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DOMAIN DECOMPOSITION WITH LOCAL IMPEDANCE CONDITIONS FOR

THE HELMHOLTZ EQUATION WITH ABSORPTION ∗

I. G. GRAHAM, † , E. A. SPENCE, ‡ , AND J. ZOU §

Abstract. We consider one-level additive Schwarz preconditioners for a family of Helmholtz problems with
absorption and increasing wavenumber k. These problems are discretized using the Galerkin method with nodal
conforming finite elements of any (fixed) order on meshes with diameter h = h(k), chosen to maintain accuracy
as k increases. The action of the preconditioner requires solution of independent (parallel) subproblems (with
impedance boundary conditions) on overlapping subdomains of diameter H and overlap δ ≤ H. The solutions of
these subproblems are linked together using prolongation/restriction operators defined using a partition of unity;
this formulation was previously proposed in [J.H. Kimn and M. Sarkis, Comp. Meth. Appl. Mech. Engrg. 196,
1507-1514, 2007]. In numerical experiments (with δ ∼ H) for a model interior impedance problem, we observe
robust (i.e. k−independent) GMRES convergence as k increases, with H ∼ k−α and α ∈ [0, 0.4] as k increases.
This provides a highly-parallel, k−robust one-level domain decomposition method. We provide supporting theory
by studying the preconditioner applied to a range of absorptive problems, k2 7→ k2 + iε, with absorption parameter
ε. Working in the Helmholtz “energy” inner product, and using the underlying theory of Helmholtz boundary-value
problems, we prove a k−independent upper bound on the norm of the preconditioned matrix, valid for all |ε| . k2.
We also prove a strictly-positive lower bound on the distance of the field of values of the preconditioned matrix from
the origin which holds when ε/k is constant or growing arbitrarily slowly with k. These results imply robustness of
the preconditioner for the corresponding absorptive problem as k increases (given an appropriate choice of H). Since
it is known that the absorptive problem provides a good preconditioner for the pure Helmholtz problem when ε ∼ k,
our results provide some theoretical support for the observed robustness of the preconditioner for the pure Helmholtz
problem. Since the subdomains used in our preconditioner shrink only slowly (relative to the fine grid size) as k
increases, cheaper approximate (two- or multi-level) versions of the preconditioner analysed here are important in
practice and are reviewed here.

Key words. Helmholtz equation, high frequency, preconditioning, GMRES, domain decomposition, subprob-
lems with impedance conditions, robustness
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1. Introduction. The efficient solution of the wave equation is of intense current interest be-
cause of the equation’s many applications (in, e.g., computational medicine, underwater acoustics,
earthquake modelling, and seismic imaging). This paper concerns efficient iterative methods for
computing conforming finite-element approximations of any fixed order of the Helmholtz equation
(i.e. the wave equation in the frequency domain) in 2-d or 3-d. We formulate and analyse parallel
preconditioners for use with GMRES and provide theory indicating that our preconditioners should
remain effective as the wavenumber k increases.

As k increases, there are several difficulties that make the Helmholtz problem hard, both
mathematically and numerically: (i) the solution becomes more oscillatory and, in general, meshes
need to be increasingly refined, leading to huge linear systems with dimension growing at least
with O(kd); (ii) the linear systems become more indefinite; (iii) many “standard” preconditioning
techniques that are motivated by positive-definite problems become unusable in practice; (iv)
there is relatively little rigorous theory for justifying effective preconditioning of such large and
indefinite problems. Regarding (i), we recall that [35, Chapter 4] shows that in the linear finite
element method for a 1D Helmholtz problem, h ∼ k−3/2 is necessary to ensure a bounded relative
error as k increases; the extension of this result to higher dimensions is given in [39].

Our analysis is carried out for the model Helmholtz problem with absorption:

(1.1) −∆u− (k2 + iε)u = f ,
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on an open bounded polygonal (for d = 2) or Lipschitz polyhedral (for d = 3) domain Ω ⊂ Rd,
with mixed boundary conditions

(1.2)
∂u

∂n
− iηu = g on ΓI , and u = 0 on ΓD,

where the wavenumber k > 0, and Γ = ΓI ∪ΓD is the boundary of Ω, partitioned into ΓI and ΓD,
where ΓI has positive surface measure. In applications, k = ω/c, with ω the angular frequency
and c the wave speed. Here we restrict to the case when c is a positive constant. We allow the
absorption parameter ε to be negative, zero or positive (with ε = 0 corresponding to the “pure
Helmholtz” case); more details on ε and η are given in §2.

In practical wave scattering problems, the PDE (1.1) is commonly posed on the infinite do-
main exterior to a bounded scatterer, which is then truncated using an artificial boundary. The
significance of the impedance boundary condition in (1.2) is that (with η =

√
k2 + iε) it is the

simplest possible approximation to the Sommerfeld radiation condition. The problem (1.1), (1.2)
can therefore model acoustic scattering by a sound-soft scatterer. Also included in (1.1), (1.2) is
the interior impedance problem, where ΓD = ∅, and ΓI is the boundary of Ω. We assume that if
ΓD 6= ∅ then the surface measure of ΓD is positive.

The standard variational formulation for (1.1), (1.2) is: Given f ∈ L2(Ω), g ∈ L2(ΓI), find
u ∈ H1

0,D(Ω) :=
{
v ∈ H1(Ω) : v = 0 onΓD

}
, such that

(1.3) aε(u, v) = F (v) for all v ∈ H1
0,D(Ω),

where

(1.4) aε(u, v) :=

∫

Ω

∇u · ∇v − (k2 + iε)

∫

Ω

uv − iη

∫

ΓI

uv and F (v) :=

∫

Ω

fv +

∫

ΓI

gv;

when ε = 0 and η = k we write a instead of aε. We approximate (1.3) using the Galerkin method
in a conforming finite-element space Vh ⊂ H1

0,D(Ω) (consisting of continuous piecewise polynomials

of arbitrary fixed order), on a shape-regular mesh T h with mesh diameter h (assumed to resolve
the interface ΓI ∩ ΓD when this is non-empty and points on the interface are treated as Dirichlet
points). This yields the linear system

(1.5) AεU := (S − (k2 + iε)M − iηN)U = F,

where U is the vector of nodal values of the finite-element approximation uh ≈ u, S is the stiffness
matrix for the negative Laplace operator, M is the domain mass matrix and N is the boundary
mass matrix (corresponding, respectively, to each of the terms in aε(u, v) in (1.4), and described in
more detail in §2.2). Aε is large, sparse, and indefinite. When ε = 0 and η = k we write A instead
of Aε. In common with many other investigations in the literature, we consider the situation where,
following Point (i) on the previous page, h is chosen as a function of k to maintain accuracy as k
increases (see Remark 2.9 below for more details).

One way to understand the essential difficulty in preconditioning A (as k increases) is to
recall that the fundamental solution of the operator in (1.1) with ε = 0 (in three dimensions) is
G(x, y) = exp(ikr)/r, where r = |x − y|, with | · | denoting the Euclidean norm, and so a good
preconditioner for (1.1) with ε = 0 should, roughly speaking, approximate the integral operator
with kernel G. When k = 0 this operator is “data-sparse”, since the jth derivative of G decays
with order O(r−(j+1)), when x and y are well-separated. Thus, a source in a given region is
only felt weakly far away, a fact that underlies many successful preconditioners for Laplace-like
problems (e.g. multigrid, domain decomposition, or H-matrices). However, when k is large, the
jth derivative of G decays with the much slower rate O(kjr−1), and the application of Laplace-like
preconditioning strategies becomes problematic. While directional clustering methods (see, e.g.,
[16], [7] and the references therein) have been developed for homogeneous Helmholtz problems,
formulated using boundary integral equations, domain-based methods such as those considered
here remain of great importance, due to their applicability to general problems with sources and
heterogeneities.

Introducing absorption, ε 6= 0, has the effect of improving the decay of the Green’s function.
While absorptive problems do appear in applications (and our results here cover these), our deeper
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motivation for including ε is that it has proved useful for both constructing and providing the
theory for preconditioners for the case ε = 0. In [27] it was proved (subject to certain natural
conditions on Ω, h and ε), that there is a constant K, independent of h, k, and ε, such that

‖I −A−1
ε A‖2 ≤ K

|ε|
k

.(1.6)

Thus the left-hand side of (1.6) can then be made small by choosing ε to be a small-enough
multiple of k. However A−1

ε is not a practical preconditioner for A, and we therefore replace it by
a approximation B−1

ε ≈ A−1
ε . Using the classical results about GMRES in [15], we say that B−1

ε

is a good preconditioner for A if both (i) the matrix B−1
ε A has Euclidean norm bounded above,

and (ii) the field of values (in the Euclidean norm) of B−1
ε A is bounded away from the origin, with

both bounds independent of k and ε. If both (i) and (ii) are satisfied then, by [15], GMRES for
B−1

ε A will converge in a number of iterations independent of k and ε.
In order to characterize good choices of B−1

ε , we can write

B−1
ε A = B−1

ε Aε − B−1
ε Aε(I −A−1

ε A).(1.7)

Then (1.6) combined with (1.7) suggests that B−1
ε will be a good preconditioner for A provided

that

B−1
ε is a good preconditioner for Aε when |ε| = ck, with c sufficiently small.(1.8)

(An argument making this statement rigorous is given in Appendix §A).
1.1. The novel results of the paper. We give a new and rigorous proof that B−1

ε is a
good preconditioner for Aε when B−1

ε is a simple additive Schwarz preconditoner, constructed by
solving independent (local) Helmholtz impedance subproblems on overlapping subdomains of Ω,
linked by prolongation/restriction operators defined via a partition of unity (see §1.2).

Theorem 3.12 gives general estimates for the norm and the distance of the field of values
from the origin of B−1

ε Aε, under the general assumption that the local solvers are sufficiently
good approximate inverses for the localised global problem (assumption (3.43)). The estimates are
explicit in the wavenumber k, the fine mesh diameter h, the number of overlaps Λ, the subdomain
diameter H , the overlap size δ and the absorption parameter ε. Corollaries 3.15 and 3.16 then
provide more concrete estimates under additional conditions on H , δ and ε. In particular:

(1) Corollary 3.15 provides conditions under which the norm of B−1
ε Aε is uniformly bounded

from above for all 0 ≤ |ε| ≤ k2

(2) Corollary 3.16 provides conditions under which the field of values of B−1
ε Aε is uniformly

bounded away from the origin. These hold (for appropriate H = H(k)), when |ε| ∼ k1+β ,
with β arbitrarily close to 0 or when |ε| = Ck, for some large enough constant C.

Although both the latter requirement in (2) and the requirement in (1.8) suggest we should take
ε proportional to k, the required constants C, c are not explicitly known and so a rigorous lower
bound on the field of values can not be deduced in the pure Helmholtz case. Nevertheless numerical
experiments in §4 still suggest that B−1

0 is a good preconditioner for the pure Helmholtz problem,
for certain choices of H(k), decreasing as k → ∞.

Important features of the results of Theorem 3.12 and Corollaries 3.15 and 3.16 are that (a)
they hold for bounded polygonal or Lipschitz polyhedral domains and cover sound-soft scattering
problems, truncated using first order absorbing boundary conditions; (b) the theory allows finite el-
ement methods of any fixed order on shape-regular meshes; and general shape-regular subdomains;
(c) the proof constitutes a substantial extension of classical Schwarz theory to the non-self-adjoint
case; (d) via a duality argument, the theory covers both left- and right-preconditioning simultane-
ously.

To achieve the goal of a highly-parallel and provably O(n) solver for the Helmholtz equation
as k increases, one would need:

(i) a k-independent (i.e. O(1)) number of iterations,
(ii) the action of the preconditioner to be O(n), and
(iii) (roughly speaking) the preconditioner to be as parallel as possible.

Since we propose here a one-level additive Schwarz method, (iii) is achieved. The main achievement
of our paper is fundamental theory obtaining conditions under which (i) is achieved for Schwarz
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methods even without global coarse solver. As can be seen from the experiments in §4, the
subdomain size H needed to ensure robustness can shrink to zero as k increases, but remains large
relative to the fine grid size h. Further work is needed to achieve requirement (ii). However, in
§1.4 we briefly discuss the cost of the subdomain problems, together with ways of reducing this
cost (some of which have been recently implemented and tested [30, 31, 5, 4, 6]). Relatively large
subdomain problems are also encountered in sweeping-style preconditioners, although in this case,
they are typically posed on “quasi (d−1) dimensional” slices of an original d−dimensional domain,
and efficient direct solvers have been developed for these (e.g. [51]).

Finally, we note that it is perhaps remarkable that this one-level additive Schwarz method can
be robust when the subdomain size H → 0. This conflicts with standard intuition and existing
understanding, even for self-adjoint coercive PDEs; there, if H → 0, the condition number of the
one-level preconditioned problem grows like O((δH)−1). In the Helmholtz case, however, we are
solving a family of problems parametrized by k. Even though the problem itself becomes “harder”
as k increases, the results of this paper show that the one-level preconditioner can still remain
robust.

1.2. The preconditioner. Our algorithm is a variation of the simple one-level additive
Schwarz method and is based on a set of open polyhedral subdomains {Ωℓ}Nℓ=1, forming an over-
lapping cover of Ω. We assume that each Ωℓ is non-empty and is a union of elements of the mesh
T h. The key component of the preconditioner for (1.5) is the solution of discrete “local” versions
of (1.1):

(1.9) −∆u− (k2 + iε)u = f on Ωℓ,

subject to boundary conditions

∂u

∂n
− iηu = 0 on ∂Ωℓ\ΓD (assumed non-empty), and u = 0 on ∂Ωℓ ∩ ΓD.(1.10)

We assume that if ∂Ωℓ ∩ ΓD 6= ∅, then it has positive surface measure. Because Ωℓ consists of a
union of fine grid elements, ∂Ωℓ ∩ ΓD then contains at least one fine grid element.

To connect these local problems, we use a partition of unity {χℓ}Nℓ=1 with properties

for each ℓ : χℓ : Ω → R, suppχℓ ⊆ Ωℓ and 0 ≤ χℓ(x) ≤ 1, when x ∈ Ω,(1.11)

and such that ∑

ℓ

χℓ(x) = 1 for all x ∈ Ω.

(Here we define suppχℓ := {x ∈ Ω : χℓ(x) 6= 0}.)
The finite-element space Vh ⊂ H1

0,D(Ω) underlying (1.5) is assumed to have a nodal basis

so that each vh ∈ Vh is uniquely determined by its values {Vp := vh(xp), p ∈ Ih}, at nodes
{xp : p ∈ Ih} ⊂ Ω (where Ih is a suitable index set). Nodes on the subdomain Ωℓ are denoted
{xp : p ∈ Ih(Ωℓ)}. Using this notation, we can define a restriction matrix Rℓ that uses χℓ to map
a nodal vector defined on Ω to a nodal vector on Ωℓ:

(1.12) (RℓV)p = χℓ(xp)Vp, p ∈ Ih(Ωℓ).

We denote by Aε,ℓ the matrix obtained by approximating (1.9) and (1.10) in Vh (restricted to Ωℓ);
this matrix is a local analogue of the matrix Aε in (1.5). Our preconditioner for Aε is then simply:

(1.13) B−1
ε :=

N∑

ℓ=1

R⊤
ℓ (Aε,ℓ)

−1Rℓ ,

where R⊤
ℓ is the transpose of Rℓ. Hence the action of B−1

ε consists of N parallel “local impedance
solves” added up with the aid of appropriate restrictions/prolongations. B−1

ε coincides with the
“OBDD-H” preconditioner proposed (without theory) by Kimn and Sarkis in [37] (also called
SORAS – see, e.g., [12, §7.7.2].)
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In the analysis we use the k−dependent inner product and norm:

〈V,W〉Dk
:= W∗DkV, ‖V‖Dk

= 〈V,V〉1/2Dk
, where Dk = (S + k2M).(1.14)

In fact, Dk is the stiffness matrix arising from approximating via the Galerkin method in Vh the
Helmholtz energy norm

‖v‖1,k := (v, v)
1/2
1,k where (v, w)1,k := (∇v,∇w)L2(Ω) + k2(v, w)L2(Ω).(1.15)

When Ω̃ is any subdomain of Ω we write (·, ·)1,k,Ω̃ and ‖·‖1,k,Ω̃ for the corresponding inner product

and norm on Ω̃.

1.3. Related literature. There have been two important recent ideas that have had a large
effect on the field of iterative solvers for the Helmholtz equation. The first is the “shifted Laplace”
preconditioner, arising from initial ideas by in [1] and [41], and then developed and advocated in
[23, 21, 57]. Since the fundamental solution of (1.1) enjoys “Laplace-like” decay when ε is large
enough, the “shifted Laplace” preconditioner uses a multigrid approximation of the absorptive
problem to precondition the “pure Helmholtz” problem ε = 0.

The second concerns a class of multiplicative domain decomposition methods that fall under
the general heading of “sweeping”, e.g. [17, 18, 19, 54, 9, 51, 58, 26]. Restricting to a simple context,
suppose (1.1) is discretized on a tensor product grid on the unit square and the unkowns are ordered
lexicographically, yielding a block tridiagonal system matrix, each block corresponding to a row
of nodes. Sweeping methods can be thought of as approximate block-elimination methods for this
system. The Schur complement that arises in the block-elimination at a given line corresponds
to the solution of a Helmholtz problem in the domain below that line, and these problems can
be suitably truncated, to thinner strips either by “moving perfectly-matched layer (PML)” or
H−matrix approximation. The polarized trace algorithm [58] takes this idea a step further by pre-
computing and compressing the solution operators on each strip, expediting the online process.

Both these ideas have led to computation of challenging industrial strength applications, but
neither of them have a rigorous theory. For “sweeping”, the underpinning physical principle applies
only to rectangular 2-d domains and tensor-product discretizations (since the relevant low-rank
result [45] does not hold for general domains and discretizations [20]), and to the elimination of
nodes in blocks, each consisting of a small number of rows. Although the overarching principle of
sweeping methods is serial, there have been considerable innovations to enhance parallel efficiency.
For example [51, 58] propose recursive subdivision of the inner solves in each multiplicative sweeping
step. Very recently [55] proposed the “L-sweeps” algorithm in which information propagates in
a 90-degree cone, allowing checkerboard domain decomposition. In [42] an overlapping domain
decomposition solver is proposed, with independent subdomain solves at each step.

On the other hand the “shifted Laplace” algorithm is not in general robust with respect to k,
since the choice |ε| ∼ k2, which is needed to make multigrid work [11], turns out to be too large a
perturbation of the pure Helmholtz problem to remain robust as k → ∞. Although recent enhance-
ments based on deflation [53, 52, 22, 14] have greatly improved the shifted Laplace preconditioner,
a full theory is still missing. A recent survey of shifted Laplace and related preconditioners is given
in [40].

Domain decomposition methods offer the attractive feature that their coarse grid and local
problems can be adapted to allow for “wave-like” behaviour. There is a large literature (mostly
empirical) on this (see, e.g., [3, 24, 25, 37, 38, 33, 34, 28]). A recent example is [44], which
proposes a multiplicative overlapping domain decompositon method as a smoother in a multigrid
algorithm for Helmholtz problems discretized by the continuous interior penalty method. However
there is no rigorous theory when k is large, for methods with either many subdomains of general
shape or coarse grids. The paper [30] provided the first such rigorous analysis for the problem
with absorption, but the bounds for |ε| ≪ k2 in [30] were very pessimistic. The current paper
extends this line of research to the case when wave-like components are inserted into the domain
decomposition method. The results we obtain for the one-level method (i.e. with no coarse solver)
with impedance boundary conditions on the subdomains give practical bounds for much lower
levels of absorption than in [30].

Finally, we remark that domain decomposition methods (with and without global coarse solver)
for the case when k is fixed and h → 0 are in principle analysed in Cai and Widlund [8], since

5



for small enough h the Laplacian becomes the dominant term in the discrete Helmholtz equation.
However the current paper concentrates instead on analysis for the more challenging case that
allows k → ∞.

1.4. Cost of the Preconditioner. Here we discuss the cost of the preconditioner (1.13),
along with its possible approximations. We also give a brief comparison with other preconditioners.
The action of (1.13) requires the solution of O(H−d) subproblems each of size O((H/h)d), with
d being the physical dimension. If h ∼ k−γ with γ ≥ 1 and H ∼ k−α, with 0 < α < γ, then the
dimension of the global system grows quickly with k, having dimension n ∼ kγd. The action of the
preconditioner then requires the solution of O(kαd) subproblems, each of size O(k(γ−α)d). Since
k ∼ n1/γd, this is equivalent to

O(nα/γ) independent subproblems, each of size O(n(1−α/γ)).(1.16)

In the case α = 0.5 (seen in Table 2 in §4 to have an iteration count growing slowly with k)
and γ = 1.5 (needed for accuracy of linear elements), the preconditioner has

O(n1/3) independent subproblems, each of size O(n2/3).(1.17)

In the case α = 0.5 and γ = 1 (e.g. a fixed number of grid points per wavelength, commonly
used in practice and reasonable for higher order methods), the preconditioner has

O(n1/2) independent subproblems, each of size O(n1/2).(1.18)

These subproblem sizes are comparable to those arising from the (very successful) sweeping precon-
ditioners, although (as pointed out above) the systems arising in sweeping are on thin rectangular
subdomains and hence have beneficial special structure. In sweeping methods, an approximate
inverse of A is computed by an approximate LDL⊤ factorization. In the moving PML variant (for-
mulated for a cubic domain with tensor product grid and appropriate boundary conditions) one
solves sequentially O(n1/d) subproblems (on slices of the domain), each of dimension O(n(1−1/d)).
When d = 3 this coincides with (1.17) and when d = 2 it coincides with (1.18). The sweeping
method in its basic format [18] is multiplicative, whereas our preconditioner is fundamentally ad-
ditive. On the other hand sweeping provides an approximate inverse of the Helmholtz operator,
while our aim here is only to provide a good preconditioner (a somewhat weaker requirement). As
a result, our method is applicable in much more general geometrical situations.

Several other practical implementations of the preconditioner analysed here have been tested.
For example, [5] reduced the subproblem size and added a coarse grid solver to reduce iteration
count. Although, now not completely robust as k (and hence n) increases, a slow growth of iteration
count of about O(n0.1) for 3D Helmholtz problems of size up to n = 107 was observed. A similar
method was used for 3D Maxwell systems in [4, 6], where good parallel performance was reported
on systems of size up to 1 billion. Here the fact that absorption is added into the preconditioner
turns out to be advantageous in practice, since the absorptive coarse grid problem can be quickly
solved with an inner iterative method and does not dominate the overall cost.

Another approach to reduce the cost of the preconditioner is to observe that the local
impedance solves are local copies of the original problem (but on smaller domains and hence
with smaller effective wavenumber). This allows them to be quickly resolved by an (inner) precon-
ditioned GMRES combined with the same preconditioner. A preliminary (serial) implementation
of this method is given in [31, §5.2.2] where, on a 2D domain of size O(1) the outer preconditioner
was formulated on subdomains of size O(k−0.4) and the inner preconditioner on subdomains of
size O(k−0.8). This was implemented on a fine discretization with 10 grid points per wavelength,
in which only very small problems of size O((k−0/8/k−1)2) = O(k0.4) had to be solved directly.
Results for k up to 300 are given in [31, §5.2.2], showing very low inner iteration counts and outer
iteration counts growing slowly (∼ O(n0.2)). For k = 300, direct solvers were needed for systems
of size only few hundred. The idea of recursive subdivision of subdomains also features heavily in
efficient versions of sweeping [43], and also in the polarized trace algorithm [58].

1.5. Structure of the paper. In §§2.1, 2.2 we provide key estimates for the local impedance
solution operator at the continuous (PDE) level, and its discretization. The properties of the
preconditioner are established via its interpretation as a sum of projections; this is set up in §2.3.
We prove the main results in §3 and present numerical experiments in §4. In Appendix A we give
a rigorous basis for the discussion around (1.8).
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2. Preliminaries. Throughout we write a . b when there exists a C > 0, independent of
all parameters of interest (here ε, k, h,H, δ, Λ, and ℓ - with some of these defined later), such that
a ≤ Cb. We write a ∼ b if a . b and b . a. We make the following basic assumptions on k, ε and
η throughout the paper.

Assumption 2.1. The parameters k, ε and η satisfy

k & 1, 0 ≤ |ε| ≤ k2, and |η| ∼ k.(2.1)

We recall the inequalities (valid for all a, b > 0 and ǫ > 0),

(2.2) 2ab ≤ a2

ǫ
+ ǫb2, and

1√
2
(a+ b) ≤

√
a2 + b2 ≤ a+ b.

2.1. A priori estimates. The basic well-posedness of (1.3) is classical:

Proposition 2.2. If either (i) ε > 0 and ℜ(η) > 0, or (ii) ε < 0 and ℜ(η) < 0, or (iii)
ε = 0, ℜ(η) 6= 0, the problem (1.4) has a unique solution.

Sketch proof. For cases (i) and (ii), uniqueness can be established by taking v = u and F = 0
in the weak form (1.3) and then taking the imaginary part to show that u = 0. Case (iii) is the
standard “pure Helmholtz” case; uniqueness can be obtained by the unique continuation principle
(e.g. [46, Remark 8.1.1], [29, §3]). Existence then follows for all cases via the Fredholm alternative,
since aε satisfies a Gǎrding inequality.

In the domain decomposition method below we will be interested in local impedance solves on
subdomains that may shrink in diameter as k → ∞. For this reason we introduce the following.

Definition 2.3 (Characteristic length scale). A domain has characteristic length scale L if
its diameter ∼ L, its surface area ∼ Ld−1, and its volume ∼ Ld.

Lemma 2.4 (Continuity and coercivity of the sesquilinear form aε).
(i) Assume that Ω has characteristic length scale L and that ε and η satisfy (2.1). Then the
sesquilinear form aε is continuous, i.e.

|aε(u, v)| ≤ Ccont‖u‖1,k‖v‖1,k, with Ccont .
(
1 + (kL)−1

)
, for all u, v ∈ H1(Ω).

(ii) Let
√
k2 + iε be defined via the square root with the branch cut on the positive real axis. If η

satisfies

(2.3) ℜ
(
η
√
k2 + iε

)
≥ 0,

then aε is coercive, i.e.

|aε(v, v)| & Ccoer‖v‖21,k, with Ccoer ∼
|ε|
k2

, for all v ∈ H1(Ω).

Proof. The assertion (ii) is Lemma 2.4 in [30] (note that the omitted constants in that result
do not depend on L). The assertion (i) follows from the Cauchy-Schwarz inequality and the

multiplicative trace inequality, ‖v‖2L2(Γ) .
(

1
L ‖v‖2L2(Ω) + ‖∇v‖L2(Ω) ‖v‖L2(Ω)

)
, (see, e.g., [32, Last

equation on p. 41]) and the inequalities (2.2).

Remark 2.5 (Adjoint coercivity). The definition of
√
k2 + iε implies that when η is chosen

to satisfy (2.3), the coercivity constant for aε is exactly the same as the coercivity constant for the
sesquilinear form for the adjoint problem obtained by replacing ε by −ε and η by −η.

Definition 2.6. A Lipschitz open set D is called starshaped with respect to a ball if there
exists a point x0 ∈ D and a γ > 0 such that the position vector of any point x ∈ D satisfies
(x− x0) · n(x) ≥ γ when the normal vector n(x) is defined; see, e.g., [49, Lemma 5.4.1].

Theorem 2.7 (A priori bound on solution of (1.3)). Let Ω be starshaped with respect to a
ball and have characteristic length scale L, and recall that we have assumed that ΓI has positive
measure. Let u be either the solution to (1.3) with f ∈ L2(D) and g = 0, or the solution to the
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adjoint problem under the same assumptions on f and g. Then, there exists C1, C2 (independent
of k, ε, η, and L) such that

(2.4) ‖u‖1,k ≤ C1L ‖f‖L2(Ω) , provided that
|ε|L
k

≤ C2.

Proof. This result is essentially given by [27, Theorem 2.9 and Remark 2.5], except the de-
pendence of the constants on L is not kept track of there. To see that the condition |ε|/k ≤ c
in [27, Theorem 2.9] is really the right-hand inequality in (2.4), one needs to examine the argu-
ment near the end of the proof of [27, Theorem 2.9] (just before Remark 2.16) and observe that
R (:= sup

x∈Ω |x|) ∼ L. To see why the bound (2.4) has the factor of L on the right-hand side,
observe that choosing δ3 = 1/(2R) and δ4 ∼ k2 in the proof of [27, Theorem 2.9] means that, in

[27, (2.29)], the factor multiplying ‖f‖2L2(Ω) is ∼ L2. (The L-explicit bound (2.4) in the case ε = 0

is also obtained in [50, Remark 3.6].)

For simplicity, in the rest of the paper we assume that either η = sign(ε)k or η =
√
k2 + iε;

observe that both these choices satisfy the requirements on η in (2.1), the conditions for uniqueness
of the solution of (1.3) in Proposition 2.2, and the more-restrictive condition for coercivity (2.3)
(see [30, Remark 2.5]).

2.2. Finite element method and subproblems. Let T h be a family of conforming sim-
plicial meshes that are shape regular as the mesh diameter h → 0. A typical element of T h is
written τ ∈ T h and is considered as a closed subset of Ω. Our approximation space Vh is then
the space of all continuous functions on Ω that are polynomial of (total) degree r − 1 with r ≥ 2
(when restricted to any τ) and vanish on ΓD. We assume we have a nodal basis for this space (for
example the standard Lagrange basis), i.e. with nodes N h = {xq : q ∈ Ih}, where Ih is a suitable
index set and corresponding basis {φp : p ∈ Ih} with φp(xq) = δp,q. For any continuous function
g on Ω, we introduce the standard nodal interpolation operator Πhg =

∑
p∈Ih g(xp)φp . and we

assume the standard error estimate (e.g. [10, §3.1]):

‖(I −Πh)v‖L2(τ) + h|(I −Πh)v|H1(τ) ≤ Chr|v|Hr(τ), for all v ∈ Hr(Ω),(2.5)

for each τ ∈ T h, with C indepedent of τ , provided v ∈ Hr(τ). The Galerkin approximation of
(1.3) in the space Vh is equivalent to the linear system (1.5) where Fℓ :=

∫
Ω fφℓ +

∫
ΓI

gφℓ, and

(2.6) Sℓ,m =

∫

Ω

∇φℓ · ∇φm, Mℓ,m =

∫

Ω

φℓφm, Nℓ,m =

∫

Γ

φℓφm, ℓ,m ∈ Ih .

We assume that the subdomains Ωℓ introduced in §1.2, are Lipschitz polyhedra (polygons in
2-d) that are shape regular with parameter Hℓ in the sense that each Ωℓ has characteristic length
scale Hℓ, and we set H = maxℓ Hℓ. In our analysis we allow H to depend on k in such a way that
H could approach 0 as k → ∞. Some of the results below require that each Ωℓ is starshaped with
respect to a ball, with the corresponding parameters γ = γℓ in Definition 2.6 satisfying γℓ ≥ γ∗ > 0
for all ℓ. We describe this property by saying that the Ωℓ are starshaped with respect to a ball,
uniformly in ℓ.

Concerning the overlap, for each ℓ = 1, . . . , N , let Ω̊ℓ denote the part of Ωℓ that is not
overlapped by any other subdomains. (Note that Ω̊ℓ = ∅ is possible.) For µ > 0 let Ωℓ,µ denote the
set of points in Ωℓ, every element of which is a distance no more than µ from the interior boundary
∂Ωℓ\Γ . Then we assume that there exist constants 0 < δℓ . H and 0 < b < 1 such that, for each
ℓ = 1, . . . , N ,

(2.7) Ωℓ,bδℓ ⊂ Ωℓ\Ω̊ℓ ⊂ Ωℓ,δℓ ;

The case when δℓ ≥ cHℓ for some constant c independent of ℓ is called generous overlap. In Figure
1 we depict a typical subdomain, with its parts which are overlapped by its neighbours and its
(possibly) non-overlapped part.

We introduce the parameter

δ := min
ℓ=1,...,N

δℓ.(2.8)
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PSfrag replacements

Ωℓ

Ω̊ℓ

Ωℓ,cδℓ

δℓ

cδℓ

Fig. 1: The overlap parameter δℓ, the “interior” Ω̊ℓ and the “near-boundary subset” Ωℓ,cδℓ for a
particular example of a subdomain Ωℓ, being overlapped by its neighbours.

We make the finite-overlap assumption: There exists a finite Λ > 1 independent of N such
that

(2.9) Λ = max
{
#Λ(ℓ) : ℓ = 1, . . . , N

}
, where Λ(ℓ) =

{
ℓ′ : Ωℓ ∩ Ωℓ′ 6= ∅

}
.

It follows immediately from (2.9) that, for all v ∈ L2(Ω),

(2.10)

N∑

ℓ=1

‖v‖2L2(Ωℓ)
≤ Λ ‖v‖2L2(Ω) and

N∑

ℓ=1

‖v‖21,k,Ωℓ
≤ Λ ‖v‖21,k , when v ∈ H1(Ω).

For each ℓ, we introduce the space of finite-element functions on Ωℓ given by Vh
ℓ := {vh|Ωℓ

:

vh ∈ Vh} . Recalling that functions in Vh vanish on the (outer) Dirichlet boundary ΓD, functions
in Vh

ℓ also vanish on ∂Ωℓ ∩ ΓD (which contains at least one element if it is non-empty), but are
otherwise unconstrained. The local impedance sesquilinear form on Ωℓ is

(2.11) aε,ℓ(v, w) :=

∫

Ωℓ

(
∇v · ∇w − (k2 + iε)vw

)
− iη

∫

∂Ωℓ\ΓD

vw ,

for v, w ∈ H1
D(Ωℓ) := {z ∈ H1(Ωℓ) : z = 0 on ∂Ωℓ ∩ ΓD}. For general Fℓ ∈ (H1(Ωℓ))

′, the
continuous local impedance problem is: find uℓ ∈ H1

D(Ωℓ) such that

(2.12) aε,ℓ(uℓ, vℓ) = Fℓ(vℓ), for all vℓ ∈ H1
D(Ωℓ);

this problem is well-posed by Proposition 2.2 and its finite-element approximation is: find uh,ℓ ∈ Vh
ℓ

such that

aε,ℓ(uh,ℓ, vh,ℓ) = Fℓ(vh,ℓ), for all vh,ℓ ∈ Vh
ℓ .(2.13)

The system matrix arising from (2.13) is
(
Aε,ℓ

)
i,j

:= aε,ℓ(φj , φi) for i, j ∈ Ih(Ωℓ).

Theorem 2.8 (Bounds on the solutions of the local problems (2.13)).
(i) For all |ε| > 0, and for any mesh size h, (2.13) has a unique solution uh,ℓ which satisfies

‖uh,ℓ‖1,k,Ωℓ
. Θ(ε,Hℓ, k) max

vh∈Vh
ℓ

( |F (vh)|
‖vh‖1,k,Ωℓ

)
,(2.14)

with

(2.15) Θ(ε,Hℓ, k) = k2/|ε|.
9



(ii) If each Ωℓ is starshaped with respect to a ball uniformly in ℓ, then for all |ε| ≥ 0, there
exists a mesh threshold function h(k, r) such that when h ≤ h(k, r), (2.13) has a unique solution
uh,ℓ which satisfies (2.14) with

Θ(ε,Hℓ, k) = min
{
(1 + kHℓ), k

2/|ε|
}

,(2.16)

where we adopt the convention that Θ(0, H, k) = 1 +Hk.

Proof. The result (i) is a consequence of Lemma 2.4 and the Lax-Milgram lemma. The result
(ii) follows from the fact (used in the case of Helmholtz problems by the authors of [47, 48]
and their associated work) that when a sesquilinear form satisfies a G̊arding inequality and the
solution of the variational problem is unique, a “Schatz-type” argument obtains quasi-optimality
under conditions on the approximability of the adjoint problem, and then the G̊arding inequality
can be used to verify a discrete inf-sup condition. Indeed, following the proof of [47, Theorem 4.2]
and using the bound (2.4) and the fact that Ωℓ has characteristic length scale Hℓ, we find that,
when |ε|Hℓ/k ≤ C2,

inf
06=vh∈Vh

ℓ

sup
06=wh∈Vh

ℓ

|aε,ℓ(vh, wh)|
‖vh‖1,k‖wh‖1,k

≥ 1

2 + C−1
cont + C1kHℓ

.(2.17)

Then, from (2.13),

(2.18) ‖uh,ℓ‖1,k,Ωℓ
. (1 + kHℓ) sup

06=vh∈Vh
ℓ

|F (vh)|
‖vh‖1,k,Ωℓ

,

when |ε|Hℓ/k ≤ C2. If |ε|Hℓ/k > C2, then 1 +Hℓk > C2k
2/|ε| and (2.16) follows from (2.14).

Remark 2.9 (The mesh-threshold function h(k, r)). Bounds on h(k, r) are discussed in
detail in [48, §§5.1.2 and 5.2]. For 2-d polygonal domains, k(hk/(r − 1))r−1 is required to be
sufficiently small (see [48, Equation 5.13]), equivalently h being a sufficiently small multiple of
(r − 1)k−(r/(r−1)). Therefore, when r = 2 we require hk2 small, but the requirement relaxes as
r increases. In 1-d, numerical experiments indicate that the requirement hk2 sufficiently small is
necessary for quasioptimality [36, Figures 7-9], [35, §4.5.4 and Figure 4.12]. The theoretical benefit
of requiring h ≤ h(k, r) is that the estimate (2.14) holds uniformly over all choices of overlapping
star-shaped subdomains Ωℓ, each of which has characteristic length Hℓ. However, to our knowledge,
the requirement h ∼ k−2 is never imposed in practical computations.

If one is only concerned with ensuring solvability, a weaker requirement on h arises. In 1-d, the
relative error in both the H1-semi-norm and the L2-norm is bounded independently of k if hk3/2 is
sufficiently small [36, Equation 3.25], [35, Equation 4.5.15], with numerical experiments indicating
that this is sharp [36, Figure 11], [35, Figure 4.13]. Numerical experiments in [2, §3] showed that,
at least for certain 2-d problems, the relative error in the L2-norm is bounded independently of
k if hk3/2 is sufficiently small; this fact has recently been proved in [39]. In [13], under certain
regularity assumptions, it has been proven (in 2d and 3d) that, if h2(r−1)k2r−1 is small enough,
then the H1 error is of order h2(r−1)k2r−1. Thus, e.g., when r = 2, taking h . k−3/2 ensures that
the problem is solvable and the error remains bounded as k increases. This discussion is all for
domains of diameter O(1); for subdomains of decreasing diameter O(Hℓ), the effective wavenumber
is reduced to O(kHℓ), and so the requirement on h is even weaker.

2.3. Projection operators. We now give more detail about the partition of unity {χℓ} and
the restiction and prolongation matrices Rℓ, R

⊤
ℓ discussed in §1.2. Note that since the subdomains

are assumed to be unions of fine grid elements, their boundaries (and the boundaries of their
supports) are fine-grid dependent. This is standard for domain decomposition methods (e.g. [56,
p. 57]). We choose the functions χℓ to be continuous piecewise linear on the mesh T h, satisfying

(2.19) ‖∇χℓ ‖∞,τ . δ−1
ℓ , for all τ ∈ Th, ,

where the hidden constant is also required to be independent of the element τ . A partition of unity
satisfying this condition is explicitly constructed in [56, §3.2].
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We will use the operator Πh ◦ χℓ. In fact, if wh,ℓ ∈ Vh
ℓ with nodal values W, then

Πh
(
χℓwh,ℓ

)
=

∑

p∈Ih

(
RT

ℓ W
)
p
φp,

where Rℓ is defined by (1.12), and thus Πh ◦ χℓ defines a prolongation from Vh
ℓ to Vh.

To analyse the preconditioner (1.13), we define the projectionsQh
ε,ℓ : H

1(Ω) → Vh
ℓ , by requiring

that, given v ∈ H1(Ω), Qh
ε,ℓv ∈ Vh

ℓ satisfies the equation

(2.20) aε,ℓ(Q
h
ε,ℓv, wh,ℓ) = aε(v,Π

h(χℓwh,ℓ)) for all wh,ℓ ∈ Vh
ℓ .

For |ε| > 0, Qε,ℓ is well-defined by Part (i) of Theorem 2.8. For ε = 0, Qε,ℓ is well-defined for
all h ≤ h(k, r) by Part (ii) of Theorem 2.8. To combine the actions of these local projections
additively, we define the global projection by

Qh
ε :=

N∑

ℓ=1

Πh(χℓQ
h
ε,ℓ),(2.21)

where again, each term in the sum can be interpreted as an element of H1(Ω). The following theo-
rem shows that the matrix representation of Qh

ε restricted to Vh coincides with the preconditioned
matrix B−1

ε Aε. This result uses the weighted inner product defined in (1.14).

Theorem 2.10 (From projection operators to matrices). Let vh ∈ Vh, with nodal values given
in the vector V. Then, for any ℓ, when the function Qh

ε,ℓvh ∈ Vh
ℓ is well-defined it has nodal vector

W = A−1
ε,ℓRℓAεV .(2.22)

Consequently, for any uh, vh ∈ Vh,

(uh, Q
h
εvh)1,k = 〈U, B−1

ε AεV〉Dk
.(2.23)

Proof. With W as given in (2.22), we have (Aε,ℓW)q = (RℓAV)q , for all q ∈ Ih(Ωℓ), and so
(recalling the definition of Rℓ in (1.12)),

∑

p∈Ih(Ωℓ)

aε,ℓ(φp, φq)Wp = χℓ(xq)
∑

p∈Ih(Ω)

aε(φp, φq)Vp , for each q ∈ Ih(Ωℓ).

Then, letting wh ∈ Vh
ℓ , vh ∈ Vh be defined by the nodal values W, V, we have

aε,ℓ(wh, φq) = aε(vh, χℓ(xq)φq) for each q ∈ Ih(Ωℓ).

By multiplying by vh(xq) and using the definition of Πh and summing over q, we then have that

aε,ℓ(wh, vh) = aε(vh,Π
h(χℓvh)) , for all vh ∈ Vh .

The definition of Qh
ε,ℓ (2.20) and uniqueness then imply that wh = Qh

ε,ℓvh which proves (2.22).
Recalling (1.14) and (2.21), we obtain as a consequence of (2.22) that

(uh, Q
h
εvh)1,k =

∑

ℓ

(uh,Π
h(χℓQ

h
ε,ℓvh))1,k =

∑

ℓ

〈U, R⊤
ℓ A

−1
ε,ℓRℓAεV〉Dk

= 〈U, B−1
ε AεV〉Dk

.

3. The Main Results.

3.1. Estimates involving the overlapping decomposition.

Lemma 3.1 (Estimates on norms involving χℓ). With δℓ as defined in (2.7),

‖χℓv‖21,k,Ωℓ
− 2‖v‖21,k,Ωℓ

.
1

(kδℓ)2
‖v‖21,k,Ωℓ

, for all v ∈ H1(Ωℓ).(3.1)
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N∑

ℓ=1

‖χℓv‖21,k,Ωℓ
. Λ

(
1 +

1

(kδ)2

)
‖v‖21,k for all v ∈ H1(Ω).(3.2)

N∑

ℓ=1

‖χ2
ℓv‖21,k,Ωℓ

. Λ

(
1 +

1

(kδ)2

)2

‖v‖21,k for all v ∈ H1(Ω).(3.3)

N∑

ℓ=1

‖χℓf‖2L2(Ωℓ)
≥ 1

Λ
‖f‖2L2(Ω) for all f ∈ L2(Ω).(3.4)

N∑

ℓ=1

‖χℓf‖21,k,Ωℓ
≥ 1

Λ
‖f‖21,k − C

Λ

kδ
‖f‖21,k for all f ∈ H1(Ω),(3.5)

where C denotes a parameter-independent constant.

Proof. Using ∇(χℓv) = (∇χℓ)v+χℓ∇v, (1.11) and (2.19), we have that, for some constant C,

|∇(χℓv)(x)|2 ≤ 2

(
C

δ2ℓ
|v(x)|2 + |∇v(x)|2

)
,

for all x ∈ Ωℓ. Then

‖χℓv‖21,k,Ωℓ
≤ 2C

δ2ℓ
‖v‖2L2(Ωℓ)

+ 2|v|2H1(Ωℓ)
+ k2‖v‖2L2(Ωℓ)

≤ 2

(
1 +

C

(kδℓ)2

)
‖v‖21,k,Ωℓ

,

which yields the estimate (3.1).
From (2.10) and (2.8), we see that (3.2) follows from (3.1). The estimate (3.3) follows from

two successive applications of (3.1), summing both sides of the resulting estimate over ℓ, and then
using (2.10) and (2.10).

To prove (3.4), first define, for each x ∈ Ω, a positive integer m = m(x) by

(3.6) m(x) := #
{
ℓ ∈ {1, . . . , N} : x ∈ suppχℓ

}
.

Note that, because supp(χℓ) ⊆ Ωℓ, the assumption (2.9) ensures 1 ≤ m(x) ≤ Λ, for all x ∈ Ω.
Then, for any integer j ∈ {1, . . . ,Λ}, we define the subset of Ω: Dj := {x ∈ Ω : m(x) = j}, so that
x ∈ Dj if and only if x lies in the supports of exactly j of the partition of unity functions {χℓ}.
Corresponding to these we also define the index sets:

D(j) =
{
ℓ ∈ {1, . . . , N} : suppχℓ ∩Dj 6= ∅

}
.(3.7)

This notation is illustrated in §4 in the context of the particular overlapping cover used there. As
that example shows, some of the sets Dj can have zero Lebesgue measure as subsets of Ω.

Then, we have

Ω =
Λ⋃

j=1

Dj , and Di ∩Dj . = ∅ if i 6= j ,(3.8)

Moreover, for all j = 1, . . . ,Λ,

(3.9)
∑

ℓ∈D(j)

χℓ(x) = 1 when x ∈ Dj .

Then, noting that #{ℓ ∈ D(j) : χℓ(x) 6= 0} = j ≤ Λ and using (3.9) and the Cauchy-Schwarz
inequality we obtain, for all x ∈ Dj ,

(3.10) 1 =




∑

ℓ∈D(j)

χℓ(x)




2

≤ j
∑

ℓ∈D(j)

χ2
ℓ(x) ≤ Λ

∑

ℓ∈D(j)

χ2
ℓ(x) .
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Using (3.8), (3.10) and (3.7), we find

N∑

ℓ=1

∫

Ωℓ

χ2
ℓ(x)|f(x)|2dx =

Λ∑

j=1

N∑

ℓ=1

∫

Ωℓ∩Dj

χ2
ℓ(x)|f(x)|2dx =

Λ∑

j=1

∑

ℓ∈D(j)

∫

Ωℓ∩Dj

χ2
ℓ(x)|f(x)|2dx

=

Λ∑

j=1

∫

Dj

( ∑

ℓ∈D(j)

χ2
ℓ(x)

)
|f(x)|2dx ≥ 1

Λ

Λ∑

j=1

∫

Dj

|f(x)|2dx =
1

Λ

∫

Ω

|f(x)|2dx,

which is (3.4). Finally, for (3.5), we use (1.11) and (2.19) to obtain

‖χℓf‖21,k,Ωℓ
= k2‖χℓf‖2L2(Ωℓ)

+ ‖χℓ|∇f |‖2L2(Ωℓ)
+ 2Re

∫

Ωℓ

χℓf∇χℓ.∇f + ‖f |∇χℓ|‖2L2(Ωℓ)

≥ k2‖χℓf‖2L2(Ωℓ)
+ ‖χℓ|∇f |‖2L2(Ωℓ)

− C

kδℓ
‖f‖21,k,Ωℓ

,

and the result is obtained by summing, and using (3.4), (2.10) and (2.8).

Remark 3.2. The estimate (3.2) provides a “stable splitting”, i.e. any v ∈ H1(Ω) has a de-
composition into components χℓv ∈ H1(Ωℓ), with v =

∑
ℓ χℓv, so that sum of the squares of the

energies of the components is bounded in terms of the square of the energy of v, with a constant
that is independent of k, h,H and δ, provided only that kδ & 1. Corollary 3.5 below provides an
analogous stable splitting for finite element functions. This result is perhaps a little surprising,
since, for positive-definite elliptic problems, families of subdomains with decreasing diameter do
not enjoy this property (and a coarse space is needed to restore it) [56]. Here the stable splitting
holds without coarse space as k → ∞ (i.e. for a family of Helmholtz problems of increasing diffi-
culty). This includes for example, subdomains of diameter H ∼ k−α with α ∈ [0, 1] and overlap
k−1 . δ ≤ H.

Lemma 3.3 (Error in interpolation of χℓwh). Given ℓ ∈ {1, . . . , N}, suppose vh ∈ Vh
ℓ . Then

‖(I−Πh)(χlvh)‖1,k,Ωl
<∼ (1 + khℓ)

(
hℓ

δℓ

)
‖vh‖H1(Ωl) ,(3.11)

where hℓ := maxτ⊂Ωℓ
hτ , and the hidden constant is independent of ℓ.

Proof. For each element τ ∈ T h with τ ⊂ Ωℓ, from (2.5) we have

‖(I−Πh)(χlvh)‖L2(τ) + hτ |(I −Πh)(χlvh)|H1(τ)
<∼ hr

τ |χlvh|Hr(τ) .(3.12)

Let α be any multi-index of order |α| = r. Since, on τ , χℓ is of degree 1 and vh is of degree r − 1,
the Leibnitz formula tells us that, Dα(χℓvh) consists of only a linear combination of functions of
the form (Dβχℓ)(D

α−βvh), for all multi-indices with |β| = 1 (with coefficients independent of τ).
Combining this with (2.19), leads to

|χℓvh|Hr(τ) . δ−1
ℓ |vh|Hr−1(τ).(3.13)

Then, using (3.12) and an element-wise inverse estimate for shape regular elements,

k‖(I−Πh)(χlvh)‖L2(τ)
<∼ khτ

hτ

δℓ
hr−2
τ |vh|Hr−1(τ)

<∼ khτ
hτ

δℓ
‖vh‖H1(τ).(3.14)

Similarly

(3.15) |(I−Πh)(χlvh)|H1(τ)
<∼

hτ

δℓ
hr−2
τ |vh|Hr−1(τ) .

hτ

δℓ
‖vh‖H1(τ).

Conbining (3.14) and (3.15) yields the result.

We now specify a simplifying assumption on h, k, and δ.

Assumption 3.4.

kh . 1 and kδ & 1.(3.16)
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The left-hand inequality in (3.16) simply says that the fine mesh resolves the oscillatory solution
(which is always needed for an accuracy anyway - see Remark 2.9), while the right-hand inequality
requires that the overlap contains at least one oscillation. Clearly (3.16) is equivalent to:

khℓ . 1 and kδℓ & 1, for each ℓ,(3.17)

provided the hidden constants are independent of ℓ, and this in turn implies that hℓ/δℓ . 1. This
latter inequality requires that the overlapped part of any subdomain only needs to be large enough
with respect to the local fine mesh diameter hℓ. We retain the ratio hℓ/δℓ in the error estimate
(3.11), since in many situations this can approach 0 as k → ∞.

Corollary 3.5. Under Assumption 3.4, for vh ∈ Vh,

vh =

N∑

ℓ=1

Πh(χℓvh) and

N∑

ℓ=1

‖Πh(χℓvh)‖21,k,Ωℓ
. Λ‖vh‖21,k,Ω .

Proof. Using the triangle inequality, and then (3.1), (3.11), and (3.17), we have

‖Πh(χℓvh)‖1,k,Ωℓ
≤ ‖χℓvh‖1,k,Ωℓ

+ ‖(I −Πh)(χℓvh)‖1,k,Ωℓ

. ‖vh‖1,k,Ωℓ
+ ‖vh‖H1(Ωℓ) . ‖vh‖1,k,Ωℓ

,(3.18)

and the result follows by squaring, summing, and applying (2.10).

The next result is a kind of converse to the stable splitting result discussed in Remark 3.2.

Lemma 3.6. For each ℓ = 1, . . . , N , choose any functions vℓ ∈ H1(Ω), with supp vℓ ⊂ Ωℓ.
Then

(3.19)

∥∥∥∥∥

N∑

ℓ=1

vℓ

∥∥∥∥∥

2

1,k

≤ Λ

N∑

ℓ=1

‖vℓ‖21,k,Ωℓ
.

Proof. The proof follows almost verbatim that of [30, Lemma 4.2], with a little extra care
needed to obtain the explicit constant Λ on the right-hand side.

3.2. Results about the projection operators. In this subsection, we study the projection
operators Qh

ε,ℓ which were defined in (2.20). Our goal is a bound on the operator Qh
ε,ℓ−Πhχℓ with

respect to the Helmholtz energy norm ‖ · ‖1,k – see Lemma 3.8. This bound is a key ingredient of
our main results – Theorem 3.11 (for projection operators) and Theorem 3.12 (for matrices).

We first note that, when wh,ℓ ∈ Vh
ℓ , Π

h(χℓwh,ℓ) is supported on Ωℓ and vanishes on ∂Ωℓ. Thus,
by (2.20), for all wh,ℓ ∈ Vh

ℓ and v ∈ H1(Ω),

aε,ℓ(Q
h
ε,ℓv, wh,ℓ) = aε,ℓ(v,Π

h(χℓwh,ℓ))

and hence

(3.20) aε,ℓ(Q
h
ε,ℓv −Πh(χℓv), wh,ℓ) = aε,ℓ(v,Π

h(χℓwh,ℓ))− aε,ℓ(Π
h(χℓv), wh,ℓ).

This shows that Qh
ε,ℓv − Πh(χℓv) satisfies a local impedance problem with “data” given by the

“commutator” (appearing on the right-hand side of (3.20)). To estimate this commutator we write

aε,ℓ(v,Π
h(χℓwh,ℓ))− aε,ℓ(Π

h(χℓv), wh,ℓ) = aε,ℓ((I −Πh)(χℓv), wh,ℓ)− aε,ℓ(v, (I −Πh)(χℓwh,ℓ))

+ bℓ(v, wh,ℓ) ,(3.21)

where bℓ(v, w) := aε,ℓ(v, χℓw)− aε,ℓ(χℓv, w) = (v, χℓw)1,k,Ωℓ
− (χℓv, w)1,k,Ωℓ

=

∫

Ωℓ

∇χℓ.(w∇v − v∇w) .(3.22)

The following lemma provides estimates for each of the terms on the right-hand side of (3.21).
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Lemma 3.7.
(i) For all v, w ∈ H1(Ωℓ),

|bℓ(v, w)| . (kδℓ)
−1 ‖v‖1,k,Ωℓ

‖w‖1,k,Ωℓ
.

(ii) For all vh, wh ∈ Vh
ℓ ,

max
{
|aε,ℓ(vh, (I−Πh)(χℓwh))|, |aε,ℓ((I−Πh)(χℓvh), wh)|

}

.

(
1 +

1

kHℓ

)
hℓ

δℓ
‖vh‖1,k,Ωℓ

‖wh‖1,k,Ωℓ
.

Proof. Applying the Cauchy-Schwarz inequality to (3.22) and using and (2.19), we obtain

|bℓ(v, w)| . (kδℓ)
−1

(
k‖w‖L2(Ωℓ)|v|H1(Ωℓ) + k‖v‖L2(Ωℓ)|w|H1(Ωℓ)

)
,

and the result (i) follows after an application of the Cauchy-Schwarz inequality with respect to the
Euclidean inner product in R2.

For (ii), recall Assumption 2.1, use the continuity of aε,ℓ (from Lemma 2.4) and the fact that
Ωℓ has characteristic length scale Hℓ to obtain

|aε(vh, (I−Πh)(χℓwh))| . (1 + (kHℓ)
−1)‖vh‖1,k,Ωℓ

‖(I−Πh)(χℓwh)‖1,k,Ωℓ
;(3.23)

the result then follows on applying Lemma 3.3.

Combining (3.20) with Lemma 3.7 and Theorem 2.8, we obtain the following estimate for the
quantity Qh,ℓvh −Πh(χℓvh). As we will see in (3.46), this quantity is related to the quality of the
preconditioner on the subdomain Ωℓ.

Lemma 3.8. Under Assumption 3.4 and the assumptions of Theorem 2.8, for all vh ∈ Vh
ℓ , and

for all ℓ,

(3.24) ‖Qh
ε,ℓvh −Πh(χℓvh)‖1,k,Ωℓ

.
1

kδℓ
Θ(ε,Hℓ, k) ‖vh‖1,k,Ωℓ

,

and

(3.25) ‖Qh
ε,ℓvh‖1,k,Ωℓ

.

[
1 +

1

kδℓ
Θ(ε,Hℓ, k)

]
‖vh‖1,k,Ωℓ

.

Proof. Let vh ∈ Vh
ℓ . By (3.20) and (3.21), we have

aε,ℓ(Q
h
ε,ℓvh −Πhχℓvh, wh,ℓ) = F (wh,ℓ), wh,ℓ ∈ Vh

ℓ ,(3.26)

where F (wh,ℓ) := aε,ℓ((I −Πh)(χℓvh), wh,ℓ)− aε,ℓ(vh, (I −Πh)(χℓwh,ℓ)) + bℓ(vh, wh,ℓ).

Using Lemma 3.7 and (3.16), we have, for any wh,ℓ ∈ Vh
ℓ ,

|F (wh,ℓ)| .

((
1 +

1

kHℓ

)
hℓ

δℓ
+

1

kδℓ

)
‖vh‖1,k,Ωℓ

‖wh,ℓ‖1,k,Ωℓ
(3.27)

=
1

kδℓ

(
khℓ +

hℓ

Hℓ
+ 1

)
‖vh‖1,k,Ωℓ

‖wh,ℓ‖1,k,Ωℓ
.

1

kδℓ
‖vh‖1,k,Ωℓ

‖wh,ℓ‖1,k,Ωℓ
,

where we have used (3.16) and the fact that hℓ ≤ Hℓ. Then (3.24) follows from Theorem 2.8. To
obtain (3.25), we write ‖Qε,ℓvh‖1,k,Ωℓ

≤ ‖Qε,ℓvh −Πh(χℓvh)‖1,k,Ωℓ
+ ‖Πh(χℓvh)‖1,k,Ωℓ

, and then
use (3.18) and (3.24).

Combining Lemma 3.8 with the definition of Θ in (2.15)/(2.16), we have the immediate corollary:
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Corollary 3.9. Under the assumptions of Theorem 2.8,
(i) If |ε| > 0, then

(3.28) ‖Qh
ε,ℓvh − χℓvh‖1,k,Ωℓ

.
k

|ε|δℓ
‖vh‖1,k,Ωℓ

;

(ii) If |ε| ≥ 0, h ≤ h(k, r) and each Ωℓ is starshaped with respect to a ball uniformly in ℓ, then

(3.29) ‖Qh
ε,ℓvh − χℓvh‖1,k,Ωℓ

.

(
Hℓ

δℓ
+

1

kδℓ

)
‖vh‖1,k,Ωℓ

, uniformly in ℓ.

3.3. Bounds on the norm and field of values. To aid the reader, we recap all the assump-
tions made so far: Both the fine mesh Th and the subdomains {Ωℓ} are assumed shape-regular
and have overlap described in (2.7) and (2.8), with δ > 0. We make the finite overlap assumption
(2.9) and the partition of unity functions {χℓ} are assumed to be continuous, piecewise linear,
and to satisfy (2.19). We assume that k and ε satisfy Assumption 2.1, and either η = sign(ε)k or
η =

√
k2 + iε. All these will be assumed without comment in what follows, but we will explicitly

state when we need Assumption 3.4 and the following slightly stronger assumption.

Assumption 3.10.

kδ → ∞ as k → ∞.(3.30)

This assumption requires the overlap to contain an increasing number of oscillations as k
increases (although the rate of increase can be arbitrarily slow).

Theorem 3.11. Let Assumption 3.4 hold and suppose that for each ℓ = 1, . . . , N there exists
σℓ > 0 such that

(3.31)
∥∥Qh

ε,ℓvh −Πh(χℓvh)
∥∥
1,k,Ωℓ

≤ σℓ ‖vh‖1,k,Ωℓ
, for all vh ∈ Vh, ℓ = 1, . . . , N.

Set σ = max{σℓ : ℓ = 1, . . . , N}.
(i) Then,

(3.32) max
vh∈Vh

∥∥Qh
εvh

∥∥
1,k

‖vh‖1,k
. Λ (1 + σ) .

(ii) If, in addition, Assumption 3.10 holds, then, for k sufficiently large,

(3.33) min
vh∈Vh

∣∣(vh, Qh
εvh)1,k

∣∣
‖vh‖21,k

≥
(
1

Λ
−
√
2σΛ

)
+ R

where the remainder R satisfies the estimate

(3.34) |R| ≤ C
Λ

kδ
(1 + σ) ,

where C is a constant independent of all parameters. Note that (3.33) is a genuine lower bound,
and the unspecified constant C appears only in R.

Proof. Throughout the proof, we use the notation

(3.35) zl := Qh
ε,ℓvh −Πh(χℓvh), so that, by (3.31), ‖zℓ‖1,k,Ωℓ

≤ σℓ‖vh‖1,k,Ωℓ
.

To obtain (3.32), we use the triangle inequality, then (3.18) and (3.31), to obtain

(3.36) ‖Qh
ε,ℓvh‖1,k,Ωℓ

≤ ‖Πh(χℓvh)‖1,k,Ωℓ
+ ‖zl‖1,k,Ωℓ

≤ (1 + σℓ) ‖vh‖1,k,Ωℓ
.

Then, using Lemma 3.6, (3.18) and (3.36),

‖Qh
εvh‖21,k =

∥∥∥∥∥
∑

ℓ

Πh
(
χℓQ

h
ε,ℓvh

)
∥∥∥∥∥

2

1,k

≤ Λ
∑

ℓ

∥∥Πh
(
χℓQ

h
ε,ℓvh

)∥∥2
1,k,Ωℓ
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. Λ
∑

ℓ

∥∥Qh
ε,ℓvh

∥∥2
1,k,Ωℓ

. Λ (1 + σ)
2
∑

ℓ

‖vh‖21,k,Ωℓ

and (3.32) then follows on using (2.10).
To obtain (3.33), we first use Lemma 3.3, and (3.16) to obtain

(vh,Π
h(χℓQ

h
ε,ℓvh))1,k,Ωℓ

= (vh, χℓQ
h
ε,ℓvh)1,k,Ωℓ

+O
(
h

δ

)
‖vh‖1,k,Ωℓ

‖Qh
ε,ℓvh‖1,k,Ωℓ

,(3.37)

Also, using (3.22) and Lemma 3.7, we have that
∣∣(vh, χℓQ

h
ε,ℓvh)1,k,Ωℓ

− (χℓvh, Q
h
ε,ℓvh)1,k,Ωℓ

∣∣ =
∣∣bℓ(vh, Qh

ε,ℓvh)
∣∣

. O
(

1

kδ

)
‖vh‖1,k,Ωℓ

‖Qh
ε,ℓvh‖1,k,Ωℓ

.(3.38)

Moreover, by the definition of zl and Lemma 3.3,

(χℓvh, Q
h
ε,ℓvh)1,k,Ωℓ

= ‖χℓvh‖21,k,Ωℓ
+ (χℓvh, zℓ)1,k,Ωℓ

+
(
χℓvh,Π

h(χℓvh)− χℓvh
)
1,k,Ωℓ

= ‖χℓvh‖21,k,Ωℓ
+ (χℓvh, zℓ)1,k,Ωℓ

+O
(
h

δ

)
‖χℓvh‖1,k,Ωℓ

‖vh‖1,k,Ωℓ
.(3.39)

Combining (3.37), (3.38), and then using (3.39), we obtain

(vh, Q
h
εvh)1,k =

∑

ℓ

(
vh,Π

h(χℓQ
h
ε,ℓvh)

)
1,k,Ωℓ

=
∑

ℓ

[
(χℓvh, Q

h
ε,ℓvh)1,k,Ωℓ

+O
(

1

kδ
+

h

δ

)
‖vh‖1,k,Ωℓ

‖Qh
ε,ℓvh‖1,k,Ωℓ

]

=
∑

ℓ

[
‖χℓvh‖21,k,Ωℓ

+ (χℓvh, zl)1,k,Ωℓ

]

+
∑

ℓ

[
O
(

1

kδ
+

h

δ

)
‖vh‖1,k,Ωℓ

‖Qh
ε,ℓvh‖1,k,Ωℓ

+ O
(
h

δ

)
‖vh‖1,k,Ωℓ

‖χℓvh‖1,k,Ωℓ

]
(3.40)

Using (3.16), (3.36), (3.1) and (2.10), the second sum in (3.40) can be estimated by

1

kδ

∑

ℓ

(1 + σℓ)‖vh‖21,k,Ωℓ
.

Λ(1 + σ)

kδ
‖vh‖21,k.

Also, using the Cauchy-Schwarz inequality, and then (3.1) and (3.35), the modulus of the first
sum in (3.40) can be estimated from below by

∑

ℓ

‖χℓvh‖21,k,Ωℓ
−
∣∣∣∣∣
∑

ℓ

(χℓvh, zℓ)1,k,Ωℓ

∣∣∣∣∣ ≥
∑

ℓ

(
‖χℓvh‖21,k,Ωℓ

− ‖χℓvh‖1,k,Ωℓ
‖zℓ‖1,k,Ωℓ

)
(3.41)

≥
∑

ℓ

‖χℓvh‖21,k,Ωℓ
−
√
2σ

∑

ℓ

‖vh‖21,k,Ωℓ
+O

( σ

kδ

)∑

ℓ

‖vh‖21,k,Ωℓ
.(3.42)

The result (3.33) then follows from using (3.5) and (2.10).

Using Theorem (2.10), we now convert this to a statement about matrices,

Theorem 3.12. Let Assumption 3.4 hold and let σ > 0 be such that

‖A−1
ε,ℓRℓAε −Rℓ‖Dk

≤ σ , ℓ = 1, . . . , N.(3.43)

Then

‖B−1
ε Aε‖Dk

. Λ (1 + σ) .(3.44)

If, in addition, Assumption 3.10 holds then, for k sufficiently large,

min
V∈Cn

∣∣〈V, B−1
ε AεV〉Dk

∣∣
‖V‖2Dk

≥
(
1

Λ
−
√
2σΛ

)
+R.(3.45)

with R satisfying (3.34).
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Proof. First note that, from (1.14) and (1.15), if vh ∈ Vh is a finite element function with
nodal vector V, then ‖vh‖1,k = ‖V‖Dk

. By Theorem 2.10, the nodal vectors of Qh
ε,ℓvh and Qh

εvh

are A−1
ε,ℓRℓAεV and B−1

ε AεV respectively. By (1.12), the nodal vector of Πh(χℓvh) is RℓV. Thus

(3.46) ‖Qh
ε‖1,k = ‖B−1

ε Aε‖Dk
and ‖Qh

ε,ℓvh −Πh(χℓvh)‖1,k = ‖A−1
ε,ℓRℓAεV −RℓV‖Dk

.

From these relations, and also (2.23), Theorem 3.11 implies Theorem 3.12.

This theorem immediately yields the following corollary about the convergence of GMRES.

Corollary 3.13. Suppose Assumptions 3.4 and 3.10, hold and that (3.43) holds, with

σ <
1√
2Λ2

.(3.47)

If GMRES is applied to (1.5) in the inner product induced by Dk with B−1
ε as a left preconditioner,

then the number of iterations needed to achieve a prescribed accuracy remains bounded as k → ∞.

Proof. This follows directly from Theorem 3.12 and the GMRES convergence theory in [15].

As explained above, Assumptions 3.4 and 3.10 are quite mild requirements. However (3.47) is a
stronger constraint and may lead to restrictions on ε and H . Essentially it says that for each ℓ, the
“local impedance solve” A−1

ε,ℓ should be a sufficiently good left inverse for Aε when it is restricted

to Ωℓ. In the following corollary, whose proof follows from Corollary 3.9, Part (i) gives conditions
under which σ can be bounded (hence useful for the upper bound (3.44)), while Parts (ii) and (iii)
give conditions for σ to be small (and hence are relevant to ensuring (3.45)).

Corollary 3.14. Let the assumptions of Theorem 3.11 hold.
(i) Assume that h ≤ h(k, r), and each Ωℓ is starshaped with respect to a ball uniformly in ℓ. Then,
for all ε with 0 ≤|ε| ≤ k2, we have σ . H/δ.
(ii) If |ε| > 0, ε ∼ k1+β for 0 < β < 1, δ ∼ H ∼ k−α for 0 < α < 1, then σ . kα−β .
(iii) If |ε| > 0 and δ is fixed, then there exist constants C and k0 so that when ε = Ck and k ≥ k0,

σ ≤ 1

2
√
2Λ2

.

Using the bounds of Corollary 3.14 in Theorem 3.12, we obtain the following results about B−1
ε Aε.

Corollary 3.15 (Upper bound on the norm of B−1
ε Aε). Assume that h ≤ h(k, r), and

each Ωℓ is starshaped with respect to a ball uniformly in ℓ. Assume that δ ∼ H. Then, for all
0 ≤ |ε| ≤ k2,

‖B−1
ε Aε‖Dk

. 1.

Corollary 3.16 (Lower bound on the distance of the field of values from the origin).
(i) If |ε| ∼ k1+β for 0 < β < 1, δ ∼ H, and H ∼ k−α for 0 < α < 1 then

min
V∈Cn

∣∣〈V, B−1
ε Aε〉Dk

∣∣
‖V‖2Dk

≥ 1−O(kα−β), as k → ∞.

(ii) If δ is fixed, then there exist constants C and k0 so that when |ε| = Ck and k ≥ k0,

min
V∈Cn

∣∣〈V, B−1
ε Aε〉Dk

∣∣
‖V‖2Dk

≥ 1

2Λ
.

Remark 3.17 (Right preconditioning). The results in [30, Theorem 5.8] – see also [31, §3] –
show how results about right preconditioning (working in the D−1

k inner product) can be obtained
from analogous results about left preconditioning of the adjoint problem (working in the Dk inner
product). The results in §§2, 3.1, and 3.2 all hold when the problem (1.1), (1.2) is replaced by its ad-
joint (see, in particular, Remark 2.5); therefore the results in this section about left preconditioning
(in the Dk inner product) also hold for right preconditioning (in the D−1

k inner product).
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Remark 3.18 (Dirichlet boundary conditions). Some parts of the analysis presented in this
paper hold in the case when the boundary conditions on the subdomains are changed from impedance
to Dirichlet, i.e. when the integral over ∂Ωℓ \ ΓD is removed from (2.11). However, Parts (ii) of
Theorem 2.8 and Corollary 3.9 no longer hold in this case. Additionally, the upper bound on the
norm for ε = 0 in Corollary 3.15 does not hold either. We see in Experiment 5 that when the
impedance boundary conditions are replaced by Dirichlet, the preconditioner performs poorly for
the pure Helmholtz equation.

4. Numerical Experiments. In this section we give numerical experiments illustrating the
performance of the preconditioners defined in §1.2 and analysed in §3.3. We consider Problem
(1.1)-(1.2) with Ω being the unit square in 2-d. We first choose a uniform coarse mesh T H of
equal square elements of side length H = 1/M on Ω. Let xℓ,m = (ℓH,mH), ℓ,m = 0, . . . ,M
denote the coarse mesh nodes. We introduce subdomains Ωℓ,m, defined to be interior of the
union of all the coarse mesh elements that touch xℓ,m, for ℓ,m = 0, . . . ,M . These subdomains
have generous overlap in the sense of (2.7). Let χℓ,m denote the piecewise bilinear nodal basis
functions with respect to the coarse mesh, i.e. χℓ,m is bilinear with respect to the coarse mesh and
χℓ,m(xℓ′,m′) = δℓ−ℓ′,m−m′ . Then {χℓ,m : ℓ,m = 0, . . . ,M} form a partition of unity and we use
this to define the preconditioner (1.13).
Illustration of the notation used in the proof of (3.4): Recalling (1.11), we can see that
for each ℓ,m ∈ {0, . . . ,M}, suppχℓ,m ⊆ Ωℓ,m. Moreover, for x ∈ Ω and m(x) defined by (3.6), we
have

m(x) = 1 when x is a node x ∈ {xℓ,m : ℓ,m ∈ {0, . . . ,M}}
m(x) = 2 when x is an interior point of any edge of the coarse mesh

m(x) = 4 when x is an interior point of any coarse mesh element

Hence Λ = 4. Note that D1 contains all the nodes of the coarse grid, D2 contains all interior
points of edges of the coarse grid and D4 contains all interior points of coarse grid elements. Note
µ(D1) = µ(D2) = 0, with µ denoting Lebesgue measure, and µ(D4) = µ(Ω). Moreover the index
sets D(1),D(2) and D(4) actually contain all indices (ℓ,m) with ℓ,m ∈ {0, . . . ,M}.

The coarse mesh is then refined uniformly to obtain a fine triangular mesh T h. The space
Vh which is used to obtain the linear system (1.5) is the space of piecewise-linear finite-element
functions on T h. The linear system (1.5) is therefore characterised by two parameters: the fine
mesh diameter h and ε in (1.1) denoted by hprob and εprob respectively. In all the experiments here
we choose h ∼ k−3/2 (the level of refinement generally believed to keep the relative error of the
finite-element solution bounded independently of k as k → ∞; see Remark 2.9). Although these
are 2d problems, the dimension n = (k3/2)2 = k3 of the systems grows very quickly with k , and is
well over 106 when k = 140 (considered below). The preconditioner is characterised by the coarse
grid diameter and the level of absorption used, denoted by H and εprec respectively.

In Experiments 1 and 2, we verify the theory by illustrating the performance of the precondi-
tioner on some problems with εprob > 0. In Experiments 3, 4, and 5, we solve the “pure Helmholtz”
problem, i.e. εprob = 0. Unless otherwise stated, the data f, g in (1.5) is chosen so that the exact

solution of (1.3) - (1.4) is a plane wave u(x) = exp(ikx.d̂) where d̂ = (1/
√
2, 1/

√
2)⊤. Note that

oscillations in the solution are resolved by the fine grid but are not resolved by the subdomains.
We choose ΓD = ∅, so that Γ = ΓI . Except in Experiment 4, the initial guess for GMRES is chosen
to be a random (uniformly distributed in [0, 1]m) vector in Rn. In all cases the GMRES stopping
criterion is based on requiring the initial residual to be reduced by 10−6. Standard GMRES (with
residual minimisation in the Euclidean norm) is used, even though the estimates in Theorem 3.12
are with respect to the norm induced by Dk; the numerical experiments in [30] and in [6] (for a
similar method) found the iteration counts to be essentially identical when minimisation in the
Euclidean norm is replaced by minimisation in the norm induced by Dk.

Experiment 1. We choose

hprob ∼ k−3/2, εprob = εprec = k1+β , Hprec = k−α , where β = α+ 0.1.(4.1)

Corollary 3.14 predicts a wavenumber-independent iteration count for GMRES and this behaviour
is clearly visible in Table 1 (left). Reading across this table, for fixed k, larger α corresponds to

19



smaller subdomains (and thus the preconditioner becomes cheaper per iterate). The number of
iterations increases (slightly) as α increases but remains bounded as k increases for fixed α. We
also note that if we read diagonally across Table 1(a) (thus increasing the rate of decrease of H as
k increases) we see roughly logarithmic growth in the number of iterations, although the analogous
growth is somewhat faster in later tables.

k\α 0.2 0.3 0.4 0.5
40 4 6 7 9
60 4 5 7 10
80 3 6 8 9
100 5 6 7 9
120 4 5 7 9
140 4 5 7 9

(a) GMRES iterations for case (4.1)

k\α 0.2 0.3 0.4 0.5
40 4 7 10 17
60 4 7 12 22
80 4 9 13 21
100 6 8 13 23
120 5 8 15 24
140 5 7 13 25

(b) GMRES iterations for case
(4.2).

Table 1

Based on Experiment 1, and recalling the discussion in the introduction (in particular Equation
(1.8)), we now investigate how well the preconditioner performs when we reduce the absorption in
the problem being solved to εprob = k.

Experiment 2. We choose

hprob ∼ k−3/2, εprob = εprec = k, and Hprec = k−α.(4.2)

Comparing Tables 1 (left and right), we see an increase in the iteration numbers (especially for
larger α) but growth with k appears to be avoided provided α ≤ 0.4. This shows that B−1

k is a
good preconditioner for Ak and so by the heuristic argument centred on (1.8), we expect B−1

k to be
good preconditioner for A. Experiment 3 shows this to be true. Here εprob is reduced from k to 0;
we see a slight increase in iteration numbers compared to εprob = k, but still apparent robustness
to increasing k, for fixed α ≤ 0.4.

Experiment 3. We choose

hprob ∼ k−3/2, εprob = 0, and Hprec = k−α.(4.3)

εprec = k εprec = 0
k\α 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
40 6 8 12 20 5 8 11 19
60 5 8 14 25 5 7 14 25
80 5 10 15 25 4 10 15 24
100 7 9 15 27 7 9 15 27
120 6 9 17 29 6 9 17 29
140 6 9 17 31 6 8 16 31

Table 2: Number of GMRES iterations for the case (4.3).

We make two observations from the results of Experiments 1-3.
1. The one-level Schwarz method provides an optimal preconditioner for the pure Helmholtz

problem; – the iteration numbers appear bounded independently of k (and hence n) as k
increases – provided the subdomain diameter does not shrink too quickly. Robustness is
maintained when the subdomain diameters shrink no faster than O(k−0.4).

20



2. The performance of the preconditioner is virtually the same whether it is built from the
absorptive system εprec = k or from the pure Helmholtz system εprec = 0. Whilst the
results of the present paper give theoretical support for the observed robustness when
εprec = k, (see the discussion in §1 and Appendix A); with existing theoretical tools it
seems very difficult to prove results for the case εprec = 0.

Experiment 4. As a more extreme case we consider subdomains which are fixed as h → 0.
While this is not a practical method (the subproblems have the same order of complexity as the
global problem), it can provide a useful starting point for methods based on recursive application of
the one-level method, as described in §1.4. We therefore consider:

h ∼ k−3/2, εprob = 0, H = 1/M.(4.4)

In the left-hand panel of Table 3, εprec = k and a random starting guess is chosen. In the middle
panel, εprec = 0 and a random starting guess is chosen. In the right-hand panel, εprec = k and a
zero starting guess is chosen. Again, there is little effect from switching off the absorption in the
preconditioner. Surprisingly a random starting guess leads to consistently lower iteration counts
than a zero starting guess; we have no explanation for this observation.

random random zero
starting guess starting guess starting guess

εprec = k εprec = 0 εprec = k
k\M 4 8 16 4 8 16 4 8 16
40 12 27 61 11 27 61 16 36 82
60 11 25 56 10 25 56 15 36 81
80 10 22 52 10 22 52 15 33 75
100 9 21 48 9 21 48 15 33 71
120 9 20 45 9 20 45 15 31 69
140 8 18 41 8 18 41 14 31 70

Table 3: Number of GMRES iterations for the case (4.4)

Finally we study the effect of changing the boundary condition on the subdomains from
Impedance to Dirichlet (recall Remark 3.18).

Experiment 5. We choose Dirichlet conditions on subdomains with

hprob ∼ k−3/2, εprob = 0, and Hprec = k−α.(4.5)

In Table 4 we see that this yields a very poor preconditioner for the pure Helmholtz problem
(compare Experiment 5 with Experiment 3). Similar observations are made in [30], where coarse
grids were also used to improve the robustness.

εprec = k εprec = 0
k\α 0.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
10 7 7 12 12 6 6 15 15
20 7 7 17 25 5 5 20 29
40 6 16 34 86 5 22 43 110
60 6 16 68 102 5 25 83 121
80 5 46 127 239 5 78 173 256
100 14 58 130 242 22 121 222 429

Table 4: Number of GMRES iterations for the case (4.5) with homogeneous Dirichlet condition on
subdomain boundaries
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Appendix A. A rigorous basis for the discussion around (1.8).

Lemma A.1. Let (·, ·) be an inner product with associated norm ‖ · ‖. Assume that (1.6) holds
with ‖ · ‖2 replaced by ‖ · ‖ and with K > 0 independent of ε and k. Assume also that for all ε in
some neighbourhood of the origin, there exist positive numbers C1(ε) and C2(ε) (which may depend
on ε but are independent of all other parameters), such that

‖B−1
ε Aε‖ ≤ C1(ε), and

|(V, B−1
ε AεV)|

‖V‖2 ≥ C2(ε) for all V ∈ C
n.(A.1)

Then

‖B−1
ε A‖ ≤ C1(ε)

(
1 +K

|ε|
k

)
and

|(V, B−1
ε AV)|

‖V‖2 ≥ C2(ε)−K C1(ε)
|ε|
k

(A.2)

for all V ∈ Cn.

Remark A.2. Observe that for the norm in (A.2) to remain bounded we simply need C1(ε) to
be bounded, while for the field of values to be bounded away from the origin we need the stronger
condition

C2(ε) > KC1(ε)
|ε|
k
.

Proof of Lemma A.1. The first bound in (A.2) follows from (1.7), (1.6), and the first equation
in (A.1). To obtain the second bound in (A.2), we use (1.7), the first bound in (A.2), and the
inverse triangle inequality to obtain

∣∣(V, B−1
ε AV)

∣∣ ≥
∣∣(V, B−1

ε AεV)
∣∣−KC1(ε)

|ε|
k
‖V‖2,

and we then use the second equation in (A.1).
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