. We show the
estimates one by one. First, it follows from Lemma A.1 and the condition ‖B‖ ≤ 1 that

k
∑

j=1

ηjφ
1
2

j j
− γ

2 ≤ (2e)−
1
2

k−1
∑

j=1

ηj

(
∑k

ℓ=1 ηℓ)
1
2

j−
γ
2 + η0k

−α− γ
2 ≤ (η

1
2
0 2

−1B(12 , 1− α− γ
2 ) + η0)k

1−α
2 − γ

2 .

By the definitions of the exponents β and γ, 1−α
2 − γ

2 = −β
2 , and 1 − α − γ

2 ≥ (12 − ν)(1 − α) := ζ. This, the
monotone decreasing property of the Beta function, and the inequality 2k ≥ k + 1 for k ≥ 1 immediately imply
the estimate (A.4). Second, by Lemmas A.1 and A.3,

k
∑

j=1

η2j (φ
1
2

j )
2j−γ ≤ (2e)−1

k−1
∑

j=1

η2j
∑k

ℓ=j+1 ηj
j−γ + η20‖B

1
2 ‖2k−2α−γ

≤ η0

(

(2e)−1 2(2α+ γ)

2α+ γ − 1
k−(1−α) + (2e)−121+2α+γk−α−γ ln k + η0‖B

1
2 ‖2k−2α−γ

)

.

Using the definitions of the exponents β and γ again, for any r > 0, there holds

s−r ln s ≤ (er)−1, ∀s ≥ 0 ; k−α−γ ln k = k−β(k−1 ln k) ≤ e−1k−β . (A.10)

Further, by the definition of γ, 2α+ γ ≤ min(2, 1 + 2α) ≤ 2, and since ǫ < α
2 , 2α+ γ − 1 ≥ α,

2α+ γ

2α+ γ − 1
= 1 +

1

2α+ γ − 1
≤ 1 + α−1. (A.11)

Then, combining the preceding estimates (with ‖B‖ ≤ 1) leads to

k
∑

j=1

η2j (φ
1
2
j )

2j−γ ≤ 2βη0
(

α−1 + 2
)

(k + 1)−β .

This proves the estimate (A.5). Next, with the choice r = min(12 + ν, 1−ǫ
2(1−α) ) ∈ (12 , 1), and with the help of

(A.10)-(A.11), Lemmas A.1 and A.3 and the monotone property of function ss

es
over the interval [0, 1] imply

[ k2 ]
∑

j=1

η2j (φ
r
j)

2j−γ +

k
∑

j=[ k2 ]+1

η2j (φ
1
2
j )

2j−γ
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≤ (2e)−1
(

[ k2 ]
∑

j=1

η2j

(
∑j

ℓ=1 ηℓ)
2r
j−γ +

k−1
∑

j=[ k2 ]+1

η2j
∑k

ℓ=j+1 ηℓ
j−γ

)

+ η20k
−2α−γ

≤ η2−2r
0

22r(2α+ γ)

2e(2α+ γ − 1)
k−γ +

21+2α+γ

2e
η0k

−(α+γ) ln k + η20k
−2α−γ

≤ 2γη2−2r
0 (3α−1 + 1)(k + 1)−γ .

This shows the estimate (A.6). Next, we bound
∑k

j=1 ηjφ
1
jj

−σ for any σ ∈ [γ2 ,
γ+β
2 ], and then set σ to γ

2 ,
γ+θβ

2

and γ+β
2 to complete the proof of the proposition. By Lemmas A.1 and A.2,

[ k2 ]
∑

j=1

ηjφ
1
jj

−σ ≤ e−1











2α+σ

1−α−σ
k−σ, α+ σ < 1,

4kα−1 ln k, α+ σ = 1,
2(α+σ)
α+σ−1k

α−1, α+ σ > 1,

(A.12)

k
∑

[ k2 ]+1

ηjφ
1
jj

−σ ≤ e−121+α+σk−σ ln k + η0k
−σ. (A.13)

Thus, by (A.10) and the inequality (1− α− γ
2 )

−1 ≤ ζ−1, and α+ γ
2 < 1, ‖B‖ ≤ 1 and η0 ≤ 1, it follows that

k
∑

j=1

ηjφ
1
j j

− β+γ
2 ≤

[ k2 ]
∑

j=1

ηjφ
1
j j

−γ
2 +

k
∑

j=[ k2 ]+1

ηjφ
1
j j

− β+γ
2

≤ 2α+
γ
2 e−1(1 − α− γ

2 )
−1k−

γ
2 + 21+α+ γ+β

2 e−1k−
γ+β

2 ln k + η0k
− γ

2

≤ 2
γ
2

(

ζ−1 + 2β−1 + 1)(k + 1)−
γ
2 ,

where the last line is due to the inequalities 21+α+ β+γ
2 < e2, by the definitions of the exponents β and γ.

This shows the estimate (A.7). Next, we turn to the assertion (A.8). Since θ is small, we may assume θ <
1
2ν − 1 ≤ 1−α

β
− 1. Then in view of the relations γ = 1 − α + β and β ≤ 2ν(1 − α), direct computation shows

1−α− γ+θβ
2 ≥ (12 − ν− θν)(1−α) > 0. Further, since θ < 1−α

β
− 1, thus min( θβ2 , 1−α− γ

2 ) =
θβ
2 . Consequently,

it follows from the estimates (A.12) and (A.13) that

(

k
∑

i=1

ηiφ
1
i i

−γ
2

)(

k
∑

j=1

ηjφ
1
j j

− γ+θβ
2

)

≤
( 2α+

γ
2

e(1− α− γ
2 )

+
21+α+γ

2

e
ln k + 1

)

×
( 2α+

γ+θβ
2

e(1− α− γ+θβ
2 )

k−min( θβ
2 ,1−α− γ

2 ) +
21+α+ γ+θβ

2

e
k−

θβ
2 ln k + k−

θβ
2

)

k−γ .

Next we proceed by moving the extra k−
θβ
2 in the second bracket to the first one so as to obtain a uniform bound

using the estimate (A.10) by

(

k
∑

i=1

ηiφ
1
i i

− γ
2

)(

k
∑

j=1

ηjφ
1
jj

− γ+θβ
2

)

≤
( 2α+

γ
2

e(1− α− γ
2 )

+
21+α+γ

2

e
k−

θβ
4 ln k + 1

)( 2α+
γ+θβ

2

e(1− α− γ+θβ
2 )

+
21+α+ γ+θβ

2

e
k−

θβ
4 ln k + 1

)

k−γ

≤ 2γ(((12 − ν − θν)(1 − α))−1 + 4(θβ)−1 + 1
)2
(k + 1)−γ ,

proving (A.8). The proof of (A.9) is similar to (A.7) and hence omitted. This completes the proof.

Remark A.1. The proof of Proposition A.1 indicates the following estimate

k−1
∑

j=1

ηjφ
1
j j

− γ
2 ≤ (ζ−1 + 2 lnk)k−

γ
2 .

24



The logarithmic factor ln k above seems not removable, and precludes a direct application of mathematical induc-

tion in the proof of Theorem 4.3. The extra factor j−
θβ
2 due to Assumption 2.3 allows gracefully compensating

the logarithmic factor ln k using the estimate (A.10).
The smallness condition on the parameter θ in the estimates (A.8) can be removed but at the expense of less

transparent dependence. Specifically, by Lemma A.2, with σ = α+ γ+θβ
2 , there holds

k
∑

j=1

ηjφ
1
j j

−γ+θβ
2 ≤ e−1k−

γ
2











2σ

1−σ
k−

θβ
2 , σ < 1

4k−(1−α−γ
2 ) ln k, σ = 1

2σ
σ−1k

−(1−α− γ
2 ), σ > 1

+ 21+σe−1k−
γ
2 −

θβ
2 ln k + k−(α+ γ+θβ

2 ).

Instead of applying (A.10) directly, we rearrange the terms and discuss the cases σ < 1, σ = 1 and σ > 1
separately with the argument in the proof of Proposition A.1 and obtain the following estimate

(

k
∑

i=1

ηiφ
1
i i

−γ
2

)(

k
∑

j=1

ηjφ
1
j j

−γ+θβ
2

)

≤cσ2
γ(k + 1)−γ ,

with the constant cσ given by

cσ =







(1− σ)−1 + 4(θβ)−1 + 1, σ < 1,
ζ−1 + 8(θβ)−1 + 1, σ = 1,
2(σ − 1)−1 + 3ζ−1 + 1, σ > 1.

The next result gives some basic estimates used in the proof of Theorem 2.2.

Proposition A.2. Under the induction hypothesis of Theorem 2.2 and (4.15), there hold

ak+1 ≤
(

(c1(c0̺+ (cR̺
1
2 + 1)‖w‖) + cν‖w‖)2 + 2n(c2̺+ c3‖w‖2)

+ 2nc21
(

̺
1
2 + ‖w‖

)(

c0̺
1
2 + cR‖w‖

)

̺
θ
2 + nc21(c0̺

1
2 + cR‖w‖)2̺θ

)

(k + 1)−β ,

bk+1 ≤
(

(c0c
′
1̺+ c′5(cR̺

1
2 + 1)‖w‖+ cν‖w‖)2 + 2n(c′2̺+ c3‖w‖2)

+ 2n(c′3̺
1
2 + c′5‖w‖)(c0c′3̺

1
2 + c′5cR‖w‖)̺

θ
2 + n(c0c

′
4̺

1
2 + c′5cR‖w‖)2̺θ

)

(k + 1)−γ ,

where the constants c1, c2, c3 and c′1, . . . , c
′
5 are given in the proof.

Proof. First we derive two useful auxiliary estimates. It follows from directly Lemmas A.1, A.2, and A.3 and the
assumptions ‖B‖ ≤ 1 and η0 ≤ 1 that for any σ ∈ [0, 1− α), there hold

k
∑

j=1

ηjφ
1
2

j j
−σ ≤ (2e)−

1
2

k−1
∑

j=1

ηj

(
∑k

ℓ=j+1 ηℓ)
1
2

+ η0k
−α−σ ≤ η

1
2
0 (2

−1B(12 , 1− α− σ) + 1)k
1−α
2 −σ, (A.14)

k
∑

j=1

η2j (φ
1
2
j )

2 ≤ (2e)−1
k−1
∑

j=1

η2j
∑k

ℓ=j+1 ηℓ
+ η20k

−2α ≤ η0(|1− 2α|−1 + α−1 + 1) := c3, (A.15)

where we have abused 0−1 for 1. Meanwhile, by Proposition A.1, we have

k
∑

j=1

ηjφ
1
2

j j
−γ

2 ≤ c1(k + 1)−
β
2 and

k
∑

j=1

η2j (φ
1
2

j )
2j−γ ≤ c2(k + 1)−β,

with c1 = 2
β
2 η

1
2
0 (2

−1B(12 , ζ)+1), ζ = (12 − ν)(1−α) and c2 = 2βη0(α
−1+2), then using the monotone decreasing

property of the Beta function, and the choice of k∗ and the fact k + 1 ≤ k∗ (cf. (4.15)), we obtain

k
∑

j=1

ηjφ
1
2
j

(

c0̺j
− β+γ

2 + cR̺
1
2 j−

β
2 δ + δ

)

≤c0c1̺(k + 1)−
β
2 + (cR̺

1
2 + 1)c1(k + 1)

1−α
2 δ
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≤c1
(

c0̺+ (cR̺
1
2 + 1)‖w‖

)

(k + 1)−
β
2 ,

k
∑

j=1

η2j (φ
1
2
j )

2(̺
1
2 j−

γ
2 + δ)2 ≤2(c2̺+ c3‖w‖2)(k + 1)−β .

Likewise, by the monotonicity of the Beta function, we deduce

(

k
∑

i=1

ηiφ
1
2

i (̺
1
2 i−

γ
2 + δ)

)(

k
∑

j=1

ηjφ
1
2

j (c0̺
1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)

≤c21(̺
1
2 + ‖w‖)(c0̺

1
2 + cR‖w‖)̺

θ
2 (k + 1)−β ,

k
∑

j=1

ηjφ
1
2

j (c0̺
1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2 ≤ c1(c0̺

1
2 + cR‖w‖)̺

θ
2 (k + 1)−

β
2 .

Combining the preceding four estimates gives the desired bound on ak+1. Now we bound the term bk+1. To this
end, by Proposition A.1, we have the following preliminary estimates:

k
∑

j=1

ηjφ
1
j j

− β+γ
2 ≤ c′1(k + 1)−

γ
2 ,

[ k2 ]
∑

j=1

η2j (φ
r
j )

2j−γ +

k
∑

j=[ k2 ]+1

η2j (φ
1
2

j )
2j−γ ≤ c′2(k + 1)−γ ,

(

k
∑

i=1

ηiφ
1
i i

−γ
2

)(

k
∑

j=1

ηjφ
1
j j

− γ+θβ
2

)

≤ c′23 (k + 1)−γ ,
k

∑

j=1

ηjφ
1
j j

− γ+θβ
2 ≤ c′4(k + 1)−

γ
2 ,

with c′1 = 2
γ
2 (ζ−1 + 2β−1 + 1), c′2 = 2γη2−2r

0 (3α−1 + 1), c′3 = 2
γ
2 (((12 − ν − θν)(1 − α))−1 + 4(θβ)−1 + 1) and

c′4 = 2
γ
2 (ζ−1 + 2(θβ)−1 + 1). Further, by the estimates (A.12) and (A.13), for any σ ∈ [0, γ

2 ],

k−ν(1−α)
k

∑

j=1

ηjφ
1
j j

−σ ≤ ζ−1 + 2(ν(1 − α))−1 + 1 := c′5.

With the preceding estimates and the bound (4.15), we deduce

k
∑

j=1

ηjφ
1
j

(

c0̺j
− β+γ

2 + cR̺
1
2 j−

β
2 δ + δ

)

≤(c0c
′
1̺+ c′5(cR̺

1
2 + 1)‖w‖)(k + 1)−

γ
2 ,

k
∑

j=1

η2j (φ
1
j )

2(̺
1
2 j−

γ
2 + δ)2 ≤2(c′2̺+ c3‖w‖2)(k + 1)−γ ,

k
∑

j=1

ηjφ
1
j (c0̺

1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2 ≤(c0c

′
4̺

1
2 + c′5cR‖w‖)̺

θ
2 (k + 1)−

γ
2 ,

where the second line is due to the estimate (A.15) and the inequality
∑k

j=1 η
2
j (φ

1
j )

2 ≤ ∑k
j=1 η

2
j (φ

1
2

j )
2 (since

‖B‖ ≤ 1). Last, by repeating the argument in Proposition A.1, we deduce

(

k
∑

i=1

ηiφ
1
i (̺

1
2 i−

γ
2 + δ)

)(

k
∑

j=1

ηjφ
1
j(c0̺

1
2 j−

γ
2 + cRδ)̺

θ
2 j−

θβ
2

)

≤(c′3̺
1
2 + c′5‖w‖)(c0c′3̺

1
2 + c′5cR‖w‖)̺

θ
2 (k + 1)−γ .

Then combining the last four estimates yields the desired bound on bk+1, which completes the proof.

Remark A.2. With δ = 0, the bounds in Proposition A.2 recover that in the proof of Theorem 4.3, up to a
factor 2 in the front of the second term.
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