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Abstract. The stochastic solutions to the Wigner equation, which explain the nonlocal oscilla-
tory integral operator ΘV with an anti-symmetric kernel as the generator of two branches of jump
processes, are analyzed. All existing branching random walk solutions are formulated based on the
Hahn-Jordan decomposition ΘV = Θ+

V − Θ−V , i.e., treating ΘV as the difference of two positive

operators Θ±V , each of which characterizes the transition of states for one branch of particles. De-
spite the fact that the first moments of such models solve the Wigner equation, we prove that the
bounds of corresponding variances grow exponentially in time with the rate depending on the upper
bound of Θ±V , instead of ΘV . In other words, the decay of high-frequency components is totally
ignored, resulting in a severe numerical sign problem. To fully utilize such decay property, we have
recourse to the stationary phase approximation for ΘV , which captures essential contributions from
the stationary phase points as well as the near-cancelation of positive and negative weights. The
resulting branching random walk solutions are then proved to asymptotically solve the Wigner equa-
tion, but gain a substantial reduction in variances, thereby ameliorating the sign problem. Numerical
experiments in 4-D phase space validate our theoretical findings.
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1. Introduction. We are intended to discuss the probabilistic interpretation of
the backward Wigner equation,1–3 arising from the recently developed particle-based
simulation of the Wigner quantum dynamics.3–6 The backward Wigner equation is a
partial integro-differential equation defined in phase space (x,k) ∈ Rn × Rn with an
“initial” condition ϕT ∈ L2(Rn × Rn).

∂

∂t
ϕ(x,k, t) +

~k
m
· ∇xϕ(x,k, t) = ΘV [ϕ](x,k, t), 0 ≤ t ≤ T,(1.1)

ϕ(x,k, T ) = ϕT (x,k),(1.2)

Here ϕ(x,k, t) is the dual Wigner function, m is the mass, ~ represents the reduced
Planck constant and the pseudo-differential operator (PDO) ΘV reads

(1.3) ΘV [ϕ](x,k, t) =
1

i~(2π)n

∫
Rn×Rn

e
i(k−k′)·yDV (x,y, t)ϕ(x,k′, t)dydk′,

with DV (x,y, t) = V (x − y/2, t) − V (x + y/2, t) (i.e., the central difference of the
external potential V (x, t)). Obviously, DV (x,y, t) is anti-symmetric in y-variable,

(1.4) DV (x,y, t) = −DV (x,−y, t).

It is well known that ΘV , a nonlocal operator with an anti-symmetric symbol, actually
characterizes a deformation of the classical Poisson bracket7 and exactly reflects the
nonlocal nature of quantum mechanics.8–11

The subsequent analysis will be based on two equivalent representations of the
PDO. The first form is the kernel representation:

ΘV [ϕ](x,k, t) =

∫
Rn
VW (x,k − k′, t)ϕ(x,k′, t)dk′,(1.5)
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with the real-valued kernel function VW (termed the Wigner kernel)

VW (x,k, t) =
1

i~(2π)n

∫
Rn

(V (x− y

2
, t)− V (x+

y

2
, t))eik·ydy

=
1

i~πn
Fx→kV (2k, t)e2ik·x − 1

i~πn
Fx→kV (−2k, t)e−2ik·x

= 2nψ(2k, t)e2ik·z(x) − 2nψ(−2k, t)e−2ik·z(x).

(1.6)

Here Fx→kV (k, t) =
∫
Rn V (x, t)e−ik·xdx denotes the Fourier transform of the poten-

tial function V (x, t) in x-variable, and

(1.7) ψ(k, t) =
1

i~(2π)n
e
ik·(x−z(x))Fx→kV (k, t).

It is realized that the kernel is anti-symmetric in k-variable

(1.8) VW (x,k − k′, t) = −VW (x,k′ − k, t).

due to the anti-symmetry of DV (see Eq. (1.4)).
The second form is the oscillatory integral representation:

(1.9) ΘV [ϕ](x,k, t) =

∫
Rn

e
iz(x)·k′ψ(k′, t)(ϕ(x,k − k′

2
, t)− ϕ(x,k +

k′

2
, t))dk′,

which facilitates the derivation of its asymptotic expansion (see Theorem 2).
In order to extend ΘV to a bounded operator from L2(R2n) to itself, say, there

exists a uniform upper bound KV such that

(1.10) ‖ΘV [ϕ](t)‖2 ≤ KV ‖ϕ(t)‖2,

we make the following assumptions for a finite time interval [0, T ].
(A1): ϕ ∈ C([0, T ], L2(Rn × Rn)) and is localized in (x,k)-space for any t ∈ [0, T ],

with the minimal compact support denoted by X ×K ⊂ Rn × Rn.
(A2): Suppose either of the following conditions holds:

(1) ψ ∈ C([0, T ], C∞(Rn) ∩ L1(Rn));
(2) ψ ∈ C([0, T ], C∞(Rn \ {0}) ∩ L1

loc(Rn)),
and there exist a radial function Ψ(|k|) ∈ L1

loc(Rn), such that |ψ(k, t)| ≤
Ψ(|k|) in Rn \ {0} and Ψ(|k|) ≤ Cn,α|k|−n+α holds for sufficiently large |k|
and given constants Cn,α and α ∈ (0, n);

Here ‖·‖p is short for Lpx×L
p
k norm, say, ‖ϕ(t)‖Lpx×Lpk = (

∫
Rn×Rn |ϕ(x,k, t)|pdxdk)1/p.

The prototypes for the latter condition in (A2) arise from quantum molecular
systems and fractional diffusion problems.12,13 When the potential is of the Coulomb
type V (x) = |x−xA|−1, it is easy to verify that ψ(k) ∝ |k|−n+1 and z(x) = x−xA,
so that the symbol functions may have singularities at k = 0 and k =∞. Therefore,
we need to focus on the weakly singular convolution14, instead of solely treating it in
the classical symbol class C([0, T ], S0(Rn × Rn)).

Now we turn to the probabilistic perspective. The starting point of the stochastic
solution is to cast Eq. (1.1) into its equivalent integral formulation by adding a term
−γ0 · ϕ(x,k, t) on both sides of Eq. (1.1),3

ϕ(x,k, t) =(1− G(T − t))ϕT (x(T − t), k) +

∫ T

t

dG(t′ − t)

×
∫
Rn

(−VW (x(t′ − t),k′, t′)
γ0

+ δ(k′))ϕ(x(t′ − t),k − k′, t′)dk′,

(1.11)
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the derivation of which will be put in Section 2. The constant parameter γ0 turns out
to be the intensity of an exponential distribution as follows,

(1.12) G(t′ − t) = 1− e
−γ0(t′−t), dG(t′ − t) = γ0e

−γ0(t′−t), t′ ≥ t.

The main problem is how to resolve the negative values of kernel VW . In constrast
to nonlocal operators with nonnegative and symmetric kernels,12,13,15 the existing
stochastic approach is based on the unique Hahn-Jordan decomposition (HJD):16

ΘV [ϕ](x,k, t) = Θ+
V [ϕ](x,k, t)−Θ−V [ϕ](x,k, t),(1.13)

Θ±V [ϕ](x,k, t) =

∫
Rn
V ±W (x,k − k′, t)ϕ(x,k′, t)dk′,(1.14)

V ±W (x,k, t) = max{±VW (x,k, t), 0},(1.15)

so that V ±W ∈ C([0, T ], L1
loc(Rn×Rn)) become positive semi-definite kernels. Moreover,

we assume that there exists a uniform normalizing bound ξ̆ for (x,k) ∈ X × 2K,

(1.16) γ0 ≥ ξ̆ = max
0≤t≤T

max
x∈X

∫
Rn
V ±W (x,k, t)1{k∈2K}dk.

It follows that the probabilistic interpretation is to seek a branching random
walk model (BRW) such that its first moment satisfies the renewal-type Wigner (W)
equation (1.11),3,5, 17 dubbed WBRW-HJD hereafter. Such model describes a mass
distribution of a random cloud starting at Q = (x,k) and frozen at random states
and exhibiting both random motion and random growth. The random variable is a
family history Ω, a denumerable random sequence corresponding to a unique family
tree,18 and BΩ is the Borel extension of cylinder sets on Ω. The particles in the family
history Ω move according to the following five rules.

(1) (Markov property) The motion of each particle is described by a right con-
tinuous Markov process.

(2) (Memoryless life-length) The particle at (x,k, t) dies in the age time interval
(t, t+ τ) with probability 1− e

−γ0τ .
(3) (Frozen state) The particle at (x,k, t) is frozen at the state (x(T−t),k) when

its life-length τ ≥ T − t.
(4) (Branching property) The particles at (x,k, t), carrying a weight w, dies at

age t + τ at state (x(τ),k) when τ < T − t, and produces at most five
new offsprings at states (x(1),k(1)), (x(2),k(2)) · · · (x(5),k(5)), endowed with
updated weights w(1), w(2), · · · , w(5), respectively.

(5) (Independence) The only interaction between the particles is that the birth
time and state of offsprings coincide with the death time and state of their
parent.

We are able to define a probability measure on the measurable space (Ω,BΩ)
and thus the stochastic process based on a specific setting of the transition kernels
and particle weights in the fourth rule (vide post). Roughly speaking, WBRW-HJD
can be categorized into the weighted-particle (wp)3 and signed-particle (sp)5,17,19

implementations, denoted by Xw
t and Xs

t associated with the probability laws Πw
Q and

Πs
Q, respectively. It has been shown in3 that (taking Xw

t as an example),

(1.17) Πw
QXw

t = ϕ(x,k, t)

holds on some kind of probability space (Ω,BΩ,Π
w
Q), where Πw

QXw
t means the expec-

tation of Xw
t with respect to the probability measure Πw

Q. However, to the best of our
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knowledge, the related variance estimation has not been established. To this end, our
first contribution is to estimate the variance of WBRW-HJD, as stated in Theorem 1.

Theorem 1 (Variance of WBRW-HJD). Suppose (A1) and (A2) are satisfied

and let γ1 = 2KV γ0 + 2ξ̆2. Then the variances of Xw
t and Xs

t satisfy

‖Πw
Q(Xw

t − ϕ(t))2‖1 ≤ (1 +
γ1

γ0
(T − t))e2 max(KV ,

ξ̆2

γ0
)(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22,(1.18)

‖Πs
Q(Xs

t − ϕ(t))2‖1 ≤ (1 +
γ1

γ0
(T − t))e2ξ̆(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22.(1.19)

Two key observations are readily seen from Theorem 1. One is the exponential
rate for spWBRW-HJD is 2ξ̆, that depends on the volume of the support K and thus
cannot be improved. This poses a huge challenge for high dimensional problems since
ξ̆ usually depends on n exponentially. By contrast, the rate for wpWBRW-HJD can
be reduced by increasing γ0, and the optimal exponential rate is 2KV . Definitely,
KV is usually far less than ξ̆, implied by Eqs. (1.10) and (1.16). In this sense, the

latter outperforms the former. The other is the large exponential rates 2ξ̆2/γ0 and

2ξ̆, introduced by HJD (1.13), lead to a rapid growth of variance. Such phenomenon
is called “numerical sign problem”20 as the Hahn-Jordan decomposition of a signed
measure totally ignores the near-cancellation of positive and negative weights.

Our second contribution is to formulate a new class of BRW solutions, dubbed
WBRW-SPA, to diminish the variance growth. The motivation comes from the sta-
tionary phase method, a useful technique in microlocal analysis,21 which makes full
use of the essential contribution from the localized parts (see Theorem 2). As a con-
sequence, the upper bounds in Eqs. (1.18) and (1.19) can be significantly reduced
especially in the region where the module |z(x)| is sufficiently large (see Theorem 3).

Theorem 2 (Stationary phase approximation). Suppose |z(x)| 6= 0 and the
amplitude function ψ ∈ C([0, T ], C∞0 (Rn \ {0}) ∩ L1

loc(Rn)). Then for a sufficiently

large λ0, we have a stationary phase approximation Θλ0

V [ϕ] to PDO

ΘV [ϕ](x,k, t) = Θλ0

V [ϕ](x,k, t) +O(λ
−n/2
0 ),(1.20)

Θλ0

V [ϕ](x,k, t) = Λ<λ0 [ϕ](x,k, t) + Λ>λ0
+ [ϕ](x,k, t) + Λ>λ0

− [ϕ](x,k, t),(1.21)

where

Λ<λ0 [ϕ](x,k, t) =

∫
B(

λ0
|z(x)| )

e
iz(x)·k′ψ(k′, t)∆k′ [ϕ](x,k, t)dk′,

Λ>λ0
± [ϕ](x,k, t) =

∫ +∞

λ0
|z(x)|

e
±ir|z(x)|

(
2π

±ir|z(x)|

)n−1
2

rn−1ψ(rσ±, t)∆rσ± [ϕ](x,k, t)dr,

in the sense that there exists a positive constant C, which depends on ψ and its first
derivate but is independent on λ0, such that

(1.22) ‖ΘV [ϕ](t)−Θλ0

V [ϕ](t)‖2 ≤ Cλ−n/20 ‖ϕ(t)‖L2
x×H1

k
.

Here the norm is ‖ϕ(t)‖L2
x×H1

k
= ‖ϕ(t)‖2 + ‖∇kϕ(t)‖2 and B(r) is a closed ball with

radius r centered at the origin, σ± (short for σ±(x)) represent two critical points on
the (n − 1)-dimensional unit spherical surface with normal vectors pointing in (or
opposite to) the direction of z(x) = (z1, z2, . . . , zn), which can be parameterized by

σ± = (cosϑ±1 , sinϑ
±
1 cosϑ±2 , . . . , sinϑ

±
1 · · · sinϑ

±
n−2 cosϑ±n−1, sinϑ

±
1 · · · sinϑ

±
n−1),
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with

ϑ±i = arccot(±zi/
√
z2
i+1 + · · ·+ z2

n) ∈ [0, π], i = 1, 2, . . . , n− 2,

ϑ±n−1 = 2 arccot(±(zn−1 +
√
z2
n−1 + z2

n)/zn) ∈ [0, 2π),
(1.23)

and ∆k′ is the central difference operator

(1.24) ∆k′ [ϕ](x,k, t) = ϕ(x,k − k′

2
, t)− ϕ(x,k +

k′

2
, t).

Intuitively speaking, the parameter λ0 serves as a filter to decompose PDO into a
low-frequency component Λ<λ0 and a high-frequency one, the leading terms of which
are Λ>λ0

± , and use the resulting nonlocal operator Θλ0

V to directly formulate WBRW-
SPA, instead of ΘV as adopted in WBRW-HJD. Specifically, we still use HJD to deal
with Λ<λ0 and tackle Λ>λ0

+ + Λ>λ0
− by another two branches of particles, yielding

two stochastic processes: the “wp” implementation Yw
t and the “sp” implementation

Ys
t , associated with the probability measures Πw

Q and Πs
Q, respectively. In order to

estimate the effect of low-frequency parts, we further need the following assumptions.
(A3): ϕ ∈ C([0, T ], L2(Rn) × H1(Rn)) and is localized in (x,k)-space for any t ∈

[0, T ] with the minimal compact support denoted by X ×K ⊂ Rn × Rn;

(A4): For the positive constant ξ̆ in Eq. (1.16) there exist positive constants λ0 > 1
and α∗ < 1 such that

(1.25) α∗ξ̆ = max
0≤t≤T

max
x∈X

∫
Rn
V ±W (x,k, t)1{|2k|<λ0/|z(x)|}dk.

The assumption (A4) indicates that the normalizing bound for V ±W can be dimin-
ished when k is restricted in a smaller domain, which holds if minx∈X |z(x)| is large
enough. For instance, V (x) = |x−xA|−1, it requires the displacement minx∈X |x−xA|
is sufficiently large. Accordingly, we are able to show that the first moment of WBRW-
SPA turns out to be an asymptotic approximation to the solution of Eq. (1.1). We
also study its deviation from the dual Wigner function ϕ by estimating the second
moment (also termed “variance” hereafter) and find that, in contrast to Eqs. (1.18)
and (1.19), the exponential growth rate in the upper bound is suppressed, so that a
moderate increase of variance can be achieved.

Theorem 3 (WBRW-SPA). Suppose (A2)-(A4) are satisfied and let γ2 = α∗ξ̆
2.

Then for a sufficient large λ0, there exist a weighted-particle branching random walk
model Yw

t and a signed-particle one Ys
t on the probability spaces (Ω,BΩ,Π

w
Q) and

(Ω,BΩ,Π
s
Q), respectively, such that

(1.26) Πw
QYw

t = Πs
QYs

t = ϕ(x,k, t) +O(λ
−n/2
0 ),

and their variances satisfy

‖Πw
Q(Yw

t − ϕ(t))2‖1 . (1 +
4γ2

γ0
(T − t))e2 max(KV ,

α∗ ξ̆2
γ0

)(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22,(1.27)

‖Πs
Q(Ys

t − ϕ(t))2‖1 . (1 + 2(KV +
γ2

γ0
)(T − t))e2α∗ξ̆(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22.(1.28)

The rest is organized as follows. Section 2 briefly reviews the basic of the Wigner
equation. Section 3 derives the L2-boundedness and the stationary phase approxi-
mation to PDO. WBRW-HJD and WBRW-SPA are analyzed in Sections 4 and 5,
respectively. In Section 6, a typical numerical experiment is performed to verify our
theoretical analysis. This paper is concluded in Section 7.
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2. The Wigner equation. The Wigner equation, introduced by Wigner in
his pioneering work,1 provides a fundamental phase space description of quantum
mechanics, and quantum behavior is completely characterized by the nonlocal pseudo-
differential operator ΘV [f ] defined in Eq. (1.3). Mathematically speaking, it is a
partial integro-differential equation defined in phase space (x,k) ∈ Rn × Rn

∂

∂t
f(x,k, t) +

~k
m
· ∇xf(x,k, t) = ΘV [f ] (x,k, t), 0 ≤ t ≤ T,

f(x,k, 0) = f0(x,k),
(2.1)

with an initial value f0 ∈ L2(Rn × Rn). The weak formulation of the Wigner
equation is of great importance since any quantum observable 〈Â〉(t) can be ex-
pressed by its Weyl symbol AW (x,k) averaged by the Wigner function,8 namely,
〈Â〉(t) = 〈AW , f(t)〉 with

(2.2) 〈f(t), ϕ(t)〉 =

∫
Rn×Rn

f(x,k, t)ϕ(x,k, t)dxdk.

Thus it motivates to study the dual system2 and derive the adjoint equation of
Eq. (2.1) under a non-degenerate inner product:

(2.3) 〈f, ϕ〉T =

∫ T

0

〈f(t), ϕ(t)〉dt =

∫
Rn×Rn×[0,T ]

f(x,k, t)ϕ(x,k, t)dxdkdt,

where T is a fixed time instant and ϕ ∈ C([0, T ], L2(Rn×Rn)) is a test function with
a compact support in Rn ×Rn. Using the anti-symmetry (1.8) of the Wigner kernel,
we have

(2.4) 〈ΘV [f ], ϕ〉 = −〈f,ΘV [ϕ]〉

and integration by parts directly leads to

〈∂f
∂t

+
~k
m
· ∇xf −ΘV [f ], ϕ〉T = 〈∂f

∂t
, ϕ〉T + 〈~k

m
· ∇xf, ϕ〉T − 〈ΘV [f ], ϕ〉T

= 〈fT , ϕT 〉 − 〈f0, ϕ0〉 − 〈f,
∂ϕ

∂t
+

~k
m
· ∇xϕ−ΘV [ϕ]〉T ,

where fT and ϕT are short for f(x,k, T ) and ϕ(x,k, T ), respectively. Therefore
the adjoint correspondence, i.e., the backward Wigner equation (1.1), is immediately
derived by setting

(2.5) 〈ϕT , fT 〉 = 〈ϕ0, f0〉.

Formally, Eq. (2.5) allows us to evaluate the quantum mechanical observable 〈ϕT , fT 〉
only by the “initial” data.3

The backward Wigner equation (1.1) can be cast into a renewal-type equation by
adding a term −γ0 · ϕ(x,k, t) on both sides,

(2.6)
∂

∂t
ϕ(x,k, t)+

~k
m
·∇xϕ(x,k, t)−γ0 ·ϕ(x,k, t) = ΘV [ϕ](x,k, t)−γ0 ·ϕ(x,k, t),

with γ0 being a prescribed constant (see Eq. (1.16)), and the mild solution reads

ϕ(x,k, t) = e
(T−t)AϕT (x,k)−

∫ T

t

e
(t′−t)A(ΘV [ϕ](x,k, t′)− γ0 · ϕ(x,k, t′))dt′,

6



by the variation-of-constant formula.22 Here e∆tA is short for the semigroup generated
by A = ~k/m · ∇x − γ0, and its action on a given function can be now readily
performed. For instance, we have

(2.7) e
(t′−t)Ag(x,k, t′) = e

−γ0(t′−t)g(x(t′ − t),k, t′), t′ ≥ t,

where x(∆t) = x + ~k∆t/m gives the forward-in-time trajectory of (x,k) with a
positive time increment ∆t. That is, the backward renewal-type equation Eq. (1.11)
is thus verified.

3. L2-boundedness and stationary phase approximation. Before proceed-
ing to the probabilistic aspect, we first need to establish the L2-boundedness of ΘV

under the assumptions (A1) and (A2). For ψ ∈ C([0, T ], L1(Rn)), Eq. (1.10) is read-
ily verified by Young’s convolution inequality, whereas the L2-boundedness for weakly
singular kernels is obtained by the Hardy-Littlewood-Sobolev theorem.23 After that,
we present the stationary phase approximation and detail its remainder estimate.

Suppose (A1) and the second condition of (A2) hold, then Lp(R2n) ⊂ L2(R2n)
for 1 ≤ p < 2 due to the Hölder’s inequality:

(3.1) ‖ϕ(t)‖p = ‖ϕ(t) · 1X · 1K‖p ≤ ‖1X · 1K‖ 2p
2−p
‖ϕ(t)‖2 <∞

as X ×K has a finite measure. Next we introduce a smooth cut-off function χε,R(r) ∈
C∞([0,+∞)):

(3.2) χε,R(r) =

{
1, r ∈ [ε, 2R],

0, r ∈ [0, ε/2) ∪ (3R,+∞),

and let ψε = ψ · χε,R(|k|), ψ∞ = ψ · (1 − χε,R(|k|)) · 1{|k|≥2R}. Here ε is introduced
to remove the singularity at k = 0 and R is chosen sufficient large to ensure Ψ(|k|) ≤
Cn,α|k|−n+α, as stated in assumption (A2). Then it is readily verified that the
truncated operator Θε

V [ϕ] has the following estimate

‖Θε
V [ϕ](t)‖L2

k
≤ 2n+1‖

∫
Rn

e
2i(k−k′)·z(x)(ψε + ψ∞)(2(k − k′), t)ϕ(x,k′, t)dk′‖L2

k

≤ 2n+1‖
∫
Rn
ψε(2(k − k′), t)(e−2ik′·z(x)ϕ(x,k′, t))dk′‖L2

k

+ 2n+1‖
∫
Rn
ψ∞(2(k − k′), t)(e−2ik′·z(x)ϕ(x,k′, t))dk′‖L2

k
.

(3.3)

The first term is bounded from L2(R2n) to itself as Ψ is locally integrable, say,

(3.4) ‖
∫
Rn
ψε(2(k − k′), t)(e−2ik′·z(x)ϕ(x,k′, t))dk′‖L2

k
≤ ‖Ψ · χε,R‖L1

k
· ‖ϕ(t)‖L2

k
,

and the bound is independent of ε. The second term is also bounded from L2(R2n)
to Lp(R2n), with 1/p = 1/2 + α/n, owing to the Hardy-Littlewood-Sobelev theorem,

‖
∫
Rn
ψ∞(2(k − k′), t)(e−2ik′·z(x)ϕ(x,k′, t))dk′‖L2

k

≤ ‖
∫
Rn

χ2R,+∞(2|k − k′|) · |ϕ(x,k′, t)|
2n−α|k − k′|n−α

dk′‖L2
k
≤ Cp‖ϕ(t)‖Lpk ≤ C̃p‖ϕ(t)‖L2

k
.

(3.5)

7



Now let ε → 0 in Eq. (3.3). By combining Eq. (3.1), we obtain that there exists a
uniform KV such that

(3.6) ‖ΘV [ϕ](t)‖2 ≤ KV ‖ϕ(t)‖2.

A remarkable feature of the oscillatory integral operator is the decay property
as the integrand becomes more and more oscillating. As stated by Hörmander’s
theorem,21,24 when ψ is sufficiently smooth and compactly supported, it has a sharp
estimate for a sufficiently large |z(x)|

(3.7) ‖ΘV [ϕ](x,k, t)‖L2
k
≤ C|z(x)|−n/2‖ϕ(t)‖L2

k
.

The physical meaning of Eq. (3.7) is also clear. When we consider the two-body
interacting potential like V (x) = V (|x − xA|), z(x) = x − xA turns out to be the
spatial displacement between two bodies, so that the estimate (3.7) characterizes the
decay rate of quantum interaction as the distance |z(x)| increases. A similar result
like Eq. (3.7) can also be found in our framework, and the decay property will be
fully utilized by the stationary phase method as presented in Theorem 2, which is
definitely ignored by HJD (1.13).

Proof of Theorem 2. It starts by splitting the wavevector k into its modulus and
orientation parts k′ = rσ with the modulus r = |k′| > 0 and the orientation σ =
(σ1, σ2, . . . , σn) ∈ Sn−1, where Sn−1 denotes the (n−1)-dimensional spherical surface,
and focusing on the high-frequency component

(3.8) ΘV [ϕ]− Λ<λ0 [ϕ] =

∫ +∞

λ0
|z(x)|

rn−1dr

∫
Sn−1

dσ e
ir|z(x)|z′·σψ(rσ, t)∆rσ[ϕ](x,k, t),

where σ = (σ1, · · · , σn) represents the orientation of z(x), z′ = z/|z| and dσ denotes
the induced Lebesgue measure on Sn−1. After choosing the equatorial plane normal
to z′, the unit sphere Sn−1 can be decomposed into an upper hemisphere Sn−1

+ and

a lower one Sn−1
− satisfying ±z′ ∈ Sn−1

± . Accordingly, the inner surface integral of

the first kind over Sn−1 in Eq. (3.8) equals to the sum of those over Sn−1
+ and Sn−1

− .
Without loss of generality, it suffices to assume that z′ = (0, . . . , 0, 1), which be
realized by a rotation otherwise. Let us start from the graph

(3.9) Sn−1
± = {σ ∈ Rn

∣∣σn = ±φ(σ1, . . . , σn−1), σi ∈ [−1, 1], i = 1, . . . , n− 1},

with

(3.10) φ(σ1, . . . , σn−1) =
√

1− σ2
1 − · · · − σ2

n−1

and take the surface integral of the first kind over the upper hemisphere as an example.
Now the phase function of the integrand becomes

(3.11) S(x, r, σ1, . . . , σn−1) = r|z(x)|z′ · σ = r|z(x)|φ(σ1, . . . , σn−1).

For such phase function, it can be easily verified that there is only one critical point
σ+ = (0, . . . , 0, 1) satisfying (∇σS)(σ+) = 0, and the determinant of its Hessian
matrix at σ+ turns out to be

(3.12) det(Hess(S)(σ+)) = det
1≤j,k≤n−1

(
∂2S

∂σj∂σk
(σ+)

)
= (−r|z(x)|)n−1.
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In consequence, applying the stationary phase method24 leads directly to∫
Sn−1
+

e
iS(x,r,σ)ψ(rσ, t)∆rσ[ϕ](x,k, t)dσ

= e
iS(x,r,σ+)

(
(2πi)n−1

det(Hess(S)(σ+))

) 1
2

ψ(rσ+, t)∆rσ+
[ϕ](x,k, t) +Rσ+

(x,k, r, t)

= e
ir|z(x)|

(
2π

ir|z(x)|

)n−1
2

ψ(rσ+, t)∆rσ+
[ϕ](x,k, t) +Rσ+

(x,k, r, t),

the first term of which exactly recovers the integrand of Λ>λ0
+ in Eq. (1.21). That is,

the asymptotic of the oscillatory integral over the upper hemisphere is governed by
the contribution from the critical point σ+.

It remains to estimate the integral of remainders
∫ +∞
λ0/|z(x)|Rσ±(x,k, r, t)rn−1dr.

Since ψ(k, t) ∈ C([0, T ], C∞0 (Rn)) with its support contained in a compact ball B(2R),
we can replace ψ by ψ · χε,R, with ε < λ0/|z(x)|. Now we rewrite Rσ+

(x,k, r, t) as

Rσ±(x,k, r, t) = a±(x, r, t)χε,R(r)∆rσ± [ϕ](x,k, t) + b±(x,k, r, t)χε,R(r),(3.13)

where

a±(x, r, t) =

∫
Sn−1
±

e
ir|z(x)|z′·σψ(rσ, t)dσ − e

±ir|z(x)|
(

2π

±ir|z(x)|

)n−1
2

ψ(rσ±, t),

b±(x,k, r, t) =

∫
Sn−1
±

e
ir|z(x)|z′·σψ(rσ, t)(∆rσ[ϕ]−∆rσ± [ϕ])dσ.

According to Theorem 7.7.14 in,25 it has an estimate for a± that

(3.14) |a±(x, r, t)| ≤ C(r|z(x))|−
n+1

2 ≤ Cλ−
n+1

2
0 .

Thus for the first term in Eq. (3.13), it yields that

‖
∫ +∞

λ0/|z(x)|
rn−1a±(x, r, t)χε,R(r)∆rσ± [ϕ](x,k, t)dr‖2L2

k

≤
∫ +∞

ε

rn−1χε,R(r)|a±(x, r, t)|2dr

∫ +∞

ε

rn−1χε,R(r)‖∆rσ± [ϕ](x,k, t)‖2L2
k
dr

≤ 2C2R2n

n2
· λ−(n+1)

0 ‖ϕ(t)‖2L2
k
.

(3.15)

For the second term in Eq. (3.13), it suffices to consider a sufficiently smooth ϕ,
so that the localization property of oscillatory integrals allows us to only estimate the
integral in the neighborhood U± of the stationary phase points σ± = (0, . . . , 0). Due
to the Morse lemma,26 there exists a diffeomorphism from U+ to a small neighborhood
of y+ = (0, . . . , 0). Indeed, since φ(0, . . . , 0) = 1 and ∇φ(0, . . . , 0) = 0, we have that
(3.16)

φ(σ1, . . . , σn−1)− 1 =

∫ 1

0

(1− t)d2φ

dt2
(tσ1, . . . , tσn−1)dt =

∑
i,j

σiσjhij(σ1, · · · , σn−1),

where

(3.17) hij(σ1, · · · , σn−1) =

∫ 1

0

(1− t)∂2
ijφ(tσ1, . . . , tσn−1)dt.
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It notes that H = (hij) is a symmetric matrix and nonsingular at (0, . . . , 0), and so is
in U+ by continuity, then there exists a nonsingular n× n matrix B(σ1, . . . , σn−1) =
(bij(σ1, . . . , σn−1)) such that H = BτB. Therefore, we can introduce the y-coordinate

(3.18) y = (y1, · · · , yn−1)τ = B(σ1, · · · , σn−1)(σ1, · · · , σn−1)τ

so that the phase function turns out to be a quadratic form

(3.19) S(x, r, σ) = S̃(x, r,y) = r|z(x)|(1− y2
1 − · · · − y2

n−1).

By the implicit function theorem, the inverse conversion σi = κi(y1, . . . , yn−1) ∈
C∞(Rn−1) also exists, which satisfies κi(0, . . . , 0) = 0. Therefore, it further has that

(3.20) σi = κi(y1, . . . , yn−1) =

∫ 1

0

dκi
dt

(ty1, . . . , tyn−1)dt =

n−1∑
j=1

yjκij(y1, . . . , yn−1)

with a suitable C∞ function κij that satisfies κij(0, . . . , 0) = ∂κi
∂yj

(0, . . . , 0).

Now we use Taylor’s expansion,

ϕ(x,k ± rσ

2
, t)− ϕ(x,k ± rσ+

2
, t)

= ±1

2

n−1∑
i=1

rσi

(
∂ϕ

∂ki
+
∂φ

∂σi

∂ϕ

∂kn

)
(x,k ± rσ+

2
, t) +O(σ2)

= ±1

2

n−1∑
i=1

n−1∑
j=1

ryjκij(y1, . . . , yn−1)

(
∂ϕ

∂ki
+ φ̃i

∂ϕ

∂kn

)
(x,k ± rσ+

2
, t) +O(y2),

(3.21)

with φ̃i(y1, . . . , yn−1) = ∂φ
∂σi

(σ1, . . . , σn−1), and

(3.22)
∣∣∣ ∫

Rn−1

e
−iS̃(x,r,y)ylψ̃(ry, t)dy

∣∣∣ ≤ C(r|z(x)|)−
n−1

2 −
|l|
2 ,

for a sufficiently large r|z(x)| and ψ̃(ry, t) = ψ(rσ, t) (here we adopt the convection

that yl = yl11 . . . y
ln−1

n−1 for l1 + · · · + ln−1 = l),24 one can conclude that L2-norm (in
k-variable) of the oscillatory integral b+(x,k, r, t) is majorized by

(3.23) ‖b+(x,k, r, t)‖L2
k
≤ C(r|z(x)|)−n2 ‖∇kϕ(t)‖L2

k
·χε,R(r) +O

(
(r|z(x)|)−

n+1
2

)
.

Combining Eqs. (3.15) and (3.23), we arrive at

∥∥∫ +∞

λ0
|z(x)|

Rσ+(x,k, r, t)rn−1dr
∥∥
L2

k

≤ Cλ−
n
2

0 ‖ϕ(t)‖H1
k

∫ +∞

λ0
|z(x)|

rn−1χε,R(r)dr

. λ
−n2
0 ‖ϕ(t)‖H1

k
,

(3.24)

which implies Eq. (1.22).

4. Variance estimation of WBRW-HJD. From this section we initialize our
discussion on the probabilistic aspect. The probabilistic interpretation of Eq. (1.1)
borrows several ideas from the renewal theory, as the exponential distribution G(t′−t)
characterizes the arrival time of the random jump and the Wigner kernel VW the tran-
sition of states. The main difficulty lies in the possible negative values of the Wigner
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kernel VW because it cannot be regarded as a transition kernel directly. Nonetheless,
when the HJD is adopted and the split Wigner kernels V ±W can be normalized, the
existing BRW models are naturally introduced and the corresponding first moments
solve the Wigner equation (1.1). Furthermore, the probabilistic interpretation of the
inner product (2.5) is also readily established through a straightforward extension of
the probability space.

Under Assumption (A1), it suffices to replace the Wigner kernels by the truncated
ones V ±W,R

(4.1) V ±W,R(x,k, t) = V ±W (x,k, t)χ0,R(|k|)

with B(2R) the minimal ball that satisfies K ⊂ B(2R). Now the truncated Wigner
kernels are integrable in Rn,

(4.2) ξ(x, t) =

∫
Rn
V +
W,R(x,k, t)dk =

∫
Rn
V −W,R(x,k, t)dk <∞,

and the anti-symmetry relation (1.8) is applied in the second equality. Indeed, V ±W,R
play a role of transition kernels for two branches since

(4.3) VW (x,k, t)χ0,R(|k|) = γ0
ξ(x, t)

γ0

[
V +
W,R(x,k, t)

ξ(x, t)
−
V −W,R(x,k, t)

ξ(x, t)

]
,

where the auxiliary constant γ0, i.e., the intensity of the exponential distribution (see
Eq. (1.12)), is chosen such that

(4.4) γ0 ≥ max
t∈[0,T ]

max
x

ξ(x, t),

which has already been stated in Eq. (1.16). It deserves to mention that the normal-
izing function ξ(x, t) is monotonically non-decreasing as R increases.

Based on different interpretations of the multiplicative functional ξ(x, t)/γ0, we
propose two kinds of stochastic branching walk models, termed the weighted-particle
model3 and the signed-particle model,19 respectively. The former is to interpret
ξ(x, t)/γ0 as the weight function, while the latter is to treat it as the probability
to generate offsprings. The main result has been illustrated in Theorem 1 and re-
vealed the discrepancy in variances. In fact, choosing a larger γ0 leads to a variance
reduction in the weighted-particle model, but does not influence that of the signed-
particle counterpart. It should be noted that the content until Definition 7 below has
been well delineated in3 and we just brief it here for the sake of descriptive integrality.

In order to identify the objects in a family history, we need a sequence. Beginning
with an ancestor, denoted by 〈0〉, and we can denote its i-th children by 〈i〉. Similarly,
we can denote the j-th child of i-the child by 〈ij〉, and thus 〈i1i2 · · · in〉 means in-th
child of in−1-th child of · · · of the i2-child of the i1-th child, with in ∈ {1, 2, 3}. The
ancestor 〈0〉 is omitted here and hereafter for brevity.

The branching particle system considered involves four basic elements: the life-
length τ , the position x, the wavevector k and the particle weight w.

Definition 4. A family history ω stands for a random sequence

(4.5) ω = {(τ0, Q0, w0); (τ1, Q1, w1); (τ2, Q2, w2); (τ3, Q3, w3); (τ11, Q11, w11); · · · },

where Qi stands for (xi,ki) and the tuple (τi, Qi, wi) = (τi,xi,ki, wi) appears in a
definite order of enumeration. τi, xi, ki, wi denote the life-length, starting position,
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wavevector and particle weight of the i-th particle, respectively. The exact order of
(τi, Qi, wi) is immaterial but is supposed to be fixed. The collection of all family
histories is denoted by Ω.

Definition 5. For ω = {(τ0, Q0, w0); (τ1, Q1, w1); (τ2, Q2, w2); (τ3, Q3, w3); · · · },
the subfamily ωi is the family history of 〈i〉 and its descendants, as defined by ωi =
{(τi, Qi, wi); (τi1, Qi1, wi1); (τi2, Qi2, wi2), (τi3, Qi3, wi3); · · · }. The collection of ωi is
denoted by Ωi.

The particles are frozen when hitting the first exit time T .
Definition 6. Suppose the family history ω starts at time t and define the stop-

ping time, termed the arrival time ti of a branching-and-jump event, recursively as

(4.6) t0 = t, ti1 = t+ τ0, ti1i2···in = ti1i2···in−1
+ τi1i2···in−1

.

Then a particle 〈i1i2 · · · in〉 is said to be frozen at T if the following conditions hold

(4.7) ti1i2···in < T and ti1i2···in + τi1i2···in ≥ T.

In particular, when t + τ0 ≥ T , the ancestor particle 〈0〉 is frozen. The collection of
frozen particles starting at t is denoted by Et(ω).

Hereafter we assume that all particles in the branching particle system will move
until reaching the frozen states, and still use Ω to denote the collection of the family
history of all frozen particles. Next we will illustrate the probability laws Πw

Q and Πs
Q

of a random cloud initially concentrated at Q = (x,k). In general, the position and
wavevector of the ancestor particle 〈0〉 are set to be Q0 = Q.

Now consider the probability of event E (starting at time t at state Q)

(4.8) E = {τ0 ∈ T0, (τi1 ,ki1) ∈ T1 ×K1, · · · , (τi1···in ,ki1···in) ∈ Tn ×Kn}

for any Borel set Ti on [0,+∞) and Ki on Rn, then the probability laws are given by

Pr(E) =

∫
T0

dG(τ0)

∫
K1

dki1K
ti1 ,xi1
i1

(ki1 ;k)

∫
T1

dG(τi1)

∫
K2

dki1i2K
ti1i2 ,xi1i2
i1i2

(ki1i2 ;ki1)

× · · · ×
∫
Kn

dki1···inK
ti1···in ,xi1···in
i1···in (ki1···in ;ki1···in−1

)

∫
Tn

dG(τi1···in),

(4.9)

where xi1···in = xi1···in−1(τi1···in−1) with the transition kernels Kt′,x′

i1···im(k;k′) given by

(4.10) Kt′,x′

i1···im(k;k′) =


V +
W,R(x′, (−1)im(k − k′), t′)

ξ(x′, t′)
, im = 1, 2,

δ(k − k′), im = 3.

The difference lies in the setting of particle weight wi1···im .
(1) For the weighted particle model,

(4.11) wi1···im =


ξ(xi1···im , ti1···im)

γ0
· 1K(ki1···im), im = 1, 2

1, im = 3,

(2) For the signed particle model, for im = 1 and 2,

(4.12) wi1···im =

 1, with Pr =
ξ(xi1···im , ti1···im)

γ0
· 1K(ki1···im),

0, otherwise,

and wi1···im = 1 for im = 3.
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The setting of initial particle weight w0 depends on the situation. At this stage,
it suffices to take w0 = 1. However, later we will show that the initial particle weights
may take values in {−1, 1}, resulting from the importance sampling according to
the initial Wigner function f0. Now we illustrate the construction of the stochastic
processes Xw

t and Xs
t.

Definition 7. Suppose (xi,ki) is the starting state of a frozen particle i in a
given family history ω, and let δ(x,k) be the Dirac measure concentrated at state (x,k).
Then the weighted-particle WBRW is given by

(4.13) Xw
t (ω) = 〈ϕT ,

∑
i∈Et(ω)

ŵi · δ(xi(T−ti),ki)〉 =
∑

i∈Et(ω)

ŵi · ϕT (xi(T − ti),ki),

the cumulative weight ŵi ∈ [−1, 1] for i = 〈i1i2 · · · in〉 is defined by the product of the
particle weights wi1···im ,

(4.14) ŵi =

n∏
m=1

(−1)im+1wi1···im , |wi1···im | ≤ 1,

where wi1···im are given by (4.11).
Similarly, the signed-particle WBRW is given by

(4.15) Xs
t(ω) = 〈ϕT ,

∑
i∈Et(ω)

ŝi · δ(xi(T−ti),ki)〉 =
∑

i∈Et(ω)

ŝi · ϕT (xi(T − ti),ki),

where cumulative weight ŝi ∈ {−1, 0, 1} for i = 〈i1i2 · · · in〉 is defined by

(4.16) ŝi =

n∏
m=1

(−1)im+1wi1···im , wi1···im ∈ {−1, 0, 1},

where wi1···im are given by (4.12).
According to Eq. (4.9), it’s easy to verify the Markov property of Πw

Q, which also
holds for Πs

Q.

Πw
QX

w
t X

w
t+τ0 = Πw

QX
w
t (Πw

Qi1
Xw
t+τ0)

=

∫
Ω

(
Xw
t (ω)

∫
Ωi1

Xw
t+τ0(ωi1)Πw

Qi1
(dωi1)

)
Πw
Q(dω).

(4.17)

Definition 8. The first moments of Xw
t and Xs

t are denoted by

(4.18) φ(1)
w (x,k, t) = Πw

QXw
t , φ(1)

s (x,k, t) = Πs
QXs

t,

and the second moments are

(4.19) φ(2)
w (x,k, t) = Πw

Q(Xw
t )2, φ(2)

s (x,k, t) = Πs
Q(Xs

t)
2,

In addition, the variances are defined as

∆φ(2)
w (x,k, t) = Πw

Q(Xw
t − φ(1)

w (x,k, t))2,(4.20)

∆φ(2)
s (x,k, t) = Πs

Q((Xs
t − φ(1)

s (x,k, t))2.(4.21)

Before proceeding to the proof of Theorem 1, we require the following two lemmas.
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Lemma 9 (Backward Grönwall’s inequality). Suppose β > 0 and u satisfies the
integral inequality

(4.22) u(t) ≤ α(t) + (1 +
β

γ0
)

∫ T

t

dG(t′ − t)u(t′),

then

(4.23) u(t) ≤ α(t) + (γ0 + β)

∫ T

t

e
β(t′−t)α(t′)dt′

Proof. Let

(4.24) ũ(t) = e
−γ0tu(t), α̃(t) = e

−γ0tα(t),

it yields

(4.25) ũ(t) ≤ α̃(t) + (γ0 + β)

∫ T

t

ũ(t′)dt′.

By the Grönwall’s inequality, we have

(4.26) ũ(t) ≤ α̃(t) + (γ0 + β)

∫ T

t

e
γ0(t′−t)+β(t′−t)α̃(t′)dt′.

Substituting Eq. (4.24) into Eq. (4.26) yields Eq. (4.23).
Lemma 10 (Prior L2-estimate). Suppose ϕT ∈ L2(Rn × Rn) and the pseudo-

differential operator ΘV is bounded from L2(Rn × Rn) to itself, say, ‖ΘV [ϕ](t)‖2 ≤
KV ‖ϕ(t)‖2, then for a given T <∞,

(4.27) ‖ϕ(t)‖2 ≤ e
KV (T−t)‖ϕT ‖2, t ∈ [0, T ].

Proof. The operator semigroup T (t) = e
t(A+γ0) is an isometry from L2(Rn) to

itself. Thus by the triangular inequality and the extended Minkowski’s inequality, it
has that

‖ϕ(t)‖2 ≤ e
−γ0(T−t)‖ϕT ‖2 + ‖

∫ T

t

dG(t′ − t){−ΘV [ϕ](t′)

γ0
+ ϕ(t′)}‖2

≤ e
−γ0(T−t)‖ϕT ‖2 +

∫ T

t

dG(t′ − t){‖ − ΘV [ϕ](t′)

γ0
+ ϕ(t′)‖2}

≤ e
−γ0(T−t)‖ϕT ‖2 + (1 +

KV

γ0
)

∫ T

t

dG(t′ − t) ‖ϕ(t′)‖2.

(4.28)

Thus by the Lemma 9, we arrive at

(4.29)
‖ϕ(t)‖2
‖ϕT ‖2

≤ e
−γ0(T−t) + (γ0 +KV )

∫ T

t

e
KV (t′−t)−γ0(T−t′)dt′ = e

KV (T−t).

Proof of the first part of Theorem 1. We first consider the weighted-particle part.

To estimate ∆φ
(2)
w (x,k, t), it starts from the fact that

(4.30) Πw
Q(Xw

t )2 = Πw
Q

(
1Et(X

w
t )2
)

+ Πw
Q

(
1Ect

(Xw
t )2
)
,
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where the events are Et = {τ0 : t+ τ0 ≥ T} ∩ Ω and Ect = {τ0 : t+ τ0 < T} ∩ Ω. The
second term is expanded as

Πw
Q

(
1Ect

(Xw
t )2
)

=

3∑
i=1

∫
Ect

(
w2
i

∫
Ωi

(Xw
t+τ0)2(ωi)Π

w
Qi(dωi)

)
Πw
Q(dω)

+
∑
i 6=j

∫
Ect

(
(−1)i+jwiwj

∫
Ωi

Xw
t+τ0(ωi)Π

w
Qi(dωi)

∫
Ωj

Xw
t+τ0(ωj)Π

w
Qj (dωj)

)
Πw
Q(dω).

Thus the second moment Πw
Q(Xw

t )2 satisfies the following renewal-type equation.

Πw
Q(Xw

t )2 =e
−γ0(T−t)ϕ2

T (x(T − t),k) +

∫ T−t

0

dG(τ0)Bw[φ(2)
w ](x(τ0),k, t+ τ0)

+

∫ T−t

0

dG(τ0)C(x(τ0),k, t+ τ0),

(4.31)

where the operator Bw (the diagonal component) is given by

Bw[φ(2)
w ](x,k, t) =

ξ(x, t)

γ2
0

Θ−V [φ(2)
w ](x,k, t) +

ξ(x, t)

γ2
0

Θ+
V [φ(2)

w ](x,k, t) + φ(2)
w (x,k, t),

and the correlated term C(x,k, t) reads

C(x,k, t) = − 2

γ0
ΘV [ϕ](x,k, t) · ϕ(x,k, t)− 2

γ2
0

Θ−V [ϕ](x,k, t) ·Θ+
V [ϕ](x,k, t).

By the triangular inequality and Young’s inequality, it’s readily to verify that Bw

is bounded operator from L1(Rn)× L1
0(Rn) to itself,

‖Bw[φ(2)
w ](t)‖1 ≤

ξ̆

γ2
0

‖Θ−V [φ(2)
w ](t)‖1 +

ξ̆

γ2
0

‖Θ+
V [φ(2)

w ](t)‖1 + ‖φ(2)
w (t)‖1

≤ (1 +
2ξ̆2

γ2
0

)‖φ(2)
w (t)‖1.

(4.32)

Also, by Cauchy-Schwarz inequality, it yields

‖C(t)‖1 ≤
2

γ0
‖ΘV [ϕ](t)‖2 · ‖ϕ(t)‖2 +

2

γ2
0

‖Θ−V [ϕ](t)‖2 · ‖Θ+
V [ϕ](t)‖2

≤ 2KV

γ0
‖ϕ(t)‖22 +

2ξ̆2

γ2
0

‖ϕ(t)‖22.
(4.33)

Next we turn to analyze the L1-boundness of ∆φ
(2)
w (x,k, t), which satisfies the

following renewal-type equation according to Eq. (4.31),

∆φ(2)
w (x,k, t) =e

−γ0(T−t)ϕ2
T (x(T − t),k)− ϕ2(x,k, t)

+

∫ T−t

0

dG(τ)(Bw[ϕ2](x(τ),k, t+ τ) + C(x(τ),k, t+ τ))

+

∫ T−t

0

dG(τ)Bw[∆φ(2)
w ](x(τ),k, t+ τ).

(4.34)
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By integrating Eq. (4.34) in Rn × Rn and using the triangular inequality, the
extended Minkowski’s inequality and Eq. (4.32), it has

‖∆φ(2)
w (t)‖1 ≤ e

−γ0(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22 +

∫ T

t

dG(t′ − t)‖C(t′)‖1

+

∫ T

t

dG(t′ − t)(‖Bw[ϕ2](t′)‖1 + ‖Bw[∆φ(2)
w ](t′)‖1)

≤ e
−γ0(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22 +

∫ T

t

dG(t′ − t)‖C(t′)‖1

+ (1 +
2ξ̆2

γ2
0

)

∫ T

t

dG(t′ − t)(‖∆φ(2)
w (t′)‖1 + ‖ϕ(t′)‖2).

(4.35)

In addition, according to Eqs. (4.32) and (4.33) and Lemma 10, it yields∫ T

t

dG(t′ − t)‖C(t′)‖1 ≤
2KV γ0 + 2ξ̆2

γ0

∫ T

t

e
2KV (T−t′)

e
−γ0(t′−t)dt′ · ‖ϕT ‖22

=
(2KV γ0 + 2ξ̆2)(e2KV (T−t) − e

−γ0(T−t))

(2KV + γ0)γ0
‖ϕT ‖22.

(4.36)

Let

(4.37) u(t) =
‖∆φ(2)

w (t)‖1 + ‖ϕ(t)‖22
‖ϕT ‖22

, α0 =
2KV γ0 + 2ξ̆2

(2KV + γ0)γ0
,

then Eq. (4.35) is cast into

(4.38) u(t) ≤ α0e
2KV (T−t) + (1− α0)e−γ0(T−t) + (1 +

2ξ̆2

γ2
0

)

∫ T

t

dG(t′ − t)u(t′).

By using Lemma 9, it yields

(4.39) u(t) ≤ KV γ0 + ξ̆2

KV γ0 − ξ̆2
e

2KV (T−t) − 2ξ̆2

KV γ0 − ξ̆2
e

2ξ̆2

γ0
(T−t).

Here we use the following relations

(γ0 +
2ξ̆2

γ0
)

∫ T

t

e
2KV (T−t′)

e
2ξ̆2

γ0
(t′−t)dt′ =

γ2
0 + 2ξ̆2

2KV γ0 − 2ξ̆2
(e2KV (T−t) − e

2ξ̆2

γ0
(T−t)),

(γ0 +
2ξ̆2

γ0
)

∫ T

t

e
−γ0(T−t′)

e
2ξ̆2

γ0
(t′−t)dt′ = e

2ξ̆2

γ0
(T−t) − e

−γ0(T−t).

Consequently, the L1-boundedness of ‖∆φ(2)
w (t)‖1 for t ∈ [0, T ] is obtained.

‖∆φ(2)
w (t)‖1 ≤

(
KV γ0 + ξ̆2

KV γ0 − ξ̆2
e

2KV (T−t) − 2ξ̆2

KV γ0 − ξ̆2
e

2ξ̆2

γ0
(T−t)

)
‖ϕT ‖22 − ‖ϕ(t)‖22.

Finally, when KV γ0 > ξ̆2, it has

‖∆φ(2)
w (t)‖1
‖ϕT ‖22

≤ e
2KV (T−t) − ‖ϕ(t)‖22

‖ϕT ‖22
+

2ξ̆2

KV γ0 − ξ̆2
e

2KV (T−t)(1− e
−2(KV − ξ̆

2

γ0
)(T−t))

≤ e
2KV (T−t) − ‖ϕ(t)‖22

‖ϕT ‖22
+

4ξ̆2(T − t)
γ0

e
2KV (T−t),
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so that the variance is governed by the leading term e
2KV (T−t). In contrast, when

KV γ0 < ξ̆2,

‖∆φ(2)
w (t)‖1
‖ϕT ‖22

≤ e
2ξ̆2

γ0
(T−t) − ‖ϕ(t)‖22

‖ϕT ‖22
+
ξ̆2 +KV γ0

ξ̆2 −KV γ0

e
2ξ̆2

γ0
(T−t)(1− e

−2( ξ̆
2

γ0
−KV )(T−t))

≤ e
2ξ̆2

γ0
(T−t) − ‖ϕ(t)‖22

‖ϕT ‖22
+

2(ξ̆2 +KV γ0)(T − t)
γ0

e
2ξ̆2

γ0
(T−t),

so that the variance is governed by the leading term e
2ξ̆2

γ0
(T−t) instead. In this way,

we have completed the proof for the weighted-particle model.
The proof for the signed-particle situation is quite similar and we only need to

outline the differences.
Proof of the second part of Theorem 1. The first step is to derive the renewal-

type equation for the second moment. Since

Πs
Q1Ect

(Xs
t)

2 =

3∑
i=1

∫
Ect

(
w2
i

∫
Ωi

(Xs
t+τ0)2(ωi)Π

s
Qi(dωi)

)
Πs
Q(dω)

+
∑
i6=j

∫
Ect

(
(−1)i+jwiwj

∫
Ωi

Xs
t+τ0(ωi)Π

s
Qi(dωi)

∫
Ωj

Xs
t+τ0(ωj)Π

s
Qj (dωj)

)
Πs
Q(dω)

it’s readily obtained that

Πs
Q(Xs

t)
2 =e

−γ0(T−t)ϕ2
T (x(T − t), k) +

∫ T−t

0

dG(τ0)Bs[φ
(2)
s ](x(τ0),k, t+ τ0)

+

∫ T−t

0

dG(τ0)C(x(τ0),k, t+ τ0),

(4.40)

Accordingly, the operator Bs is given by

(4.41) Bs[φ
(2)
s ](x,k, t) =

1

γ0
Θ−V [φ(2)

s ](x,k, t) +
1

γ0
Θ+
V [φ(2)

s ](x,k, t) + φ(2)
s (x,k, t),

which is also a bounded operator from L1(Rn × Rn) to itself,

(4.42) ‖Bs[φ(2)
s ](t)‖1 ≤ (1 +

2ξ̆

γ0
)‖φ(2)

s (t)‖1.

Second, the renewal-type equation for the variance ∆φ
(2)
s (x,k, t)

∆φ(2)
s (x,k, t) = e

−γ0(T−t)ϕ2
T (x(T − t), k)− ϕ2(x,k, t)

+

∫ T−t

0

dG(τ)(Bs[ϕ
2](x(τ),k, t+ τ) + C(x(τ),k, t+ τ))

+

∫ T−t

0

dG(τ)Bs[∆φ
(2)
s ](x(τ),k, t+ τ),

(4.43)

then by the extended Minkowski’s inequality and Eq. (4.41), it yields.

‖∆φ(2)
s (t)‖1 ≤ e

−γ0(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22 +

∫ T

t

dG(t′ − t)‖C(t′)‖1

+ (1 +
2ξ̆

γ0
)

∫ T

t

dG(t′ − t)(‖∆φ(2)
s (t′)‖1 + ‖ϕ(t′)‖2).

(4.44)
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By the Lemma 9 and Eqs. (4.33) and (4.42), we obtain

‖∆φ(2)
s (t)‖1
‖ϕT ‖2

+
‖ϕ(t)‖22
‖ϕT ‖22

≤ ξ̆γ0 + ξ̆2

ξ̆γ0 −KV γ0

e
2ξ̆(T−t) − ξ̆2 +KV γ0

ξ̆γ0 −KV γ0

e
2KV (T−t)

≤ e
2ξ̆(T−t) +

ξ̆2 +KV γ0

ξ̆γ0 −KV γ0

e
2ξ̆(T−t)(1− e

−2(ξ̆−KV )(T−t))

≤ (1 + 2(KV +
ξ̆2

γ0
)(T − t))e2ξ̆(T−t),

which completes the proof.
We are interested in the asymptotic behavior of the variances when γ0 →∞. For

the weighted-particle model, we have

(4.45) ‖Πw
Q(Xw

t − ϕ(t))2‖1 . e
2KV (T−t)‖ϕT ‖22 − ‖ϕ(t)‖22,

so that the variance is uniformly bounded as γ0 increases. Whereas for the signed-
particle counterpart,

(4.46) ‖Πs
Q(Xs

t − ϕ(t))2‖1 . (1 + 2KV (T − t))e2ξ̆(T−t)‖ϕT ‖22 − ‖ϕ(t)‖22.

The leading term is e
2ξ̆(T−t), regardless of the choice of γ0.

Remark 1. It notes that Eq. (1.16) holds directly when V +
W (x,k, t) is integrable

with respect to k for any x ∈ Rn and t ∈ [0, T ], owing to Young’s inequality. In this
situation, we only require ϕ ∈ C([0, T ], L2(Rn)× L2(Rn)).

So far we have given the probabilistic interpretation of the mild solution of
the backward Wigner equation by introducing the stochastic process (Xw

t ,Π
w
Q) and

(Xs
t ,Π

s
Q) on BΩ for a given initial state (x,k). The probabilistic interpretation of the

weak solution of the Wigner equation (2.1) can be constructed by an extension of the
probability spaces (Ω,BΩ,Π

w
Q) and (Ω,BΩ,Π

s
Q),

(4.47) Ω̂ = Rn × Rn × Ω, B̂Ω = Rn ⊗ Rn ⊗BΩ, Πw = λ0 ⊗Πw
Q, Πs = λ0 ⊗Πs

Q

where Rn⊗Rn⊗BΩ is the product Borel extension of Ω̂ and the probability measure
λ0 is given by

(4.48) dλ0 = fI(x,k)dxdk, fI = |f0|/‖f0‖1,

and

ΠwXw
t = λ0 ⊗Πw

Q(Xw
t ) =

∫
Rn×Rn

fI(x,k)

(∫
Ω

Xw
t (ω)Πw

Q(dω)

)
dxdk,(4.49)

ΠsXs
t = λ0 ⊗Πs

Q(Xs
t ) =

∫
Rn×Rn

fI(x,k)

(∫
Ω

Xs
t (ω)Πs

Q(dω)

)
dxdk.(4.50)

Thus the inner product 〈ϕT , fT 〉 = 〈ϕ0, f0〉 can be represented by

(4.51) 〈ϕT , fT 〉 = Πw(s ·Xw
0 ) = Πs(s ·Xs

0),

where s is short for the particle sign function

(4.52) s(x,k) = f0(x,k)/fI(x,k).

According to Theorem 1, it’s readily to obtain the variance estimation for the
inner product problem.
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Definition 11. The variances of Πw(s ·X) and Πs(s ·X) are defined by that

(4.53) Var (Πw(s ·Xw
t )) = λ0 ⊗Πw

Q(s ·Xw
t − λ0 ⊗Πw

Q(s ·Xw
t ))2

and

(4.54) Var (Πs(s ·Xs
t)) = λ0 ⊗Πs

Q(s ·Xs
t − λ0 ⊗Πs

Q(s ·Xs
t))

2,

respectively.
Now we prove the bounds of the variance for both the weighted-particle model

and the signed-particle model.
Theorem 12 (Variance estimation for the inner product problem). Suppose

‖fI‖∞ < ∞ and there exists a positive constant Ms > 0 such that s ≤ Ms holds
almost surely in R2n, then for the weighted-particle model,

(4.55) Var (Πw(s ·Xw
t )) ≤ 2M2

s ‖fI‖∞(1+(KV +
ξ̆2

γ0
)(T−t))e2 max(KV ,

ξ̆2

γ0
)(T−t)‖ϕT ‖22,

and for the signed-particle model, it has that

(4.56) Var (Πs(s ·Xw
t )) ≤ 2M2

s ‖fI‖∞(1 + (KV +
ξ̆2

γ0
)(T − t))e2ξ̆(T−t)‖ϕT ‖22.

Proof. It starts by a direct calculation

Var (Πw(s ·Xw
t )) = λ0 ⊗Πw

Q(s2 · (Xw
t )2)− (λ0 ⊗Πw

Q(s ·Xw
t ))2.

The first term reads

λ0 ⊗Πw
Q(s2 · (Xw

t )2) =

∫
R2n

f2
0 (x,k)

fI(x,k)

(∫
Ω

(Xw
t )2(ω)Πw

Q(dω)− ϕ2(x,k, t)

)
dxdk

+

∫
R2n

f2
0 (x,k)

fI(x,k)
ϕ2(x,k, t)dxdk,

and the second term is

λ0 ⊗Πw
Q(s ·Xw

t ) =

∫
Rn×Rn

f0(x,k)ϕ(x,k, t)dxdk.

Due to Hölder’s inequality, it has that∫
Rn×Rn

f2
0 (x,k)

fI(x,k)
ϕ2(x,k, t)dxdk ≤M2

s ‖fI‖∞‖ϕ(t)‖22 ≤M2
s ‖fI‖∞(e2KV (T−t)‖ϕT ‖22),

so that

Var (Πw(s ·Xw
t )) ≤M2

s ‖fI‖∞(‖∆φ(2)
w (t)‖1 + e

2KV (T−t)‖ϕT ‖22).

Thus according to Theorem 12, it yields Eq. (4.55).
The proof of Eq. (4.56) is similar and omitted for brevity.
Theorem 12 points out the “numerical sign problem” in the stochastic Wigner

simulation,3,6, 17,19 namely, the negative weights induced by VW = V +
W − V

−
W results

in the exponential growth of the statistical errors, as well as the simulation cost along
with the growth of particle number. However, the weighted-particle implementation
allows the reduction of variance by increasing the parameter γ0, thereby ameliorating
the “sign problem”. By contrast, the signed-particle implementation, although with
lower computational costs, actually sacrifices the accuracy to some extent.
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5. The WBRW-SPA model. Until now we have analyzed a class of branching
random walk models based on HJD (1.13). The potential weakness of HJD lies in the
fact that the near-cancelation of positive and negative parts of the oscillatory integral
is totally neglected, leading to a rapid growth of variance in the related stochastic
models. In this section, we try to formulate a new class of branching random walk
models based on Θλ0

V , instead of ΘV . Intuitively speaking, we would like to capture
the major contribution from the leading term of the asymptotic expansion and throw
away the high-order terms that may contribute less to the oscillatory integrals. The
main result of this section is presented in Theorem 3. It is presented that the resulting
stochastic processes gain a substantial reduction in variance, at the cost of introducing
some biases.

According to Eqs. (1.23), it is readily to verify that σ+(x) = −σ−(x). Therefore,
as ψ(k, t) = ψ∗(−k, t), it has that ψ(rσ+, t) = ψ∗(rσ−, t) and then the imaginary
part of the stationary phase approximation vanishes, say,

Λ>λ0
+ [ϕ](x,k, t) + Λ>λ0

− [ϕ](x,k, t)

= 2

∫ +∞

λ0/|z(x)|
Im

[
e
ir|z(x)|

(
2π

ir|z(x)|

)n−1
2

rn−1ψ(rσ+, t)

]
∆rσ+

[ϕ](x,k, t)dr

= 2

∫ +∞

λ0/|z(x)|
Im [ζ(r,x, t)] · rn−1Ψ(r)χ0,R(r) ·∆rσ+

[ϕ](x,k, t)dr,

(5.1)

where Im[z] denotes the imaginary part of z and ζ(r,x, t) is given by that

(5.2) ζ(r,x, t) = e
ir|z(x)|

(
2π

ir|z(x)|

)n−1
2 ψ(rσ+, t)

Ψ(r)
.

Under the assumption (A3), we have that

(5.3) η̆ =

∫ +∞

0

rn−1Ψ(r)χ0,R(r)dr <∞.

The corresponding probability laws Πw
Q and Πs

Q are characterized in a similar pat-

tern as in Eq. (4.9), with an alternative setting of the transition density K̃t′,x′

i1···im(k;k′)

and the particle weight wi1···im . The definition of K̃t′,x′

i1···im(k;k′) is given by that
(5.4)

K̃t′,x′

i1···im(k;k′) =



V +
W,R(x′, (−1)im(k − k′), t′)

ξ(x′, t′)
, im = 1, 2,

rn−1Ψ(r)χ0,R(r)

η̆
· δ(σ − σ+(x′))

∣∣∣
k=k′+

(−1)im

2 rσ
, im = 3, 4,

δ(k − k′), im = 5,

in the sense that for im = 3 or 4,

Pr(ki1···im − ki1···im−1 ∈
Kim

2
) =

∫
Kim

dki1···im K̃i1···im
ti1···im ,xi1···im

(ki1···im ;ki1···im−1)

=

∫
Eim

rn−1
i1···imΨ(ri1···im)χ0,R(ri1···im)

η̆
· δ(σi1···im − σ+(xi1···im))dri1···imdσi1···im ,

where Eim is the conversion of Kim under the spherical coordinate.
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For brevity, we adopt the following notations: ri1···im = 2
∣∣ki1···im − ki1···im−1

∣∣,
ζi1···im = ζ(ri1···im ,xi1···im , ti1···im) and zi1···im = z(xi1···im). Let σi1···im be

(5.5) σi1···im =


ξ(xi1···im , ti1···im)

γ0
· 1{ri1···im≤ 2λ0

|zi1···im |
}, im = 1, 2,

2η̆

γ0
·
∣∣Im [ζi1···im ]

∣∣ · 1{ri1···im> λ0
|zi1···im |

}, im = 3, 4.

Then the particle weight wi1···im reads that
(1) For the weighted particle model,

(5.6) wi1···im =


σi1···im · 1K(ki1···im), im = 1, 2,

σi1···im · sgn (Im[ζi1···im ]) · 1K(ki1···im), im = 3, 4,

1, im = 5.

(2) For the signed particle model,
(5.7)

wi1···im =


1, with Pr = σi1···im · 1K(ki1···im), im = 1, 2,

sgn (Im[ζi1···im ]) , with Pr = σi1···im · 1K(ki1···im), im = 3, 4,

0, otherwise,

and wi1···im = 1 for im = 5.
Here sgn(x) = 1 for x > 0, sgn(x) = −1 for x < 0 and sgn(x) = 0 for x = 0.

Definition 13. Suppose (xi,ki) is the starting state of a frozen particle i in a
given family history ω, and let δ(x,k) be the Dirac measure concentrated at state (x,k).
Then the weighted-particle WBRW-SPA is given by that

(5.8) Yw
t (ω) = 〈ϕT ,

∑
i∈Et(ω)

w̃i · δ(xi(T−ti),ki)〉 =
∑

i∈Et(ω)

w̃i · ϕT (xi(T − ti),ki),

the cumulative weight w̃i ∈ [−1, 1] for i = 〈i1i2 · · · in〉 is defined by the product of the
particle weights wi1···im

(5.9) w̃i =
n∏

m=1

(−1)im+1wi1···im , |wi1···im | ≤ 1,

where wi1···im are defined in Eq. (5.6).
Similarly, the signed-particle WBRW-SPA is given by that

(5.10) Ys
t(ω) = 〈ϕT ,

∑
i∈Et(ω)

s̃i · δ(xi(T−ti),ki)〉 =
∑

i∈Et(ω)

s̃i · ϕT (xi(T − ti),ki),

where cumulative weight s̃i ∈ {−1, 0, 1} for i = 〈i1i2 · · · in〉 is defined by the product
of the particle weight wi1···im ,

(5.11) s̃i =

n∏
m=1

(−1)im+1wi1···im , wi1···im = {−1, 0, 1},

where wi1···im are defined in Eq. (5.7).
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Definition 14. The first moments of Yw
t and Ys

t are denoted by

(5.12) Φ(1)
w (x,k, t) = Πw

QYw
t , Φ(1)

s (x,k, t) = Πs
QYs

t ,

and the second moments are

(5.13) Φ(2)
w (x,k, t) = Πw

Q(Yw
t )2, Φ(2)

s (x,k, t) = Πs
Q(Ys

t)
2,

In addition, the variances are defined as

∆Φ(2)
w (x,k, t) = Πw

Q(Yw
t − Φ(1)

w (x,k, t))2,(5.14)

∆Φ(2)
s (x,k, t) = Πs

Q(Ys
t − Φ(1)

s (x,k, t))2.(5.15)

Now we sketch the proof of Theorem 3. The first step is to prove that both

Φ
(1)
w (x,k, t) and Φ

(1)
s (x,k, t) are solutions of the modified backward Wigner equation,

(5.16)


∂

∂t
ϕλ0

(x,k, t) +
~k
m
· ∇xϕλ0

(x,k, t) = Θλ0

V [ϕλ0
] (x,k, t), t ≤ T,

ϕλ0(x,k, T ) = ϕT (x,k).

The second step is to estimate the variances of the resulting stochastic models. Finally,
by comparing ϕ and ϕλ0 , we arrive at the final result.

Theorem 15 (The first moments of WBRW-SPA). Suppose the assumptions
(A3) are satisfied. Then for a fixed λ0, there exists ϕλ0

∈ C([0, T ], L2(Rn)×L2
0(Rn))

such that

(5.17) Φ(1)
w (x,k, t) = Φ(2)

w (x,k, t) = ϕλ0(x,k, t),

and ϕλ0
satisfies the following estimate:

(5.18) ‖ϕ(t)− ϕλ0(t)‖2 ≤ Cλ−n/20 max
t∈[0,T ]

‖ϕ(t)‖L2
x×H1

k
.

Proof. Consider the events Et = {τ0 : t+ τ0 ≥ T} and Ect = {τ : t+ τ0 < T}.

(5.19) Πw
Q (1Et(ω)) = e

−γ0(T−t)ϕT (x(T − t), k),

Suppose the event Ect occurs, then for the family history ω = (Q0;ω1, · · · , ω5), it has
that

(5.20) Yw
t (ω) =

4∑
i=1

(−1)i+1ζi ·Yw
t (ωi) + Yw

t (ω5).

Now we calculate Πw
QYw

t for the first family ω1. Owing to the fact that ri are inde-

pendent, for the Hahn-Jordan decomposition Λ<λ0 = Λ<λ0
+ − Λ<λ0

− , it has that

(5.21)

∫ T−t

0

Λ<λ0
− [Φ

(1)
w ](x(τ),k, t+ τ)

γ0
dG(τ) =

∫
Ect

(−1)1+1ζ1 ·Yw
t (ω1)Πw

Q(dω)

since∫
Ect

ξ(x(τ), t+ τ)

γ0

(∫
Ω1

1{r1<λ0/|2z1|} ·Y
w
t (ω1)Πw

Q1
(dω1)

)
Πw
Q(dω) =∫ T−t

0

dG(τ)

∫
B(

λ0
|2z1|

)

dk1
ξ(x(τ), t+ τ)

γ0

V −W (x(τ),k1, t+ τ)

ξ(x(τ), t+ τ)
Φ(1)

w (x(τ),k − k1, t+ τ).
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where zi is short for z(xi) = z(x(τ)). For the third family ω3, it yields that

(5.22)

∫ T−t

0

Λ>λ0
− [Φ

(1)
w ](x(τ),k, t+ τ)

γ0
dG(τ) =

∫
Ect

(−1)1+3ζ3 ·Yw
t (ω3)Πw

Q(dω)

since∫
Ect

(−1)1+3ζ3 ·Yw
t (ω3)Πw

Q(dω)

=

∫
Ect

2η̆

γ0

(∫
Ω3

Im[σ3] · 1{r3>λ0/|z3|} ·Y
w
t (ω3)Πw

Q3
(dω3)

)
Πw
Q(dω)

=

∫ T−t

0

dG(τ)

∫ +∞

λ0/|z3|
dr3

2η̆

γ0
· Im

[
e
ir3|z3|

(
2π

ir3|z3|

)n−1
2 ψ(r3σ+(x(τ)), t+ τ)

Ψ(r3)

]

× rn−1
3 Ψ(r3)

η̆
Φ(1)

w (x(τ),k − r3σ+(x(τ))

2
, t+ τ).

The other terms are tackled in a similar pattern. Summing over five terms recovers
−Θλ0

V [ϕ] + γ0 ·ϕ. The proof for the signed-particle model is similar and thus omitted
for brevity.

For the second part, let ε(x,k, t) = ϕλ0(x,k, t)−ϕ(x,k, t). According to Eqs.(1.1)
and (5.16), it is observed that ε(x,k, t) satisfies the following equation

(5.23)
∂

∂t
ε(x,k, t) +

~k
m
· ∇xε(x,k, t) = Θλ0

V [ε](x,k, t) + (ΘV −Θλ0

V )[ϕ](x,k, t).

with ε(x,k, T ) = 0. It’s easy to verify by Eq. (4.28) that

‖ε(t)‖2 ≤
∫ T

t

dG(t′ − t)‖ΘV [ϕ](t′)−Θλ0

V [ϕ](t′)‖2 + (1 +
KV

γ0
)

∫ T

t

dG(t′ − t)‖ε(t′)‖2

≤ (1− e
−γ0(T−t)) max

t∈[0,T ]
λ
−n2
0 ‖ϕ(t)‖L2

x×H1
k

+ (1 +
KV

γ0
)

∫ T

t

dG(t′ − t)‖ε(t′)‖2

≤ λ
−n2
0 (γ0 +KV )eKV (T−t)

KV
max
t∈[0,T ]

‖ϕ(t)‖L2
x×H1

k

The second inequality uses the remainder estimate (1.22) in Theorem 2 and the third
equality is derived by Lemma 9.

The next step is to estimate the upper bounds for the variances, as illustrated by
the following theorem. When the assumption (A4) holds, by Young’s inequality, the
HJD of the operator Λ<λ0 , denoted by Λ<λ0

± , is bounded from Lp(Rn) × Lp0(Rn) to
itself,

(5.24) ‖Λλ0
± [ϕ](t)‖p ≤ α∗ξ̆‖ϕ(t)‖p, p = 1, 2.

Theorem 16 (Variances of WBRW-SPA). Suppose the assumptions (A2)-(A4)

are satisfied for a sufficiently large λ0 and γ2 = α∗ξ̆
2. Then we have that

(5.25) ‖Πw
Q(Yw

t −ϕλ0(t))2‖1 . (1+
4γ2

γ0
(T−t))e2 max(KV ,

α∗ ξ̆2
γ0

)(T−t)‖ϕT ‖22−‖ϕλ0(t)‖22

and

(5.26) ‖Πs
Q(Ys

t −ϕλ0(t))2‖1 . (1 + 2(KV +
γ2

γ0
)(T − t))e2α∗ξ̆(T−t)‖ϕT ‖22−‖ϕλ0(t)‖22.
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Proof. According to Eqs. (5.6) and (5.20), the renewal-type equation for the sec-
ond moment of Yw

t reads that

(5.27) Πw
Q(Yw

t )2 = Πw
Q

(
1Et(Y

w
t )2
)

+ Πw
Q

(
1Ect

(Yw
t )2
)
,

where the second term on the right hand side reads

Πw
Q

(
1Ect

(Yw
t )2
)

=

5∑
i=1

∫
Ect

(∫
Ωi

w2
i · (Yw

t+τ0(ωi))
2Πw

Qi(dωi)

)
Πw
Q(dω)

+
∑
i 6=j

∫
Ect

(
(−1)i+j

∫
Ωi

wiY
w
t+τ0(ωi)Πw

Qi(dωi)

∫
Ωj

wjY
w
t+τ0(ωj)Πw

Qj (dωj)

)
Πw
Q(dω).

Now we define an operator Bλ0
w and verify its L1-boundedness,

(5.28) Bλ0
w [Φ(2)

w ](x(τ0),k, t+ τ0) =

5∑
i=1

∫
Ωi

w2
i · (Yw

t+τ0)2(ωi)Πw
Qi(dωi).

Since |Im[ζ(r3,x(τ), t+ τ)]|2 ≤ (2π/λ0)
n−1

, it has that

‖
∫

Ect

(∫
Ω3

w2
3 · (Yw

t+τ0(ω3))2Πw
Q3

(dω3)

)
Πw
Q(dω)‖L1

k

≤ 4η̆

γ2
0

(
2π

λ0
)n−1‖

∫ +∞

λ0
|z3|

rn−1
3 Ψ(r3)χ0,R(r3) · Φ(2)

w (x(τ),k − r3σ+(x(τ))

2
, t+ τ)dr3‖L1

k

.
4η̆2

γ2
0

(
2π

λ0
)n−1‖Φ(2)

w (x(τ),k, t+ τ)‖L1
k
.

(5.29)

Combining Eqs. (5.24) and (5.29), we obtain that

(5.30) ‖Bλ0
w [Φ(2)

w ](t)‖1 ≤ (1 +
2α∗ξ̆

2

γ2
0

+
8η̆2

γ2
0

(
2π

λ0
)n−1)‖Φ(2)

w (t)‖1.

Thus for a sufficiently large λ0 (such as η̆2( 2π
λ0

)n−1 � ξ̆2), it further yields that

(5.31) ‖Bλ0
w [Φ(2)

w ](t)‖1 . (1 +
2α∗ξ̆

2

γ2
0

)‖Φ(2)
w (t)‖1 +O(λ

−(n−1)
0 ),

For the non-diagonal terms, we define correlated terms Cλ0
ij (x,k, t) as

(5.32)

Cλ0
ij (x(τ0),k, t+ τ0) = (−1)i+j

∫
Ωi

wiY
w
t+τ0(ωi)Πw

Qi(dωi)

∫
Ωj

wjY
w
t+τ0(ωj)Πw

Qj (dωj),

in which each term can be calculated in the similar way as in Eqs. (5.21) and (5.22).
In fact, by using Young’s inequality and Cauchy-Schwarz inequality, Cλ0(x,k, t) =
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∑
i<j C

λ0
ij (x,k, t) can be estimated by

‖Cλ0(t)‖1 ≤
‖Λ<λ0

+ [ϕλ0 ](t)‖2 · ‖Λ<λ0
− [ϕλ0 ](t)‖2

γ2
0

+
‖Λ>λ0

+ [ϕλ0 ](t)‖2 · ‖Λ>λ0
− [ϕλ0 ](t)‖2

γ2
0

+
‖Λ<λ0

+ [ϕλ0
](t)− Λ<λ0

− [ϕλ0
](t)‖2 · ‖Λ>λ0

− [ϕλ0
](t)‖2

γ2
0

+
‖Λ<λ0

+ [ϕλ0 ](t)− Λ<λ0
− [ϕλ0 ](t)‖2 · ‖Λ>λ0

+ [ϕλ0 ](t)‖2
γ2

0

+
‖Λ>λ0

+ [ϕλ0
](t)− Λ>λ0

− [ϕλ0
](t)‖2 · ‖ϕλ0

(t)‖22
γ0

+
‖Λ<λ0

+ [ϕλ0
](t)− Λ<λ0

− [ϕλ0
](t)‖2 · ‖ϕλ0

(t)‖2
γ0

≤

(
α2
∗ξ̆

2

γ2
0

+

(
4η̆2

γ2
0

(
2π

λ0
)
n−1

2 +
4KV η̆

γ2
0

+
4η̆

γ0

)
(
2π

λ0
)
n−1

2 +
KV

γ0

)
‖ϕλ0

(t)‖22

.(
α∗ξ̆

2

γ2
0

+
KV

γ0
)‖ϕλ0

(t)‖22 +O(λ
−n−1

2
0 ).

(5.33)

In addition, since

(5.34) ‖Θλ0

V [ϕλ0
](t)‖2 ≤ KV ‖ϕλ0

(t)‖2 + Cλ
−n−1

2
0 ‖ϕλ0

(t)‖2,

according to Lemma 10, it yields that

(5.35) ‖ϕλ0
(t)‖2 . e

KV (T−t)‖ϕT ‖2 +O(λ
−n−1

2
0 ).

Combining Eqs. (5.31), (5.33) and (5.35), we have the following result

‖∆Φ(2)
w (t)‖1 . e

−γ0(T−t)‖ϕT ‖22 − ‖ϕλ0(t)‖22 + 2

∫ T

t

dG(t′ − t)‖Cλ0(t′)‖1

+ (1 +
2α∗ξ̆

2

γ2
0

)

∫ T

t

dG(t′ − t)
{
‖∆Φ(2)

w (t′)‖1 + ‖ϕλ0
(t′)‖2

}
+O(λ

−n−1
2

0 ).

(5.36)

Notice that by replacing ξ̆ in Eqs. (4.35) and (4.39) by
√
α∗ξ̆, we can further

obtain the following estimate for Eq. (5.36),

‖∆Φ(2)
w (t)‖1 .

(
KV γ0 + α∗ξ̆

2

KV γ0 − α∗ξ̆2
e

2KV (T−t) − 2α∗ξ̆
2

KV γ0 − α∗ξ̆2
e

2α∗ ξ̆2
γ0

(T−t)

)
‖ϕT ‖22

− ‖ϕλ0
(t)‖22 +O(λ

−n−1
2

0 ).

(5.37)

Therefore, for the weighted particle model, it has that
(5.38)

‖∆Φ(2)
w (t)‖1 . (1 +

4α∗ξ̆
2

γ0
(T − t))e2 max(KV ,

α∗ ξ̆2
γ0

)(T−t)‖ϕT ‖22−‖ϕλ0(t)‖22 +O(λ
−n−1

2
0 ).
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Similarly, we can obtain the estimate of the variance for the signed-particle model,
(5.39)

‖∆Φ(2)
s (t)‖1 . (1 + (2KV +

2α∗ξ̆
2

γ0
)(T − t))e2α∗ξ̆(T−t)‖ϕT ‖22−‖ϕλ0

(t)‖22 +O(λ
−n−1

2
0 ).

When λ0 is sufficiently large, we can throw way the remainder term O(λ
−n−1

2
0 ) and

arrive at Eqs. (5.25) and (5.26).
As the last step, we complete the proof of Theorem 3.
Proof of Theorem 3. Since

Πw
Q(Yw

t − ϕ(x,k, t))2 =Πw
Q(Yw

t − ϕλ0
(x,k, t) + ϕλ0

(x,k, t)− ϕ(x,k, t))2

=Πw
Q(Yw

t − ϕλ0
(x,k, t))2 + (ϕλ0

(x,k, t)− ϕ(x,k, t))2

+ 2Πw
Q(Yw

t − ϕλ0(x,k, t)) · (ϕλ0(x,k, t)− ϕ(x,k, t)).

By the extended Minkowski’s inequality and the Cauchy-Schwarz inequality, it has
that

‖Πw
Q(Yw

t − ϕ(x,k, t))2‖1 ≤‖Πw
Q(Yw

t − ϕλ0(x,k, t))2‖1 + ‖ϕλ0(t)− ϕ(t)‖22
+ 2‖Πw

Q(Yw
t − ϕλ0

(t))‖2 · ‖ϕλ0
(t)− ϕ(t))‖2.

The first term is bounded by Eq. (5.38). The estimate ‖ϕλ0
(t) − ϕ(t)‖22 in the

second term is given by Eq. (5.18). And the third term is zero due to Theorem 15.
Thus it finalizes the proof of Eq. (1.27). The proof of Eq. (1.28) is similar and omitted
here for brevity.

Theorem 3 implies that the variance of the inner product problem can be reduced
by chopping the x-support and adopting the WBRW-SPA for the region in which the
distance |z(x)| between two interacting bodies is sufficiently large (as stated in the
assumption (A4)). The price to pay is to introduce some asymptotic biases, which
may be negligible when α∗ is sufficiently small. In Section 6, we will show that all the
results in our theoretical analysis can be verified in numerical experiments.

6. Numerical validation. This section is devoted to the numerical validation
of our theoretical results. The prototype model is the quantum system under the two-
body interaction. Here we take the two-dimensional Morse potential as an example.

(6.1) V (x) = −2e−κ(|x−xA|−r0) + e
−2κ(|x−xA|−r0).

In this case, z(x) = (z1, z2) = x− xA and ψ(k) reads that

(6.2) ψ(k) =
1

i~

[
− 2κeκr0c2

(|k|2 + κ2)3/2
+

2κe2κr0c2
(|k|2 + 4κ2)3/2

]
.

Thus the pseudo-differential operator is given by that

ΘV [ϕ](x,k, t) =− κeκr0c2
~

∫ 2π

0

dϑ

∫ +∞

0

dr
r sin(2z(x) · k′)√

r2 + (κ/2)2

∆rσ[ϕ](x,k, t)

r2 + (κ/2)2

+
κe2κr0c2

~

∫ 2π

0

dϑ

∫ +∞

0

dr
r sin(2z(x) · k′)√

r2 + κ2

∆rσ[ϕ](x,k, t)

r2 + κ2
,

(6.3)
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where k′ = rσ = (r cosϑ, r sinϑ) and c2 = Γ(3/2)π−3/2 ≈ 0.1592. The stationary
phase approximation to PDO reads

Θλ0

V [ϕ](x,k, t) =

∫
B(

λ0
|z(x)| )

e
iz(x)·k′ψ(k′)(ϕ(x,k − k′

2
, t)− ϕ(x,k +

k′

2
, t))dk′

+ 2

∫ +∞

λ0
|z(x)|

Im

[
e
ir|z(x)|

(
2π

ir|z(x)|

) 1
2

]
rψ(rσ+)∆rσ+ [ϕ](x,k, t)dr,

(6.4)

where ϑ+ = atan2(z2/z1).
The variances can be monitored within the implementation of the Monte Carlo

algorithm in.3 Here we adopt the Gaussian wavepacket of the form (6.5) as the initial
condition:

(6.5) f0(x1, x2, k1, k2) =
1

π2
e
−0.5(x1−8)2−0.5(x2−12)2−2(k1−0.5)2−2(k2+0.5)2

.

Other parameters are set as: xA = (10, 10), r0 = 0.5, κ = 0.5, ~ = m = 1, T = 2.
We simulate the 105 independent family trees and measure the L2-error,19 which is
proportional to the variance. The numerical solutions obtained by the highly accurate
deterministic scheme are adopted as the reference.27

Fig. 1(a) makes a comparison between the weighted-particle WBRW-HJD (wp-
HJD) and the signed-particle one (sp-HJD). The variance of the weighted-particle
model can be reduced by choosing a larger γ0, while this does not hold for the signed-
particle counterpart. Fig. 1(b) compares the WBRW-HJD and WBRW-SPA when
λ0 = 8. It’s readily seen that the variances of both weighted-particle WBRW-SPA
(wp-SPA) and the signed-particle counterpart (sp-SPA) are diminished when the sta-
tionary phase method is adopted, while the variance of the signed-particle model is
still independent of the choice of γ0. Finally, Fig. 1(c) compares sp-SPA under differ-
ent settings of λ0. It is found that the reduction of variance might not be significant
for too large λ0 as α∗ may be very close to 1, while the errors in the asymptotic
expansion become dominated for too small λ0. A reasonable choice of λ0 (such as
λ0 = 2) can strike a balance between the bias and variance. All of these observations
perfectly coincide with our main theoretical results.

7. Conclusion and discussion. In this paper, we have analyzed two classes
of branching random walk (BRW) solutions to the Wigner (W) equation, including
WBRW-HJD based on the Hahn-Jordan decomposition (HJD): ΘV = Θ+

V −Θ−V , and
WBRW-SPA based on the stationary phase approximation (SPA). The main idea is
to split the nonlocal operator with anti-symmetric kernels into two parts and explain
each of them as the generator of jump process of one branch of weighted particles.
We have shown that although the first moment of WRBW-HJD recovers the solution
of the Wigner equation, the L1-bounds for the variances grows exponentially in time
with the rate depending on the norm of Θ±V , which is inconsistent with the decay
rate of the pseudo-differential operator. By contrast, the WBRW-SPA is able to
capture the essential contributions from the localized parts and the variance of the
resulting stochastic model can be diminished, at the cost of introducing a little bias.
These results are of great importance in applications, such as tackling a general form
of nonlocal problems. In particular, it ameliorates the numerical sign problem in
high dimensional situation, which may involves multiple pairs of potentials and high
dimensional oscillatory integrals. Our ongoing work is to apply the WBRW-SPA to

27



study the quantum dynamics under the Coulomb interaction, such as the Hydrogen
atom.
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(a) Variance of WBRW-HJD.
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(b) Variance of wp-SPA and sp-SPA.
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(c) Variance of sp-SPA under different λ0.

Fig. 1. The variances are monitored in the Monte Carlo simulations. The exponential
growth of variances is observed. The choice of γ0 has a great influence on the variance of
both the weighted-particle WBRW-HJD (wp-HJD) and WBRW-SPA (wp-SPA), while it has
little influence on that of the signed-particle counterparts (sp-HJD, sp-SPA). The variances
are clearly reduced when the stationary phase approximation is adopted, but the results are
not very satisfactory when λ0 is either too large or too small.
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