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Abstract

We study the controlled dynamics of the ensembles of points of a Riemannian
manifold M . Parameterized ensemble of points of M is the image of a
continuous map γ : Θ → M , where Θ is a compact set of parameters.
The dynamics of ensembles is defined by the action γ(θ) 7→ Pt(γ(θ)) of
the semigroup of diffeomorphisms Pt : M → M, t ∈ R, generated by the
controlled equation ẋ = f(x, u(t)) on M . Therefore any control system on
M defines a control system on (generally infinite-dimensional) space EΘ(M)
of the ensembles of points.

We wish to establish criteria of controllability for such control systems.
As in our previous work ([1]) we seek to adapt the Lie-algebraic approach
of geometric control theory to the infinite-dimensional setting. We study
the case of finite ensembles and prove genericity of exact controllability
property for them. We also find sufficient approximate controllability crite-
rion for continual ensembles and prove a result on motion planning in the
space of flows on M . We discuss the relation of the obtained controllabil-
ity criteria to various versions of Rashevsky-Chow theorem for finite- and
infinite-dimensional manifolds.

Keywords: Infinite-dimensional control systems, Nonlinear control,
Controllability, Lie-algebraic methods

1. Introduction and problem setting

Let M be C∞-smooth n-dimensional (n ≥ 2) connected Riemannian
manifold, with d(·, ·), being the Riemannian distance. Let EΘ(M) be the
space of continuous maps γ : Θ → M , where Θ is a compact Lebesgue
measure set. We call the elements of EΘ(M) ensembles of points or, for
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brevity, ensembles. The space EΘ(M) is infinite-dimensional, whenever Θ is
an infinite set (see Section 2).

In the control-theoretic setting one looks at the action on EΘ(M) of the
group of diffeomorphisms of M , which are generated by the vector fields
from the family {fu| u ∈ U} ⊂ Vect M . Alternatively we can consider the
action of the flows, defined by the controlled equations

ẋ = f(x, u(t)), u(t) ∈ U, (1)

where u(t) are admissible, for example, piecewise-constant, or piecewise-
continuous, or boundary measurable controls.

The flow P
u(·)
t (P0 = Id), generated by control system (1) and a given

admissible control u(t) = (u1(t), . . . , ur(t)), acts on γ(θ) ∈ EΘ(M) according
to the formula

P̂
u(·)
t : γ(θ) 7→ P

u(·)
t (γ(θ)), θ ∈ Θ.

Thus control system (1) gives rise to a control system in the space of en-
sembles EΘ(M). We set the controllability problem for the action of control
system (1) on EΘ(M).

Definition 1.1. Ensemble α(·) ∈ EΘ(M) can be steered in time-T to en-
semble ω(·) ∈ EΘ(M) by control system (1), if there exists a control ū ∈
L∞([0, T ], U) such that for the flow P

ū(·)
t , generated by the equation ẋ =

f(x(t), ū(t)), there holds

P
ū(·)
T (α(θ)) = ω(θ). �

Definition 1.2. The time-T attainable set from α(·) ∈ EΘ(M) for control
system (1) in the space of ensembles EΘ(M) is

AT (α(·)) = {P u(·)
T (α(θ)) | u(·) ∈ L∞([0, T ], U)} ⊂ EΘ(M). �

Definition 1.3. Control system (1) is globally exactly controllable in time
T in the space EΘ(M) from α(θ) ∈ EΘ(M), if AT (α(θ)) = EΘ(M). Con-
trol system (1) is time-T globally exactly controllable if it is globally exactly
controllable in time-T from each α(θ) ∈ EΘ(M) �.

Remark 1.1. If Θ = {θ} is a singleton, then the time-T attainable sets
AT (αθ) coincide with the standard attainable sets of system (1) from the
point αθ ∈ M . The notions of global and global approximate controllability
coincide with the standard notions for control system (1) on M .
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If Θ is an infinite set, it is hard to achieve exact ensemble controllability
for system (1). Instead we will study C0- or Lp-approximate controllability
property.

Definition 1.4. Ensemble α(·) ∈ EΘ(M) is C0-approximately steerable in
time-T to ensemble ω(·) ∈ EΘ(M) by control system (1), if for each ε > 0
there exists ū(·) such that

sup
θ∈Θ

d
(

ω(θ), P
ū(·)
T (α(θ))

)

≤ ε. (2)

Ensemble α(·) ∈ EΘ(M) is Lp-approximately steerable in time-T to en-
semble ω(·) ∈ EΘ(M) by control system (1), if for each ε > 0 there exists
ū(·) such that

∫

Θ

(

d
(

ω(θ), P
ū(·)
T (α(θ))

))p

dθ ≤ εp. .

Definition 1.5. Control system (1) is time-T globally approximately con-
trollable from α(·) ∈ EΘ(M) if AT (α) is dense in EΘ(M) in the respective
metric. The system is time-T globally approximately controllable if it is
time-T globally approximately controllable from each α(·) ∈ EΘ(M). �

It is known that the attainable sets and the controllability properties
of control system (1) on M can be characterized via properties of the Lie
brackets of the vector fields fu(x), u ∈ U . In particular case for a symmetric
control-linear system

ẋ =

s∑

j=1

fj(x)uj(t) (3)

global controllability property for singletons is guaranteed by the bracket
generating condition: for each point x ∈ M the evaluations at x of the
iterated Lie brackets [fj1 , [. . . [fjN−1

, fjN ] . . .] span the tangent space TxM .
We are going to establish controllability criteria for control system (3)

acting in the space of ensembles EΘ(M). The criteria for finite and continual
ensembles are provided in Sections 3 and 4. As far as controlled dynamics
in the space of ensembles is defined by action of the flows, generated by
controlled system (3), it is important to analyze whether and how the con-
trollability criterion could be ”lifted” to the group of diffeomorphisms or
the semigroup of flows. This is done in Section 5, where Theorem 3 pro-
vides a result on a Lie extension of the action of system (3) in the group
of diffeomorphisms. In Section 6 we discuss the relation of the established
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controllability criterion for continual ensembles of points to various versions
of Rashevsky-Chow theorem in finite and infinite dimensions. It turns out
that the latter typically are not applicable to ensemble controllability.

The proofs of the main results are provided in Sections 7-9.
By now there are numerous publications on simultaneous control of en-

sembles of control systems

ẋ = f(x, u, θ), x ∈ M, u ∈ U, θ ∈ Θ (4)

by a unique control. This direction of study has been initiated by S. Li
and N. Khaneja ([12, 13]) for the case of quantum ensembles. Few other
publication which took on the subject are [5, 6, 8], where readers can find
more bibliographic references. In our previous publication [1] we considered
the ensembles of systems (4), and formulated Lie algebraic controllability
criteria for ensembles of systems.

In the present publication we consider ensembles of points controlled by
virtue of a single system and single open loop control. This choice distin-
guishes the problem setting not only from the previous one, but also from
the control problems, in which both the state space and the set of control
parameters are infinite-dimensional. Examples of the latter kind appear in
[2] and are common in the literature on mass transportation.

A common feature which this publication shares with [1] is the Lie alge-
braic approach to study of controllability; we seek to demonstrate parallelism
in formulations along the text.

2. Banach manifold of ensembles

As we said ensembles of points in M are the images of continuous maps
γ : Θ → M ; the set of parameters Θ is assumed to be compact. At some
moments we assume additionally the maps γ to be injective. The set of
ensembles is denoted by EΘ(M).

Whenever the set of parameters Θ is finite, then the ensemble is called
finite and the set of ensembles EΘ(M) is a finite-dimensional manifold.

Define for any ensemble γ(θ) ∈ EΘ(M) a tangent space TγEΘ(M), con-
sisting of the continuous maps Tγ : Θ → TM , for which the diagram

Θ
Tγ

//

γ
  
❆❆

❆❆
❆❆

❆❆
TM

π

||②②
②②
②②
②②

M
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is commutative. Representing an element of the tangent bundle TM as a
pair (x, ξ), x ∈ M, ξ ∈ TxM , we note that

Tγ(θ) = (γ(θ), ξ(θ)), ξ(θ) ∈ Tγ(θ)M, θ ∈ Θ.

If M = R
n, then TγEΘ(M) can be identified with the set of continuous maps

C0(Θ,Rn ×R
n).

One can define a vector field on EΘ(M) as a section of the tangent bundle
TEΘ(M).

The flow etf , generated by a time-invariant vector field f ∈ Vect(M),
and acting onto an ensemble γ(θ), defines a lift of f to the vector field

F ∈ Vect (EΘ(M)) : F (γ(·)) = d

dt

∣
∣
∣
∣
t=0

etf (γ(·)) = f(γ(·)).

The same holds for time-variant vector fields ft.
The Lie brackets of the lifted vector fields are the lifts of the Lie brackets

of the vector fields: [F1, F2]|γ(·) = [f1, f2](γ(·)).
One can provide Tγ(·)EΘ(M) with different metrics. Of interest for us are

those obtained by the restrictions of the metrics C0(Θ, TM), and Lp(Θ, TM)
onto TEΘ(M).

3. Genericity of the controllability property for finite ensembles
of points

Let Θ = {1, . . . , N}. Finite ensemble γ : Θ 7→ M is an N -ple of points
γ = (γ1, . . . , γN ) ∈ MN . In this Section we assume γ to be injective, so
that the points γj are pairwise distinct. Let ∆

N ⊂ MN be the set of N -ples
(x1, . . . , xN ) ∈ MN with (at least) two coinciding components: xi = xj ,
for some i 6= j. Then the space of ensembles EN (M) is identified with the
complement of ∆N : EN (M) = MN \∆ = M (N).

For each γ ∈ M (N) the tangent space TγM
(N) is isomorphic to

N⊗

j=1

TγjM = Tγ1M × · · · × TγNM.

For a vector field X ∈ VectM consider its N -fold, defined on M (N) as
XN (x1, . . . , xN ) = (X(x1), . . . ,X(xn)). For X,Y ∈ Vect M , and N ≥ 1 we
define the Lie bracket of the N -folds XN , Y N on M (N) ”componentwise”:
[XN , Y N ] = [X,Y ]N , where [X,Y ] is the Lie bracket of X,Y on M . The
same holds for the iterated Lie brackets.
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Given the vector fields f1, . . . fs on M their N -folds fN
1 , . . . , fN

s form a
bracket generating system on M (N), if the evaluations of their iterated Lie
brackets at each γ ∈ M (N), span the tangent space TγM

(N) =
⊗N

j=1 TγjM .
Evidently for N > 1 the property strictly is stronger, than the bracket
generating property for f1, . . . , fs on M . We provide some comments below
in Section 6.

The following result is a corollary of classical Rashevsky-Chow theorem
(see Proposition 6.1).

Proposition 3.1 (global controllability criterion for system (3) in the space
of finite point ensembles). If the N -folds fN

1 , . . . , fN
s are bracket generating

at each point of M (N), then ∀T > 0 the system (3) is time-T globally exactly
controllable in the space of finite ensembles (γ1, . . . , γN ) ∈ M (N). �

Proposition 3.1 relates global controllability of system (3) for N -point
ensembles to the bracket generating property on M (N) for the N -folds of
the vector fields f1, . . . , fs. The following result states that the bracket
generating property for N -folds is generic.

Theorem 1. For any N ≥ 1 and sufficiently large ℓ, there is a set of s-ples
of vector fields (f1, . . . , fs), which is residual in VectM⊗s in Whitney Cℓ-
topology, such that for any (f1, . . . , fs) from this set the N -folds (fN

1 , . . . , fN
s )

are bracket generating at each point of M (N) = MN \∆N .

Note that the notion of genericity in the theorem allows for (small) per-
turbations of the fi, but not of fN

i = (fi, . . . , fi) directly. Therefore the
theorem extends the classical result by C.Lobry’s ([14]) on genericity of the
property of controllability for singletons (see also Theorem 3.1 of our pre-
vious work [1] on the genericity of controllability property for ensembles of
control systems).

Proof of theorem 1 (for s = 2) is provided in Section 7.

4. Criterion of approximate steering for continual ensembles of
points

To formulate criterion for approximate steering of continual ensembles
of points we impose the following assumption for control system (3).

Assumption 1 (boundedness in x). The C∞-smooth vector fields fj(x) ∈
Vect M, j = 1, . . . , s, which define system (3), are bounded on M together
with their covariant derivatives of each order.
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The boundedness of fj and of their covariant derivatives on M implies
completeness of the vector fields fj and of their Lie brackets of any order.
Completeness of a vector field means that the trajectory of the vector field
with arbitrary initial data can be extended to each compact subinterval of
the time axis.

This assumption is rather natural. It holds for compact manifolds M .
For a non-compact M it obviously holds for vector fields with compact
supports. Other examples are vector fields on R

n, whose components are
trigonometric polynomials in x, or polynomial (in x) vector fields, multiplied
by functions rapidly decaying at infinity (e.g. by e−x2

).
Consider a couple of initial and target ensembles of points α(θ), ω(θ) ∈

EΘ(M), which we assume to be diffeotopic,1 i.e. satisfying the relation
RT (α(·)) = ω(·), where t → Rt, t ∈ [0, T ], R0 = Id, is a flow on M , defined
by a time-variant vector field Yt(x), with Yt(x),DxYt(x) continuous.

Note that the (reference) flow Rt is a priori unrelated to control system
(3). Denote by γt(θ) the image of α(θ) under the diffeotopy

γt(θ) = Rt(α(θ)), γ0(θ) = α(θ), γT (θ) = ω(θ).

We introduce standard notation for the seminorms in the space of vector
fields on M : for a compact K ⊂ M

‖X‖r,K = sup
x∈K




∑

0≤|β|≤r

∣
∣
∣DβX(x)

∣
∣
∣





and

‖X‖r = sup
x∈M




∑

0≤|β|≤r

∣
∣
∣DβX(x)

∣
∣
∣



 .

Let Lie{f} be the Lie algebra, generated by the vector fields f1, . . . , fs.
Put for λ > 0 and a compact K ⊂ M :

Lieλ1,K{f} = {X(x) ∈ Lie{f} | ‖X‖1,K < λ} ,

and
Lieλ1{f} = {X(x) ∈ Lie{f} | ‖X‖1 < λ} .

1We can assume instead an existence, for each ε > 0, of an ensemble ωε(·), which is
ε-close to ω(·) in C

0(Θ)-metric and diffeotopic to α(·).
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The following bracket approximating condition along a diffeotopy is the
key part of the criterion for steering continual ensembles of points. In Sec-
tion 6 we discuss the reason for the choice of this particular form of condition.

Definition 4.1 (Lie bracket C0-approximating condition along a diffeotopy).
Let the diffeotopy γt = Rt(α(·)), t ∈ [0, T ], generated by the vector field
Yt(x), join α(·) and ω(·). System (3) satisfies Lie bracket C0-approximating
condition along γt, if there exist λ > 0 and a compact neighborhood OΓ of
the set Γ = {γt(θ)| θ ∈ Θ, t ∈ [0, T ]} such that

∀t ∈ [0, T ] : inf

{

sup
θ∈Θ

|Yt(γt(θ))−X(γt(θ))|
∣
∣
∣
∣
X ∈ Lieλ1,OΓ

{f}
}

= 0. (5)

Theorem 2 (approximate steering criterion for ensembles of points). Let
α(θ), ω(θ) be two ensembles of points, joined by a diffeotopy γt(θ), t ∈ [0, T ].
If control system (3) satisfies the Lie bracket C0-approximating condition
along the diffeotopy, then α(·) can be steered C0-approximately to ω(·) by
system (3) in time T. �

4.1. Approximate controllability for continual ensembles: basic example

We provide an example of application of Theorem 2. Consider system
in R

2 with two controls:

ẋ1 = u, ẋ2 = ϕ(x1)v. (6)

It is a particular case of the control-linear system (3):

ẋ = f1(x)u+ f2(x)v, f1 = ∂/∂x1, f2 = ϕ(x1)∂/∂x2. (7)

We assume ϕ(x1) to be C∞-smooth. In our example ϕ(x1) = e−x2
1 .

Choose the initial ensemble

α(θ) = (θ, 0), θ ∈ Θ = [0, 1]. (8)

If one takes for example u = 0 in (6), then x1 remains fixed, and by
(6),(8)

x2(T ; θ) = mv(·)ϕ(θ),

where mv(·) =
∫ T

0 v(t)dt ∈ R. Therefore for vanishing u(·) the set of ”at-
tainable profiles” for x2(T ; θ) is very limited.

To illustrate Theorem 2 we fix target ensemble ω(θ) = (θ, θ) and choose
a diffeotopy

γt(θ) = (θ, tθ), t ∈ [0, 1], (9)
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which joins α(θ) and ω(θ). The diffeotopy is generated by the (time-invariant)
vector field Y (x) = Y (x1, x2) = x1∂/∂x2. Evaluation of the vector field Y
along the diffeotopy (9), equals

∀t ∈ [0, 1] : Y (γt(θ) = Y (θ, tθ) = θ∂/∂x2.

The Lie algebra, generated by f1, f2, is spanned in the treated case by
the vector fields

f1, ad
kf1f2 = ϕ(k)(x1)∂/∂x2, k = 0, 1, 2, . . . (10)

and is infinite-dimensional for our choice of ϕ(·).
The evaluations f1(γt(θ)) and adkf1f2(γt(θ)) equal

f1(γt(θ)) = ∂/∂x1,
(

adkf1f2

)

(γt(θ)) = ϕ(k)(θ)∂/∂x2, k = 0, 1, 2 . . . .

The successive derivatives of ϕ(x) = e−x2

are

ϕ(m)(x) = (−1)mHm(x)e−x2

, m = 0, 1, . . . , (11)

where Hm(x) are Hermite polynomials. Recall that Hm(x) form an orthog-
onal complete system for L2(−∞,+∞) with the weight e−x2

.
Let H be (infinite-dimensional) linear space generated by functions (11).

Generic element of Lie{f1, f2} can be represented as

a
∂

∂x1
+ h(x1)

∂

∂x2
, a ∈ R, h ∈ H,

and its evaluation at γt(θ) equals

a
∂

∂x1
+ h(θ)

∂

∂x2
, a ∈ R, h ∈ H.

The C0 bracket approximating condition along γt(θ) amounts to the
approximability in C0[0, 1] of the function Y2(θ) = θ by the functions from
a bounded equi-Lipschitzian subset of H.

To establish approximability for chosen example we use the following
technical lemmae.

Lemma 4.2. There exists λ > 0 such that

inf

{

sup
θ∈[0,1]

|θ − h(θ)|
∣
∣
∣
∣
∣
h(·) ∈ H, sup

θ∈[0,1]

(
|h(θ)|+ |h′(θ)|

)
< λ

}

= 0.
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The lemma follows from standard facts, which concern the expansions
with respect to Hermite system.

Lemma 4.3. Let g(x) be a smooth function with compact support in (−∞,+∞)
and

g(x) ≃
∑

m≥0

gmHm(x) (12)

be its expansion with respect to Hermite system. Then:

(i) expansion (12) converges to g(x) uniformly on any compact interval;

(ii) the expansion
∑

m≥1 gmH ′
m(x) converges to g′(x) uniformly on any

compact interval.

For (i) see e.g. [15, §8]. Statement (ii) follows easily from (i), given the
relation H ′

m(x) = 2mHm−1(x) for the Hermite polynomials. Indeed

∑

m≥1

gmH ′
m(x) =

∑

m≥1

2mgmHm−1(x) =
∑

m≥0

2(m+ 1)gm+1Hm(x),

and it rests to verify that the coefficients of the expansion of g′(x) with
respect to Hermite system are precisely 2(m + 1)gm+1. This in its turn
follows by direct computation by the formulae

H ′
m(x) = 2xHm(x)−Hm+1(x),

∫ +∞

−∞
(Hm(x))2e−x2

dx = 2mm!
√
π.

Now in order to prove Lemma 4.2 we take a C∞ smooth function g(θ)
with compact support on (−∞,+∞), whose restriction to [0, 1] coincides
with the function y(θ) = θeθ

2

. By Lemma 4.3 (i) the expansion g(θ) ≃
∑

m gmHm(θ) converges uniformly on [0, 1] to θeθ
2

, and hence the series
∑

m gmHm(θ)e−θ2 converges to θ uniformly on [0, 1].

Differentiating
∑

m cmHm(θ)e−θ2 termwise in θ we get

∑

m

cmH ′
m(θ)e−θ2 −

∑

m

cmHm(θ)2θe−θ2 .

By Lemma 4.3 (i) and (ii) the series
∑

m≥1 cmH ′
m and

∑

m≥0 cmHm(θ) con-
verge uniformly on [0, 1] to bounded functions; the partial sums of these se-
ries are equibounded and therefore partial sums of the series

∑

m gmHm(θ)e−θ2

are equiLipschitzian, what concludes the proof of Lemma 4.2.

10



5. Lie extensions and approximate controllability for flows

The proof of Theorem 2, provided in Section 9, is based on an infinite-
dimensional version of the method of Lie extensions ([10, 1, 4]).

According to this method one starts with establishing the property of C0-
approximate steering by means of an extended control fed into an extended
(in comparison with (3)) control system

dx(t)

dt
=

∑

β∈B

Xβ(x)vβ(t), (13)

where Xβ(x) are the iterated Lie brackets

Xβ(x) = [fβ1
, [fβ2

, [. . . , fβN
] . . .]](x) (14)

of the vector fields f1, . . . , fs (we assume by default, that the vector fields
fj(x) are included into the family {Xβ(x), β ∈ B}.) In (13)-(14) the mul-
tiindices β = (β1, . . . , βN ) belong to a finite subset B ⊂ ⋃

N≥1{1, . . . , s}N ,
and (vβ(t))β∈B is a (high-dimensional) extended control.

After the first step one has to prove that the action of the flow, gen-
erated by extended system (13) on EΘ(M) , can be approximated by the
action of the flow of system (3), driven by a low-dimensional control u(·) =
(u1(·), . . . , us(·)). The latter step is the core of the method of Lie extensions.

Therefore it is reasonable and desirable to establish the ”lifted” approx-
imate controllability result for flows on M . Such result not only will allow
to prove theorem 2, but is certainly interesting on its own.

The respective formulation is given by

Theorem 3. Let P
v(·)
t be a flow on M , generated by extended control system

(13) and an extended control v(t) = (vβ(t))β∈B , t ∈ [0, T ]. For each ε > 0,

r ≥ 0 and compact K ⊂ M there exists an appropriate control u(t) =

(u1(t), . . . , us(t)) such that the flow P
u(·)
t , generated by control system (3)

and the control u(·), satisfies:

‖P v(·)
t − P

u(·)
t ‖r,K < ε, ∀t ∈ [0, T ].

An obvious application of this theorem to the case of ensembles provides
the following

Corollary 5.1. If the ensemble α(θ) can be steered approximately to the
ensemble ω(θ) in time T by an extended system (13), then the same can be
accomplished by the original control system (3).
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Indeed let v(·) be an extended control for extended system (13), such

that for the corresponding flow P
v(·)
t we get supθ∈Θ d

(

ω(θ), P
v(·)
T (α(θ))

)

<

ε/2. By theorem 3 there exists a control u(·) for system (3) such that

supθ∈Θ d
(

P
v(·)
T (α(θ)), P

u(·)
T (α(θ))

)

< ε/2 and hence

sup
θ∈Θ

d
(

ω(θ), P
u(·)
T (α(θ))

)

< ε.

6. Theorem 2 and Rashevsky-Chow theorem(s): discussion of the
formulations

The formulations of the results, provided in the two previous sections,
show similarity to the formulations of Rashevsky-Chow theorem on finite-
dimensional and infinite-dimensional manifolds. In this Section we survey
these formulations and establish their relation to Theorem 2.

6.1. Lie rank/bracket generating controllability criteria

Rashevsky-Chow theorem provides sufficient (and necessary in real an-
alytic case) criterion for global exact controllability of system (3) for single-
tons (= single-point ensembles) on a connected finite-dimensional manifold
M in terms of bracket generating property. This property holds for control
system (3) at x ∈ M if the evaluations of the iterated Lie brackets (14) of
the vector fields f1, . . . , fr at x span the respective tangent space TxM .

Proposition 6.1 (Rashevsky-Chow theorem in finite dimension, [4],[10]).
Let for control system (3) the bracket generating property hold at each point
of M . Then ∀xα, xω ∈ M, ∀T > 0 the point xα can be connected with xω
by an admissible trajectory x(t), t ∈ [0, T ] of system (3), i.e. system (3) is
globally controllable in any time T . If the manifold M and the vector fields
f1, . . . , fs are real analytic then the bracket generating property is necessary
and sufficient for global controllability of system (3). �

The bracket generating property for f1, . . . , fs is by no means sufficient
for controllability of ensembles, even finite ones. For example if this prop-
erty holds but the Lie algebra Lie{f}, correspondent to the system (3) is
finite-dimensional, then the N -fold of system (3) can not possess bracket
generating property on M (N) (see Section 3), if N dim M > dim Lie{f}.
Hence if dimLie{f} < +∞, then exact controllability in the space of N -
point ensembles, with N sufficiently large, is not achievable.
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What for continual ensembles, they form, as we said, infinite-dimensional
Banach manifold EΘ(M) (see Sections 2 and 4) and control system (3) admits
a lift to a control system on EΘ(M).

One can think of application of infinite-dimensional Rashevsky-Chow
theorem ([7],[11]) to the lifted system.

Proposition 6.2 (infinite-dimensional version of Rashevsky-Chow theo-
rem). Consider a control system ẏ =

∑s
j=1 Fj(x)uj(t), defined on Banach

manifold E. If the condition

Lie{F1, F2, . . . , Fm}(y) = TyE ,∀y ∈ E (15)

holds, then this system is globally approximately controllable, i.e. for each
starting point ỹ the set of points, attainable from ỹ (by virtue of the system)
is dense in E . �.

Seeking to apply this result to the case of ensembles E = EΘ(M) one
meets two difficulties.

First, verification of the (approximate) bracket generating property (15)
has to be done for each γ(·) ∈ EΘ(M) and this results in a vast set of
conditions, ”indexed” by the elements of the functional space EΘ(M).

This difficulty can be overcome by passing to a pathwise version of
Rashevsky-Chow theorem, which in the case of singletons is close to its
classical formulation.

Proposition 6.3. Let M be a finite-dimensional manifold, xα, xω ∈ M . If
bracket generating property holds at each point of a continuous path γ(·),
joining xα and xω, then xα and xω can be joined by an admissible trajectory
of (3). �

This result can be deduced directly from Proposition 6.1. Indeed if the
bracket generating property holds along the path γ(·), then it also holds
at each point of a connected open neighborhood O of the path γ(·) in M .
Applying Rashevsky-Chow theorem to the restriction of the control system
(3) to O we get the needed steering result.

In the case of continual ensembles it turns out though - and this is the
second difficulty - that for the vector fields F , which are lifts to EΘ(M) of the
vector fields f ∈ Vect M , the (approximate) bracket generating property
(15) can not hold at each γ ∈ EΘ(M) and may cease to hold even C0-locally.
Thus the argument just provided fails: condition (15) may hold along the
path p(·) and cease to hold in a neighborhood of the path.

13



For example the space E = EΘ(Rn) of ensembles of points in R
n, param-

eterized by a compact Θ, is isomorphic to the Banach space C0(Θ,Rn). Its
tangent spaces are all isomorphic to C0(Θ,Rn). If Θ is not finite (♯Θ = ∞)
then in any C0-neighborhood of an ensemble γ̂(·) ∈ C0(Θ,Rn) one can find
an ensemble γ(·) ∈ C0(Θ,Rn), which is constant on an open subset of Θ.
Then {Y (γ(θ))|Y ∈ VectM} is not dense in TγE = TγC

0(Θ,Rn) and hence
condition (15) can not hold at γ(·). There may certainly occur other types
of singularities.

The same remains true if the topology, in which the target is approxi-
mated (and hence the topology of E) is weakened.

We end up with two remarks concerning the formulation of Theorem 2.
The criterion for approximate steering, provided by the Theorem has

meaningful analogue also in the case of singletons.

Proposition 6.4 (bracket approximating property and approximate steer-
ing for singletons). Let xα, xω ∈ M and γ(t), t ∈ [0, T ] be a continuously
differentiable path, which joins xα and xω. If the Lie bracket approximating
property holds at each point γ(t), t ∈ [0, T ], then xα can be approximately
steered to xω by an admissible trajectory of (3). �

Recall that the Lie bracket approximating condition includes the as-
sumption of Lipschitz equicontinuity of the approximating vector fields from
Lie{f}. The following example illustrates importance of this assumption.

Consider a control system (3) in R
2 = {(x1, x2)}, such that the orbits of

(3) or, the same, of the Lie algebra Lie{f} are the lower and the upper open
half-planes of R2 together with the straight-line x2 = 0. The points xα =
(−1,−1) and xω = (1, 1) belonging to different orbits, can not be steered
approximately one to another. On the other side if we join these points
by the curve γ(t) = (t, t3), t ∈ [−1, 1], then it is immediate to check, that
γ̇(t) ∈ Lie{f}(γ(t)) for each t, but the condition of Lipshitz equicontinuity
is not fulfilled. There are curves γδ(·) arbitrarily close to γ(·) in C0 metric,
which intersect the line x2 = 0 transversally and hence do not satisfy the
condition γ̇δ(t) ∈ Lie{f}(γδ(t)).

7. Proof of Theorem 1.

We provide a proof for couples of vector fields (s = 2); general case is
treated similarly. It suffices to establish for fixed N existence of a residual
subset G ⊂ VectM×VectM such that for each couple (X,Y ) ∈ G the couple
of N -folds of the vector fields (XN , Y N ) is bracket generating on M (N). Let
dimM = n.

14



The proof is based on application of J.Mather’s multi-jet transversality
theorem ([9]). Consider the couples of vector fields (X,Y ) on M as Ck-
smooth sections of the fibre bundle π : TM ×M TM → M . Consider the set
Jk(TM ×M TM) of k-jets of the couples of vector fields and the projection
πk of Jk(TM ×M TM) to M . One can define in obvious way for N ≥
1 the projection πN

k : Jk(TM ×M TM)N → MN and introduce the set

J
(N)
k (TM ×M TM)N = (πN

k )−1(M (N)), which is N -fold k-jet (or multi-jet)
bundle for the couples of vector fields.

In other words N -fold of a vector field X ∈ VectM is a vector field
(X, . . . ,X)
︸ ︷︷ ︸

N

∈ VectM (N). For a couple (X,Y ) ∈ VectM × VectM of vector

fields the multi-jet J
(N)
k (X,Y ) : M (N) → J

(N)
k (VectM × VectM) can be

represented as

∀(x1, . . . , xN ) ∈ M (N) :

J
(N)
k (X,Y )(x1, . . . xN ) = (Jk(X,Y )(x1), . . . , Jk(X,Y )(xN )) .

Proposition 7.1 (multi-jet transversality theorem for the couples of vector
fields; [9]). Let S be a submanifold of the space of k-multijets (N fold k-jets)

J
(N)
k (TM ×M TM)N . Then for sufficiently large ℓ the set of couples of the

vector fields

TS = {(X,Y ) ∈ VectM ×VectM | JN
k (X,Y )−⋔ S}

is a residual subset of VectM ×VectM in Whitney Cℓ-topology (−⋔ stays for
transversality of a map to a manifold). �

Coming back to the proof of Theorem 1, note that the set R of the
couples (X,Y ) of vector fields, such that at each x ∈ M either X(x) 6= 0, or
Y (x) 6= 0, is open and dense in VectM ×VectM . We will seek G as a subset
of R.

For each couple (X,Y ) ∈ R, and each point x̄ = (x1, . . . , xN ) ∈ M (N)

we introduce the two nN × 2nN -matrices:

V (x̄) =






Y (x1) adXY (x1) · · · ad2nN−1XY (x1)
...

...
...

...

Y (xN ) adXY (xN ) · · · ad2nN−1XY (xN )




 ,

W (x̄) =






X(x1) ad2Y X(x1) · · · ad2nNY X(x1)
...

...
...

...

X(xN ) ad2Y X(xN ) · · · ad2nNY X(xN )




 .

15



(Note thatW (x̄) lacks the column constituted by adY X(xj) which coincides,
up to a sign, with the second column in V (x̄)).

For (X,Y ) ∈ R, x̄ = (x1, . . . , xN ) ∈ M (N) and each xi, i = 1, . . . N,
at least one of the vectors X(xi), Y (xi) is non null. We can choose local
coordinates ξij, i = 1, . . . N ; j = 1, . . . n in a neighborhood U = U1×· · ·×UN

of x̄ = (x1, . . . , xN ) ∈ M (N) in such a way that in each Ui, i = 1, . . . , N
either X or Y becomes the non null constant vector field: X = ∂/∂ξi1 or
Y = ∂/∂ξi1. Then for each i = 1, . . . , N, either adkXY |xi

or adkY X|xi
equal

respectively to ∂kY
∂ξki1

∣
∣
∣
xi

or ∂kX
∂ξki1

∣
∣
∣
xi

.

We call significant those elements of the (Nn × 2Nn)-matrices V (x̄),
W (x̄) and of the corresponding (Nn × 4Nn)-matrix (V (x̄)|W (x̄)), which

are the components of ∂kY
∂ξki1

and of ∂kX
∂ξki1

. For each j = 1, . . . , Nn either j-th

row of V (x̄) or j-th row of W (x̄) consists of significant elements. The ele-
ments of these matrices are polynomials in the components of the multi-jets
J2nNX(x̄), J2nNY (x̄). Significant elements are polynomials of degree 1, dis-
tinct significant elements correspond to different polynomials, nonsignificant
elements correspond to polynomials of degrees > 1. Elements of different
rows of the matrices differ.

If (X,Y ) ∈ R and (XN , Y N ) lacks the bracket generating property at
some x̄ = (x1, . . . , xN ), then the rank r of the (Nn×4Nn)-matrix (V |W )(x̄)
is incomplete: r < nN .

The (stratified) manifold of (Nn × 4Nn)-matrices of rank r < nN is
(locally) defined by rational relations, which express elements of some (Nn−
r)× (4Nn − r) minor via other elements of the matrix.

As long as 4Nn − r ≥ 3Nn + 1, then each row of the minor contains
s ≥ 3Nn + 1 − 2Nn > Nn significant elements. The corresponding rela-
tions express s distinct components of 2N -th multi-jet of (X,Y ) via other
components of the multi-jet. Hence 2N -multi-jets of the couples (X,Y ),
for which (XN , Y N ) lack bracket generating property, must belong to an
algebraic manifold S of codimension s > Nn in JN

k (TM ×M TM .
Consider the set TS of the couples (X,Y ) ∈ R ⊂ VectM × VectM ,

for which JN
2nN (X,Y ) : M (N) → JN

2nN (VectM × VectM) is transversal to
S. According to the multijet transversality theorem (Proposition 7.1) TS is
residual in VectM ×VectM in Whitney Cℓ-topology for sufficiently large ℓ.
As far as dimM (N) = Nn < s = codim S, the transversality can take place
only if, for each x̄ ∈ M (N), JN

2nN (X,Y )|x̄ 6∈ S. Hence for each couple (X,Y )
from the residual subset TS , the couples of N -folds (XN , Y N ) are bracket
generating at each point of M (N).

16



8. Proof of Theorem 3

8.1. Variational formula

We start with nonlinear version of ’variation of constants’ formula, which
will be employed in the next subsection.

Let ft(x) be a time-variant and g(x) a time-invariant vector fields on
M . We assume both vector fields to be C∞-smooth and Lipschitz on M .
Let

−→
exp

∫ t

0 fτdτ denote the flow generated by the time-variant vector field
ft (see [3, 4] for the notation), and etg stays for the flow, generated by the
time-invariant vector field g.

Lemma 8.1 ([4]). Let fτ (x), g(x) be C∞-smooth in x, fτ integrable in τ .

Let U(t) be a Lipschitzian function on [0, T ], U(0) = 0. The flow Pt =
−→
exp

∫ t

0

(

fτ (x) + g(x)U̇ (τ)
)

dτ , generated by the differential equation

ẋ = ft(x) + g(x)U̇ (t), (16)

can be represented as a composition of flows

−→
exp

∫ t

0

(

fτ (x) + g(x)U̇ (τ)
)

dτ =
−→
exp

∫ t

0

(

e−U(τ)g
)

∗
fτdτ ◦ eU(t)g . (17)

At the right-hand side of (17)
(
e−U(τ)g

)

∗
is the differential of the dif-

feomorphism e−U(t)g =
(
eU(t)g

)−1
, where eU(t)g is the evaluation at time-

instant U(t) of the flow, generated by the time-invariant vector field g(x).
We omit at this point the questions of completeness of the vector fields

involved into (16),(17), assuming that the formula (17) is valid, whenever
the flows, involved in it, exist on the specified intervals.

For each vector field Z ∈ Vect M the operator adZ , acts on the space of
vector fields: adZZ1 = [Z,Z1] - the Lie bracket of Z and Z1. The operator

exponential eUadZ is defined formally: eUadZ =
∑∞

j=0
Uj(adZ)j

j! . For C∞-
smooth vector fields Z,Z1 the expansion is known (see [3],[4]) to provide
asymptotic representation for

(
e−U(τ)g

)

∗
: for each s ≥ 0 and a compact

K ⊂ M there exists a compact neighborhood K ′ of K and c > 0 such that

∥
∥
∥
∥
∥
∥





(

e−U(τ)g
)

∗
− I −

N−1∑

j=0

(U(τ))j

j!
adjg



Z1

∥
∥
∥
∥
∥
∥
s,K

≤

≤ cec|U(τ)|‖g‖s+1,K′

(
|U(τ)|‖g‖s+N,K ′

)N

N !
‖Z1‖s+N,K ′
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(see [3] for the details). We employ the asymptotic formulae for N = 1, 2
and small |U |:

∥
∥
∥

((

e−U(τ)g
)

∗
− I

)

Z1

∥
∥
∥
s,K

= O(|U(τ)|)‖Z1‖s+1,K ′ , (18)
∥
∥
∥

((

e−U(τ)g
)

∗
− I − U(τ)adg

)

Z1

∥
∥
∥
s,K

= o(|U(τ)|)‖Z1‖s+2,K ′ , (19)

as |U | → 0.
We introduce at this point fast-oscillating controls by choosing 1-periodic

Lipschitz function V (t) with V (0) = 0, the scaling parameters β > α > 0
and defining for ε > 0: V (t;α, β, ε) = εαV

(
t/εβ

)
. We introduce controls

uε(t) =
dV (t;α, β, ε)

dt
= εα−β V̇

(

t/εβ
)

,

which are high-gain and fast-oscillating for small ε > 0.
Fore a more general control

uε(t) = w(t)εα−β V̇
(

t/εβ
)

, (20)

where w(·) is a Lipschitz function, the primitive of uε(t) equals

Uε(t) = εα
(

w(t)V
(

t/εβ
)

−
∫ t

0
V
(

τ/εβ
)

ẇ(τ)dτ

)

= εαÛε(t), (21)

and Ûε(t) = O(1) as ε → +0 uniformly for t in a compact interval.
Substituting U(t) = Uε(t), defined by (21), into (17) we get

−→
exp

∫ t

0

(

fτ (x) + g(x)εα−βw(τ)V̇
( τ

εβ

))

dτ = (22)

=
−→
exp

∫ t

0

(

e−εαÛε(τ)g
)

∗
fτdτ ◦ eεαÛε(t)g.

Expanding the exponentials at the right-hand side of the equality ac-
cording to formula (18) we get for the control uε(t), defined by (20):

−→
exp

∫ t

0
(fτ (x) + g(x)uε(τ)) dτ =

=
−→
exp

∫ t

0
(fτ (x) +O(εα)) dτ ◦ (I +O(εα)) . (23)

By classic theorems on continuous dependence of trajectories on the
right-hand side we conclude that the flow

−→
exp

∫ t

0 (fτ (x) + g(x)uε(τ)) dτ with

18



uε(t), defined by (20), tends to
−→
exp

∫ t

0 fτ (x)dτ , as ε → 0, uniformly in t on
compact intervals. Therefore the effect of the fast-oscillating control (20)
tends to zero as ε → 0 with respect to any of the seminorms ‖ · ‖r,K :

∥
∥
∥
∥

−→
exp

∫ t

0
(fτ (x) + g(x)uε(τ)) dτ−

−→
exp

∫ t

0
fτ (x)dτ

∥
∥
∥
∥
r,K

⇒ 0

for all r ≥ 0, compact K and uniformly for t ∈ [0, T ].

8.2. Lie extension for flows

Coming back to the proof of Theorem 3 we first note that the conclusion
can be arrived at by induction, with the step of induction, represented by
the following

Lemma 8.2. The conclusion of the theorem holds for the controlled system

d

dt
x(t) =

k∑

j=1

Xj(x)uj(t) +X(x)u(t) + Y (x)v(t),

and its Lie extension

d

dt
x(t) =

k∑

j=1

Xj(x)uej(t) +X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t).

The proof, provided below, shows that one can leave out, without loss of
generality, the summed addends

∑k
j=1X

k(x)uk(t),
∑k

j=1X
k(x)uek(t) at the

right-hand side of the systems. It suffices to prove the result for the 2-input
system

d

dt
x(t) = X(x)u(t) + Y (x)v(t), (24)

and its 3-input Lie extension

d

dt
x(t) = X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t). (25)

One can assume, without loss of generality, we(t) to be smooth, as far as
smooth functions are dense in L1-metric in the space of bounded measurable
functions. Hence by classical results on continuous dependence with respect
to right-hand sides, the flows, generated by measurable controls, can be
approximated by flows, generated by smooth controls.

To construct the controls u(t), v(t) from ue(t), ve(t), we(t) we take

u(t) = uε(t) = ue(t) + εU̇ε(t), v(t) = vε(t) = ve(t) + ε−1v̂ε(t), (26)
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where ε is the parameter of approximation and the functions Uε(t) and v̂ε(t)
will be specified in a moment.

Feeding controls (26) into system (24) we get

d

dt
x(t) = X(x)ue(t) + Y (x)

(
ve(t) + ε−1v̂ε(t)

)

︸ ︷︷ ︸

ft

+X(x)
︸ ︷︷ ︸

g

εU̇ε(t). (27)

Applying formula (17) to the flow, generated by (27), we represent it as a
composition

−→
exp

∫ t

0
X(x)ue(t) +

(

e−εUε(t)X
)

∗
Y (x)

(
ve(t) + ε−1v̂ε(t)

)
dt ◦

◦ eεUε(t)X(x). (28)

We wish the latter flow to approximate (for sufficiently small ε > 0) the
flow, generated by (25). To achieve this we choose the functions

Uε(t) = 2 sin(t/ε2)we(t), v̂ε(t) = sin(t/ε2). (29)

Approximating the operator exponential eεUε(t)adX by formula (19) we
transform (28) into

−→
exp

∫ t

0
(X(x)ue(t)+Y (x)ve(t) + [X,Y ](x)Uε(t)v̂ε(t)+ (30)

+Y (x)ε−1v̂ε(t)+O(ε))dt ◦ (I +O(ε)),

where all O(ε) are uniform in t ∈ [0, T ].
From (29)

Uε(t)v̂ε(t) = we(t)− we(t) cos(2t/ε2),

and (30) takes form

−→
exp

∫ t

0

(
X(x)ue(t) + Y (x)ve(t) + [X,Y ](x)we(t) + Y (x)ε−1 sin(t/ε2)−

(31)

− [X,Y ](x)we(t) cos(2t/ε2) +O(ε)
)
dt ◦ (I +O(ε)).

Processing fast oscillating terms Y (x)ε−1 sin(t/ε2), [X,Y ]we(t) cos(2t/ε2)
according to formula (22) we bring the flow (31) to the form

−→
exp

∫ t

0
(X(x)ue(τ) + Y (x)ve(τ) + [X,Y ](x)we(τ) +O(ε)) dτ ◦

◦ (I +O(ε)),
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wherefrom one concludes for uε(t), vε(t), defined by formulae (26)-(29), the
convergence of the flows: for each r ≥ 0 and compact K

∥
∥
∥
∥

−→
exp

∫ t

0
(X(x)ue(τ) + Y (x)ve(τ) + [X,Y ](x)we(τ)) dτ−

− −→
exp

∫ t

0
(X(x)uε(τ) + Y (x)vε(τ)) dτ

∥
∥
∥
∥
r,K

= O(ε)

as ε → 0.

9. Proof of Theorem 2.

9.1. Steering ensembles of points by an extended control

Proposition 9.1. Under the assumptions of Theorem 2, for each ε > 0 there
exists a finite set B (depending on ε) of the multiindices β = (β1, . . . , βN )
and an extended differential equation (13) together with an extended control
(vβ(t))β∈B , t ∈ [0, T ] such that the flow, generated by (13) and the control
steers, in time T , the initial ensemble α(θ) to the ensemble x(T ; θ), for which
supθ∈Θ d (x(T ; θ), ω(θ)) < ε.

Consider the diffeotopy γt(θ) = Pt(α(θ)), along which Lie bracket C0-
approximating condition holds. Let Yt(x) be the time-variant vector field,
which generates the diffeotopy and Γ its image. We start with the following
technical Lemma.

Lemma 9.2. Let assumptions of Theorem 2 hold. Then there exists λ > 0
and compact neighborhood WΓ ⊃ Γ, such that for each ε > 0 there exists a
finite set of multi-indices B together with continuous functions (vβ(t)) , β ∈
B such that Xt(x) =

∑

β∈B vβ(t)X
β(x) satisfies:

‖Xt(x)‖1,WΓ
< λ, ‖Yt(γt(θ))−Xt(γt(θ))‖C0(Θ) < ε. � (32)

Proof of Lemma 9.2. According to the Lie bracket C0-approximating
assumption along the diffeotopy there exists λ > 0 and for each t ∈ [0, T ] and
each ε > 0 a finite set Bt of multi-indices and the coefficients cβ(t), β ∈ Bt,
such that

∥
∥
∥
∥
∥
∥

∑

β∈Bt

cβ(t)X
β(x)

∥
∥
∥
∥
∥
∥
1,WΓ

< λ,

∥
∥
∥
∥
∥
∥

Yt(γt(θ))−
∑

β∈Bt

cβ(t)X
β(γt(θ))

∥
∥
∥
∥
∥
∥
C0(Θ)

< ε. (33)
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As far as Yt(γt(θ)) and Xβ(γt(θ)) vary continuously with t, the estimate

∥
∥
∥
∥
∥
∥

Yτ (γτ (θ))−
∑

β∈Bt

cβ(t)X
β(γτ (θ))

∥
∥
∥
∥
∥
∥
C0(Θ)

< ε

is valid for τ ∈ Ot - a neighborhood of t. The family Ot (t ∈ [0, T ]) defines
an open covering of [0, T ], from which we choose finite subcovering Oi =
Oti , i = 1, . . . , N . Putting B =

⋃N
i=1Bti we define ciβ = cβ(ti), ∀i =

1, . . . , N, ∀β ∈ Bi.
Choose a smooth partition of unity {µi(t)} subject to the covering {Oi}.

Put for each β ∈ B, vβ(t) =
∑N

i=1 µi(t)ciβ ; it is immediate to see that vβ(t)
are continuous. For

Xt(x) =
∑

β∈B

vβ(t)X
β(x) (34)

we conclude

∀θ ∈ Θ : ‖Yt(γt(θ))−Xt(γt(θ))‖ =

=

∥
∥
∥
∥
∥
∥

N∑

i=1

µi(t)Yt(γt(θ))−
N∑

i=1

∑

β∈B

µi(t)ciβX
β(γt(θ))

∥
∥
∥
∥
∥
∥

≤

≤
N∑

i=1

µi(t)

∥
∥
∥
∥
∥
∥

Yt(γt(θ))−
∑

β∈Bi

ciβX
β(γt(θ))

∥
∥
∥
∥
∥
∥

≤ ε

N∑

i=1

µi(t) = ε.

The first of the estimates (32) is proved similarly.
Coming back to the proof of Proposition 9.1 we consider the evolution

of the ensemble α(θ) under the action of the flow generated by the vector
field Xt, defined by (34).

We estimate

‖x(t; θ)− γt(θ))‖ =

∥
∥
∥
∥

∫ t

0
(Xτ (x(τ ; θ), v(τ))) − Yτ (γτ (θ))) dτ

∥
∥
∥
∥
≤

≤
∫ t

0
‖Xτ (x(τ ; θ))−Xτ (γτ (θ))‖ dτ +

∫ t

0
‖Xτ (γτ (θ))− Yτ (γτ (θ))‖ dτ.

By virtue of (33) we obtain (whenever x(t; θ) ∈ WΓ):

‖x(t; θ)− γt(θ)‖ ≤ λ

∫ t

0
‖x(τ ; θ)− γτ (θ)‖ dτ + εt,
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and by Gronwall lemma

‖x(t; θ)− γt(θ)‖ ≤ ε

(
eλt − 1

)

λ
. (35)

We should take ε sufficiently small, so that (35) guarantees that x(t; θ)
does not leave the neighborhood WΓ, defined by Lemma 9.2. Then

‖x(T ; θ)− ω(θ)‖ ≤ ε

(
eλT − 1

)

λ

and the claim of Proposition 9.1 follows.
Theorem 2 follows readily from Propositions 9.1 and Corollary 5.1.
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