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A TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS1

FOR ESTIMATORS OF TWO GLOBAL SENSITIVITY INDICES IN2

STOCHASTIC MODELS INDUCED BY PROBABILITY MEASURES∗3

GILDAS MAZO†4

Abstract. Sobol sensitivity indices assess how the output of a given mathematical model is5
sensitive to its inputs. If the model is stochastic then it cannot be represented as a function of the6
inputs, thus raising questions as how to do a sensitivity analysis in those models. Practitioners have7
been using an approach that exploits the availability of methods for deterministic models. For each8
input, the stochastic model is repeated and the outputs are averaged. These averages are seen as9
if they came from a deterministic model and hence Sobol’s method can be used. We show that10
the estimator so obtained is asymptotically biased if the number of repetitions goes to infinity too11
slowly. With limited computational resources, the number of repetitions of the stochastic model12
and the number of explorations of the input space cannot be large together and hence some balance13
must be found. We find the pair of numbers that minimizes a bound on some rank-based error14
criterion, penalizing bad rankings of the inputs’ sensitivities. Also, under minimal distributional15
assumptions, we derive a functional relationship between the output, the input and some random16
noise; the Sobol-Hoeffding decomposition can be applied to it to define a new sensitivity index, which17
asymptotically is estimated without bias even though the number of repetitions remains fixed. The18
theory is illustrated on numerical experiments.19
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AMS subject classifications. 62G20, 60H99, 65C0521

1. Introduction. The goal of sensitivity analysis is to assess how the output of22

a given physical or mathematical model is sensitive to its inputs [26, 27]. Classically,23

the model of interest is deterministic. To each input there corresponds an output24

given by the model. Thus, in this case, the model is in fact a function, say f . To25

assess the sensitivity of the model to its inputs, the probabilistic/statistical framework26

is often employed. One draws at random a large number of inputs and observe how27

the corresponding outputs vary. From a statistical perspective, at each draw, one28

observes a random pair (X,Y ) such that Y = f(X), where X = (X1, . . . , Xp) is the29

input vector and Y is the output.30

Sobol’s idea [29, 30] was to notice that, if X1, . . . , Xp are drawn independently31

then f(X) can be decomposed into a sum of lower-dimensional functions and that this32

decomposition can be used to allocate the variance of the output to the individual33

components of the decomposition. More precisely, we have34

f(X)− f0 =f1(X1) + · · ·+ fp(Xp)(1.1)35

+ f1,2(X1, X2) + · · ·+ fp−1,p(Xp−1, Xp)36

+ · · ·+ f1,...,p(X1, . . . , Xp),3738

where f0 = E f(X), fj(Xj) = E(f(X) − f0|Xj), j = 1, . . . , p, and f1,2, . . . , f1,...,p39

are some functions defined iteratively; see [29] and [33, p. 157] for more details. In40

the field of uncertainty quantification the above decomposition is known as the Sobol-41

Hoeffding decomposition in reference to [11, 29]. The expectations and the covariances42

of the individual components in the right-hand side of (1.1) are zero and hence we43
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2 G. MAZO

have the variance decomposition44

Var f(X) = Var f1(X1) + · · ·+ Var fp(Xp) + · · · ,4546

which leads to the so-called Sobol indices47

Sj =
Var fj(Xj)

Var f(X)
=

Var E(f(X)|Xj)

Var f(X)
=

E f(X)f(X̃−j)− (E f(X))2

E f(X)2 − (E f(X))2
,48

49

j = 1, . . . , p; here X̃−j stands for an independent copy of X where the jth compo-50

nent has been replaced by that of X. Thus the Sobol index associated with the jth51

argument of f is defined as the proportion of the total variance associated with the52

lower-dimensional function that depends on the jth argument only. Sobol indices are53

interpreted as sensitivity measures and used to achieve various goals in uncertainty54

quantification [27].55

If the model is nonadditive (it is said that the inputs “interact” with each other)56

then the Sobol indices may be inadequate. To account for interactions, the so-called57

total sensitivity indices [12] are often computed along with Sobol indices. The total58

sensitivity index associated with the jth argument of f is given by59

STj
= 1− Var E(f(X)|X1, . . . , Xj−1, Xj+1, . . . , Xp)

Var f(X)
.60

61

The total sensitivity index quantifies the sensitivity of the output of f to its jth62

argument through the interactions it may have with the other inputs.63

There are numerous methods to estimate the sensitivity indices. For simplic-64

ity, we describe below Sobol’s original method to estimate Sj through Monte Carlo65

sampling [29]. For a review of the many other methods, see [23] or the package66

sensitivity [16] of the R software for an up-to-date list of many methods, with ref-67

erences. Thus, draw two independent sets of inputs {X(i), i = 1, . . . , n}, {X̃(i) :=68

(X̃1, . . . , X̃p), i = 1, . . . , n} and make p more sets by combining the first two: {X̃(i)
−j ,69

i = 1, . . . , n}, j = 1, . . . , p, where70

X̃
(i)
−j := (X̃

(i)
1 , . . . , X̃

(i)
j−1, X

(i)
j , X̃

(i)
j+1, . . . , X̃

(i)
p ).(1.2)71

72

The first and the p last sets are passed on to the function f which produces the73

outputs {Y (i), i = 1, . . . , n} (for the first set) and {Y (i)
j , i = 1, . . . , n}, j = 1, . . . , p74

(for the p last sets), which in turn make up the so-called pick-freeze estimator75

Ŝj =
1
n

∑n
i=1 Y

(i)Y
(i)
j −

(
1
n

∑n
i=1 Y

(i)
)2

1
n

∑n
i=1 Y

(i)2 −
(

1
n

∑n
i=1 Y

(i)
)2 .(1.3)76

77

This gives a simple procedure to estimate all the Sobol indices S1, . . . , Sp with (p+1)n78

runs of the model. The pick-freeze estimator is asymptotically normal [7, 17]. The79

above formula can be improved in many ways [12, 17, 21]. Many versions of this80

estimator exist, the goal being always to get the most efficient estimator with the least81

computations. Sobol indices for multivariate, functional outputs [6, 18] or functional82

inputs [15] have been proposed as well.83

The big difference between a deterministic model and a stochastic model is that84

the stochastic model is not a function anymore. To a particular value of the input there85

does not correspond any particular value for the output. Instead, there corresponds a86
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A TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 3

range of possible values, assumed to come from a probability distribution depending87

on the input. Examples can be found in epidemiology [2, 3, 24, 28] or ecology [31], to88

name a few.89

To do the sensitivity analysis of a stochastic model, several approaches have been90

investigated. In [19], to the best of my understanding, the authors carry out the91

sensitivity analysis of a stochastic model based on a joint metamodel. In [10], a92

stochastic model is seen as a functional relation of the form Y (ϑ, ω) = f(X(ϑ), ω),93

where the X is a random vector on some probability space, ω is a point in some94

probability space distinct from that on which X is defined, f is some function and95

Y (ϑ, ω) is a random variable on the induced product probability space. The quan-96

tity f(X(ϑ), ω) represents the output of the stochastic model run with input X(ϑ);97

the point ω represents the intrinsic randomness. The idea is then to decompose the98

function ϑ 7→ f(X(ϑ), ω) for each ω and estimate the associated sensitivity indices,99

which depend on ω. The estimates are then averaged over ω to make the final sen-100

sitivity estimates. In [1], to the best of my understanding, the stochastic model is101

represented as a deterministic mapping which with an input associates a probability102

density function. The Sobol-Hoeffding decomposition is applied to the mapping which103

with an input associates the entropy of the output evaluated at that input. Here the104

entropy is the Kullback-Leibler divergence of the output density. In [34], the output105

of the stochastic model is seen as a semiparametric statistical model—the generalized106

lambda distribution—with parameters depending on the inputs. These parameters107

have a polynomial chaos expansion which is estimated by maximum likelihood. Once108

the law of the output conditionally on the input has been estimated, its inverse cumu-109

lative distribution function is used to turn the stochastic model into a deterministic110

model to which standard methods are applied. In [5], the stochastic model is seen as111

a mapping that goes from the input space to a space of probability measures equipped112

with the Wasserstein distance. Following [8, 9], the Wasserstein space is mapped to113

the real line R with some family of test functions, thus allowing for a standard Sobol-114

Hoeffding decomposition which is then averaged over all possible test functions. In115

more specific contexts, global sensitivity analysis methods also have been proposed.116

For instance, there are methods for stochastic differential equations [4] and chemical117

reaction networks [22].118

In practice, although it has not been formally defined in the literature, another119

method has been used for some time [2, 24, 28, 31]. The idea is simple: at each120

draw of the input X(i), one produces as many outputs Y (i,1), . . . , Y (i,m) as possible,121

makes the average m−1
∑m
k=1 Y

(i,k) and does as if it were the output of some deter-122

ministic model. The same is done with the inputs X̃
(i)
−j (1.2) to produce the outputs123

m−1
∑m
k=1 Y

(i,k)
j . The obtained estimator is then the same as that in (1.3) but with124

Y (i) replaced by m−1
∑m
k=1 Y

(i,k) and Y
(i)
j replaced by m−1

∑m
k=1 Y

(i,k)
j , yielding125

Ŝj =
1
n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)m−1
∑m
k=1 Y

(i,k)
j −

(
1
n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)
)2

1
n

∑n
i=1

(
m−1

∑m
k=1 Y

(i,k)
)2 − ( 1

n

∑n
i=1m

−1
∑m
k=1 Y

(i,k)
)2 .

(1.4)

126

127

The big advantage for practitioners is that they can use the numerous available and128

ready-to-use softwares for deterministic models.129

To build the estimator (1.4), the stochastic model must be run mn(p+ 1) times.130

The number m is called the number of repetitions and the number n is called the131

number of explorations. If the stochastic model is computationally intensive—that132
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4 G. MAZO

is, each model run is time-consuming—, then the estimator is built with limited133

resources. In this context, an increase of m must go along with a decrease of n, and134

conversely. What is then a good balance between m and n? How to choose m and135

n such that the estimator (1.4) will be the most efficient? This question was asked136

by [31].137

We address this problem by finding a pair (m,n) that minimizes a bound on138

the so-called missranking error. The missranking error penalizes bad rankings of the139

Sobol indices associated with the inputs. The estimated minimizer is used to build140

well-balanced estimators, leading to a two-step procedure to estimate the sensitivity141

indices. This two-step procedure is shown to have good asymptotic properties. We142

show that the estimator (1.4) is asymptotically normal but may be biased if m goes143

to infinity too slowly. If m/
√
n→∞ then it is asymptotically unbiased and converges144

to the so-called sensitivity index of the second kind. Under the minimal assumption145

that a stochastic model is a set of probability measures that capture how the outputs146

are drawn, we show that the output, the inputs and some random “noise” are linked147

through a function, which the Sobol-Hoeffding decomposition can be applied to. This148

yields a new sensitivity index, called the sensitivity index of the first kind, with the149

advantage that asymptotically unbiased estimators can be built even though m re-150

mains fixed. The indices of the first and of the second kinds are complementary as151

they offer distinct pieces of information. Interestingly, these indices can be estimated152

jointly with no additional cost, the joint estimator is asymptotically normal and the153

two kinds of sensitivity indices lead to the same solution for the tradeoff problem.154

This paper is organized as follows. Section 2 gives a definition of stochastic155

models in terms of probability measures and shows how one can construct a functional156

representation linking the output, the input and some random noise. Section 3 defines157

the indices of both kinds and their estimators. The asymptotic properties are deferred158

to Section 5. Section 4 introduces the tradeoff problem, gives a procedure to attack it159

and gives some theoretical guarantees. Section 6 illustrates the theory on numerical160

simulations. A Conclusion closes the paper.161

2. Representations of stochastic models. The concept of stochastic models162

is intuitive and shared by many people but there are different mathematical routes163

to describe them. One is given in Section 2.1. It makes minimal distributional as-164

sumptions to get to a representation in terms of random variables and establishes the165

existence of a function to which the Sobol-Hoeffding decomposition can be applied.166

Section 2.2 makes connections with the stochastic models of [10].167

2.1. Representing stochastic models from minimal distributional as-168

sumptions. A stochastic model is some mechanism that produces outputs at ran-169

dom given some inputs. Thus, a stochastic model can be seen as family of probability170

measures {Qx, x ∈ X} indexed by some input space X ⊂ Rp. We assume that each171

probability measure Qx is defined on the measurable space (R,B), where B is the172

Borel σ-field induced by R. The law Qx governs how the outputs are produced given173

the input x ∈ X ⊂ Rp. Let us endow Rp with its product Borel σ-field Bp and let174

P ∗ be a product probability measure on the measurable space (Rp,Bp) such that175

P ∗(X ) = 1. (Thus we assume that X ∈ Bp.) The probability measure P ∗ represents176

how the inputs are drawn by the practitioner. In particular, since P ∗ is a product177

probability measure, the inputs are drawn independently.178

The stochastic experiment that consists of drawing inputs at random according179

to P ∗ and observing the corresponding outputs is fully characterized by the family180

{Qx} and the probability measure P ∗. This leads us to Definition 2.1.181

This manuscript is for review purposes only.



A TRADEOFF BETWEEN EXPLORATIONS AND REPETITIONS 5

Definition 2.1. If P ∗ and {Qx} are probability measures as described above then182

the pair (P ∗, {Qx}) is called the complete stochastic model.183

Now we look for a representation in terms of random variables that will allow us184

to use the Sobol-Hoeffding decomposition later on.185

Lemma 2.2. If (P ∗, {Qx}) is a complete stochastic model then there exist a proba-186

bility space (Ω,F , P ), a random vector (X,Z) : Ω→ Rp+1 and a function f : Rp+1 →187

R such that188

(i) f(x, Z) is measurable for every x ∈ X ,189

(ii) P (f(x, Z) ∈ B) = Qx(B) for every x ∈ X and every B ∈ B,190

(iii) P (X ∈ A,Z ∈ B) = P ∗(A)P (Z ∈ B) for every A ∈ Bp and B ∈ B.191

Moreover, if (X, f(X,Z)) and (X ′, f ′(X ′, Z ′)) are two joint vectors that satisfy the192

conditions (i), (ii) and (iii) then (X, f(X,Z))
d
= (X ′, f ′(X ′, Z ′)) where

d
= means193

equality in distribution.194

Note that the conditions in Lemma 2.2 do not determine the law of Z; see the195

example below.196

Example 1 (The law of Z is not determined). Let p = 1. Let P ∗ be the197

standard uniform distribution and Qx be the Gaussian distribution with mean x ∈ R198

and variance 1. Let Ω = (0, 1)2 endowed with its Borel σ-field and set P to be the199

product Lebesgue measure. Let X1(ω) = ω1 for ω = (ω1, ω2) ∈ Ω. Let Φ denote the200

distribution function of the standard Gaussian distribution and denote by Φ−1 the201

inverse of Φ. If Z(ω) = ω2 and f(x, z) = Φ−1(z) + x, x ∈ R, z ∈ (0, 1), then it is202

easy to see that (X,Z) and f satisfy the conditions of Lemma 2.2 and the law of Z is203

the standard uniform distribution. But the conditions of Lemma 2.2 are also satisfied204

with Z(ω) =
√
ω2 and f(x, z) = Φ−1(z2)+x, in which case, P (Z ≤ t) = t2, t ∈ (0, 1),205

that is, the law of Z is the beta distribution with parameter (2, 1).206

The indeterminacy of the law of Z is symptomatic of the lack of control of the207

intrinsic randomness assumed in our definition of stochastic models. But this is not208

an issue because our interest lies in the joint vector (X, f(X,Z)), the law of which is209

fully characterized by the conditions in Lemma 2.2. To each complete stochastic model210

there corresponds a unique law that all vectors (X, f(X,Z)) must have, regardless of211

the chosen representation. Therefore, the pair (X, f(X,Z)) can be used to define the212

pair (input, output) of a complete stochastic model, as done in Definition 2.3.213

Definition 2.3. If (X,Z) and f satisfy the conditions in Lemma 2.2 then the214

pair (X, f(X,Z)) is called an observation of the complete stochastic model (P ∗, {Qx});215

the random variable X is called the input and f(X,Z) is called the output.216

In sum, we have established the existence of random variables on a common217

probability space and a function f that characterize the statistical experiment that218

consists of drawing inputs and observing the outputs of a stochastic model. The set219

of assumptions used to represent outputs and inputs of a stochastic model is minimal:220

all we need is a family {Qx} and a probability measure P ∗. We remark that the above221

formalism of stochastic models can be used to represent physical models [32] as well.222

2.2. Links with the stochastic models and the sensitivity indices in [10].223

In [10], the authors consider the model (X ′(ω′), ϕ(X ′(ω′), ω′′)), ω′ ∈ Ω′, ω′′ ∈ Ω′′,224

where (Ω′,F ′, P ′) and (Ω′′,F ′′, P ′′) are probability spaces, X ′ = (X ′1, . . . , X
′
p) is a225
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6 G. MAZO

random vector on Ω′ and ϕ is some function. They consider the sensitivity indices226

SHAG
j =

∫
Ω′′
Sj(ω

′′)P ′′(dω′′),227
228

where229

Sj(ω
′′) =

Var E(ϕ(X ′, ω′′)|X ′j)
Varϕ(X ′, ω′′)

;230
231

above the variances and the expectation are to be understood as integrals on Ω′ with232

respect to P ′.233

One can choose a representation in Lemma 2.2 that corresponds to the models234

in [10]. In particular, one can recover the sensitivity indices SHAG
j , j = 1, . . . , p. Let235

us illustrate this with an example. Let (P ∗, {Qx}) be a complete stochastic model236

and let X = (X1, . . . , Xp), Z and f be as in Lemma 2.2. Define237

S̃HAG
j = E

(
Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)

)
, j = 1, . . . , p.238

239

Consider the model in Example 1.1 of [10], given by240

ϕ(X ′(ω′), ω′′) = X1(ω′) +X2(ω′)ω′′,(2.1)241242

where the law of X ′1 is the uniform distribution on (0, 1), the law of X ′2 is the uniform243

distribution on (1, L + 1), L > 0, and P ′′ is the standard normal distribution on244

Ω′′ = R. The indices in Example 1.1 of [10] are given by245

SHAG
1 =

∫
Ω′′

1

1 + L2ω′′
P ′′(dω′′) =

∫
R

1

1 + L2w
exp

(
−w

2

2

)
1√
2π

dw246
247

and SHAG
2 = 1− SHAG

2 .248

We can build a probability space (Ω,F , P ), a random vector (X,Z) and a function249

f such that S̃HAG
1 = SHAG

1 , as shown in Example 2 below.250

Example 2. Let us first extract the induced complete stochastic model. Set P ∗((0, t1]×251

(1, t2]) = t1(t2 − 1)/L for all 0 < t1 < 1, 1 < t2 < L + 1, L > 0 and Qx(−∞, t] =252

Φ((t− x1)/x2) for all t ∈ R, where Φ(t) =
∫ t
−∞(2π)−1/2e−s

2/2 ds and x = (x1, x2) ∈253

R × (0,∞). Now it remains to choose a representation that fulfills the conditions in254

Lemma 2.2 and ensures that SHAG
1 = S̃HAG

1 . Such a representation can easily be255

found. For instance, take Ω = (0, 1)3 endowed with the product Lebesgue measure and256

put Z(ω) = ω3, X1(ω) = F−1
1 (ω1) and X2(ω) = F2(ω2)−1 for ω = (ω1, ω2, ω3) ∈ Ω,257

where F1(t1) = t1 for 0 < t1 < 1 and F2(t2) = (t2 − 1)/L for 1 < t2 < L+ 1. Finally258

take f(x, z) = Φ−1(z)x2 + x1 for x1 ∈ R, x2 > 0 and z ∈ (0, 1). Then the conditions259

of Lemma 2.2 are fulfilled by construction and the detailed calculations in Appendix A260

show that SHAG
1 = S̃HAG

1 .261

In sum, the stochastic models in [10] can be expressed with the framework of262

Section 2.1. There is however a difference between [10] and Section 2.1. In [10], the263

function ϕ is fixed. It is given as being a part of the stochastic model. In our side,264

the function f is constructed from the probability measures that we are given in the265

first place. It is not unique. Consequently, it is unclear whether or not the indices266

S̃HAG
1 are uniquely determined.267
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3. The sensitivity indices and their estimators. In view of Section 2, we268

can assume that there are a random vector (X,Z) ∈ Rp×R with mutually independent269

p+ 1 components on some probability space (Ω,F , P ) and a real function f such that270

the pair (X, f(X,Z)) ∈ Rp × R represents a random observation (input, output) of271

the stochastic model of interest. To ensure the existence of the sensitivity indices and272

later to derive theoretical results for the estimators, we need to assume the following:273

there exists some function F with EF (X)8 <∞ such that274

(3.1) |f(X,Z)| ≤ F (X)275

almost surely. This assumption appears to be mild. In particular every stochastic276

model with bounded outputs fulfills the condition.277

3.1. Definition of the sensitivity indices. We define two kinds of sensitivity278

indices. The sensitivity indices of the first kind exploit the existence of the function f279

by applying the Sobol-Hoeffding decomposition to it directly. The sensitivity indices280

of the second kind result from an application of the Sobol-Hoeffding decomposition281

to the conditional expectation of f(X,Z) given X, which is a function of X alone.282

The indices of the second kind are those to which the estimators (1.4) mentioned in283

the Introduction converge.284

3.1.1. Indices of the first kind. Applying the Sobol-Hoeffding decomposition285

to f yields286

f(X,Z)− f0 = f1(X1) + · · ·+ fp(Xp) + fp+1(Z) + · · · ,(3.2)287288

where f0 = E f(X,Z), fj(Xj) = E(f(X,Z) − f0|Xj), j = 1, . . . , p, fp+1(Z) =289

E(f(X,Z)− f0|Z) and + · · · stands for the interaction terms. Since X and Z are in-290

dependent, we have Var f(X,Z) = Var f1(X1) + · · ·+ Var fp(Xp) + Var fp+1(Z) + · · · ,291

which leads us to the indices in Definition 3.1.292

Definition 3.1 (Sobol indices of the first kind). The Sobol indices of the first293

kind are defined as294

S′j =
Var E(f(X,Z)|Xj)

Var f(X,Z)
, j = 1, . . . , p.295

It is important to notice that the indices of the first kind depend on the law296

of (X, f(X,Z)) only and hence are uniquely determined. Note that total sensitivity297

indices could be defined as well but it is unclear whether or not they depend on the298

chosen representation.299

3.1.2. Indices of the second kind. Let g(X) := E(f(X,Z)|X) be the condi-300

tional expectation of the output of the stochastic model given the input. The object301

g is a function and the Sobol-Hoeffding decomposition can be applied to it, yielding302

g(X)− g0 = g1(X1) + · · ·+ gp(Xp) + · · · ,303304

where g0 = E g(X), gj(Xj) = E(g(X)− g0|Xj), j = 1, . . . , p and + · · · stands for the305

interaction terms. Since the components of X are independent, we have Var g(X) =306

Var g1(X1) + · · ·+ Var gp(Xp) + · · · , leading to the indices in Definition 3.2.307

Definition 3.2 (Sobol indices of the second kind). The Sobol indices of the308

second kind are defined as309

S′′j =
Var E(g(X)|Xj)

Var g(X)
=

Var E[E(f(X,Z)|X)|Xj ]

Var E(f(X,Z)|X)
, j = 1, . . . , p.310
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The total sensitivity indices, defined by311

S′′Tj = 1− Var E (g(X)|X1, . . . , Xj−1, Xj+1, . . . , Xp)

Var g(X)
,(3.3)312

313

j = 1, . . . , p, are uniquely determined.314

3.1.3. Comparison of the definitions. The sensitivity indices of the first kind315

provide more refined “first-order” information than the indices of the second kind.316

Example 3 and 4 illustrate this.317

Example 3. Let f(X,Z) = aX1 + cX2φ(Z), where X1, X2, Z are independent318

standard normal variables, a, c are real coefficients and φ is a function such that319

Eφ(Z) = 0. Then320

S′1 =
a2

a2 + c2 Eφ(Z)2
, S′2 = 0, S′′1 = 1 and S′′2 = 0.321

322

According to the sensitivity indices of the second kind, X1 has the same impor-323

tance regardless of the value of its coefficient a, while the sensitivity indices of the324

first kind acknowledge that the importance of X1 should depend on its coefficient.325

However, the sensitivity indices of the first kind cannot provide insight into the in-326

teractions between the inputs. For instance, if a is small then the sum S′1 + S′2 will327

be small and hence the contribution to the variance of the output must come from328

elsewhere. Perhaps it comes from the intrinsic stochasticity of the model or from the329

interactions.330

Example 4 returns to the model (2.1).331

Example 4. Let f(X,Z) = Φ−1(Z)X2 + X1 such that the law of X1 and that332

of Z are the uniform distribution on (0, 1), the law of X2 is the uniform distribution333

on (1, L + 1), L > 0, and Φ−1 denotes the inverse distribution function of the stan-334

dard normal distribution. It is easy to see that S′′1 = 1 and S′′2 = 0. The detailed335

calculations in Appendix A show that S′2 = 0 and336

S′1 =
1

4(L2 + 3(L+ 1)) + 1
.337

338

As in Example 3, the sensitivity indices of the second kind do not depend on the339

coefficient L. The sensitivity indices of the first kind do depend on L but note that340

S′1 + S′2 ≤ 1/13, indicating that most of the contribution to the output comes from341

the intrinsic randomness or the interactions.342

In sum, both kinds of sensitivity indices provide useful insights although neither343

kind is perfect. The sensitivity indices of the second kind are good indices for doing a344

sensitivity analysis of the model averaged over the intrinsic randomness but by doing345

so information may be lost. The sensitivity indices of the first kind provide more346

refined information into the individual contributions of the inputs but the information347

is only partial because the knowledge of the interactions and the intrinsic randomness348

are lacking.349

3.2. Construction of the estimators. We construct estimators for the indices350

in Definition 3.1 and 3.2 by Monte-Carlo simulation. The input space is “explored”351

n times; at each exploration two independent input vectors are drawn, combined352

and passed to the stochastic model which is run m times. The integer n is called353

the number of explorations and the integer m is called the number of repetitions.354
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The couple (n,m) is called the design of the Monte-Carlo sampling scheme. The355

total number of calls to the stochastic model is mn(p + 1). The details are given in356

Algorithm 3.1.357

Algorithm 3.1 Generate a Monte-Carlo sample

for i = 1 to n do
draw two independent copies X(i) = (X

(i)
1 , . . . , X

(i)
p ), X̃(i) = (X̃

(i)
1 , . . . X̃

(i)
p )

for j = 0, 1, . . . , p do
for k = 1 to m do

run the stochastic model at X̃
(i)
−j := (X̃

(i)
1 , . . . , X̃

(i)
j−1, X

(i)
j , X̃

(i)
j+1, . . . , X̃

(i)
p ) to

get an output Y
(i,k)
j

end for
end for

end for

In the algorithm above, X̃
(i)
−0 = X(i) by convention. By assumption, the objects358

X̃(i), X̃
(i)
−j and Y

(i,k)
j , j = 0, . . . , p, k = 1, . . . ,m, i = 1, . . . , n, are random vectors359

such that the sets {X̃(i), X̃
(i)
−j , Y

(i,k)
j : j = 0, . . . , p; k = 1, . . . ,m}, i = 1, . . . , n, are360

i.i.d., X(i) and X̃(i) are independent and P (∩pj=0 ∩mk=1 {Y
(i,k)
j ∈ B(k)

j }|X(i), X̃(i)) =361 ∏p
j=0

∏m
k=1 P (Y

(i,k)
j ∈ B(k)

j |X(i), X̃(i)) for all Borel setsB
(k)
j ∈ B. It is easy to see that362

these conditions characterize the joint law of the set {X̃(i)
−j , Y

(i,k)
j : j = 0, . . . , p; k =363

1, . . . ,m; i = 1, . . . , n}, that is, the inputs and the outputs of Algorithm 3.1.364

In view of Section 2, assume without loss of generality that there is some function365

f and some random variables Z
(i,k)
j , j = 0, . . . , p, k = 1, . . . ,m, i = 1, . . . , n, such that366

Y
(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ), where all of the random vectors in the sets {X̃(i), X(i), Z

(i,k)
j :367

j = 0, . . . , p; k = 1, . . . ,m}, i = 1, . . . , n, are mutually independent and all of these368

sets are i.i.d. We shall use both the notations Y and f(X,Z) to denote the outputs.369

With the above notation, the estimators (1.4) of the indices of the second kind370

are rewritten371

(3.4) Ŝ′′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2

1
n

∑n
i=1

(
1
m

∑m
k=1 Y

(i,k)
0

)2

−
(

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 ,372

j = 1, . . . , p, which are indeed the empirical versions of the indices S′′j , since373

S′′j =
E g(X(1))g(X̃

(1)
−j )− (E g(X(1)))2

E g(X(1))2 − (E g(X(1)))2
374

=
E E[f(X(1), Z

(1,1)
0 )|X(1)] E[f(X̃

(1)
−j , Z

(1,1)
j )|X̃(1)

−j ]− (E E[f(X(1), Z
(1,1)
0 )|X(1)])2

E E[f(X(1), Z
(1,1)
0 )|X(1)]2 − (E E[f(X(1), Z

(1,1)
0 )|X(1)])2

.

(3.5)

375

376

As said in the Introduction, this estimator is used implicitly by practitioners but has377

not been formally studied in the literature. A simplified version with m = n appears378

in [13, 14].379
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To estimate the sensitivity indices of the first kind, we exploit a formula similar380

to (3.5). Indeed, we have381

S′j =
E f(X(1), Z

(1,1)
0 )f(X̃

(1)
−j , Z

(1,1)
j )− (E f(X(1), Z

(1,1)
0 ))2

E f(X(1), Z
(1,1)
0 )2 − (E f(X(1), Z

(1,1)
0 ))2

382

=
E E[f(X(1), Z

(1,1)
0 )|X(1)] E[f(X̃

(1)
−j , Z

(1,1)
j )|X̃(1)

−j ]−
(

E E[f(X(1), Z
(1,1)
0 )|X(1)]

)2

E E[f(X(1), Z
(1,1)
0 )2|X(1)]−

(
E E[f(X(1), Z

(1,1)
0 )|X(1)]

)2 .

(3.6)

383

384

Notice that the upper left, upper right and the lower right terms are identical to the385

upper left, upper right and the lower right terms in (3.5) respectively. The upper386

left term is the only term that depends on j and, therefore, it is the only term that387

permits to discriminate between any two indices of the same kind. For this reason, it388

is called the discriminator. It is denoted by Dj . Formula (3.6) yields the estimator389

(3.7) Ŝ′j;n,m =

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

1
m

∑m
k′=1 Y

(i,k′)
j −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2

1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)2
0 −

(
1
n

∑n
i=1

1
m

∑m
k=1 Y

(i,k)
0

)2 .390

Since the estimators for the discriminator are identical, both kinds of sensitivity391

indices lead to the same estimated ranking of the inputs. All of the 2p estimators392

can be computed with mn(p+ 1) runs of the stochastic model. In (3.7) and (3.4), if393

m = 1 and if the function f does in fact not depend on Z, then the estimators reduce394

to Sobol estimators [29, 30] for deterministic models.395

4. Choosing between Monte-Carlo designs. The estimators in Section 3396

depend on the design (n,m) of the Monte-Carlo sampling scheme. To estimate the397

sensitivity indices in Definition 3.1 and Definition 3.2, the stochastic model has to be398

called (p+ 1)mn times.399

It is reasonable to think of a sensitivity analysis as done the following way. The400

total number of calls is set to a limit, say T . Then n and m are chosen so that401

T = (p+ 1)mn. For instance, suppose that one cannot afford more than 150 calls to402

a model with two inputs. Then T = 150, p = 2 and one can choose either one of the403

columns in the following table404

n 50 25 10 5 2 1
m 1 2 5 10 25 50.

405

Denote by divp(T ) the set of all divisors of T/(p + 1) between 1 and T/(p + 1).406

In the example above, div2(150) = {1, 2, 5, 10, 25, 50}. There are as many designs as407

there are elements in the set divp(T ). Each one of those elements corresponds to a408

possible combination for n and m which Algorithm 3.1 can be run with. The resulting409

estimators require the same number of calls but do not perform equally well. The410

goal of this section is to find the “best” way to estimate the sensitivity indices.411

4.1. Introducing the miss-ranking error and its bound. To compare the412

estimators, a measure of performance has to be defined. We shall consider the miss-413
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ranking error (MRE), defined by414

MRE = E

 p∑
j=1

|R̂j;n,m −Rj |

 ,415

where Rj is the rank of Dj among D1, . . . , Dp, that is, Rj =
∑p
i=1 1(Di ≤ Dj), and416

R̂j;n,m is an estimator of Rj . Recall that D1, . . . , Dp are the upper-left terms in (3.6)417

and (3.5). They determine the ranks of the sensitivity indices. The MRE is small418

when one succeeds in ranking the inputs from the most to the least important, a task419

which is called “factors prioritization” in [27, p. 52]. For simplicity, we assume that420

the sensitivity indices, and hence the quantities D1, . . . , Dp, are distincts, so that they421

can be ranked unambiguously. This assumption is mild: even if Dj and Dj′ only differ422

by a small amount, it is still satisfied. Recall that the ranks of the sensitivity indices423

of the first kind coincide with the ranks of the sensitivity indices of the second kind.424

Thus, the MRE permits to find a unique solution for both kinds of sensitivity indices.425

The MRE has a bound with interesting mathematical properties. Denote by426

MRE(T,m) the MRE based on T calls to the model with m repetitions, so that the427

number of explorations is T/(p+1)/m. To shorten the notation, let (X(1), X̃(1)) = X,428

f(X(1), Z
(1,1)
0 ) = Y0 and f(X̃

(1)
−j , Z

(1,1)
j ) = Yj .429

Proposition 4.1. Let D̂j;n,m, j = 1, . . . , p, be the upper-left term in (3.7) or (3.4)430

and put R̂j;n,m =
∑p
i=1 1(D̂i;n,m ≤ D̂j;n,m). If D1, . . . , Dp are all distincts then431

MRE(T,m) ≤ L

nm

(
m

p∑
j=1

Var(E[Y0Yj |X])432

+

p∑
j=1

E[Var(Y0Yj |X)−Var(Y0|X) Var(Yj |X)]433

+
1

m

p∑
j=1

E[Var(Y0|X) Var(Yj |X)]
)
,434

435

where436

L =
4(p− 1)

min
j<j′

(|Dj −Dj′ |2)
.437

438

The constant L tells us that the bound is smaller when the indices are well439

separated. The bound goes to zero when the number of explorations goes to infinity.440

This is true even if the number of repetitions is fixed. Most interestingly, the bound441

separates T and m: substituting T/(p+ 1) for nm in the denominator of the bound,442

we get443

MRE(T,m) ≤ 1

T
v(m), m ∈ divp(T ),(4.1)444

445

This manuscript is for review purposes only.



12 G. MAZO

where446

447

v(m) = L(p+1)
(
m

p∑
j=1

Var(E[Y0Yj |X])+

p∑
j=1

E[Var(Y0Yj |X)−Var(Y0|X) Var(Yj |X)]448

+
1

m

p∑
j=1

E[Var(Y0|X) Var(Yj |X)]
)
.449

450

Denote by m†T the element m ∈ divp(T ) that minimizes v(m). Taking m = m†T451

in (4.1), we get the bound452

MRE(T,m†T ) ≤
v(m†T )

T
≤ v(m)

T
, for all m ∈ divp(T ).453

Thus choosing m = m†T and n = T/(p + 1)/m†T in Algorithm 3.1 ensures that the454

MRE cannot exceed the least possible bound. The least possible bound v(m†T )/T455

is also called the best obtainable guarantee. However, m†T is unknown and must be456

estimated.457

Remark 4.2. The choice of T , through the specification of divp(T ), will influence458

the quality of the bound. It is clear that choosing T/(p+ 1) a prime number may not459

be a good idea because v(m†T ) will be either v(1) or v(T/(p + 1)). On the opposite,460

choosing T/(p+ 1) a factorial number ensures many more choices (in fact, all).461

4.2. A two-stage procedure to estimate the sensitivity indices. The re-462

sults in Section 4.1 suggest a two-stage procedure to estimate the sensitivity indices.463

The procedure is given in Algorithm 4.1. The computational budget is split into two464

parts K and T −K. Denote by m†T−K the element m ∈ divp(T −K) that minimizes465

the function v(m). The first K calls to the model are used to estimate m†T−K . The466

last T −K calls to the model are used to estimate the sensitivity indices.467

Algorithm 4.1 Estimate the sensitivity indices by a two-stage procedure

Stage 1. Choose an integer K such that K/(p+1) and (T −K)/(p+1) are integers
also. Choose integers m0 and n0 such that K = m0n0(p + 1). Run Algorithm 3.1

with m = m0 and n = n0. Estimate m†T−K by an estimator m̂†T−K ∈ divp(T −K).

Stage 2. Run Algorithm 3.1 with m = m̂†T−K and

n =
T −K

(p+ 1)m̂†T−K
.

Compute the sensitivity indices estimators (3.7) and (3.4).

In Algorithm 4.1 we need m̂†T−K an estimator of m†T−K . Let us build one. Let468

m∗ be the minimizer of v seen as a function on the positive reals. Since v is convex,469

the minimizer is unique. It follows from (4.1) and Proposition 4.1 that470

m∗ :=

√∑p
j=1 E[Var(Y0|X) Var(Yj |X)]∑p

j=1 Var(E[Y0Yj |X])
=

√∑p
j=1 ζ3,j∑p
j=1 ζ1,j

,(4.2)471

472
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where ζ3,j = E[Var(Y0|X) Var(Yj |X)] and ζ1,j = Var(E[Y0Yj |X]), j = 1, . . . , p.473

Let ϕT : (0,∞) −→ divp(T ), be the function defined by ϕT (x) = 1 if 0 < x < 1,474

ϕT (x) = T/(p+ 1) if x > T/(p+ 1), and475

ϕT (x) =

{
xxyT if

√
xxyT pxqT > x ≥ 1

pxqT if
√
xxyT pxqT ≤ x ≤ T

p+1

476

477

where478

xxyT = max{m ∈ divp(T ), m ≤ x}, pxqT = min{m ∈ divp(T ), m ≥ x}.479480

The function ϕT is piecewise constant with discontinuity points at
√
ij, where i and481

j are two consecutive elements of divp(T ).482

Proposition 4.3. If m∗ > 0 then m†T−K = ϕT−K(m∗). If, moreover,483

xm∗yT−Kpm∗qT−K is not equal to m∗2 then the minimizer of v(m), m ∈ divp(T−K),484

is unique.485

Proposition 4.3 suggests that m†T−K can be estimated by applying the function486

ϕT−K to an estimate of m∗. Thus, our problem of estimating m†T−K boils down to487

the problem of estimating m∗. Let us find an estimator of m∗. Remember that it has488

to be based on the first K = m0n0(p+ 1) calls to the model. In view of (4.2), put489

(4.3) m̂∗K :=

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

,490

where491

ζ̂3,j =492

1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2 1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(4.4)493

+
1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

(4.5)494

− 1

n0

n∑
i=1

(
1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )

)2
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )2(4.6)495

− 1

n0

n∑
i=1

1

m0

m0∑
k1=1

f(X(i), Z
(i,k1)
0 )2

(
1

m0

m0∑
k2=1

f(X̃
(i)
−j , Z

(i,k2)
j )

)2

,(4.7)496

497

and498

ζ̂1,j =499

1

n0

n∑
i=1

(
1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

(4.8)500

−

(
1

n0

n∑
i=1

1

m0

m0∑
k=1

f(X(i), Z
(i,k)
0 )f(X̃

(i)
−j , Z

(i,k)
j )

)2

.(4.9)501

502
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Notice that ζ̂1,j ≥ 0 and ζ̂3,j ≥ 0 so that m̂∗K ≥ 0. If m0 = 1 then ζ̂3,j = 0 and hence503

m̂∗K = 0.504

The estimator m̂∗K is consistent and asymptotically normal on some conditions505

on the rates of n0 and m0.506

Theorem 4.4. Assume (3.1) holds. Let n0 →∞. If m0 is fixed then507

√
n0

(
m̂∗K −

[
m∗ +

C

m0
+ εm0

])
d→ N (0, σ2

m0
),508

where C is some constant, εm0
= C1/m

2
0 + · · · + CN/m

N+1
0 for some constants509

C1, . . . , CN and σ2
m0

is some variance depending on m0. If m0 → ∞ then the above510

display with εm0
= o(1/m0) and σm0

replaced by limm0→∞ σm0
is true.511

Theorem 4.4 shows that m̂∗K is asymptotically biased. The bias is polynomial in512

1/m0. Corollary 4.5 shows that letting m0 →∞ suffices to get the consistency of m̂∗K513

but to get a central limit theorem centered around m∗, it is furthermore needed that514 √
n0/m0 → 0.515

Corollary 4.5. Assume (3.1) holds. Let n0 → ∞ and m0 → ∞. Then m̂∗K
P→516

m∗. If, moreover,
√
n0/m0 → 0, then517

√
n0(m̂∗K −m∗)

d→ N (0, lim
m0→∞

σ2
m0

).518

Now we have everything that is needed to estimate m†T−K . Put m̂†T−K =519

ϕT−K(m̂∗K). Proposition 4.6 states that m̂†T−K and m†T−K are equal with proba-520

bility going to one.521

Proposition 4.6. Assume (3.1) holds. Let n0 →∞ and m0 →∞. Then522

P
(
m̂†T−K = m†T−K

)
→ 1.523

524

All the details of Algorithm 4.1 have been given.525

4.3. Performance. To get some insight into the performance of Algorithm 4.1,526

we look at the estimators produced in Stage 2, which are built with T − K calls527

to the model with m̂†T−K repetitions and (T −K)/(p + 1)/m̂†T−K explorations. Let528

D̂j;n̂,m̂, j = 1, . . . , p, be the discriminators of those estimators, so that n̂ = (T −529

K)/(p + 1)/m̂†T−K and m̂ = m̂†T−K . Let R̂j;n̂,m̂ be the rank of D̂j;n̂,m̂ among530

D̂1;n̂,m̂, . . . , D̂p;n̂,m̂. The conditional expectation of
∑p
j=1|R̂j;n̂,m̂ − Rj | given the531

outputs produced in Stage 1 is equal to MRE(T − K, m̂†T−K), the MRE based on532

T −K calls to the model with m̂†T−K repetitions and (T −K)/(p+ 1)/m̂†T−K explo-533

rations. Recall that the estimator m̂†T−K is computed with K calls to the model and534

by construction m̂†T−K ∈ divp(T −K). Equation (4.1) yields535

MRE(T −K, m̂†T−K) ≤ 1

T −K
v(m̂†T−K),(4.10)536

537

where the inequality above is to be understood almost surely, since both sides of538

equation are random variables.539

We shall show that, under conditions on T and K, the bound in (4.10) is in540

fact close to the best obtainable guarantee v(m†T )/T . Suppose for simplicity that541
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divp(T − K) ⊂ divp(T ). Since m̂†T−K ∈ divp(T − K) by construction, we have542

m̂†T−K ∈ divp(T ) and therefore v(m†T )/T ≤ v(m̂†T−K)/(T −K) by definition of m†T .543

The left hand side is the best guarantee we can hope for and corresponds to the case544

where K = 0 in Algorithm 4.1. It can be interpreted as the guarantee obtained if we545

would know the value of m∗ in (4.2), for in that case we would not need to spend546

budget in Stage 1 of Algorithm 4.1. We proceed in two steps.547

Theorem 4.7. Assume that the conditions of Proposition 4.6 are fulfilled. Sup-548

pose furthermore that K →∞ such that K/T → 0. Then549

1

T −K
v(m̂†T−K) =

1

T
v(m†T−K)(1 + oP (1)).550

551

Theorem 4.7 holds without the condition divp(T −K) ⊂ divp(T ). Imposing this552

condition, we get Corollary 4.8 below.553

Corollary 4.8. If, in addition to the conditions of Theorem 4.7, divp(T −K) ⊂554

divp(T ) then555

MRE(T −K, m̂†T−K) ≤
v(m†T )

T
(1 + oP (1)).556

557

The result of Corollary 4.8 easily follows from (4.10) and Theorem 4.7 because558

m†T−K = m†T as soon as (T −K)/(p + 1) > m†T−K , which happens eventually as T559

and K go to infinity because the function v is convex.560

5. Asymptotic normality of the sensitivity indices estimators. The sen-561

sitivity indices estimators of Section 3.2 depend on both m and n. It is clear that562

n should go to infinity to get central limit theorems. It may be less clear, however,563

whether or not m should go to infinity as well. The answer depends on the kind of564

the sensitivity index we are looking at.565

Two frameworks are considered:566

• n→∞ and m is fixed;567

• n→∞ and m→∞.568

In the second framework m = mn is a sequence indexed by n that goes to infinity as569

n goes to infinity. Denote by S′ (resp. S′′) the column vector with coordinates S′j570

(resp. S′′j ), j = 1, . . . , p, and denote by Ŝ′n,m (resp. Ŝ′′n,m) the column vector with571

coordinates Ŝ′j;n,m given in (3.7) (resp. Ŝ′′j;n,m given in (3.4)). Theorem 5.1 below572

predicts that the joint vector (Ŝ′>n,m, Ŝ
′′>
n,m)> is asymptotically normal.573

Theorem 5.1. Assume (3.1) holds. Let n→∞. If m is fixed then574

√
n

(
Ŝ′n,m − S′

Ŝ′′n,m − S′′
[
1− E Var(f(X,Z)|X)

E Var(f(X,Z)|X)+mVar E(f(X,Z)|X)

]) d→ N (0,Ξm),575

for some nonnegative matrix Ξm of size 2p × 2p. If m → ∞ then, elementwise,576

limm→∞ Ξm exists and the above display with Ξm replaced by limm→∞ Ξm is true.577

A blockwise reading of Theorem 5.1 shows that the behaviors of Ŝ′n,m and Ŝ′′n,m578

differ. While Ŝ′>n,m is asymptotically unbiased even ifm is kept fixed, Ŝ′′>n,m is asymptot-579

ically biased in general even if m goes to infinity. The estimator Ŝ′′n,m under-estimates580

S′′. The bias, given by581

S′′
E Var(f(X,Z)|X)

E Var(f(X,Z)|X) +mVar E(f(X,Z)|X)
,582

583
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is null whenever f actually does not depend on Z, and large whenever the stochastic584

model is highly stochastic.585

Corollary 5.2 below shows that m must go to infinity fast enough to avoid the586

estimator to be concentrated around the wrong target.587

Corollary 5.2. Assume (3.1) holds. Let n→∞. If m→∞ such that
√
n/m→588

0 then589

√
n
(
Ŝ′′n,m − S′′

)
d→ N (0,Ξ22),590

where Ξ22 is the lower-right block of the matrix limm→∞ Ξm given in Theorem 5.1.591

The difference between Ŝ′n,m and Ŝ′′n,m is due to the difference between the lower-592

left terms in (3.7) and (3.4). While the lower-left term in (3.7) is unbiased for all n593

and m, the lower-left term in (3.4) has a bias depending on m which propagates to the594

estimator of the sensitivity indices. (The calculations are carried out in Appendix D.)595

From a statistical perspective, it is more difficult to estimate the sensitivity indices of596

the second kind than to estimate the sensitivity indices of the first kind. To estimate597

the former, one needs to repeat the model many times. To estimate the later, this is598

not necessary.599

6. Numerical tests. Section 6.1 illustrates how the MRE responds to a change600

in the Monte-Carlo design. In Section 6.1 the total budget T is kept fixed. Section 6.2601

illustrates how the sensitivity indices estimators behave asymptotically. In Section 6.2602

the total budget T increases.603

6.1. Comparison of Monte-Carlo designs. The effect of the number of rep-604

etitions on the sensitivity indices estimators and the effect of the calibration in the605

two-stage procedure are examined in two kinds of experiments: the “direct” experi-606

ments and the “calibration” experiments.607

In the direct experiments, the sensitivity indices are estimated directly with the608

given number of repetitions. Increasing numbers of repetitions m are tested. (Since609

the budget is fixed, this goes with decreasing numbers of explorations.) For each m,610

the mean squared errors (MSEs), given by E
∑p
j=1(Ŝ′j;n,m−S′j)2 and E

∑p
j=1(Ŝ′′j;n,m−611

S′′j )2, are estimated with replications. They are also split into the sum of the squared612

biases and the sum of the variances to get further insight about the behavior of the613

estimators. The MREs are estimated as well. A normalized version is considered:614

it is the MRE divided by the number of variables. For models with two inputs, the615

normalized MRE is interpreted directly as the probability that the two inputs are616

ranked incorrectly.617

In the calibration experiments, the sensitivity indices are estimated with the two-618

stage procedure, the results of which depend on the calibration parameters K and619

m0. Various calibration parameters are tested to see their effect on the MRE. The620

budgets for the direct experiments and the calibration experiments are the same so621

that the numbers can be compared. In particular, the direct experiments correspond622

to the case K = 0 in the calibration experiments.623

A linear model of the form Y = X1 + βX2 + σZ, where X1, X2, Z, are standard624

normal random variables and β, σ are real coefficients, has been considered because625

the sensitivity indices are explicit and hence the performance of the estimators can626

be evaluated easily. The quantity m∗ is explicit: the formula is given in Appendix E.627

6.1.1. High noise context. The coefficients are β = 1.2 and σ = 4. The628

sensitivity indices are S′1 = 0.05, S′2 = 0.08, S′′1 = 0.41 and S′′2 = 0.59. The real629
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m0 n0

K/3 2 5 10 20 20 10 5 2
400 0.43 0.42 0.42 - - 0.42 0.39 0.40
200 0.38 0.39 0.37 - - 0.35 0.35 0.34
100 0.36 0.37 - - - - 0.32 0.30
50 0.39 0.33 - - - - 0.33 0.31

Table 1: Normalized MRE in the linear model with high noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.

m∗ is about 5.8. The total budget is T = 3 × 500 = 1500 and hence div2(1500) =630

{1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500}. The integer m†1500 is equal to ϕ1500(m∗) =631

5. Since the budget is kept fixed, the numbers of explorations are, respectively,632

500, 250, 125, 100, 50, 25, 20, 10, 5, 4, 2, 1. The number of replications is 1500.633

The results of the direct experiment are given in Figure 1 for m = 1, 2, 4, 5, 10,634

20, 25. The MSE of first kind does not vary with the number of repetitions and is635

much lower than the MSE of second kind, see (c). The estimators of the second kind636

are highly biased for small numbers of repetitions (a) and they have a higher variance637

for larger numbers of repetitions (b). The fact that the bias is high for small numbers638

of repetitions agrees with the theory, according to which the bias should vanish as m639

goes to infinity. Overall, the sensitivity indices of the second kind seem to be much640

harder to estimate than the indices of the first kind, the estimators of which have a641

negligible bias and a very small variance whatever the number of repetitions.642

According to Figure 1(c), the normalized MRE curve has a banana shape with a643

minimum of about slightly less than 30% reached around m ∈ {5, 10} and endpoints644

with a value of about 35%. A value of 30% means that the probability of ranking645

the inputs correctly is about 70%. The region of observed optimal performance m ∈646

{5, 10} coincides with m†1500 = 5, the point at which the bound is minimal.647

The results of the calibration experiment is given in Table 1 for the normalized648

MRE. The lowest MREs are reached at the bottom right of the table, with values649

corresponding to 2 ≤ m ≤ 10 in Figure 1 (c). Optimal performance is reached with650

very few explorations in the first stage of the two-stage procedure. In this case, the651

estimator m̂∗K has a small bias but a high variance. It seems to be better than an652

estimator with a small variance but a large bias. This might be explained by the low653

curvature of the MRE curve.654

6.1.2. Low noise context. The coefficients are β = 1.2 and σ = 0.9. The655

sensitivity indices are S′1 = 0.31, S′2 = 0.44, S′′1 = 0.41 and S′′2 = 0.59. The real656

m∗ is about 0.30 and hence the integer m†1500 is equal to 1. As expected, these657

numbers are smaller than the ones found in the high noise context. The total budget658

is T = 3× 500 = 1500. The number of replications is 500.659

The results for the direct experiment are given in Figure 2. The MSE of first660

kind increases with the number of repetitions, see (c): this is due to the increase661

of the variance (b), while the bias is negligible (a). As in the high noise context,662

the estimators of the second kind have a decreasing bias and an increasing variance,663

although the decrease of the bias is of much less magnitude. This agrees with the664

theory, where we have seen that, for the sensitivity indices of the second kind, the665

biases of the estimators are small when the noise of the model is low.666
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Fig. 1: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the high noise setting. Confidence intervals
of level 95% are added in (c).

In Figure 2 (c), the normalized MRE varies a lot. It increases from about 2% at667

m = 1 to 30% at m = 25. Thus, unlike in the high noise setting, choosing a good668

number of repetitions is important. The best performance is achieved at m = 1, which669

coincides with the minimizer m†1500 = 1 of the bound.670

The results of the calibration experiment for the normalized MRE is given in671

Table 2. The best performance is reached at the bottom left of the table with numbers672

that correspond to the optimal performance in Figure 2 (c). Moreover, notice that a673

large spectrum of calibration parameters (K,m0) yield low errors.674
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Fig. 2: Sum of squared biases (a), sum of variances (b) and errors (c) of the sensitivity
indices estimators for the linear model in the low noise context. Confidence intervals
of level 95% are added in (c).

m0 n0

K/3 2 5 10 20 20 10 5 2
400 0.18 0.15 0.17 - - 0.16 0.18 0.20
200 0.05 0.04 0.04 - - 0.06 0.05 0.07
100 0.02 0.04 - - - - 0.04 0.04
50 0.03 0.02 - - - - 0.02 0.04

Table 2: Normalized MRE in the linear model with low noise for various calibrations:
K/(p+ 1) = 50, 100, 200, 400 and m0 = 2, 5, 10, 20, . . . For instance, for K/(p+ 1) =
200 = m0n0, the normalized MRE is available for m0 = 2, 5, 10, 20, 40, 100.
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6.2. Asymptotic behavior of the sensitivity indices estimators. To illus-675

trate the asymptotic behavior of the sensitivity indices estimators, Sobol’s g-function,676

a benchmark in sensitivity analysis [25, 20], is considered. Sobol’s g-function is given677

by678

g(U1, . . . , Up+1) =

p+1∏
j=1

|4Uj − 2|+ aj
1 + aj

,679

680

where the aj are nonnegative and the Uj are independent standard uniform random681

variables. The less aj the more Uj is important. Elementary calculations show that682

the first-order Sobol index associated with Uj is given by683

S
(a1,...,ap+1)
j =

1

3(1 + aj)2

−1 +

p+1∏
j=1

(4/3 + a2
j + 2aj)

(1 + aj)2

−1

.684

685

To build a stochastic model out of Sobol’s g-function, we let one of the Uj play686

the role of Z. For instance if Ui, 1 ≤ i ≤ p + 1, were to play this role, then the687

stochastic model would be688

Y = f(X1, . . . , Xp, Z) = g(X1, . . . , Xi−1, Z,Xi, . . . , Xp).(6.1)689690

Of course Y and f above depend on i. In the rest of this section we choose arbitrarily691

i = 2 and p = 4.692

The Sobol indices of the first and of the second kind (in the sense of Definition 3.1693

and 3.2) are then easily seen to be694

S′j =

{
S

(a1,...,ap+1)
j if 1 ≤ j ≤ i− 1

S
(a1,...,ap+1)
j+1 if i ≤ j ≤ p

695

696

and S′′j = S
(bi1,...,bip)
j , where697

bij =

{
aj if 1 ≤ j ≤ i− 1,

aj+1 if i ≤ j ≤ p.698
699

For each kind of Sobol index, we produced 500 estimates of the p Sobol indices700

and computed the values of the mean squared error (MSE) by averaging over the701

500 replications and summing over the p indices. We tested n = 100, 500, 2500 and702

m = 1, 10, 100.703

The MSEs are shown in Figure 3. Let us look at 3a. As n increases, the decrease704

is linear for each m. This indicates that the MSEs go to zero at a polynomial rate,705

even if m is fixed (look at the line m = 1). This agrees with the theoretical results706

of Section 5. The picture is different for the estimator of Sobol indices of the second707

kind. In 3b, the curve for m = 1 is not a straight line, indicating that the MSE may708

not go to zero. Indeed, the MSE for m fixed is not expected to go to zero because709

of the bias depending on m. To make the MSE go to zero, one has to force m go to710

infinity.711

Figure 4, which shows the distribution of the estimates for the index associated712

to X1, better explains this phenomenon. Here the bias is apparent for m = 1 and713

vanishes as m goes to infinity. The bias for the indices associated with the other714

inputs is not as large (not shown here).715
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Fig. 3: MSEs for the Sobol index estimators of the first and second kind (logarithmic
scale).
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Fig. 4: Boxplots of the estimates for the Sobol index of the second kind associated
with X1. The red horizontal line is the truth.

7. Conclusion. The practical method that consists of repeating the stochastic716

model at each exploration of the input space was analysed in the context of global717

sensitivity analysis. To find a tradeoff between the number of explorations n and the718

number of repetitions m, a bound on the missranking error (MRE) was found and719

minimized, leading to a solution in closed form. A two-step procedure was imple-720

mented to estimate the sensitivity indices. It was shown to have good asymptotic721

properties. Two sensitivity indices were considered. The sensitivity index of the first722

kind results from the existence of a function that links the output, the inputs and723
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some random noise in stochastic models defined through probability measures. The724

sensitivity index of the second kind is the population version of the estimator (1.4). An725

asymptotic analysis of the estimators was conducted. It was found that the estimators726

for the indices of the second kind may be asymptotically biased if m goes to infinity727

too slowly, while the estimators for the indices of the first kind are asymptotically728

unbiased even if m remains fixed. To test the theory, simulation experiments were729

conducted and the bias of the sensitivity estimator of the second kind was confirmed.730

Optimal compromises between repetitions and explorations have been identified and731

compared with the output of the two-stage procedure.732

This work opens many research directions. First, the sensitivity estimators of the733

two stages could be aggregated to build estimators with a lower variance. Second,734

other methods might be developed to optimize the Monte-Carlo sampling scheme. For735

instance the MSE might be approximated or asymptotic variance-covariance matrices736

might be minimized. Third, multilevel Monte-Carlo sampling schemes might be con-737

sidered to alleviate the bias issue. Fourth, a finite-sample analysis could be conducted738

to get insight into the tradeoff K is subjected to. Fifth, since the bias is known, it739

could be estimated to build bias-corrected sensitivity indices estimators. Sixth, the740

problem of choosing a number of calls with many divisors must be addressed. It may741

be worth to call the model a bit less if this permits to have a better set divp(T ). Sev-742

enth, the connection between our representation of stochastic models and that of [10]743

could be investigated further.744

Appendix A. Calculations of some sensitivity indices.745

A.1. Calculations for S̃HAG
1 in Example 2. We have746

S̃HAG
1 = E

(
Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)

)
=

∫
Ω

Var(E[f(X,Z)|Xj , Z]|Z)

Var(f(X,Z)|Z)
dP.747

748749

Since the term inside the integral is a function of Z and the law of Z is the standard750

uniform distribution, a change of measures yields751

S̃HAG
1 =

∫
(0,1)

Var(E[f(X, z)|Xj , Z = z]|Z = z)

Var(f(X, z)|Z = z)
dz =

∫
(0,1)

Var(E[f(X, z)|X1])

Var(f(X, z))
dz.752

753

It remains to know what the ratio inside the integral is. We have754

Var(f(X, z)) = Var(Φ−1(z)X2 +X1) =Φ−1(z)2 Var(X2) + Var(X1)755

=Φ−1(z)2L
2

12
+

1

12
,756

757

and758

Var(E[f(X, z)|X1]) = Var(E[Φ−1(z)X2 +X1|X1])759

= Var(Φ−1(z) E[X2|X1] + E[X1|X1])760

= Var(Φ−1(z) E[X2] +X1)761

= Var(X1)762

=
1

12
763
764
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and hence765

S̃HAG
1 =

∫
(0,1)

1

Φ−1(z)2L2 + 1
dz =

∫ ∞
−∞

1

z2L+ 1

1√
2π
e−z

2/2 dz.766

767

A.2. Calculations for S′1 in Example 4. The sensitivity index of the first768

kind associated with the first input is given by769

S′1 =
Var[E(X1 +X2Φ−1(Z)|X1)]

Var[X1 +X2Φ−1(Z)]
.770

771

The numerator is given by Var[E(X1 +X2Φ−1(Z)|X1)] = Var[X1 + E(X1Φ−1(Z))] =772

Var[X1] = 1/12. The denominator is given by Var[X1 + X2Φ−1(Z)] = Var[X1] +773

Var[X2Φ−1(Z)] = 1/12 + Var[X2Φ−1(Z)], where774

Var[X2Φ−1(Z)] = Var[E(X2Φ−1(Z)|Z)] + E(Var[X2Φ−1(Z)|Z])775

= Var

[
Φ−1(Z)

(
L

2
+ 1

)]
+

∫ 1

0

Φ−1(z)2 Var[X2] dz776

=

(
L

2
+ 1

)2

+
L2

12
,777

778

so that779

S′1 =
1/12

1/12 + (L/2 + 1)2 + L2/12
=

1

4(L2 + 3(L+ 1)) + 1
.780

781

Appendix B. Proofs.782

B.1. Proof of Lemma 2.2. Since P ∗ is a product probability measure, we783

can write P ∗ = ⊗pj=1P
∗
j . Let Ω = (0, 1)p+1 endowed with its Borel σ-field and let784

P be the product Lebesgue measure λ⊗
p+1
j=1 . If Fj denotes the distribution function785

corresonding to P ∗j then, for ω = (ω1, . . . , ωp+1) ∈ Ω, put Xj(ω) = F←j (ωj) :=786

inf{xj ∈ R : Fj(xj) ≥ ωj} for all j = 1, . . . , p and Z(ω) = ωp+1. Take f(x, z) =787

F←x (z) := inf{t ∈ R : Fx(t) ≥ z}, z ∈ (0, 1), where Fx is the cumulative distribution788

function associated with Qx. Standard probability techniques show that f(x, Z) is789

measurable for every x. Moreover, for every t ∈ R,790

P (f(x, Z) ≤ t)791

=P (Z ≤ Fx(t)) = λ⊗
p+1
j=1{ω ∈ Ω : ωp+1 ≤ Fx(t)} = λ(0, Fx(t)] = Fx(t).792793

Finally, by the same token,794

P (X1 ≤ t1, . . . , Xp ≤ tp, Z ≤ tp+1)795

=P{ω : ω1 ≤ F1(t1), . . . , ωp ≤ Fp(tp), ωp+1 ≤ tp+1} = tp+1

p∏
j=1

Fj(tj).796

797

The proof is complete.798

Proof of Proposition 4.1. Assume without loss of generality that D1 < · · · <799

Dp. We first prove the following Lemma. For convenience, the subscripts n and m800

are left out.801
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Lemma B.1. Let i < j. Then802

P (D̂i − D̂j ≥ 0) ≤ Var D̂i + Var D̂j
1
2 |Di −Dj |2

.803

804

Proof. We have805

P (D̂i − D̂j ≥ 0) ≤P (|D̂i −Di|+ |D̂j −Dj | ≥ Dj −Di)806

≤P (|D̂i −Di|2 + |D̂j −Dj |2 ≥
1

2
|Dj −Di|2)807

808809

and the claim follows from Markov’s inequality.810

We now prove Proposition 4.1. Recall that D1 < · · · < Dp. We have811

p∑
i=1

E |R̂i −Ri| ≤
p∑
i=1

p∑
j=1

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)|812

≤
p∑
i=1

∑
j 6=i

Var D̂i + Var D̂j
1
2 |Di −Dj |2

813

≤ 4(p− 1)

min
j<j′
|Dj −Dj′ |2

p∑
i=1

Var D̂i,814

815

where the second inequality holds by Lemma B.1 and because816

E |1(D̂j ≤ D̂i)− 1(Dj ≤ Di)| =

 E |1(D̂j > D̂i)| if j < i,
0 if j = i,

E |1(D̂j ≤ D̂i)| if j > i.

817

818

It remains to calculate the variances. But this is done in Lemma D.3 in Appendix D,819

where it is found that820

Var D̂j =
1

n
{Var E[Y0Yj |X] +

1

m
(E Var[Y0Yj |X]−Var[Y0|X] Var[Yj |X])821

+
1

m2
E Var[Y0|X] Var[Yj |X]}.822

823

Proof of Proposition 4.3. We distinguish between three cases: 0 < m∗ < 1,824

m∗ > (T − K)/(p + 1) and 1 ≤ m∗ ≤ (T − K)/(p + 1). Recall that m†T−K is the825

minimizer of v(m), m in divp(T −K).826

If 0 < m∗ < 1 then by definition ϕT−K(m∗) = 1 and by convexity v(m∗) ≤827

v(1) ≤ v(m) for all m in divp(T −K). Therefore m†T−K = 1.828

If m∗ > (T −K)/(p+ 1) then by definition ϕT−K(m∗) = (T −K)/(p+ 1) and by829

convexity v(m∗) ≤ v((T −K)/(p + 1)) ≤ v(m) for all m in divp(T −K). Therefore830

m†T−K = (T −K)/(p+ 1).831

If 1 ≤ m∗ ≤ (T −K)/(p+ 1) then by definition832

ϕT−K(m∗) =

{
xm∗yT−K if

√
xm∗yT−Kpm∗qT−K > m∗

pm∗qT−K if
√

xm∗yT−Kpm∗qT−K ≤ m∗.
833

834
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By convexity m†T−K must be xm∗yT−K or pm∗qT−K . If xm∗yT−K = pm∗qT−K then835

m†T−K = pm∗qT−K = ϕT−K(m∗). Otherwise, since v(x) = ζ1x + ζ2 + ζ3/x, x > 0,836

for some constants ζ1, ζ2 and ζ3 such that ζ3/ζ1 = m∗, we have837

v(xm∗yT−K) < v(pm∗qT−K) iff
√

xm∗yT−Kpm∗qT−K >
ζ3
ζ1

= m∗.838
839

Therefore ϕT−K(m∗) = m†T−K .840

Let us prove that the minimizer of v(m), m ∈ divp(T − K), is unique if m∗ 6=841 √
xm∗yT−Kpm∗qT−K . If it were not, then we would have v(xm∗yT−K)842

= v(pm∗qT−K). Bus this implies m∗ =
√

xm∗yT−Kpm∗qT−K , which is a contra-843

diction.844

Proof of Theorem 4.4. In this proof m0 and n0 are denoted by m and n,845

respectively. In view of (4.3) and (4.4)–(4.9), we have846

m̂∗K =

√√√√∑p
j=1 ζ̂3,j∑p
j=1 ζ̂1,j

=

√√√√√∑p
j=1

1
n

∑n
i=1 ξ

(4.4)
j;m,i + ξ

(4.5)
j;m,i − ξ

(4.6)
j;m,i − ξ

(4.7)
j;m,i∑p

j=1
1
n

∑n
i=1 ξ

(4.8)
j;m,i −

(
1
n

∑n
i=1 ξ

(4.9)
j;m,i

)2 ,847

848

where the ξ
(e)
j;m,i, i = 1, . . . , n, j = 1, . . . , p, e = 4.4, . . . , 4.9, are implicitly defined849

through (4.4)–(4.9). Let850

ξ =
1

n

n∑
i=1

ξm,i,851

ξm,i = (ξ>1;m,i, . . . , ξ
>
p;m,i)

>, i = 1, . . . , n,852

ξj;m,i = (ξ
(4.4)
j;m,i, . . . , ξ

(4.9)
j;m,i)

>, j = 1, . . . , p, i = 1, . . . , n.853
854

Let s be the function defined by855

s(x) =

√√√√∑p
j=1 x

(4.4)
j + x

(4.5)
j − x(4.6)

j − x(4.7)
j∑p

j=1 x
(4.8)
j − x(4.9)2

j

,856

857

where x = (x>1 , . . . ,x
>
p )>, xj = (x

(4.4)
j , . . . , x

(4.9)
j )>, j = 1, . . . , p. With the above858

notation we have m̂∗K = s(ξ). Moreover, elementary calculations show that859

E ξm,1 = θ +

4∑
ν=1

Cν

mν
,(B.1)860

861

where the Cν are vectors of constants, θ = (θ>1 , . . . ,θ
>
p )> and862

θj = E



Y
(1,1)2
0 Y

(1,1)2
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)2
j

Y
(1,1)
j Y

(1,2)
j Y

(1,1)2
0

Y
(1,1)
0 Y

(1,2)
0 Y

(1,1)
j Y

(1,2)
j

Y
(1,1)
j Y

(1,1)
0


.863

864
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Check that m∗ = s(θ). A concatenation of two Taylor expansions yield865

√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)866

=
√
n(s(ξ)− s(E ξm,1))(B.2)867

=
√
n(s(ξ)− s(θ)− (E ξm,1 − θ)>ṡ(θ)− 1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)),868

869

where ṡ is the gradient of s, s̈n,m is the Hessian matrix of s at a point between ξ870

and θm, and, s̈m is the Hessian matrix of s at a point between E ξm,1 and θ. It871

follows from (B.1) that (E ξm,1−θ)>ṡ(θ) is clearly of the form
∑4
ν=1 Cν/m

ν for some872

constants Cν . Putting873

εm =
1

2
(E ξm,1 − θ)>s̈m(E ξm,1 − θ)) +

4∑
ν=2

Cν
mν

,874

875

it follows from (B.2) that876

877

(B.3)
√
n(ξ − E ξm,1)>ṡ(E ξm,1) +

1

2
(ξ − E ξm,1)>s̈n,m(ξ − E ξm,1)878

=
√
n(m̂∗K −m∗ −

C1

m
− εm).879

880

If m is fixed then Lemma C.2 in Appendix C yields881

√
n(ξ − E ξm,1)→ N (0,Σm),882883

for some variance-covariance matrix Σm of size 6p×6p. Moreover, the second term in884

the left-hand side of (B.3) is oP (1) by Cauchy-Schwartz’s inequality and the continuity885

of the second derivatives of s. The first term goes to N (0, ṡ(E ξm,1)>Σmṡ(E ξm,1))886

and hence the claim follows with σ2
m = ṡ(E ξm,1)>Σmṡ(E ξm,1) and C = C1.887

If m→∞ then again Lemma C.2 in Appendix C applies: we have888

√
n(ξ − E ξm,1)→ N (0, lim

m→∞
Σm).889

890

Since εm−
∑4
ν=2 Cν/m

ν = o(m−1), ṡ is continuous and E ξm,1 → θ, the claim follows.891

The proof is complete.892

Proof of Proposition 4.6. By definition, m̂†T−K = ϕT−K(m̂∗K) and m†T−K =893

ϕT−K(m∗). The function ϕT−K is piecewise constant and has |divp(T−K)|−1 points894

of discontinuity of the form
√
ij, where i and j are two consecutive members of895

divp(T −K) \
{

1,
T −K
p+ 1

}
.896

897

Denote the set of discontinuity points by DT−K . Clearly,898

DT−K ⊂ {
√
ij : i and j are two consecutive integers} = E .899900

There exists an open interval that contains m∗ but does not contain any points of901

E and hence does not contain any points of DT−K , whatever T and K. If m̂∗K is in902

this interval then there are no discontinuity points between m∗ and m̂∗K and hence903

m̂†T−K = ϕT−K(m̂∗K) = ϕT−K(m∗) = m†T−K . By Corollary 4.5, the probability of904

that event goes to one as m0 and n0 go to infinity.905
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Proof of Theorem 4.7. Let ε > 0. An obvious algebraic manipulation and906

Taylor’s expansion yield907

P

(∣∣∣∣∣ 1
T−K v(m̂†T−K)− 1

T v(m†T−K)

1
T v(m†T−K)

> ε

∣∣∣∣∣
)

908

≤ P
(∣∣∣∣ T

T −K
(m̂†T−K −m

†
T−K)v′(m̃) +

K

T −K
v(m†T−K)

∣∣∣∣ > v(m†T−K)ε

)
,909

910

where m̃ denotes a real between m̂†T−K andm†T−K . A decomposition of the probability911

above according to whether m̂†T−K −m
†
T−K 6= 0 or m̂†T−K −m

†
T−K = 0 yields the912

bound913

P
(
m̂†T−K −m

†
T−K 6= 0

)
+ P

(
K

T −K
> ε

)
.914

915

The first term goes to zero by Proposition 4.6. The second term goes to zero because916

K/T → 0.917

Proof of Theorem 5.1. The proof is based on the results in Appendix C. The918

Sobol estimators in (3.7) and (3.4) are of the form919

Ŝ′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,920

921

and922

Ŝ′′j;n,m =
1
n

∑n
i=1 ξ

UL
j;m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2
1
n

∑n
i=1 ξ

′′LL
m,i −

(
1
n

∑n
i=1 ξ

UR
m,i

)2 , j = 1, . . . , p,923

924

where the notation is obvious. Denote ξm,i := (ξUL
1;m,i, . . . , ξ

UL
p;m,i, ξ

UR
m,i, ξ

′LL
m,i , ξ

′′LL
m,i )>.925

Elementary but burdensome calculations show that926

E ξm,1 =



E E[f(X,Z)|X] E[f(X̃−1, Z)|X̃−1]
...

E E[f(X,Z)|X] E[f(X̃−p, Z)|X̃−p]
E f(X,Z)
E f(X,Z)2

E E[f(X,Z)|X]2 + E Var[f(X,Z)|X]
m


.927

(Some calculations are carried out in Appendix D.) Define the function928

929

s(x1, . . . , xp, xp+1, xp+2, xp+3)930

=

(
x1 − x2

p+1

xp+2 − x2
p+1

, . . . ,
xp − x2

p+1

xp+2 − x2
p+1

,
x1 − x2

p+1

xp+3 − x2
p+1

, . . . ,
xp − x2

p+1

xp+3 − x2
p+1

)
.931

932

Clearly, we have933

s

(
1

n

n∑
i=1

ξm,i

)
=

(
Ŝ′n,m
Ŝ′′n,m

)
934

This manuscript is for review purposes only.



28 G. MAZO

and935

s(E ξm,1) =

(
S′

S′′
[
1− E Var[f(X,Z)|X]

E Var[f(X,Z)|X]+mVar E[f(X,Z)|X]

])
.936

If m is fixed then Lemma C.2 in Appendix C yields937

√
n

(
1

n

n∑
i=1

ξm,i − E ξm,1

)
d→ N (0,Σm),938

for some nonnegative matrix Σm of size (p+ 3)× (p+ 3) and the result follows by the939

delta-method.940

If m → ∞, Lemma C.2 still holds with the variance-covariance matrix replaced941

by its limit. Taylor’s expansion yields942

√
n

(
s

(
1

n

n∑
i=1

ξm,i

)
− s(E ξm,1)

)
943

=
√
n

((
1

n

n∑
i=1

ξm,i − E ξm,1

)
ṡm944

+
1

2

(
1

n

n∑
i=1

ξm,i − E ξm,1

)>
s̈n,m

(
1

n

n∑
i=1

ξm,i − E ξm,1

) ,945

946

where ṡm is the gradient of s at E ξm,1 and s̈n,m is the Hessian matrix of s at a947

point between n−1
∑
i ξm,i and E ξm,1. Since that point goes to a constant and s has948

continuous second derivatives, it holds that s̈n,m goes to a constant as well. So does949

ṡm and the claim follows by Slutsky’s lemma.950

Appendix C. A unified treatment of the asymptotics. All estimators in951

this paper have a common form, given by952

(C.1)
1

n

n∑
i=1

ξm,i,953

with954

ξm,i =

L∏
l=1

1

m

m∑
k=1

p∏
j=0

Y
(i,k)bj;l
j ,(C.2)955

956

where Y
(i,k)
0 = Y (i,k) = f(X(i), Z

(i,k)
0 ), Y

(i,k)
j = f(X̃

(i)
−j , Z

(i,k)
j ) for j = 1, . . . , p, and957

bj;l, j = 0, . . . , p, l = 1, . . . , L, are nonnegative coefficients. The coefficients are958

arranged in a matrix (bj;l) with L rows and p+1 columns, where bj;l is the element in959

the lth row and (j+1)th column. This way, all estimators of the form (C.1) and (C.2),960

or, equivalently, all summands (C.2), can be represented by a matrix. We sometimes961

write ξm,i ' (bj;l), where (bj;l) is the matrix of size L× (p+ 1) with coefficients bj;l,962

j = 0, . . . , p, l = 1, . . . , L.963

C.1. Examples. The estimator964

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0

1

m

m∑
k′=1

Y
(i,k′)
j965

966
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is of the form (C.1) and (C.2) with L = 2 and coefficients967 (
1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0

)
,968

969

where the non-null columns are the first and the (j + 1)th ones. The estimators970

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)
0 ,

1

n

n∑
i=1

1

m

m∑
k=1

Y
(i,k)2
0 ,971

1

n

n∑
i=1

(
1

m

m∑
k=1

Y
(i,k)
0

)2

972

973

are of the form (C.1) and (C.2) with L = 2 and coefficients974 (
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,

(
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

)
,975 (

1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0

)
,976

977

respectively.978

The estimators of Section 4. In view of (4.4)–(4.9), the estimators ζ̂3,j and979

ζ̂1,j can be expressed in terms of estimators of the form (C.1) and (C.2): we have980

ζ̂3,j =
1

n

n∑
i=1

ξ
(4.4)
j;m,i + ξ

(4.5)
j;m,i − ξ

(4.6)
j;m,i − ξ

(4.7)
j;m,i, and,981

ζ̂1,j =
1

n

n∑
i=1

ξ
(4.8)
j;m,i −

(
1

n

n∑
i=1

ξ
(4.9)
j;m,i

)2

,982

983

where984

ξ
(4.4)
j;m,i, ξ

(4.5)
j;m,i985

ξ
(4.6)
j;m,i, ξ

(4.7)
j;m,i,986

ξ
(4.8)
j;m,i, ξ

(4.9)
j;m,i987

988

are all of the form (C.2) with L = 4 and coefficients989 
2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0

 ,990


1 0 . . . 0 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 2 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


2 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,991


1 0 . . . 0 1 0 . . . 0
1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,


1 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 0 0 . . . 0

 ,992

993

respectively. In the matrices above, the first and j + 1th columns are nonnull.994
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The estimators of Section 5. The Sobol estimators in (3.7) and (3.4) are of995

the form (C.1) and (C.2) with L = 2 and coefficients996

ξUL
1;m,i '

(
1 0 0 · · · 0
0 1 0 · · · 0

)
, · · · , ξUL

p;m,i '
(

1 0 · · · 0 0
0 0 · · · 0 1

)
997

for the upper left (UL) terms,998

ξUR
m,i '

(
1 0 · · · 0
0 0 · · · 0

)
999

for the upper right (UR) term,1000

ξ′LL
m,i '

(
2 0 · · · 0
0 0 · · · 0

)
1001

for the lower left (LL) term of Ŝ′j;n,m and1002

ξ′′LL
m,i '

(
1 0 · · · 0
1 0 · · · 0

)
1003

for the lower left (LL) term of Ŝ′′j;n,m.1004

C.2. A central limit theorem. For each n, the random variables ξm,1, . . . , ξm,n1005

are independent and identically distributed. Denote by Em,i(L) the set of all sum-1006

mands (C.2). In other words, Em,i(L) is the set of all nonnegative matrices of size1007

L× (p+1). This set has useful properties, gathered in Proposition C.1 for subsequent1008

use.1009

Proposition C.1. Let ξ be an element of Em,i(L) with coefficients (bj;l). The1010

following statements are true.1011

(i) If ξ′ is an element of Em,i(L) with coefficients (b′j;l) then ξξ′ is an element of1012

Em,i(2L) with coefficients1013 

b0;1 · · · bp;1
...

...
b0;L · · · bp;L
b′0;1 · · · b′p;1

...
...

b′0;L · · · b′p;L


.1014

1015

(ii) The limit of E ξ exists as m→∞.1016

(iii) If there exists some function F such that |f(x, z)| ≤ F (x) for all x and z in the1017

domain of definition of f then1018

|ξ| ≤

 p∨
j=0

Fj(X
(i))


∑p

j=0

∑L
l=1 bj;l

,1019

where Fj(X
(i)) is F (X(i)) if j = 0 and F (X̃

(i)
−j) if j ≥ 1.1020
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Proof. The proof of (i) is trivial. Let us prove (ii). We have1021

E ξ =
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j1022

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E E

 L∏
l=1

p∏
j=0

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

1023

=
1

mL

∑
(k1,...,kL)∈{1,...,m}L

E

p∏
j=0

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
.(C.3)1024

1025

Since (i) X(1) and {Z(1,k), k = 1, . . . ,m} are independent and (ii) the law of1026

(Z(1,k1), . . . ,Z(1,kL))1027

is invariant through any permutation of distinct k1, . . . , kL, all the inner expectations1028

in (C.3) are equal to some others. For if k1, . . . , kL are distinct then1029

E

(
L∏
l=1

Y
(1,kl)bj;l
j

∣∣∣∣∣X(1)

)
= E

(
L∏
l=1

Y
(1,l)bj;l
j

∣∣∣∣∣X(1)

)
1030

1031

for all j = 0, . . . , p. The number of inner expectations equal to the one above is1032

m(m − 1) · · · (m − L + 1), a polynomial in m with degree L. If some components of1033

the tuple (k1, . . . , kL) are equal, then we can always write1034

E

(
L∏
l=1

Y
(1,kl)bjl
j

∣∣∣∣∣X(1)

)
= E

 L′∏
l=1

Y
(1,l)βj;l

j

∣∣∣∣∣X(1)

1035

1036

for some L′ ≤ L and coefficients βjl It is easy to see that the number of inner expec-1037

tations equal to the one above is a polynomial in m with degree at most L. (Looking1038

at examples helps to see this; see e.g. the proof of Lemma D.2 in Appendix D.)1039

Therefore, the sum in (C.3) is also a polynomial in m with degree at most L and the1040

claim follows (E ξ can be zero). To prove (iii), simply remember that, by assumption,1041

|Y (1,k)| ≤ F (X(1)) and |Y (1,k)
j | ≤ F (X̃

(1)
−j ) for all k and all j.1042

Two frameworks are considered:1043

• n→∞ and m is fixed;1044

• n→∞ and m→∞.1045

In the second framework mn is a sequence indexed by n that goes to infinity as n goes1046

to infinity.1047

Lemma C.2. Let ξ
(I)
m,i, I = 1, . . . , N , be elements of Em,i(L) with coefficients1048

(b
(I)
j;l ). Assume1049

EF (X(1))2
∑p

j=0

∑L
l=1 b

(I)
j;l <∞1050

for all I = 1, . . . , N . Let n→∞. If m is fixed then1051

√
n

[
1

n

n∑
i=1

ξ
(1)
m,i − E ξ

(1)
m,1, . . . ,

1

n

n∑
i=1

ξ
(N)
m,i − E ξ

(N)
m,1

]>
d→ N (0,Σm),1052

1053
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where Σm is the variance-covariance matrix of ξm,i = (ξ
(1)
m,i, . . . , ξ

(N)
m,i )>. If m →1054

∞ then limm→∞Σm exists elementwise and the above display with Σm replaced by1055

limm→∞Σm is true.1056

Proof. Let m be fixed. By Proposition C.1 (i), ξ
(I)2
m,i , I = 1, . . . , N , belongs to1057

Em,i(2L) and has coefficients1058

ξ
(I)2
m,i '



b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L

b
(I)
0;1 · · · b

(I)
p;1

...
...

b
(I)
0;L · · · b

(I)
p;L


.1059

1060

Thus, denoting
∑p
j=0

∑L
l=1 b

(I)
j;l by β, Proposition C.1 (iii) yields1061

ξ
(I)2
m,i ≤

p∨
j=0

Fj(X
(i))2β(C.4)1062

1063

and hence1064

E ξ
(I)2
m,i ≤ E

p∨
j=0

Fj(X
(1))2β ≤ (p+ 1) E

(
F (X(1))

)2β

<∞.1065

1066

Therefore we can apply the central limit theorem to finish the proof for m fixed.1067

Let m→∞. According to Lindeberg-Feller’s central limit theorem (see e.g. [33]),1068

it suffices to show1069

(i) for all ε > 0,1070

n∑
i=1

E

∥∥∥∥ 1√
n
ξm,i

∥∥∥∥2

1

{∥∥∥∥ 1√
n
ξm,i

∥∥∥∥ > ε

}
→ 0,1071

1072

and1073

(ii) the limit
∑n
i=1 Cov(ξm,i/

√
n) exists and is finite.1074

Let us show (i). Denoting X = (X(1), X̃(1)), we have1075

n∑
i=1

E

∥∥∥∥ξm,i√n
∥∥∥∥2

1
{∥∥ξm,i∥∥ > √nε} = E ‖ξm,1‖21{‖ξm,1‖ >

√
nε}1076

= E

N∑
I=1

ξ
(I)2
m,1 1{‖ξm,1‖ >

√
nε}1077

=

N∑
I=1

E
[
E
(
ξ

(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)]
.1078

1079
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By (C.4), we have1080

E
(
ξ

(I)2
m,1 1{‖ξm,1‖ >

√
nε}|X

)
≤

p∨
j=0

Fj(X
(1))2βP

(∥∥ξm,1∥∥ > √nε|X)1081

≤
p∨
j=0

Fj(X
(1))2β

∑N
I=1 E

(
ξ

(I)2
m,1 |X

)
nε2

1082

≤
N
∨p
j=0 Fj(X

(1))4β

nε2
,1083

1084

where the last inequality holds by using (C.4) once more. The upper bound goes to1085

zero and is dominated by an integrable function. Thus, we can apply the dominated1086

convergence theorem to complete the proof.1087

Let us show that (ii) holds. We have
∑n
i=1 Cov(ξm,i/

√
n) = Cov(ξm,1). The1088

element (I, J) in this matrix is given by E ξ
(I)
m,1ξ

(J)
m,1 − E ξ

(I)
m,1 E ξ

(J)
m,1. Remember that1089

E ξ
(I)2
m,1 <∞, I = 1, . . . , N , and hence E ξ

(I)
m,1ξ

(J)
m,1 ≤ E ξ

(I)2
m,1 /2+ξ

(J)2
m,1 /2 <∞. Therefore1090

the limit of Cov ξm,1 exists and is finite. The proof is complete.1091

Appendix D. Explicit moment calculations. Explicit moment calculations1092

are given for the summands in the proof of Theorem 5.1. In this section, E f(X,Z)1093

and E E[f(X,Z)|X]2 are denoted by µ and D, respectively. Recall that the upper-left1094

term in (3.6) and (3.5) is denoted by Dj . The moments are given in Lemma D.11095

and Lemma D.2. The variances and covariances are given in Lemma D.3. Let X =1096

(X(1), X̃(1)). Whenever there is a superscript X added to the expectation symbol E1097

or the variance symbol Var, this means that these operators are to be understood1098

conditionally on X. An integral with respect to P∗(dx) means that we integrate with1099

respect to the law of X.1100

Lemma D.1 (Moments of order 1). The moments of order 1 are given by1101

E ξUL
j;m1 = Dj ,1102

E ξUR
m1 = µ,1103

E ξ′′LLm1 =
1

m
E VarX f(X(1), Z(1,1)) +D.1104

1105

1106

Proof. One has1107

E ξUL
j;m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X̃
(1)
−j , Z

(1,k′)
j )1108

=
1

m2

∑
k,k′

∫
E f(x, Z(1,k))f(x̃−j , Z

(1,k′)
j ) P∗(dx)1109

= E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )1110

=Dj ,11111112
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where the integral is taken with respect to the law of x = (x, x̃), and,1113

E ξ′′LL
m1 =

1

m2

∑
k,k′

E f(X(1), Z(1,k))f(X(1), Z(1,k′))1114

=
1

m
E VarX f(X,Z) + E(EX f(X,Z))2

1115

=
1

m
E VarX f(X,Z) +D.1116

1117

The proof for ξUR
m1 is similar.1118

Lemma D.2 (Moments of order 2). The moments of order 2 are given by1119

E ξ
(UL)2
j;m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j ) +D2

j1120

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )1121

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]1122

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),1123

E ξ
(UR)2
m1 =

1

m
E VarX f(X(1), Z(1,1)) + E(EX f(X(1), Z(1,1)))2,1124

E ξ
′′(LL)2
m1 =

m(m− 1)(m− 2)(m− 3)

m4
1125

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4))1126

+

(
4
2

)
m(m− 1)(m− 2)

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3))1127

+

(
4
3

)
m(m− 1)

m4
E f(X(1), Z(1,1))3f(X(1), Z(1,2))1128

+
m

m4
E f(X(1), Z(1,1))4

1129

+

(
4
2

)
m(m− 1)/2

m4
E f(X(1), Z(1,1))2f(X(1), Z(1,2))2

1130
1131

1132

Proof. Let us first deal with ξUL
j;m1. We have1133

1134

E ξ
(UL)2
j;m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))1135

f(X̃
(1)
−j , Z

(1,k3)
j )f(X̃

(1)
−j , Z

(1,k4)
j )1136

1137

where, in the sum, the indices run over 1, . . . ,m. We split the sum into four parts.1138

The first contains the m2(m − 1)2 terms that satisfy k1 6= k2 and k3 6= k4. In this1139

part, all the terms are equal to1140

E
(

EX f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )

)2

.(term 1)1141
1142

The second part contains the m2(m− 1) terms that satisfy k1 6= k2 and k3 = k4 and1143

that are equal to1144

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃
(1)
−j , Z

(1,1)
j )2.(term 2)1145

1146
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The third part contains the m2(m − 1) terms that satisfy k1 = k2 and k3 6= k4 and1147

that are equal to1148

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )f(X̃

(1)
−j , Z

(1,2)
j ).(term 3)1149

1150

Finally, the fourth part contains the m2 terms that satisfy k1 = k2 and k3 = k4 and1151

are equal to1152

E f(X(1), Z(1,1))2f(X̃
(1)
−j , Z

(1,1)
j )2.(term 4)1153

1154

(One can see that the number of terms is m4.) Thus,1155

E ξ
(UL)2
m1 =(term 1)1156

+
1

m
[(term 2) + (term 3)− 2(term 1)]1157

+
1

m2
[(term 1)− (term 2)− (term 3) + (term 4)].1158

1159

Furthermore, [(term 1) - (term 2) - (term 3) + (term 4)] is equal to1160 ∫ (
EX f(x, Z)f(x̃−j , Zj)

)2

1161

− EX f(x, Z(1,1))f(x, Z(1,2))f(x̃−j , Z
(1,1)
j )2

1162

− EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )f(x̃−j , Z

(1,2)
j )1163

+ EX f(x, Z(1,1))2f(x̃−j , Z
(1,1)
j )2 dP∗(x)1164

=

∫ (
EX f(x, Z)

)2 (
EX f(x̃−j , Zj)

)2

1165

−
(

EX f(x, Z)
)2

EX f(x̃−j , Zj)
2

1166

− EX f(x, Z)2
(

EX f(x̃−j , Zj)
)2

1167

+ EX f(x, Z)2 EX f(x̃−j , Zj)
2 dP∗(x)1168

=

∫
VarX f(X,Z) VarX f(X̃−j , Zj) dP∗(x).1169

1170

Likewise, we find that [(term 2)+(term 3)-2(term 1)] is equal to1171

E VarX f(X,Z)f(X̃−j , Zj)−VarX f(X,Z) VarX f(X̃−j , Zj),11721173

and term 1 is Var EX f(X,Z)f(X̃−j , Z̃) +D2
j .1174

We now deal with ξ′′LL
m1 . We have1175

1176

E ξ
′′(LL)2
m1 =

1

m4

∑
k1,k2,k3,k4

E f(X(1), Z(1,k1))f(X(1), Z(1,k2))1177

f(X(1), Z(1,k3))f(X(1), Z(1,k4)).11781179

The sum is split into five parts. The first part consists of the m(m−1)(m−2)(m−3)1180

terms with different indices; those terms are equal to1181

E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X(1), Z(1,3))f(X(1), Z(1,4)).1182
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The second part consists of the
(

4
2

)
m(m − 1)(m − 2) terms with exactly two equal1183

indices; those terms are equal to1184

E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X(1), Z(1,3)).1185

The third part consists of the
(

4
3

)
m(m − 1) terms with exactly three equal indices;1186

those terms are equal to1187

E f(X(1), Z(1,1))3f(X(1), Z(1,2)).1188

The fourth part consists of the m terms with exactly four equal indices; those terms1189

are equal to1190

E f(X(1), Z(1,1))4.1191

The fifth and last part consists of the
(

4
2

)
m(m− 1)/2 terms with exactly two pairs of1192

equal indices; those terms are equal to1193

E f(X(1), Z(1,1))2f(X(1), Z(1,2))2.1194

(One can check that the total number of terms is m4.)1195
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Lemma D.3 (Variances and covariances).1196

Var ξUL
m1 = Var EX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )(i)1197

+
1

m
[E VarX f(X(1), Z(1,1))f(X̃

(1)
−j , Z

(1,1)
j )1198

−VarX f(X(1), Z(1,1)) VarX f(X̃
(1)
−j , Z

(1,1)
j )]1199

+
1

m2
E VarX f(X(1), Z(1,1)) VarX f(X̃

(1)
−j , Z

(1,1)
j ),1200

Cov(ξUL
m1 , ξ

UR
m1 ) =

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )(ii)1201

+
1

m
E f(X(1), Z(1,1))2f(X̃

(1)
−j , Z

(1,1)
j )−Djµ1202

Cov(ξUL
m1 , f(X,Z)2) =

1

m
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(iii)1203

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )−Djκ(iii)1204

Var ξUR
m1 =

1

m
Var f(X,Z)(iv)1205

Cov(ξUR
m1 , f(X,Z)2) =

1

m
f(X,Z)3(v)1206

+
m− 1

m
E f(X(1), Z(1,1))2f(X(1), Z(1,2))− µκ1207

Cov(ξUL
mn1, ξ

′′LL
mn1) =

m

m3
E f(X(1), Z(1,1))3f(X̃

(1)
−j , Z

(1,1)
j )(vi)1208

+
3m(m− 1)

m3
E f(X(1), Z(1,1))2f(X(1), Z(1,2))f(X̃

(1)
−j , Z

(1,1)
j )1209

+
m(m− 1)(m− 2)

m3
E f(X(1), Z(1,1))f(X(1), Z(1,2))1210

f(X(1), Z(1,3))f(X̃
(1)
−j , Z

(1,1)
j )1211

− E f(X(1), Z(1,1))f(X̃
(1)
−j , Z

(1,1)
j )1212 {

1

m
E f(X(1), Z(1,1))2 +

m− 1

m
E f(X(1), Z(1,1))f(X(1), Z(1,2))

}
1213
1214

1215

Proof. The proof follows from direct calculations.1216

Appendix E. Calculations for the linear model.1217

Lemma E.1. Suppose that f(X,Z) = β0 + βp+1Z +
∑p
j=1 βjXj where X =1218

(X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1, EX3

j = 0,1219

EX4
j = 3. Then the squared optimal number of repetitions is given by1220

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

1221

and the discriminator (the upper-left term in (3.6) and (3.5)) is1222

β2
0 + β2

i .1223

1224
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Proof. We have1225

m∗i =
Ai +Bi + Ci +Di

Ei
,1226

with1227

Ai = E f(X,Z1)2f(X̃−i, Z̃i1)2
1228

Bi = E f(X,Z1)f(X̃−i, Z̃i1)f(X,Z2)f(X̃−i, Z̃i2)1229

Ci = −E f(X,Z1)2f(X̃−i, Z̃i1)f(X̃−i, Z̃i2)1230

Di = −E f(X̃−i, Z̃i1)2f(X,Z1)f(X,Z2)1231

Ei = B − [E f(X,Z1)f(X̃−i, Z̃i1)]212321233

where X = (X1, . . . , Xp), Zk, Z̃ik are independent, EXj = EZ = 0, EX2
j = EZ2 = 1,1234

EX3
j = 0, EX4

j = 3. We deal with the case1235

f(X,Z) = β0 + βp+1Z +

p∑
j=1

βjXj .1236

We calculate the terms one by one as follows. We have1237

Aj = E

β0 +

p∑
j=1

βjXj

2β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

1238

+

β0 +

p∑
j=1

βjXj

2

β2
p+1Z̃

2
i1 + β4

p+1Z
2
1 Z̃

2
i11239

+ β2
p+1Z

2
1

β0 + βiXi +
∑

j:1≤j 6=i

βjX̃j

2

1240

= Aj1 +Aj2 +Aj3,12411242

where E (A2) = β4
p+1 +β2

p+1

∑p
j=0 β

2
j , E (A3) = β2

p+1

∑p
j=0 β

2
j . Elementary but some-1243

what tedious calculations yield1244

E (A1) = β4
0 + 3β4

i + 6β2
0β

2
i + 2(β2

0 + β2
i )

∑
j:1≤j 6=i

β2
j +

 ∑
j:1≤j 6=i

β2
j

2

.1245

1246

Similar calculations show that Bj = Aj1, Cj = −Aj1 − Aj3, Dj = −Aj1 − Aj3,1247

Ej = Aj1 − (β2
0 + β2

i )2. Thus,1248

(m∗i )
2 =

β4
p+1

(β0 + βi)2 − 2β4
0 + (

∑p
j=0 β

2
j )2

.
1249
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and G. Thébaud, Using sensitivity analysis to identify key factors for the propaga-1322
tion of a plant epidemic, Open Science, 5 (2018), https://doi.org/10.1098/rsos.171435,1323
http://rsos.royalsocietypublishing.org/content/5/1/171435, https://arxiv.org/abs/http://1324
rsos.royalsocietypublishing.org/content/5/1/171435.full.pdf.1325

[25] A. Saltelli and I. M. Sobol’, About the use of rank transformation in sensitivity analysis1326
of model output, Reliability Engineering & System Safety, 50 (1995), pp. 225 – 239, https:1327
//doi.org/https://doi.org/10.1016/0951-8320(95)00099-2, http://www.sciencedirect.com/1328
science/article/pii/0951832095000992.1329

[26] A. Saltelli, S. Tarantola, and F. Campolongo, Sensitivity anaysis as an ingredient of1330
modeling, Statistical Science, 15 (2000), pp. 377–395.1331

[27] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice,1332
Wiley, 2004.1333

[28] J. F. Savall, C. Bidot, M. Leblanc-Maridor, C. Belloc, and S. Touzeau, Modelling1334
salmonella transmission among pigs from farm to slaughterhouse: interplay between man-1335
agement variability and epidemiological uncertainty, International Journal of Food Micro-1336
biology, 229 (2016), pp. 33–43.1337

[29] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical modelling1338
and computational experiments, 1 (1993), pp. 407–414.1339

[30] I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte1340
Carlo estimates, Mathematics and computers in simulation, 55 (2001), pp. 271–280.1341

[31] M. Spence, Statistical issues in ecological simulation models, PhD thesis, University of1342
Sheffield, 2015. http://etheses.whiterose.ac.uk/10517.1343

[32] L. Szewczyk, J.-L. Grimaud, and I. Cojan, Experimental evidence for bifurcation angles1344
control on abandoned channel fill geometry, Earth Surface Dynamics, 8 (2020), pp. 275–288,1345
https://doi.org/10.5194/esurf-8-275-2020, https://hal.archives-ouvertes.fr/hal-02562670.1346

[33] A. W. van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998.1347
[34] X. Zhu and B. Sudret, Global sensitivity analysis for stochastic simulators based on general-1348

ized lambda surrogate models, arXiv preprint arXiv:2005.01309, (2020).1349

This manuscript is for review purposes only.

https://doi.org/10.1063/1.4971797
https://doi.org/10.1063/1.4971797
https://arxiv.org/abs/https://doi.org/10.1063/1.4971797
https://doi.org/10.1098/rsos.171435
http://rsos.royalsocietypublishing.org/content/5/1/171435
https://arxiv.org/abs/http://rsos.royalsocietypublishing.org/content/5/1/171435.full.pdf
https://arxiv.org/abs/http://rsos.royalsocietypublishing.org/content/5/1/171435.full.pdf
https://arxiv.org/abs/http://rsos.royalsocietypublishing.org/content/5/1/171435.full.pdf
https://doi.org/https://doi.org/10.1016/0951-8320(95)00099-2
https://doi.org/https://doi.org/10.1016/0951-8320(95)00099-2
https://doi.org/https://doi.org/10.1016/0951-8320(95)00099-2
http://www.sciencedirect.com/science/article/pii/0951832095000992
http://www.sciencedirect.com/science/article/pii/0951832095000992
http://www.sciencedirect.com/science/article/pii/0951832095000992
https://doi.org/10.5194/esurf-8-275-2020
https://hal.archives-ouvertes.fr/hal-02562670

	Introduction
	Representations of stochastic models
	Representing stochastic models from minimal distributional assumptions
	Links with the stochastic models and the sensitivity indices in hart2017efficient

	The sensitivity indices and their estimators
	Definition of the sensitivity indices
	Indices of the first kind
	Indices of the second kind
	Comparison of the definitions

	Construction of the estimators

	Choosing between Monte-Carlo designs
	Introducing the miss-ranking error and its bound
	A two-stage procedure to estimate the sensitivity indices
	Performance

	Asymptotic normality of the sensitivity indices estimators
	Numerical tests
	Comparison of Monte-Carlo designs
	High noise context
	Low noise context

	Asymptotic behavior of the sensitivity indices estimators

	Conclusion
	Appendix A. Calculations of some sensitivity indices
	Calculations for S"0365S1HAG in Example 2
	Calculations for S1 in Example 4

	Appendix B. Proofs
	Proof of Lemma 2.2

	Appendix C. A unified treatment of the asymptotics
	Examples
	A central limit theorem

	Appendix D. Explicit moment calculations
	Appendix E. Calculations for the linear model
	Acknowledgments
	References

