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MEAN-FIELD ANALYSIS OF MULTI-POPULATION DYNAMICS

WITH LABEL SWITCHING

MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

ABSTRACT. The mean-field analysis of a multi-population agent-based model is performed.
The model couples a particle dynamics driven by a nonlocal velocity with a Markow-type jump
process on the probability that each agent has of belonging to a given population. A general
functional analytic framework for the well-posedness of the problem is established, and some
concrete applications are presented, both in the case of discrete and continuous set of labels.
In the particular case of a leader-follower dynamics, the existence and approximation results
recently obtained in [2] are recovered and generalized as a byproduct of the abstract approach
proposed.

Keywords: kinetic equations, mean-field limits, continuity equations, jump processes, su-
perposition principle.
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1. INTRODUCTION

The concept of mean-field interaction, originally used in statistical physics with Kac [30]
and then McKean [33] to describe the collisions between particles in a gas, has later proved
to be a powerful tool to analyze the asymptotic behavior of systems of interacting agents.
Recent applications range from biological, social and economical phenomena [1, 11, 18]
to automatic learning [13, 29] and optimization heuristics [24, 31]. The underlying idea
is that the collective behavior of large systems of particles (agent-based models, usually
consisting of a set of ODE’s) can be efficiently treated by replacing the influence of all the
other individuals in the dynamics on a given agent by a single averaged effect. From a
mathematical point of view, this amounts to passing from a particle description to a kinetic
description, consisting of a limit PDE whose unknown is the particle density distribution
in the state space. The well-posedness of such models has therefore to be proven in spaces
of measures (see, for instance, the results in [17]).

In some of the applications, the interacting agents are assumed to belong to a number
of different species, or populations [3, 4, 20, 22, 26]. This is a useful modeling assumption,
e.g., in the theory of mean-field games, or in control theory, where it can been used to

Date: July 12, 2019.
2010 Mathematics Subject Classification. 35Q91, (60J75, 37C10, 47J35, 58D25) .

1

http://arxiv.org/abs/1907.02739v3


2 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

distinguish informed agents steering pedestrians to leave unknown environments, or to
highlight the influence of few key investors in the stock market (see the discussion in [12,
Introduction]). In a multi-population setting, source (or sink) terms can be added to the
model, to account for the ”birth” and ”death” rate of a single population (see for instance
[38, Sections 4-5]). Furthermore, even in the case where the number of agents remains
constant along the evolution, the possibility of having some individuals switching from one
population to another has been considered [39].

As a matter of fact, exchange rates among populations are a common feature in several
applications. For instance, in models of chemical reaction networks a particle may change
its type as a result of the interaction with the others, at a stochastic rate which may also
depend on its position [32, 34, 36]. Another relevant example comes from social dynamics,
where transition rates appear in some kinetic models of opinion formation in the presence
of strong leaders, as the one proposed in [25], inspired by the earlier contribution [40]. In
this model, the opinion of the agents, described by their position in the state space, evolves
because of the exchange of opinion with the others. This is encoded by a nonlocal transport
term taking into account the presence, among the overall population, of a restricted number
of “leaders” promoting their opinion with a strong influence on the “followers”. It is natural
to postulate, as the authors do (see [25, Section 3.b] for a detailed discussion), that opinion
leadership is not constant over time: someone who is an opinion leader today may lose this
role tomorrow, or a follower may become a leader in the future.

Summarizing, the multi-population dynamics we are interested in attaches to an agent
sitting at a position x a probability measure λ ∈ P(U) , where U is a compact space of labels
accounting for the population to which the agent belongs. In fact, we find it natural not to
assume any deterministic knowledge of the label of a single agent, since transitions are
usually modeled as the outcome of a stochastic process. Hence, λ expresses the probability
that the agent has, at a certain moment in time, of belonging to a subset of U , and may
itself evolve as a consequence of the interaction among the agents. The minimal model for
evolution that we propose1 consists of the coupling of a non-local transport dynamics with
a Markov-type jump process. We namely assume that

• a particle at position xi with probability distribution of labels λ1 experiences a
velocity field ẋi = vΨN (xi, λi) influenced by the global state of the system ΨN , the
empirical measure 1

N

∑N

i=1 δ(xi,λi) ;
• the probability distribution of labels λi evolves according to λ̇i = T ∗(xi,Ψ

N)λi ,
where the operator T ∗ , accounting for the transitions among the labels, is the
adjoint of an operator T (x,Ψ) defined on Lipschitz functions on U and may depend
on the position of the particle and on the state of the system.

In the case of two populations U = {F,L} = {followers, leaders} , a model of this type has
been recently analyzed in [2], as a (partial) discrete counterpart of the PDE model in [25].
Some simplifying assumptions had however to be added in order to perform a mean-field
analysis. In particular, the velocity field

vΨN (xi) =
1

N

N
∑

j=1

KF (xi − xj)λj({F}) +
1

N

N
∑

j=1

KL(xi − xj)λj({L}) (1.1a)

did not depend on the probability on the labels λi and the transition operators

(T ∗(ΨN)λi)({F}) = −αF (Ψ
N )λi({F}) + αL(Ψ

N )(1− λi({F})) ,

(T ∗(ΨN )λi)({L}) = αF (Ψ
N)λi({F})− αL(Ψ

N)(1 − λi({F}))
(1.1b)

did not depend on the position xi . The goal of the present paper is to get rid of these sim-
plifying assumptions, providing an appropriate functional setting as well as a general set

of assumptions on the velocity field vΨ and on the operator T ∗ (see Section 3) which allow
one to perform a rigorous mean-field analysis of agent-based models of the kind discussed
above.

1We neglect in the present contribution the possible presence of diffusion terms.
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In order to develop our analysis, we will borrow some functional-analytic and some
measure-theoretic tools that have been recently specified for the different, although re-
lated, context of spatially inhomogeneous evolutionary games in [5]. The analogue of (1.1)
is described in [5, Section 3.2], where the dynamics considered is






















ẋi = a(xi, σi) =

∫

U

e(xi, u) dσi(u),

σ̇i =

(

1

N

N
∑

j=1

(

∫

U

J(xi, ·, xj , u
′) dσj(u

′)−

∫

U

∫

U

J(xi, w, xj , u
′) dσj(u

′) dσi(w)
)

)

σi,

(1.2)

for x ∈ R
d tracking the position of a player and σ ∈ P(U) denoting their mixed strategy. In

(1.2), the velocity ẋi is determined by the x-dependent vector field e(x, u) through an aver-
aging process with respect to the strategies available to the player xi ; the evolution of the
mixed strategy σi is dictated by the replicator equation (see [28]): the term in the parenthe-
sis in the right-hand side of the second equation above determines the performance of the
strategy played by player xi with respect to all of the available strategies, averaging out
all of the possible distributions of the opponents xj with their mixed strategies σj . In par-
ticular, J(xi, u, xj , u′) is the payoff of the game between player xj with strategy u against
player xj with strategy u′ . For the heuristic interpretation and the modeling issues related
to (1.2) we refer the interested reader to [14, 16].

The paper [5] introduced suitable notions (namely, Lagrangian and Eulerian) of solu-
tions to the mean-field limit of (1.2) showing convergence of the particle model to the limit
description by means of stability estimates in the Wasserstein metric arising from the well-
posedness theory of ODE’s in Banach spaces [15, 19, 21].

While sharing some common features, the dynamics described by (1.1) and (1.2) show a
relevant difference in the structures of the velocity fields in the right-hand sides. Indeed, in
our setting, it is natural to postulate that the velocity of the agents is also depending on the
behavior of the ones around them, at least in a small neighborhood. Such a feature is not
present in the first equation in (1.2), whereas it is encoded in our model by considering a
velocity field vΨ depending on the global state of the system. Beside this main distinction,
also the right-hand sides of the equations for σi and λi present some differences; we refer
the reader to Remark 5.9 for a more detailed comparison of the two models.

The novel contribution of this work is in specifying the tools from [5] to the case of our
particle system (1.1). In doing this, we will pursue a more abstract point of view than
the one considered in [5], by focusing on the structural assumptions on the velocity field
vΨ and on the operator T that guarantee the well-posedness of the mean-field analysis.
However, we will show in Sections 4 and 5 that velocities and transition rates modeled by
interaction kernels as those considered in (1.1) and (1.2) (in this last case, with the due
difference that we pointed out before) also fit in the setting that we propose in Section 3.
Thus, we can retrieve an even more general version of the results of [2] as a by-product of
our analysis (see Theorem 4.8, where also an explicit dependence on the space variable x
of the transition rates is allowed).

The general assumptions on vΨ and T are presented at the beginning of Section 3, see
(v1)-(v3) and (T0)-(T3) below. The dependence of vΨ on the global status of the system call
for a locally Lipschitz dependence both on the status variable (x, λ) (in a suitable topology)
and on Ψ with respect to the Wasserstein distance between probability measures, which is
customary for the mean-field analysis of transport equation with non-local vector fields, see
e.g. [6, 37, 23, 27, 41]. Furthermore, the sublinearity condition (v3) guarantees long-time
existence of the solution. Concerning the operator T , it must comply with analogous local
Lipschitz continuity conditions and sublinearity conditions, see (T1)-(T2); in addition, we
require that

• constants belong to the kernel of T (x,Ψ) , namely T (x,Ψ)1 = 0 ;
• there exists δ > 0 such that T (x,Ψ) + δI > 0 .

The two conditions above (see (T0) and (T3) below for a precise statement) ensure that the
velocities λ̇i ’s lie on the tangent plane to the probabilities on {F,L} and that the positivity
of the measures are preserved, respectively. Altogether, conditions (v1)-(v3) and (T0)-(T3)
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allow us to show that the particle model, which we can rewrite in the form

ẏi =

(

ẋi

λ̇i

)

=

(

vΨN (xi, λi)

T ∗(xi,Ψ
N )λi

)

=: bΨN (yi), (1.3)

is well-posed (see Proposition 3.3).
We subsequently show that in the limit as N → ∞ the empirical measures ΨN converge

to a continuous path of probability measures Ψt that solves the continuity-type equation

∂tΨt + div(bΨt
Ψt) = 0 (1.4)

in the space of probability measures on the product space Y = R
d × P(U) .

A key point of the proof is that the solutions to (1.4), which are defined via duality with
test functions (Eulerian solutions, see Definition 3.8), can be equivalently characterized as
Lagrangian solution satisfying the fixed-point equation

Ψt = YΨ(t, 0, ·)#Ψ for every t > 0 , (1.5)

where Y(t, 0, ·) is the transition map (see Definition 3.7) associated with the ODE (1.3)
(with Ψ in place of ΨN ), Ψ is a given initial distribution of agents and probability on the
labels, and the symbol # denotes the push-forward measure (see Definition 2.1).

In Section 4 we also retrieve and extend the main result of [2] as a special case of our
analysis. We associate with a solution to (1.4) the followers and leaders distributions

µF
Ψ(B) :=

∫

B×P({F,L})

λ({F}) dΨ(x, λ), µL
Ψ(B) :=

∫

B×P({F,L})

λ({L})) dΨ(x, λ), (1.6)

for each Borel set B ⊂ R
d . If the vector field vΨ has the special structure (1.1a) and under

suitable structural assumptions on the transition rates αF and αL (see (4.13) below), using
the definition of Eulerian solution, we are able to show that µF

Ψ and µL
Ψ are indeed the

unique solutions to the system
{

∂tµ
F
t = −div

(

(KF ⋆ µF
t +KL ⋆ µL

t )µ
F
t

)

− αF (x, µ
F
t , µ

L
t )µ

F
t + αL(x, µ

F
t , µ

L
t )µ

L
t ,

∂tµ
L
t = −div

(

(KF ⋆ µF
t +KL ⋆ µL

t )µ
L
t

)

+ αF (x, µ
F
t , µ

L
t )µ

F
t − αL(x, µ

F
t , µ

L
t )µ

L
t

(1.7)

considered in [2]. Notice that, as discussed in Remark 4.6, rewriting (3.27) as a system of
equation in µF and µL is not possible for a velocity field explicitly depending on λ such as

vΨN (xi, λi) =λi({F})





1

N

N
∑

j=1

KFF (xi − xj)λj({F}) +
1

N

N
∑

j=1

KLF (xi − xj)λj({L})



+

λi({L})





1

N

N
∑

j=1

KFL(xi − xj)λj({F}) +
1

N

N
∑

j=1

KLL(xi − xj)λj({L})





considered for instance in [22]. In the presence of exchange rates, the correct mean-field de-
scription of the above particle system is given by (3.27) in the product space R

d×P1({F,L}) .
The paper is organized as follows. In Section 2, we recall the basic notions of measure

theory that will be needed in the sequel, and prove a corollary of a theorem by Brezis [15,
Sect. I.3, Thm. 1.4, Cor. 1.1] on the well-posedness of ODE’s in Banach spaces. In Section 3
we introduce our abstract model and we prove our main result, Theorem 3.5, on the mean-
field limit of the dynamics. Section 4 is devoted to the special case of U = {F,L} , modeling
the leader-follower dynamics. We apply the abstract results to this case and recover the re-
sults of [2], extending them to the case of x-dependent transition rates. Finally, Section 5.1
we extend the results of Section 4 to any finite numbers of labels, whereas in Section 5.2 we
discuss some explicit examples of velocity fields vΨ and transition operators T (x,Ψ) which
are encompassed by our setting in the case of a continuum of labels, and we compare them
with those considered in [5].

2. PRELIMINARIES

2.1. Basic notation. If (X, dX) is a metric space, we denote by M(X) the space of signed
Borel measures in X with finite total variation, by M+(X) and P(X) the convex subsets
of nonnegative measures and probability measures, respectively. The notation Pc(X) will
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be used for measures having compact support in X . For µ ∈ M(X) , |µ| denotes the total
variation of µ . If we denote by C0(X) the space of continuous functions vanishing at the
boundary of X , and by Cb(X) the space of bounded continuous functions, the weak∗ and
narrow convergence in M(X) are defined by the convergence of the duality products

∫

X

φdµh →

∫

X

φdµ , h→ ∞

for each φ ∈ C0(X) and φ ∈ Cb(X) , respectively.
Whenever X = R

d , d ≥ 1 , it remains understood that it is endowed with the Euclidean
norm (and induced distance), which shall be simply denoted by | · | .

For a Lipschitz function f : X → R we denote by

Lip(f) := sup
x,y∈X

x 6=y

|f(x)− f(y)|

dX(x, y)

the Lipschitz constant. The notations Lip(X) and Lipb(X) will be used for the spaces of
Lipschitz and bounded Lipschitz functions on X , respectively. Both are normed spaces
with the norm ‖f‖ := ‖f‖∞ + Lip(f) .

In a complete and separable metric space (X, dX) , we shall use the Kantorovich-Rubinstein
distance W1 in the class P(X) , defined as

W1(µ, ν) := sup

{∫

X

ϕdµ−

∫

X

ϕdν : ϕ ∈ Lipb(X), Lip(ϕ) 6 1

}

or equivalently (thanks to the Kantorovich duality) as

W1(µ, ν) := inf

{∫

X×X

dX(x, y) dΠ(x, y) : Π(A×X) = µ(A), Π(X ×B) = ν(B)

}

,

involving couplings Π of µ and ν . Notice that W1(µ, ν) is finite if µ and ν belong to the
space

P1(X) :=

{

µ ∈ P(X) :

∫

X

dX(x, x̄) dµ(x) < +∞ for some x̄ ∈ X

}

and that (P1(X),W1) is complete if (X, dX) is complete. For a positive measure µ ∈
M+(E) , for E being a Banach space, we define the first moment m1(µ) as

m1(µ) :=

∫

E

‖x‖E dµ .

Notice that, for a probability measure µ , finiteness of the integral above is equivalent to
µ ∈ P1(E) , whenever E is endowed with the distance induced by the norm ‖·‖ .

We now recall the definition of push-forward measure.

Definition 2.1. Let µ ∈ M+(X) and f : X → Z a µ-measurable function be given. The

push-forward measure f#µ ∈ M+(Z) is defined by f#µ(B) = µ(f−1(B)) for any Borel set

B ⊂ Z . The push-forward measures has the same total mass as µ , namely µ(X) = f#µ(Z) .

It also holds the change of variables formula

∫

Z

g df#µ =

∫

X

g ◦ f dµ

whenever either one of the integrals makes sense.

For E being a Banach space, the notation C1
b (E) will be used to denote the subspace

of Cb(E) of functions having bounded continuous Fréchet differential at each point. The
notation Dφ(·) will be used to denote the Fréchet differential. In the case of a function
φ : [0, T ]× E → R , the simbol ∂t will be used to denote partial differentiation with respect
to t , while D will only stand for differentiation with respect to the variables in E .



6 MARCO MORANDOTTI AND FRANCESCO SOLOMBRINO

2.2. Functional setting. The space of labels U will be assumed to be a compact metric
space. The state of the system is described by y := (x, λ) ∈ R

d ×P(U) =: Y . The component
x ∈ R

d describes the location of an agent in space, whereas the component λ ∈ P(U) de-
scribes the distribution of labels of the agent. A probability distribution Ψ ∈ P(Y ) denotes
a distribution of agents with labels.

To define the functional setting for the dynamics, we need to consider the free space

F(U) := span(P(U))
‖·‖BL

⊂ (Lip(U))′ , (2.1)

which is also called in the literature Arens-Eells space, see [8, 10] and [42, Chapter 3]. The
closure in (2.1) is taken with respect to the bounded Lipschitz norm ‖·‖BL , which is defined,
for µ ∈ (Lip(U))′ , by

‖µ‖BL := sup
{

〈µ, ϕ〉 : ϕ ∈ Lip(U), ‖ϕ‖Lip 6 1
}

.

With the free space F(U) at hand, we define Y := R
d ×F(U) and the norm ‖·‖Y by

‖y‖Y = ‖(x, λ)‖Y := |x|+ ‖λ‖BL ; (2.2)

and we pose ‖y‖Y = ‖y‖Y .
For a given R > 0 , we denote by BR the closed ball of radius R in R

d and by BY
R the

ball of radius R in Y , namely BY
R = {y ∈ Y : ‖y‖Y 6 R} , and observe that it is a compact

set, since Y is locally compact by our assumptions on U . The Banach space structure of
Y ⊃ Y allows us to define the first moment m1(Ψ) for a probability measure Ψ ∈ P(Y ) as

m1(Ψ) :=

∫

Y

‖y‖Y dΨ

so that the space P1(Y ) can be equivalently characterized as

P1(Y ) = {Ψ ∈ P(Y ) : m1(Ψ) < +∞}.

We will sometimes use the notation P(K) to denote probability measures with support
contained on a given compact subset K ⊂ Y . Notice that trivially we have P(K) ⊂ P1(Y ) .

2.3. Well-posedness of ODE’s in Banach spaces. We recall here a theorem by Brezis
[15, Sect. I.3, Thm. 1.4, Cor. 1.1] on the well-posedness of ODE’s in Banach spaces.

Theorem 2.2. Let (E, ‖ · ‖E) be a Banach space, C a closed convex subset of E , and let

A(t, ·) : C → E , t ∈ [0, T ] , be a family of operators satisfying the following properties:

(i) there exists a constant L > 0 such that for every c1, c2 ∈ C and t ∈ [0, T ]

‖A(t, c1)−A(t, c2)‖E ≤ L‖c1 − c2‖E; (2.3)

(ii) for every c ∈ C the map t 7→ A(t, c) is continuous in [0, T ] ;
(iii) for every R > 0 there exists θ > 0 such that

c ∈ C, ‖c‖E ≤ R ⇒ c+ θA(t, c) ∈ C. (2.4)

Then for every c̄ ∈ C there exists a unique curve c : [0, T ] → C of class C1 satisfying ct ∈ C
for all t ∈ [0, T ] and

d

dt
ct = A(t, ct) in [0, T ], c0 = c̄. (2.5)

Moreover, if c1, c2 are the solutions starting from the initial data c̄1, c̄2 ∈ C respectively, we

have

‖c1t − c2t‖E ≤ eLt‖c̄1 − c̄2‖E , for every t ∈ [0, T ] . (2.6)

For our purposes, we need the following generalization.

Corollary 2.3. Let hypotheses (ii) and (iii) of Theorem 2.2 hold for a family of operators

A(t, ·) : C → E , t ∈ [0, T ] . Assume, in addition that

(i’) for every R > 0 there exists a constant LR > 0 such that for every c1, c2 ∈ C ∩ BR

and t ∈ [0, T ]

‖A(t, c1)−A(t, c2)‖E ≤ LR‖c1 − c2‖E; (2.7)

(i”) there exists M > 0 such that for every c ∈ C , there holds

‖A(t, c)‖E 6M(1 + ‖c‖E). (2.8)



MEAN-FIELD ANALYSIS OF MULTI-POPULATION DYNAMICS WITH LABEL SWITCHING 7

Then for every c̄ ∈ C there exists a unique curve c : [0, T ] → C of class C1 satisfying ct ∈ C
for all t ∈ [0, T ] and

d

dt
ct = A(t, ct) in [0, T ], c0 = c̄. (2.9)

Moreover, if c1, c2 are the solutions starting from the initial data c̄1, c̄2 ∈ C∩BR respectively,

there exists a constant L = L(M,R, T ) > 0 such that

‖c1t − c2t‖E ≤ eLt‖c̄1 − c̄2‖E , for every t ∈ [0, T ] . (2.10)

Proof. Let us fix the initial datum c̄ ∈ C , and let us choose R̄ := (‖c̄‖E+MT )eMT . Consider
a smooth function with compact support χ : R+ → [0, 1] such that χ(r) = 1 for every r 6 R̄
and set B(t, c) := χ(‖c‖E)A(t, c) . Then one can see that B satisfies hypotheses (i) and (ii)
of Theorem 2.2. To see that hypothesis (iii) is also satisfied, it suffices to notice that, by
convexity and since 0 6 χ 6 1 , c+θχ(‖c‖E)A(t, c) ∈ C whenever c+θA(t, c) ∈ C . Therefore
there exists a unique solution t 7→ c(t) of class C1 of

d

dt
ct = B(t, ct) in [0, T ], c0 = c̄. (2.11)

Using again that 0 6 χ 6 1 and (2.8), one can see that

‖ct‖E 6 ‖c̄‖E +MT +M

∫ T

0

‖cs‖E ds, (2.12)

hence Gronwall’s Lemma implies that ‖ct‖E 6 R̄ for every t ∈ [0, T ] . With this, ct solves
(2.9). A similar argument shows that any other solution t 7→ ĉt to (2.9) must satisfy ‖ĉt‖E 6

R̄ for every t ∈ [0, T ] . Thus, uniqueness of solutions for (2.9) follows from the uniqueness
of solutions to (2.11). A similar argument also yields (2.10). �

3. THE ABSTRACT MODEL

The state of our system is described pairs y := (x, λ) . The element x ∈ R
d denotes the

position of the agents, whereas the element λ ∈ P(U) denotes a (probability) distribution
over the space U , which we assume to be a compact metric space, which can be interpreted
as a space of strategies (as in [5], in which case an element of P(U) is a mixed strategy)
or as a space of labels (as in [2], where the case U = {leader, follower} was considered). A
distribution of states will be described by an element Λ ∈ P(Y ) , where Y := R

d × P(U) .
We will be concerned with the evolution of Λ , given an initial Λ0 , determined by the laws
of evolution of x and λ , which are going to be discussed below.

For y = (x, λ) ∈ Y and Ψ ∈ P1(Y ) , we define a vector field bΨ : Y → Y through

bΨ(y) :=

(

vΨ(y)

T ∗(x,Ψ)λ

)

(3.1)

The first component of bΨ is a velocity field in R
d determined by the global state of the

system Ψ ; the second component is expressed in terms of the adjoint T ∗(x,Ψ) of an opera-
tor T (x,Ψ) which sees the location of the agents and the global state of the system around
them. In order to state the regularity assumptions that we make on bΨ , we will discuss
separately the assumptions on vΨ and on T .

We assume that the velocity field vΨ : Y → R
d satisfies the following conditions:

(v1) for every R > 0 , for every Ψ ∈ P(BY
R ) , vΨ ∈ Lip(BY

R ;Rd) uniformly with respect to
Ψ , namely there exists a constant Lv,R > 0 such that

|vΨ(y
1)− vΨ(y

2)| 6 Lv,R‖y
1 − y2‖Y ; (3.2)

(v2) for every R > 0 , for every Ψ ∈ P(BY
R ) , there exists a constant Lv,R > 0 such that

for every y ∈ BY
R , and for every Ψ1,Ψ2 ∈ P(BY

R )

|vΨ1(y)− vΨ2(y)| 6 Lv,RW1(Ψ
1,Ψ2); (3.3)

(v3) there exists Mv > 0 such that for every y ∈ Y and for every Ψ ∈ P1(Y ) there holds

|vΨ(y)| 6Mv

(

1 + ‖y‖Y +m1(Ψ)
)

. (3.4)

We now describe the assumptions on T . For (x,Ψ) ∈ R
d × P1(Y ) , let T (x,Ψ): Lip(U) →

Lip(U) be an operator such that
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(T0) for every (x,Ψ) ∈ R
d × P1(Y ) , constants are in the kernel of T (x,Ψ) , that is

T (x,Ψ)1 = 0; (3.5)

(T1) for every (x,Ψ) ∈ R
d × P1(Y ) , there exists a constant MT > 0 such that the

operator norm satisfies

‖T (x,Ψ)‖L(Lip(U);Lip(U)) 6MT

(

1 + |x|+m1(Ψ)
)

; (3.6)

(T2) for every R > 0 there exists LT ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈
BR × P(BY

R ) ,

‖T (x1,Ψ1)− T (x2,Ψ2)‖L(Lip(U);Lip(U)) 6 LT ,R

(

|x1 − x2|+W1(Ψ
1,Ψ2)

)

; (3.7)

(T3) for every R > 0 there exists δR > 0 such that for every (x,Ψ) ∈ BR × P1(Y ) we
have

T (x,Ψ) + δRI > 0. (3.8)

The following lemma is easily proved.

Lemma 3.1. Let T (x,Ψ): Lip(U) → Lip(U) satisfy (T0)-(T3) above and let T ∗(x,Ψ): F(U) →
F(U) be its adjoint. Then

(T*1) for every (x,Ψ) ∈ R
d × P1(Y ) , there exists MT > 0 such that the operator norm

satisfies

‖T ∗(x,Ψ)‖L(F(U);F(U)) 6MT (1 + |x|+m1(Ψ)); (3.9)

(T*2) for every R > 0 there exists LT ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈ BR ×
P(BY

R ) ,

‖T ∗(x1,Ψ1)− T ∗(x2,Ψ2)‖L(F(U);F(U)) 6 LT ,R

(

|x1 − x2|+W1(Ψ
1,Ψ2)

)

, (3.10)

(T*3) for every R > 0 there exists δR > 0 such that

T ∗(x,Ψ) + δRI > 0, (3.11)

Proof. To see that (T*2) holds, we apply the definition of operator norm

‖T ∗(x,Ψ)‖L(F(U);F(U)) := sup
{

‖T ∗(x,Ψ)µ‖BL : µ ∈ F(U), ‖µ‖BL 6 1
}

. (3.12)

For (x1,Ψ1), (x2,Ψ2) ∈ BR × P(BY
R ) , we have,

‖T ∗(x1,Ψ1)− T ∗(x2,Ψ2)‖L(F(U);F(U))

=sup
{

‖(T ∗(x1,Ψ1)− T ∗(x2,Ψ2))µ‖BL : µ ∈ F(U), ‖µ‖BL 6 1
}

=sup
{

sup
{

〈(T ∗(x1,Ψ1)− T ∗(x2,Ψ2))µ, ϕ〉 : ‖ϕ‖Lip 6 1
}

: µ ∈ F(U), ‖µ‖BL 6 1
}

=sup
{

sup
{

〈µ, (T (x1,Ψ1)− T (x2,Ψ2))ϕ〉 : ‖ϕ‖Lip 6 1
}

: µ ∈ F(U), ‖µ‖BL 6 1
}

6 sup
{

sup
{

‖µ‖BL‖(T (x1,Ψ1)− T (x2,Ψ2))ϕ‖Lip : ‖ϕ‖Lip 6 1
}

: µ ∈ F(U), ‖µ‖BL 6 1
}

6 sup
{

‖(T (x1,Ψ1)− T (x2,Ψ2))ϕ‖Lip : ‖ϕ‖Lip 6 1
}

6‖T (x1,Ψ1)− T (x2,Ψ2)‖L(Lip(U);Lip(U)) 6 LT ,R

(

|x1 − x2|+W1(Ψ
1,Ψ2)

)

,

and (T*2) follows from (T2). A similar argument using (3.12) also gives (T*1). To prove
(T*3), ler R > 0 be fixed and let δR > 0 be such that (3.8) holds. Then

T ∗(x,Ψ) + δRI = (T (x,Ψ) + δRI)
∗
> 0,

since the adjoint operator preserves positivity. �

Proposition 3.2. For y ∈ Y and Ψ ∈ P1(Y ) , define bΨ(y) as in (3.1). Assume that vΨ : Y →
R

d satisfies (v1)-(v3) and T (x,Ψ): Lip(U) → Lip(U) satisfies (T0)-(T3). Then

(i) for every R > 0 , for every Ψ ∈ P(BY
R ) , and for every y1, y2 ∈ BY

R , there exists LR > 0
such that

‖bΨ(y
1)− bΨ(y

2)‖Y 6 LR‖y
1 − y2‖Y ; (3.13)

(ii) for every R > 0 , for every Ψ1,Ψ2 ∈ P(BY
R ) , and for every y ∈ BY

R , there exists

LR > 0 such that

‖bΨ1(y)− bΨ2(y)‖Y 6 LRW1(Ψ
1,Ψ2); (3.14)
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(iii) for every R > 0 , there exists θ > 0 such that for every y ∈ BY
R and for every

Ψ ∈ P(BY
R )

y + θbΨ(y) ∈ Y ; (3.15)
(iv) there exists M > 0 such that for every y ∈ Y and for every Ψ ∈ P1(Y ) there holds

‖bΨ(y)‖Y 6M
(

1 + ‖y‖Y +m1(Ψ)
)

. (3.16)

Proof. Property (i) is a consequence of (3.2) and (3.10); property (ii) follows from (3.3) and
(3.10). Observing that for all y = (x, λ) ∈ Y we have that ‖λ‖BL 6 1 , we obtain (3.16)
from (3.4) and (3.9). Finally, to prove (iii), since R

d is convex, we simply have to show that
for every R > 0 , there exists θ > 0 such that for every y = (x, λ) ∈ BY

R and for every
Ψ ∈ P(BY

R )
λ+ θT ∗(x,Ψ)λ ∈ P(U). (3.17)

From (3.11), we have that, for θ = 1/δR , λ + θT ∗(x,Ψ)λ is a positive measure. Since by
(3.5) 〈T ∗(x,Ψ)λ, 1〉 = 〈λ, T (x,Ψ)1〉 = 0 , we get (3.17) and we conclude the proof. �

3.1. The discrete problem and statement of the main result. We consider a particle
system of N agents evolving according to

{

ẋit = vΛN
t
(xit, λ

i
t),

λ̇it = T ∗(xit,Λ
N
t )λit,

for i = 1, . . . , N , t ∈ [0, T ] , (3.18)

where xi ∈ R
d , λi ∈ P(U) for each i ∈ {1, . . . , N} , and

ΛN
t :=

1

N

N
∑

i=1

δ(xi
t,λ

i
t)

(3.19)

is the empirical measure associated with the system. Recalling the definition of b in (3.1),
the evolution (3.18) can be written in compact form as

yit = bΛN
t
(yit), for i = 1, . . . , N , t ∈ [0, T ] . (3.20)

We first discuss the well posedness of system (3.18) for every choice of an initial datum
ȳi = (x̄i, λ̄i) , for i = 1, . . . , N .

Proposition 3.3. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y → R
d

satisfies (v1)-(v3) and the operator T (x,Ψ): Lip(U) → Lip(U) satisfies (T0)-(T3). Then, for

every choice of ȳi ∈ Y , i = 1, . . . , N , the system (3.20) has a unique solution.

Proof. We introduce the vector-valued variable y := (y1, . . . , yN ) ∈ Y N ⊂ Y
N

, which we
endow with the norm

‖y‖
Y

N :=
1

N

N
∑

i=1

‖yi‖Y , (3.21)

and the associated empirical measure ΛN := 1
N

∑N

i=1 δyi , which belongs to P(BY
R ) when-

ever y ∈ (BY
R )N . Consider the map bN : Y N → Y

N
whose components are defined through

bNi (y) := bΛN (yi). (3.22)

Then the Cauchy problem associated with (3.20) can be written as
{

ẏt = bN (yt),

y0 = ȳ.
(3.23)

In order to apply Corollary 2.3 to the system above, we first notice that assumption (ii) is
automatically satisfied since the system is autonomous. To check the other assumptions,
we fix a ball BY N

R and notice that BY N

R ⊂ (BY
R )N .

Applying (3.15) with Ψ = ΛN to each component yi of y , we get that assumption (iii) of
Corollary 2.3 is satisfied.

We now show that assumption (i’) holds. Fix y1,y2 ∈ BY N

R ⊂ (BY
R )N , and let ΛN

1 ,Λ
N
2 be

the associated empirical measures. Notice that

W1(Λ
N
1 ,Λ

N
2 ) 6

1

N

N
∑

i=1

‖yi1 − yi2‖Y = ‖y1 − y2‖Y N . (3.24)
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With this, by the triangle inequality, (3.13), and (3.14), we estimate

‖bN (y1)− bN (y2)‖Y N =
1

N

N
∑

i=1

‖bΛN
1

(yi1)− bΛN
2

(yi2)‖Y

6LRW1(Λ
N
1 ,Λ

N
2 ) +

LR

N

N
∑

i=1

‖yi1 − yi2‖Y 6 2LR‖y1 − y2‖Y N ,

(3.25)

which yields (2.7). To see that also (2.8), and therefore assumption (i”), holds, we apply
(3.16) and obtain, upon noticing that m1(Λ

N ) = ‖y‖
Y

N ,

‖bN (y)‖
Y

N =
1

N

N
∑

i=1

‖bΛN (yi)‖Y 6
M

N

N
∑

i=1

(

1 + ‖yi‖Y +m1(Λ
N)
)

=M
(

1 + 2‖y‖
Y

N

)

, (3.26)

Therefore we can apply Corollary 2.3, which proves the statement. �

We are now in a position to state the main result of our paper, concerning the mean-
field limit as N → ∞ of the solutions (y1t , . . . , y

N
t ) to (3.20), or equivalently the limiting

behavior of the associated empirical measures ΛN
t . In order to do so, we first need to recall

the concept of Eulerian solution to the continuity equation.

Definition 3.4 (Eulerian solution). Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y ) be a

given initial datum. We say that Λ is a Eulerian solution to the initial value problem for

the equation

∂tΛt + div(bΛt
Λt) = 0 (3.27)

starting from Λ̄ if and only if Λ0 = Λ̄ and, for every φ ∈ C1
b ([0, T ]× Y ) ,

∫

Y

φ(t, y) dΛt(y)−

∫

Y

φ(0, y) dΛ0(y) =

∫ t

0

∫

Y

(

∂tφ(s, y) +Dφ(s, y) · bΛs
(y)
)

dΛs(y)ds, (3.28)

where Dφ(s, y) is the Fréchet differential of φ in the y variable.

The main result of our paper is the following theorem, stating the existence of a unique
Eulerian solution to (3.27) and its characterization as the mean-field limit of solutions to
the discrete problem (3.20).

Theorem 3.5. Let r > 0 and Λ̄ ∈ P(BY
r ) be a given initial datum. Then

(i) there exists a unique Eulerian solution t 7→ Λt to (3.27) starting from Λ̄ ;

(ii) if Λ̄N = 1
N

∑N
i=1 δȳN,i is a sequence of atomic measures in P(BY

r ) such that

lim
N→∞

W1(Λ̄
N , Λ̄) = 0

and, for fixed N , ΛN
t are the empirical measures associated with the unique solu-

tion to (3.20) with initial datum ȳN,i , we have

lim
N→∞

W1(Λ
N
t ,Λt) = 0 uniformly with respect to t ∈ [0, T ] .

The proof of Theorem 3.5 will be based on a fixed point argument and on the notion of
Lagrangian solution, which are going to be introduced in the next subsection.

3.2. Lagrangian solutions. We start by proving an auxiliary well posedness result for
and ODE in Y of the form

ẏt = bΨt
(yt), y0 = ȳ, (3.29)

where [0, T ] ∋ t 7→ Ψt ∈ P1(Y ) is a given continuous curve and ȳ ∈ Y .

Proposition 3.6. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y →
R

d satisfies (v1)-(v3) and the operator T (x,Ψ): Lip(U) → Lip(U) satisfies (T0)-(T3). Let

Ψ ∈ C0([0, T ]; (P1(Y ),W1)) and assume that there exists R > 0 such that, in addition,

Ψt ∈ P(BY
R ) for all t ∈ [0, T ] . Then, for every choice of ȳ ∈ Y , the ODE (3.29) has a unique

solution.

Proof. We set b(t, y) := bΨt
(y) according to (3.1). Since t 7→ Ψt is continuous, using (3.14)

we get that, for any fixed y ∈ Y , b(·, y) is continuous, which is condition (ii) in Corollary 2.3.
Condition (iii) of Corollary 2.3 is a direct consequence of (3.15). Furthermore, (3.13) and
(3.16) yield (2.7) and (2.8), respectively. The proof is concluded by Corollary 2.3. �
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In view of the previous result, the following definition is justified.

Definition 3.7 (Transition map). The transition map YΨ(t, s, ȳ) associated with the ODE

(3.29), replacing the initial condition by ys = ȳ , is defined through

YΨ(t, s, ȳ) = yt,

where t 7→ yt is the unique solution to (3.29) .

We can now proceed to defining the notion of Lagrangian solution to (3.27).

Definition 3.8 (Lagrangian solutions). Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y )
be a given initial datum. We say that Λ is a Lagrangian solution to the initial value problem

for the equation (3.27) starting from Λ̄ if and only if it satisfies the fixed point condition

Λt = YΛ(t, 0, ·)#Λ̄ for every 0 6 t 6 T , (3.30)

where YΛ(t, s, y) are the transition maps associated with the ODE (3.29).

Remark 3.9. It follows from Definition 2.1 that Lagrangian solutions are also Eulerian

solutions.

Remark 3.10. For a fixed N ∈ N , let ΛN
t be the empirical measures associated with

the unique solution to (3.20) with initial datum ȳi , i = 1, . . . , N . If we now set Λ̄N :=
1
N

∑N

i=1 δȳi , by Definition 3.7 there holds

ΛN
t = YΛN (t, 0, ·)#Λ̄

N for every 0 6 t 6 T . (3.31)

Hence, ΛN is a Lagrangian and Eulerian solution to (3.27) starting from Λ̄N .

We now want to show that an infinite-dimensional converse of Proposition 3.6 holds,
proving that indeed, in our case, every Eulerian solution is also a Lagrangian solution.
This stems out of a general abstract principle known as the superposition principle, in
the version introduced in [5] (see also [7, Theorem 8.2.1] and [9, Theorem 7.1]). In the
statement below, the evaluation map evt is defined, at a given t ∈ [0, T ] , by

evt(γ) := γ(t) for all γ ∈ C([0, T ] : E) .

Theorem 3.11 (superposition principle). Let (E, ‖ · ‖E) be a separable Banach space, let

b : (0, T )× E → E be a Borel vector field and let µt ∈ P(E) , t ∈ [0, T ] , be a continuous curve

with
∫ T

0

∫

E

‖bt‖E dµtdt < +∞. (3.32)

If
d

dt
µt + div(btµt) = 0

in duality with cylindrical functions φ ∈ C1
b (E) , precisely of the form (here 〈·, ·〉 denotes the

duality map between E and E′ )

ϕ(〈y, z′1〉, 〈y, z
′
2〉, . . . , 〈y, z

′
N〉)

with ϕ ∈ C1
b (R

N ) and z′1, . . . , z
′
N ∈ E′ , then there exists η ∈ P(C([0, T ];E)) concentrated

on absolutely continuous solutions to the ODE ẏ = bt(y) and with (evt)#η = µt for all

t ∈ [0, T ] .

Proof. See [5, Theorem 5.2]. �

Combining the abstract result Theorem 3.11 with the uniqueness granted by Proposi-
tion 3.6, we can prove the announced equivalence result. Notice that the proof has an inter-
mediate step, since in order to apply Proposition 3.6 we must first ensure that a Eulerian
solution Λt has (equi)compact support for all t . We are able to deduce this from Theo-
rem 3.11 and the assumption that the initial datum Λ̄ ∈ Pc(Y ) .

Theorem 3.12. Let Λ ∈ C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y ) be a given initial datum.

Assume that Λ is a Eulerian solution to the initial value problem for ∂tΛt + div(bΛt
Λt) = 0

(see (3.27)) starting from Λ̄ , in the sense of (3.28), then there exists R > 0 such that Λt ∈
P(BY

R ) for all t ∈ [0, T ] and

Λt = YΛ(t, 0, ·)#Λ̄ for every 0 6 t 6 T ,

where YΛ(t, s, y) are the transition maps associated with the ODE (3.29).
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Proof. Since Λ ∈ C0([0, T ]; (P1(Y ),W1)) , the map

t 7→ m1(Λt) =

∫

Y

‖y‖Y dΛt(y) (3.33)

is continuous, and hence bounded, in [0, T ] . Set bt(y) := bΛt
(y) , for y ∈ Y , and extend it to

zero on Y \ Y . Using (3.16), we have
∫ T

0

∫

Y

‖bt‖Y dΛt(y)dt =

∫ T

0

∫

Y

‖bt‖Y dΛt(y)dt

6

∫ T

0

∫

Y

M
(

1 + ‖y‖Y +m1(Λt)
)

dΛt(y)dt 6 TM
(

1 + 2 max
t∈[0,T ]

m1(Λt)
)

< +∞.

(3.34)

Hence, we can apply Theorem 3.11 with E = Y and µt = Λt , obtaining that Λt = (evt)#η

for a suitable η ∈ P(C([0, T ];Y )) concentrated on absolutely continuous solutions to ODE

ẏ = bΛt
(y) in [0, T ] . (3.35)

Now, using (3.16) again, we have

‖bΛt
(y)‖Y ≤M

(

1 + max
t∈[0,T ]

m1(Λt) + ‖y‖Y

)

≤MΛ (1 + ‖y‖Y ) , (3.36)

where we set MΛ := M
(

1 + maxt∈[0,T ]m1(Λt)
)

. The equality Λ̄ = Λ0 = (ev0)#η , which
reads

∫

P(C([0,T ];Y ))

φ(γ(0)) dη(γ) =

∫

Y

φ(y) dΛ̄(y)

for each φ ∈ Cb(Y ) , implies that η is concentrated on the set of solutions to (3.35) satisfying
y(0) ∈ BY

r , where r is such that supp Λ̄ ⊂ BY
r . With (3.13) and the Grönwall inequality,

each of these solutions must satisfy y(t) ∈ BY
R , where R is explictly given by

R := Rr,M,Λ,T = (r +MΛT )e
MΛT .

From the equality Λt = (evt)#η we then deduce that Λt ∈ P1(B
Y
R ) for all t ∈ [0, T ] . We can

therefore apply Proposition 3.6 and exploit the uniqueness of the solution to the Cauchy
problem (3.29) to deduce the representation

γ(t) = YΛ(t, 0, γ(0))

with γ(0) ∈ BY
r , for each continuous path γ ∈ suppη . With the equality Λt = (evt)#η , this

gives
∫

Y

φ(y) dΛt(y) =

∫

P(C([0,T ];Y ))

φ(YΛ(t, 0, γ(0))) dη(γ) =

∫

Y

φ(YΛ(t, 0, y)) dΛ̄(y)

for each φ ∈ Cb(Y ) , which implies the conclusion. �

3.3. Proof of Theorem 3.5. As a preliminary step towards the proof, we need the follow-
ing lemma, assuring that the size of the support of a Lagrangian solution in the sense of
(3.30) can be a priori estimated from the data of the problem.

Lemma 3.13. Assume that for every y ∈ Y and Ψ ∈ P1(Y ) the velocity vΨ : Y → R
d

satisfies (v1)-(v3) and the operator T (x,Ψ): Lip(U) → Lip(U) satisfies (T0)-(T3). Let Λ ∈
C0([0, T ]; (P1(Y ),W1)) and let Λ̄ ∈ Pc(Y ) be a given initial datum. Fix r > 0 such that

Λ̄ has support in BY
r , and let M be the constant given by (3.16). Assume that Λ is a

Lagrangian solution to the initial value problem for the equation (3.27) starting from Λ̄ in

the sense of (3.30). Then, for R = (r +MT )e2MT we have

Λt ∈ P1(B
Y
R ) for all t ∈ [0, T ] .

Proof. For r , R as in the statement, it suffices to show that we have

max
y∈BY

r

‖YΛi(t, 0, y)‖Ȳ ≤ R (3.37)

for all t ∈ [0, T ] . Indeed, if this holds the statement immediately follows by (3.30) and
elementary properties of the push-forward measure, taking into account that Λ̄ has support
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in BY
r . To prove the above claim, we first observe, that by definition of Lagrangian solutions

and the fact that Λ̄ ∈ P(BY
r ) we immediately have

m1(Λt) ≤ max
y∈BY

r

‖YΛ(t, 0, y)‖Ȳ (3.38)

for all t ∈ [0, T ] . We now set f(s) = maxy∈BY
r
‖YΛ(s, 0, y)‖Ȳ . Then, one has by definition of

the transition map, (3.16), and (3.38) that for every choice of y ∈ BY
r

‖YΛ(t, 0, y)‖Ȳ ≤ r +M

∫ t

0

(1 + ‖YΛ(s, 0, y)‖Ȳ +m1(Λs)) ds ≤ r +M

∫ t

0

(1 + 2f(s)) ds

which implies by the Gronwall inequality f(t) ≤ (r +Mt)e2Mt for all t , confirming (3.37).
�

Proof of Theorem 3.5. The proof goes through a finite dimensional approximation and in-
volves three steps.

Step 1: stability of Lagrangian solutions. We fix r > 0 , two initial data Λ̄1 , Λ̄2 ∈ P(BY
r )

and assume that two Lagrangian solutions Λ1
t , Λ2

t , starting from Λ̄1 , and Λ̄2 , respectively,
exist. We fix R = (r + MT )e2MT and the corresponding contant LR provided by (3.13)-
(3.14). We claim that

W1(Λ
1
t ,Λ

2
t ) ≤ eLRt+eLRt−1 W1(Λ̄

1, Λ̄2) for all t ∈ [0, T ] . (3.39)

To prove this claim, we fix y1 and y2 ∈ BY
r and observe that

‖YΛi(t, 0, yi)‖Ȳ ≤ R (3.40)

for all t ∈ [0, T ] and i = 1, 2 . This can be proved along similar lines as in the proof of (3.38).
With (3.40) and (3.13)-(3.14), the solutions y1(t) and y2(t) to the ODE’s ẏi = bΛi(yi) with
initial data y1 and y2 respectively, satisfy

d

dt
‖y1 − y2‖(t) 6 ‖bΛ1(y1(t))− bΛ1(y2(t))‖ + ‖bΛ1(y2(t)) − bΛ2(y2(t))‖

6 LR‖y
1 − y2‖(t) + LRW1(Λ

1
t ,Λ

2
t ) .

This gives, by means of a comparison argument, that

‖y1(t)− y2(t)‖ 6 eLRt‖y1 − y2‖+ LR

∫ t

0

eLR(t−τ)W1(Λ
1
τ ,Λ

2
τ ) dτ ;

equivalently,

‖YΛ1(t, 0, y1)−YΛ2(t, 0, y2)‖ 6 eLRt‖y1 − y2‖+ LR

∫ t

0

eLR(t−τ)W1(Λ
1
τ ,Λ

2
τ ) dτ (3.41)

for alle t ∈ [0, T ] and y1 and y2 ∈ BY
r .

Now, let Π be an optimal coupling between Λ̄1 and Λ̄2 . Then clearly, by the definition
of Lagrangian solutions,

(

YΛ1 (t, 0, y1),YΛ2 (t, 0, y2)
)

#
Π is a coupling between Λ1

t and Λ2
t .

Therefore

W1(Λ
1
t ,Λ

2
t ) 6

∫

Y×Y

‖YΛ1(t, 0, y1)−YΛ2 (t, 0, y2)‖ dΠ(y1, y2)

=

∫

BY
r ×BY

r

‖YΛ1(t, 0, y1)−YΛ2(t, 0, y2)‖ dΠ(y1, y2) ,

where we also used that Λ̄1 , Λ̄2 ∈ P(BY
r ) . Hence, using (3.41) we get

W1(Λ
1
t ,Λ

2
t ) 6 eLRt

∫

BY
r ×BY

r

‖y1 − y2‖ dΠ(y1, y2) + LR

∫ t

0

eLR(t−τ)W1(Λ
1
τ ,Λ

2
τ ) dτ

= eLRtW1(Λ̄
1, Λ̄2) + LR

∫ t

0

eLR(t−τ)W1(Λ
1
τ ,Λ

2
τ ) dτ .

With this and the Grönwall inequality, we get (3.39).
Step 2: existence and approximation of Lagrangian solutions. We start by fixing a se-

quence of atomic measures Λ̄N ∈ P(BY
r ) such that

lim
N→∞

W1(Λ̄N , Λ̄) = 0 . (3.42)
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Such a sequence can be for instance constructed as follows: choose ȳi(ω) ∈ Y indepen-
dent and identically distributed, with law Λ̄ , so that the random measures Λ̄N(ω) :=
1
N

∑N

i=1 δȳi(ω) almost surely converge in P1(Y ) to Λ̄ , and choose ω such that this hap-
pens. Now, let ΛN

t be the empirical measures associated with the unique solution to (3.20)
with initial datum ȳi , i = 1, . . . , N . As noticed in (3.31), ΛN

t are Lagrangian solutions to
(3.27) starting from Λ̄N . Hence, (3.39) provides a constant C := C(M, r, T ) such that

W1(Λ
N
t ,Λ

M
t ) ≤ CW1(Λ̄

N , Λ̄M )

for all t ∈ [0, T ] and N , M ∈ N . It follows that ΛN
t ∈ C([0, T ]; (P1(B

Y
R ),W1)) is a Cauchy

sequence. Let then Λt ∈ C([0, T ]; (P1(B
Y
R ),W1)) be the limit of the sequence ΛN

t .
For a given ȳ ∈ BY

r , consider now the solutions yN (t) and y(t) to the ODE’s ẏN =

bΛN (yN ) , and ẏ = bΛ(y) , respectively, with initial datum ȳ . Let R′ ≥ R be an upper bound2

for maxt∈[0,T ]‖y(t)‖Ȳ , which can be taken independent of ȳ ∈ BY
r . With (3.13)-(3.14) we

obtain
d

dt
‖yN − y‖(t) 6 ‖bΛN (yN )− bΛ(y

N )‖+ ‖bΛ(y
N )− bΛ(y)‖ 6 LR′‖yN − y‖+ LRW1(Λ

N
t ,Λt) .

Again by comparison, we deduce that

‖YΛN (t, 0, ȳ)−YΛ(t, 0, ȳ)‖ 6 LR

∫ t

0

eLR′(t−τ)W1(Λ
N
τ ,Λτ ) dτ

which entails the uniform convergence of YΛN (·, 0, ·) to YΛ(·, 0, ·) in [0, T ]× BY
r . For each

t ∈ [0, T ] this implies, together with (3.42) and the fact that YΛ(t, 0, ·) is a Lipschitz map
on BY

r , that
ΛN
t = YΛN (t, 0, ·)#Λ̄

N → YΛ(t, 0, ·)#Λ̄

in P1(Y ) , which gives (3.30).
Step 3: uniqueness and conclusion. Uniqueness of Lagrangian solutions, given the initial

datum, follows now from (3.39). Existence and uniqueness of Eulerian solutions is now a
consequence of Remark 3.9, and Theorem 3.12, respectively. The same argument used in
the second step of this proof gives also part (ii) of the statement. �

4. A LEADER-FOLLOWER DYNAMICS

We want to discuss the application of our results to the relevant scenario of two in-
teracting populations, one consisting of “leaders” and the other one of “followers”, with a
switching rate between the two. In this setting, the set U consists of two elements, that is
U := {F,L} and is endowed with a two-valued distance

0 = dist(F, F ) = dist(L,L) , 1 = dist(F,L) = dist(L, F ) .

The space Lip({F,L}) is a two-dimensional linear space spanned by the two indicator func-
tions 1F and 1L ; accordingly, the space F({F,L}) is the two-dimensional space of signed
Borel measures on the discrete set {F,L} , whose generic element ξ is completely described
by the two values ξF := ξ({F}) and ξL := ξ({L}) . A simple characterization of the operators
T (and T ∗ ) complying with our set of assumptions (T0)-(T3) is then given in the following
proposition.

Proposition 4.1. Let U := {F,L} . Then T : Rd × P1(Y ) → Lip({F,L}) satisfies (T0)-(T3) if

and only if there exist two functions αF , αL : R
d × P1(Y ) → [0,+∞) such that

(α0) for every (x,Ψ) ∈ R
d × P1(Y ) and λ ∈ P1({F,L}) it holds

(T ∗(x,Ψ)λ)F = −αF (x,Ψ)λF + αL(x,Ψ)(1 − λF ) ,

(T ∗(x,Ψ)λ)L = αF (x,Ψ)λF − αL(x,Ψ)(1− λF );

(α1) for every (x,Ψ) ∈ R
d × P1(Y ) , there exists MT > 0 such that the

0 ≤ α•(x,Ψ) 6MT

(

1 + |x|+m1(Ψ)
)

, for • = F,L ;

2observe that at this point of the proof we cannot a priori exclude that R′ > R , since we still do not know that
Λt is a Lagrangian solution, hence we cannot apply (3.40) (which holds instead for ΛN )
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(α2) for every R > 0 there exists LT ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈ BR ×
P(BY

R ) ,

|α•(x
1,Ψ1)− α•(x

2,Ψ2)| 6 LT ,R

(

|x1 − x2|+W1(Ψ
1,Ψ2)

)

, for • = F,L .

Proof. Since Lip({F,L}) is a two-dimensional linear space, we can identify T (x,Ψ) with its
matrix representation with respect to the canonical basis {1F , 1L} and endow the space
L(Lip({F,L}),Lip({F,L}) with the Frobenius norm of such a matrix representation. Ac-
cordingly, the transpose matrix will be the representation of T ∗(x,Ψ) with respect to the
canonical basis of F({F,L}) consisting of the two Dirac masses δF and δL .

Now, condition (T0) is equivalent to the fact that

T (x,Ψ) =

(

−αF (x,Ψ) αF (x,Ψ)

αL(x,Ψ) − αL(x,Ψ)

)

(4.1)

with αF , αL : R
d × P1(Y ) → [0,+∞) . In turn, this is equivalent to (α0) by a direct compu-

tation. Again by a direct computation, (T2) is equivalent to (α2), while (T1) is equivalent
to the inequalities

|α•(x,Ψ)| 6MT (1 + |x|+m1(Ψ)) , for • = F,L .

In particular, αF and αL are uniformly bounded for (x,Ψ) ∈ BR×P1(B
Y
R ) , hence (T3) holds

if and only if the nondiagonal elements αF (x,Ψ) and αL(x,Ψ) of the matrix representation
(4.1) are nonnegative. This implies that (T1) and (T3) together are equivalent to (α1),
which concludes the proof. �

To each element Ψ of P1(R
d × P1({F,L})) we can associate a followers’ and a leaders’

distribution in a natural way, as we are going to discuss in the next definition.

Definition 4.2. Let Ψ ∈ P1(R
d ×P1({F,L})) The followers distribution µF

Ψ associated to Ψ
is the positive Borel measure on R

d defined by

µF
Ψ(B) :=

∫

B×P1({F,L})

λF dΨ(x, λ) (4.2a)

for each Borel set B ⊂ R
d . Similarly, the leaders distribution µL

Ψ associated to Ψ is the

positive Borel measure on R
d defined by

µL
Ψ(B) :=

∫

B×P1({F,L})

(1− λF ) dΨ(x, λ) . (4.2b)

Both the measures defined above have a simple interpretation. For instance, µF
Ψ(B) is

the expected value of the number of leaders in a region B for a probability distribution
Ψ on R

d × P1({F,L}) . We also observe that the sum of the two measures µF
Ψ and µL

Ψ is
exactly the x-marginal of Ψ(x, λ) . From a practical point of view, the integrals appearing in
(4.2) can be computed identifying the metric space (P1({F,L}),W1) with the 1 -dimensional
symplex [0, 1] endowed with the Euclidean distance (this is indeed an isometry). We also
point out the following inequalities, whose proof is straightforward

m1(µ
F
Ψ) +m1(µ

L
Ψ) ≤ m1(Ψ) , for all Ψ ∈ P1(R

d × P1({F,L}));

‖µF
Ψ1

− µF
Ψ2

‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(R
d × P1({F,L}))

‖µL
Ψ1

− µL
Ψ2

‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(R
d × P1({F,L})) .

(4.3)

Using the previous definition, we can also provide some relevant examples of velocity
fields vΨ complying with assumptions (v1)-(v3).

Proposition 4.3. Let U = {F,L} . For Ψ ∈ P1(R
d × P1({F,L})) , consider the velocity field

vΨ(x, λ) := λF
(

KFF ⋆ µF
Ψ +KLF ⋆ µL

Ψ

)

+ (1− λF )
(

KFL ⋆ µF
Ψ +KLL ⋆ µL

Ψ

)

(4.4)

where µF
Ψ and µL

Ψ are defined in (4.2) and the interaction kernels Kij : Rd → R
d satisfy

|Kij(x)| ≤M(1 + |x|), for all x ∈ R
d;

|Kij(x1)−Kij(x2)| ≤ LR |x1 − x2|, for all x1, x2 ∈ BR .

Then, vΨ(x, λ) satisfies (v1)-(v3).
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Proof. The result follows by a direct computation. �

Remark 4.4. The velocity field (4.4) corresponds to a particle model where each follower

experiences a velocity KFF ⋆µF
Ψ+K

LF ⋆µL
Ψ , which combines the action of the overall followers

and leaders distribution. Similarly, each leader is under the action of the velocity field

KFL ⋆ µF
Ψ + KLL ⋆ µL

Ψ . Hence, (4.4) is an average velocity of the system, weigthed by the

probability λ that a particle at x has of being a leader or a follower.

In a similar spirit to the previous proposition, also transition rates αF and αL depending
on µF

Ψ and µL
Ψ can be considered in our setting. This is for instance the point of view taken

in [2, Assumption (H4) and Appendix A], where also some explicit examples were provided.
Our assumptions are actually more general than those considered there: in particular, we
can allow for an explicit dependence on the space variable x .

Proposition 4.5. Let U = {F,L} . Consider two functions αF , αL : R
d×M+(R

d)×M+(R
d) →

[0,+∞) satisfying the following assumptions:

• there exists a constant M such that, for • = F,L ,

0 ≤ α•(x, µ, ν) ≤M (1 + |x|+m1(µ) +m1(ν)) (4.5)

for all x ∈ R
d and (µ, ν) ∈ M+(R

d)×M+(R
d) ;

• for all R > 0 , there exist a constant LR such that, for • = F,L ,

|α•(x1, µ1, ν1)− α•(x2, µ2, ν2)| ≤ LR (|x1 − x2|+ ‖µ1 − µ2‖BL + ‖ν1 − ν2‖BL) (4.6)

for all x1 , x2 ∈ BR and (µ1, ν1) , (µ2, ν2) ∈ M+(BR)×M+(BR) .

For Ψ ∈ P1(R
d × P1({F,L})) , define µF

Ψ and µL
Ψ as in (4.2). Then, the functions

αF (x,Ψ) := αF (x, µ
F
Ψ, µ

L
Ψ) and αL(x,Ψ) := αL(x, µ

F
Ψ, µ

L
Ψ) (4.7)

satisfy Assumptions (α0)-(α2 ) in Proposition 4.1.

Proof. The result follows from (4.5)-(4.6) by means of the inequalities in (4.3). �

The main result of this Section is an existence and uniqueness result for the system of
equations considered in [2], which we are going to deduce from Theorem 3.5. By doing this,
we will extend the result in [2, Proposition 3.2] to the case were the transition rates αF ,
αL are allowed to explicitly depend on x , which was not considered there. The equations
we consider are namely

{

∂tµ
F
t = −div

(

(KF ⋆ µF
t +KL ⋆ µL

t )µ
F
t

)

− αF (x, µ
F
t , µ

L
t )µ

F
t + αL(x, µ

F
t , µ

L
t )µ

L
t ,

∂tµ
L
t = −div

(

(KF ⋆ µF
t +KL ⋆ µL

t )µ
L
t

)

+ αF (x, µ
F
t , µ

L
t )µ

F
t − αL(x, µ

F
t , µ

L
t )µ

L
t

(4.8)

to be solved by two positive Borel measures µF and µL attaining, for t = 0 , an initial datum
µ̄F , and µ̄L , respectively, which we assume to have compact support in R

d . As customary
in this kind of models, we will assume that the initial total population is normalized to 1 ,
i.e.

µ̄F (Rd) + µ̄L(Rd) = 1 .

Remark 4.6. The velocity field in (4.8) corresponds to the choice KFF = KFL = KF and

KLF = KLL = KL in (4.4). The key observation is that, in this case, the field vΨ(x, λ) shows

no explicit dependence on λ and is simply given by

vΨ(x) = KF ⋆ µF
Ψ +KL ⋆ µL

Ψ . (4.9)

This will eventually allow us to decouple equation (3.27) into the simpler system (4.8). Such

an analysis is not possible if more than two different kernels are considered in (4.4). In that

general case, the mean-field limit of the associated particle system must be formulated in

terms of a solution Λ to (3.27), defined in the product space R
d × P1({F,L}) .

To proceed to the announced result, we need to recall te definition of a solution to (4.8)
which has been considered in [2]. Below, the shortcut Mc(R

d) is used to denote a positive
Borel measure having compact support in R

d .

Definition 4.7 (Solution of system (4.8)). Let (µF , µL) ∈ Mc(R
d) × Mc(R

d) be given, as

well as µF , µL : [0, T ] → Mc(R
d) . We say that the couple (µF

t , µ
L
t ) is a solution of system

(4.8) with initial datum (µF , µL) when
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(i) µF
0 = µF and µL

0 = µL ;

(ii) for each i ∈ {F,L} , the function t→ µi
t is continuous with respect to the topology of

weak convergence of measures;

(iii) there exists RT > 0 such that
⋃

t∈[0,T ] supp(µ
i
t) ⊆ BRT

for every i ∈ {F,L} ;

(iv) for every ϕ ∈ C1
c (R

d) and i ∈ {F,L} it holds

d

dt

∫

Rd

ϕ(x)dµi
t(x) =

∫

Rd

∇ϕ(x) ·





∑

j∈{F,L}

(Kj ⋆ µj
t )(x)



 dµi
t(x)

−

∫

Rd

ϕ(x)αi(x, µ
F
t , µ

L
t )dµ

i
t(x) +

∫

Rd

ϕ(x)α¬i(x, µ
F
t , µ

L
t )dµ

¬i
t (x),

for almost every t ∈ [0, T ] , with

¬i :=

{

L if i = F,

F if i = L.

We can now state the existence and uniqueness result for system (4.8).

Theorem 4.8. Let U = {F,L} . Consider two functions αF , αL : R
d×M+(R

d)×M+(R
d) →

[0,+∞) satisfying (4.5)-(4.6) and two kernels KF , KL : Rd → R
d with

|KF (x)| + |KL(x)| ≤M(1 + |x|) for all x ∈ R
d;

|KF (x1)−KF (x2)|+ |KL(x1)−KL(x2)| ≤ LR |x1 − x2| for all x1, x2 ∈ BR .
(4.10)

For Ψ ∈ P1(R
d × P1({F,L})) , define µF

Ψ and µL
Ψ as in (4.2). For x ∈ R

d and Ψ ∈ P1(R
d ×

P1({F,L})) , let vΨ(x) and T (x,Ψ) be given by (4.9) and (4.1) respectively, and consider the

corresponding velocity field bΨ as in (3.1).
Then, if Λ ∈ C([0, T ];P1(R

d×P1({F,L}),W1) is the unique solution to (3.27) starting from

Λ ∈ Pc(R
d × P1({F,L}) , the measures µF

t := µF
Λt

and µL
t := µL

Λt
are the unique solutions to

(4.8) with initial data µ̄F = µF
Λ̄

and µ̄L = µL
Λ̄

.

Proof. We start by observing that, under our assumptions on αF , αL , KF and KL , the
previous results of this section assure that the field bΨ complies with the requirements of
Theorem 3.5, hence existence and uniqueness of the solution Λ to (3.27) starting from Λ̄ is
guaranteed. We split the proof into two parts, proving first existence and then uniqueness
of the solutions.

Existence. For Λ as above, define µF
t := µF

Λt
and µL

t := µL
Λt

. By definition and Lemma
3.13, conditions (i) and (iii) in Definition 4.7 are satisfied. The continuity property (ii) is
instead a direct consequence of (4.3) and the continuity of Λ as a function of the time. We
therefore only have to check (iv) in Definition 4.7. We perform the required computation
only for µF

t , since the one for µF
t follows along similar lines. We take ϕ ∈ C1

c (R
d) and we

define, for all (x, λ) ∈ R
d ×F({F,L}) the test function

φ(x, λ) = λFϕ(x) .

We notice that the (Rd)∗ -component of the Fréchet differential of φ at (x, λ) is given by
λFDϕ(x) , while the action of the other component is independent of λ by linearity and is
given by

ξ 7→ ϕ(x)ξF .

We apply the definition (3.28) of Eulerian solution to the above test function φ , which does
not depend on t , and we get

d

dt

∫

Rd×P1({F,L})

λFϕ(x) dΛt(x, λ) =

∫

Rd×P1({F,L})

λF∇ϕ(x) · vΛt
(x) dΛt(x, λ)

+

∫

Rd×P1({F,L})

ϕ(x) (T ∗(x,Λt)λ)F dΛt(x, λ) ,

(4.11)
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for all t ∈ [0, T ] . We observe now that (4.2a)-(4.2b) are equivalent to the duality relation-
ships

∫

Rd

ζ(x) dµF
Ψ(x) =

∫

Rd×P1({F,L})

λF ζ(x) dΨ(x, λ) ,

∫

Rd

ζ(x) dµL
Ψ(x) =

∫

Rd×P1({F,L})

(1− λF )ζ(x) dΨ(x, λ)

(4.12)

for all ζ ∈ Cb(R
d) . Applying the first one to the functions ϕ(x) and ∇ϕ(x) · vΛt

(x) ∈ Cb(R
d)

gives3

∫

Rd×P1({F,L})

λFϕ(x) dΛt(x, λ) =

∫

Rd

ϕ(x) dµF
t (x)

∫

Rd×P1({F,L})

λF∇ϕ(x) · vΛt
(x) dΛt(x, λ) =

∫

Rd

∇ϕ(x) · vΛt
(x) dµF

t (x) .

(4.13)

With Proposition 4.1, (4.13), and applying (4.12) to the functions −ϕ(x)αF (x, µ
F
t , µ

L
t ) , and

ϕ(x)αL(x, µ
F
t , µ

L
t ) , respectively, we get

∫

Rd×P1({F,L})

ϕ(x) (T ∗(x,Λt)λ)F dΛt(x, λ) =

−

∫

Rd

ϕ(x)αF (x, µ
F
t , µ

L
t )dµ

F
t (x) +

∫

Rd

ϕ(x)αL(x, µ
F
t , µ

L
t )dµ

L
t (x) .

Hence, also using (4.13) and the explicit expression (4.9) of the field vΛt
(x) , (4.11) is equiv-

alent to equality (iv) in Definition 4.7 for i = F , as required. This proves existence of a
solution to (4.8) .

Uniqueness. The proof is divided into two steps.
Uniqueness- Step 1: continuous dependence for an auxiliary equation. For a given Z > 0

we fix the class of Carathédory vector fields

VZ := {v ∈ L∞([0, T ],Lip(Rd)) : ‖v‖L∞([0,T ],Lip(Rd)) ≤ Z}

and we denote as usual by Yv(t, s, ·) the associated transition maps, which satisfy the
equalities

Yv(s, s, x) = x,
d

dt
Yv(t, s, x) = vt(Yv(t, s, x)) (4.14)

for every 0 ≤ s ≤ t ≤ T and x ∈ R
d . From these, we can deduce the Grönwall-type

estimates

|Yv(t, s, x1)−Yv(t, s, x2)| ≤ eZ(t−s)|x1 − x2|,

|Yv(t, s, x)−Yw(t, s, x)| ≤ (t− s)eZ(t−s) sup
s∈[0,t]

‖ws − vs‖Cb(Rd)
(4.15)

for every 0 ≤ s ≤ t ≤ T , x , x1 , x2 ∈ R
d and v, w ∈ VZ . For v ∈ VZ and a given narrowly

continuous family ξt of signed measures satisfying |ξt| ≤ R for all t ∈ [0, T ] , we consider
the inhomogeneous equation

∂tµt + div(vtµt) = ξt . (4.16)

We claim that, for a given initial datum µ̄ ∈ M(Rd) , the unique solution of (4.16) starting
from µ̄ is given by the variation of constants formula

µt = Yv(t, 0, ·)#µ̄+

∫ t

0

Yv(t, s, ·)#ξs ds . (4.17)

A direct computation using (4.14) proves indeed that the above formula provides a solution
to (4.16), while uniqueness follows by taking the difference of two solutions and using that
the comparison principle [7, Proposition 8.1.7] for the continuity equation.

3here it is crucial that the velocity field vΛt
(x) only depends on x .
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Now, if σt is another narrowly continous family of signed measures, using (4.15) for all
test functions ϕ with |ϕ| ≤ 1 and Lip(ϕ) ≤ 1 we have

∣

∣

∣

∣

∫ t

0

∫

Rd

ϕ(Yv(t, s, x))d(ξs − σs) ds

∣

∣

∣

∣

≤

(∫ t

0

eZ(t−s)ds

)

sup
s∈[0,t]

‖ξs − σs‖BL ≤ t CT,Z sup
s∈[0,t]

‖ξs − σs‖BL .

With this, (4.15), and (4.17), we also deduce that, if ν solves (4.16) for another velocity field
w ∈ Vz , another narrowly continuous family σt with |σt| ≤ R , and the same initial datum
µ̄ , the following estimate holds true:

‖µt − νt‖BL ≤ t Cµ̄,T,R,Z

(

sup
s∈[0,t]

‖ws − vs‖Cb(Rd) + sup
s∈[0,t]

‖ξs − σs‖BL

)

, (4.18)

where the constant Cµ̄,T,R,Z is given by

Cµ̄,T,R,Z := |µ̄|eZT + (1 +RT )CT,Z .

Uniqueness- Step 2: conclusion. Consider two solutions (µF
t , µ

L
t ) and (νFt , ν

L
t ) of (4.8)

starting from the same initial datum (µ̄F , µ̄L) . Observe that the equation preserves the
total mass, that is

µF
t (R

d) + µL
t (R

d) = νFt (Rd) + νLt (R
d) = 1

for all t ∈ [0, T ] . This can be rewritten as

|µF
t |+ |µL

t | = |νFt |+ |νLt | = 1 , (4.19)

since all the above measures are positive. Now, on the one hand µF
t solves (4.16) with vt =

KF ⋆µF
t +K

L⋆µL
t and ξt = −αF (·, µ

F
t , µ

L
t )µ

F
t +αL(·, µ

F
t , µ

L
t )µ

L
t . On the other hand, νFt solves

(4.16) with vt replaced by wt = KF ⋆νFt +KL⋆νLt and σt = −αF (·, ν
F
t , ν

L
t )ν

F
t +αL(·, ν

F
t , ν

L
t )ν

L
t

in place of ξt .Since µF
t , µL

t , νFt , and νLt have compact support contained in a fixed ball BRT

by Definition 4.7, we can assume (up to multiplying vt and wt by a suitable cut-off function
not affecting equation (4.16)) that v belongs to VZ for a constant Z only depending on T ,
RT and the constant M in (5.15). Using (4.5), (4.6), and (4.19), we also get the estimates

|ξt| ≤ 2M(1 + 2RT ), |σt| ≤ 2M(1 + 2RT ),

‖σt − ξt‖BL ≤ (M(1 + 2RT ) + 2LRT
)
(

‖µF
t − νFt ‖BL + ‖µL

t − νLt ‖BL

)

.

In a similar way, using (5.15) we obtain

‖vt − wt‖Cb(Rd) ≤ (M(1 + 2RT ) + L2RT
)
(

‖µF
t − νFt ‖BL + ‖µL

t − νLt ‖BL

)

.

Combining the previous inequalities with (4.18) and (4.19), we get that there exists a con-
stant C , only depending on T , RT and M , such that

‖µF
τ − νFτ ‖BL ≤ τ C

(

sup
s∈[0,τ ]

‖µF
τ − νFτ ‖BL + sup

s∈[0,τ ]

‖µL
τ − νLτ ‖BL

)

.

for all 0 ≤ τ ≤ t ≤ T . A similar estimate also holds for ‖µL
τ −νLτ ‖BL . Taking the supremum

in the left-hand sides and summing up the resulting inequalities we obtain

sup
s∈[0,t]

‖µF
t − νFt ‖BL + sup

s∈[0,t]

‖µL
t − νLt ‖BL ≤ 2t C

(

sup
s∈[0,t]

‖µF
t − νFt ‖BL + sup

s∈[0,t]

‖µL
t − νLt ‖BL

)

.

for all 0 ≤ t ≤ T . This implies that µF
t = νFt , as well as µL

t = νLt for all 0 ≤ t ≤ 1
2C . As

C only depends on T , RT and M , iterating the argument a finite number of times yields
uniqueness on all [0, T ] . �

Remark 4.9. For all choices of the inital data µ̄F and µ̄L whose sum is a probability

measure µ̄ with compact support, we can construct Λ̄ ∈ Pc(Y ) so that µF
Λ̄

= µ̄F and µL
Λ̄
=

µ̄L . This can be done, for instance, as follows: if gF (x) is the Radon-Nikodym derivative

of µ̄F with respect to µ̄ , we can define, for µ̄-a.e. x ∈ R
d , the measure λx ∈ P1({F,L}) via

λx := gF (x)δF + (1 − gF (x))δL . Then, the measure Λ̄ , defined by duality through
∫

Y

φ(y) dΛ̄ :=

∫

Rd

φ(x, λx) dµ̄(x)
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for all φ ∈ Cb(Y ) , satisfies the claim. Hence, Theorem 4.8 is a full existence result for system

(4.8).

To conclude the Section, we observe that combining the above Remark with Theorems
3.5 and 4.8 we obtain a mean-field derivation of system (4.8) which extends the results of
[2, Section 4].

5. FURTHER APPLICATIONS

In this section we present two situations which fit in the theory presented in Section 3
and are suitable to describe possible applications. In Section 5.1 we present the gener-
alization of the results in Section 4 to the case of a discrete and finite label space U ; in
Section 5.2 we focus on a continuum of labels and compare it with the results of [5].

5.1. Discrete and finite spaces of labels U . In this case, we will identify the discrete
space of labels U = {u1, . . . , uH} with the set of the indices of the labels, so that our model
will be U = {1, . . . , H} . We will endow U with the Euclidean distance (restricted to U ),
namely,

dist(h, k) = |h− k|, for h, k ∈ U . (5.1)
Then the space Lip(U) is an H -dimensional space spanned by the indicator functions 1h ,
for h ∈ {1, . . . , N} . Consequently, the free space F(U) is the space of signed Borel measures
on U whose generic element ξ is characterized by the values ξh := ξ({h}) .

Analogously to Proposition 4.1, we have the following characterization of the operators
T (and T ∗ ) satisfying assumptions (T0)-(T3).

Proposition 5.1. Let U = {1, . . . , H} . Then T : Rd × P1(U) → Lip(U) satisfies (T0)-(T3) if

and only if there exist H2 functions αhk : R
d × P1(U) → [0,+∞) such that

( ᾱ0) for every (x,Ψ) ∈ R
d × P1(Y ) and λ ∈ P1(U) it holds

(T ∗(x,Ψ)λ)h = −αhh(x,Ψ)λh +
∑

k 6=h

αkh(x,Ψ)λk , for all h ∈ U

with

αhh(x,Ψ) =
∑

k 6=h

αhk(x,Ψ), for all h ∈ U ; (5.2)

( ᾱ1) for every (x,Ψ) ∈ R
d × P1(Y ) , there exists MT > 0 such that

0 ≤ αhk(x,Ψ) 6MT

(

1 + |x|+m1(Ψ)
)

, for all h, k ∈ U ;

( ᾱ2) for every R > 0 there exists LT ,R > 0 such that, for every (x1,Ψ1), (x2,Ψ2) ∈ BR ×
P(BY

R ) ,

|αhk(x
1,Ψ1)− αhk(x

2,Ψ2)| 6 LT ,R

(

|x1 − x2|+W1(Ψ
1,Ψ2)

)

, for h, k ∈ U .

Proof. The proof is analogous to that of Proposition 4.1. �

We notice that a matrix representation of the operator T analogous to that in (4.1) holds

T (x,Ψ) =













−α11(x,Ψ) α12(x,Ψ) · · · α1H(x,Ψ)

α21(x,Ψ) −α22(x,Ψ) · · · α2H(x,Ψ)
...

...
. . .

...
αH1(x,Ψ) αH2(x,Ψ) · · · −αHH(x,Ψ)













, (5.3)

where, as sa consequence of (5.2), the sum of the elements on each row must give zero.
In this discrete setting, the operator T ∗(x, ψ) has a matrix representation given by the
inverse matrix of that representing T (x,Ψ) , so that

T ∗(x,Ψ) =













−α11(x,Ψ) α21(x,Ψ) · · · αH1(x,Ψ)

α12(x,Ψ) −α22(x,Ψ) · · · αH2(x,Ψ)
...

...
. . .

...
α1H(x,Ψ) α2H(x,Ψ) · · · −αHH(x,Ψ)













(5.4)

and condition (5.2) implies that the sum of the elements on each column must vanish.
Definition 4.2 is adapted to the following
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Definition 5.2. Let Ψ ∈ P1(R
d×P1(U)) The distribution µh

Ψ of the agents with label h ∈ U
associated to Ψ is the positive Borel measure on R

d defined by

µh
Ψ(B) :=

∫

B×P1(U)

λh dΨ(x, λ) (5.5)

for each Borel set B ⊂ R
d .

Also in this case, upon choosing suitable interaction kernels, the measures µh
Ψ defined

in (5.5) can be used to construct velocity fields (of the type in (4.4)) vΨ satisfying (v1)-(v3).

Proposition 5.3. Let U = {1, . . . , H} . For Ψ ∈ P1(R
d × P1(U)) , consider the velocity field

vΨ(x, λ) :=
∑

h,k∈U

λk
(

Khk ⋆ µh
Ψ

)

(5.6)

where µh
Ψ , for h ∈ U , are defined in (5.5) and the interaction kernels Khk : Rd → R

d , for

h, k ∈ U , satisfy

|Khk(x)| ≤M(1 + |x|), for all x ∈ R
d;

|Khk(x1)−Khk(x2)| ≤ LR |x1 − x2|, for all x1, x2 ∈ BR .

Then, vΨ(x, λ) satisfies (v1)-(v3).

Proof. The result follows by a direct computation. �

Remark 4.4 applies in this case as well, so that the velocity field vΨ defined in (5.3)
can be interpreted as an average velocity of the system, weighted by the probability that a
particle at x has of having label k .

Proposition 4.5 concerning transition rates αh ’s depending on the µh
Ψ ’s and explicitly on

the space variable x is generalized to the following.

Proposition 5.4. Let U = {1, . . . , H} . Consider functions αhk : R
d×
(

M+(R
d)
)H

→ [0,+∞) ,

for h, k ∈ U , satisfying the following assumptions:

• there exists a constant M such that, for all h, k ∈ U ,

0 6 αhk(x, µ
1, . . . , µH) 6M

(

1 + |x|+
∑

l∈U

m1(µ
l)

)

(5.7)

for all x ∈ R
d and (µ1, . . . , µH) ∈

(

M+(R
d)
)H

;

• for all R > 0 , there exist a constant LR such that, for all h, k ∈ U ,

|αhk(x1, µ
1
1, . . . , µ

H
1 )− αhk(x2, µ

1
2, . . . , µ

H
2 )| ≤ LR

(

|x1 − x2|+
∑

l∈U

‖µl
1 − µl

2‖BL

)

(5.8)

for all x1 , x2 ∈ BR and (µ1
1, . . . , µ

H
1 ), (µ1

2, . . . , µ
H
2 ) ∈

(

M+(BR)
)H

.

For Ψ ∈ P1(R
d × P1(U)) , define µh

Ψ as in (5.5), for h ∈ U . Then, the functions

αhk(x,Ψ) := αhk(x, µ
1
Ψ, . . . , µ

H
Ψ ), for h, k ∈ U (5.9)

satisfy Assumptions ( ᾱ0)-( ᾱ2 ) in Proposition 5.1.

Proof. The result follows from (5.7) and (5.8) by means of the following inequalities
∑

l∈U

m1(µ
l
Ψ) ≤ m1(Ψ) , for all Ψ ∈ P1(R

d × P1(U)),

‖µh
Ψ1

− µh
Ψ2

‖BL ≤ 2W1(Ψ1,Ψ2) for all Ψ1,Ψ2 ∈ P1(R
d × P1(U)), h ∈ U,

(5.10)

which are a straightforward generalization of those in (4.3). �

Theorem 4.8 can be generalized to the case of a finite discrete space of labels U =
{1, . . . , H} . To obtain system (4.8) in the current context, we have to assume that the
interaction kernels Khk : Rd → R

d , for h, k ∈ U introduced in Proposition 5.3 are such that

Khk = Kh, for all h ∈ U , (5.11)
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for H kernels Kh : Rd → R
d . In this case, analogously to the case with two labels, the

velocity field vΨ defined in (5.6) does not depend on λ anymore and has the form

vΨ(x) =
∑

h∈U

Kh ⋆ µh
Ψ, (5.12)

where the µh
Ψ ’s are defined in (5.5). Then, system (4.8) becomes a set of H equations

∂tµ
h
t = − div

((

∑

k∈U

Kk ⋆ µk
t

)

µh
t

)

− αhh(x, µ
1
t , . . . , µ

H
t )µh

t +
∑

k 6=h

αkh(x, µ
1
t , . . . , µ

H
t )µk

t , (5.13)

to be solved for Borel measures µh such that, at the initial time t = 0 , µh
0 = µ̄h , for h ∈ U ,

where µ̄1, . . . , µ̄H are given Borel measures satisfying
∑

h∈U

µ̄h(Rd) = 1. (5.14)

We give the following

Definition 5.5 (Solution to system (5.13)). Let (µ̄1, . . . , µ̄H) ∈
(

Mc(R
d)
)H

be given such

that (5.14) is satisfied, as well as µ1, . . . , µH : [0, T ] → Mc(R
d) . We say that (µ1

t , . . . , µ
H
t ) is a

solution to system (5.13) with initial datum (µ̄1, . . . , µ̄H) when

(i) µh
0 = µ̄h for each h ∈ U ;

(ii) for each h ∈ U , the function t → µh
t is continuous with respect to the topology of

weak convergence of measures;

(iii) there exists RT > 0 such that
⋃

t∈[0,T ] supp(µ
h
t ) ⊆ BRT

for every h ∈ U ;

(iv) for every ϕ ∈ C1
c (R

d) and h ∈ U it holds

d

dt

∫

Rd

ϕ(x) dµh
t (x) =

∫

Rd

∇ϕ(x) ·

(

∑

k∈U

(Kk ⋆ µk
t )(x)

)

dµh
t (x)

−

∫

Rd

ϕ(x)αhh(x, µ
1
t , . . . , µ

H
t ) dµh

t (x) +

∫

Rd

ϕ(x)
∑

k 6=h

αkh(x, µ
1
t , . . . , µ

H
t ) dµk

t (x),

for almost every t ∈ [0, T ] .

We are now in a position to prove the most important result of this section, namely how
a solution to (5.13) follows from Theorem 3.5.

Theorem 5.6. Let U = {1, . . . , H} . Consider functions αhk : R
d ×

(

M+(R
d)
)H

→ [0,+∞)

satisfying (5.7) and (5.8) and H kernels Kh : Rd → R
d with

∑

h∈U

|Kh(x)| ≤M(1 + |x|), for all x ∈ R
d;

∑

h∈U

|Kh(x1)−Kh(x2)| ≤ LR |x1 − x2|, for all x1, x2 ∈ BR .
(5.15)

For Ψ ∈ P1(R
d×P1(U)) , define the µh

Ψ ’s as in (5.5). For x ∈ R
d and Ψ ∈ P1(R

d×P1(U)) , let

vΨ(x) and T (x,Ψ) be given by (5.12), and (5.3), respectively, and consider the corresponding

velocity field bΨ as in (3.1).
Then, if Λ ∈ C([0, T ];P1(R

d × P1(U),W1) is the unique solution to (3.27) starting from

Λ ∈ Pc(R
d × P1(U) , the measures µh

t := µh
Λt

, for h ∈ U , are the unique solutions to (5.13)
with initial data µ̄h = µh

Λ̄
, for h ∈ U .

Proof. The proof is analogous to that of Theorem 4.8 �

It is useful to recall the notion of Q -matrix from the literature of Markov chains (see,
e.g., [35, Chapter 2]). Let Q be a H ×H matrix; the element qhk represents the transition
rate from state h to k . Such a matrix is called Q -matrix satisfies the following conditions

(Q1) qhk > 0 , for all h, k ∈ U, h 6= k ;
(Q2)

∑

k∈U qhk = 0 , for all h ∈ U .
It is customary, in the literature on Markov chains, to complement these conditions by

(Q0) 0 6 −qhh < +∞ , for all h ∈ U ,
even though condition (Q0) is a consequence of (Q1) and (Q2).
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Remark 5.7. It is easy to see that the matrix in (5.3), representing the operator T (x,Ψ) for

all (x,Ψ) ∈ R
d×P1(Y ) is a Q -matrix: indeed, condition (5.2) is equivalent to (Q2) and ( ᾱ1)

is equivalent to (Q1).

For (x,Ψ) ∈ R
d × P1(R

d × P1(U)) , and for fixed initial conditions (x0, λ0) ∈ Y , the
dynamics described by the vector field bΨ defined in (3.1) is

(

ẋ

λ̇

)

= bΨ(x, λ) =

(

vΨ(x)

T ∗(x,Ψ)λ

)

,

(

x

λ

)

(0) =

(

x0

λ0

)

. (5.16)

Concerning the second equation, λ̇ = T ∗(x,Ψ)λ , this is a linear equation in the space of
measures, which can be easily integrated to give

λ(t) = λt = St(x,Ψ)λ0, with St(x,Ψ) := etT (x,Ψ). (5.17)

A classical result in the theory of Markov chains, [35, Theorem 2.1.2] grants that the fact
that T (x,Ψ) satisfies (Q1)-(Q2) is equivalent to the matrix St(x,Ψ) being a stochastic ma-

trix for all times t > 0 , namely a matrix S ∈ R
H×H that satisfies

(S1) 0 6 Skh < +∞ for all h, k ∈ U ;
(S2)

∑

h∈U Skh = 1 for all k ∈ U .
We remark that the explicit solution given by (5.17) is available only for fixed (x,Ψ) , so that
the matrix (5.3) is constant and its exponential can be computed. This would restrict the
dynamics to constant solutions x(t) = x0 for all t and to a constant distribution Ψ ∈ P(Y ) .

5.2. A continuum of labels. We now turn to the case in which U is a compact metric
space, as in the general theory developed in Section 3, and that it is a continuum. We will
shortly present some possible expressions of the velocity field bΨ defined in (3.1) in which
both components feature a two-player game that determines the evolution.

Let ȳ ∈ Y and let K : Y × Y → R
d × F(U) be an interaction kernel such that, for

Ψ ∈ P(Y ) ,

bΨ(y) =

∫

Y

K(y, y′) dΨ(y′). (5.18)

Our aim is to study system (3.29) where the evolution is driven by the field bΨ defined in
(5.18). Recalling (3.1), let Kx : Y × Y → R

d and K∗
λ : Y × Y → F(U) be the components of

K . Then (5.18) gives

vΨ(y) =

∫

Y

Kx(y, y
′) dΨ(y′), and T ∗(x,Ψ)λ =

∫

Y

K∗
λ(y, y

′) dΨ(y′). (5.19)

We furthermore assume that each of Kx and K∗
λ accounts for an averaging over all the

strategies in U . To this aim, let V : (Rd × U)2 → R
d be such that

Kx(y, y
′) =

∫

U

∫

U

V (x, u, x′, u′) dλ′(u′)dλ(u) (5.20)

The interpretation of the field V is the following: the quantity

V (x, u, x′, u′) ∈ R
d

gives the direction that the payer at x should follow if it has label/strategy u when playing
a game against a player at x′ with label/strategy u′ . Keeping the structure (3.29), (5.19),
and (5.20) in mind, the full law of motion for the variable x is given by

ẋ = vΨ(y) =

∫

U

∫

Y

∫

U

V (x, u, x′, u′) dλ′(u′)dΨ(x′, λ′)dλ(u), (5.21)

which can be interpreted in the following way: the player at x with label/strategy u plays
a game with all the other players at x′ with their labels/strategies u′ and the velocity ẋt
is determined by averaging over all the possible strategies of the opponent (the integral
with respect to dλ′(u′)), over all the possible distributions of opponents with their distribu-
tions of strategies (the integral with respect to dΛ(x′, λ′)), and finally over all the possible
strategies that x have at their disposal (the integral with respect to dλ(u)).

For (x,Ψ) ∈ R
d × P1(U) define the operator T (x,Ψ): Lip(U) → Lip(U) by

(T (x,Ψ)f)(u) :=

∫

Y

∫

U

J(x, u, x′, u′)f(u′) dλ′(u′)dΨ(x′, λ′)− g(x,Ψ)(u)f(u), (5.22)
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where J : (Rd × U)2 → R , and the function g(x,Ψ) ∈ C(U) can be interpreted as a global

departure rate from u .

Proposition 5.8. Let Ψ ∈ P1(Y ) , let V : (Rd × U)2 → R
d , J : (Rd × U)2 → R , and g(·,Ψ) ∈

C(U) be such that

(V1) V is locally Lipschitz with respect to all of its variables;

(V2) V is sublinear in the spatial variables, namely there exists CV > 0 such that

|V (x, u, x′, u′)| 6 CV (1 + |x|+ |x′|), for all (x, u), (x′u′) ∈ (Rd × U)2 ;

(J1) J is locally Lipschitz with respect to all of its variables;

(J2) J is sublinear in the spatial variables, namely there exists CJ > 0 such that

|J(x, u, x′, u′)| 6 CJ (1 + |x|+ |x′|), for all (x, u), (x′u′) ∈ (Rd × U)2 .

Then, the field vΨ : Y → R
d given by(5.19) via (5.20) satisfies (v1)-(v3) and the operator

T (x,Ψ): Lip(U) → Lip(U) given by (5.22) satisfies (T1)-(T3). If, moreover,

(g) for (x,Ψ) ∈ R
d × P1(Y ) ,

g(x,Ψ)(u) =

∫

Y

∫

U

J(x, u, x′, u′) dλ′(u′)dΨ(x′, λ′), (5.23)

then (T0) is also satisfied. In this case, the adjoint operator T ∗(x,Ψ): F(U) → F(U) is

represented as in (5.19), by means of K∗
λ : Y × Y → F(U) such that, for f ∈ Lip(U) ,

〈K∗
λ(y, y

′), f〉 =

∫

U

∫

U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dλ(u). (5.24)

Proof. Let R > 0 be fixed and let LV,R be the Lipschitz constant of V on (BR × U)2 .
Properties (v1)-(v2) are obtained from (V1) by standard estimates keeping the definition
of BL norm and the structure (5.19)-(5.20) into account; the constant Lv,R of (v1)-(v2) is
determined by LV,R and diamU . Property (v3) follows from (V1) and (V2) and the constant
Mv of (v3) is determined by CV .

Analogously, let LJ,R be the Lipschitz constant of J on (BR × U)2 . Property (T2) is ob-
tained from (J1) by standard estimates keeping the definition of BL norm and the structure
(5.22) into account; the constant LT ,R of (T2) is determined by LJ,R and diamU . Property
(T1) is obtained also using (J2) and the constant MT of (T1) is determined by CJ . Property
(T3) follows from the boundedness of J(·, ·, x′, u′) and g(·,Ψ) on BR×U and U , respectively.

Finally, a simple computation shows that (g) and (T0) are equivalent, so that, using
(5.23), we obtain the following expression for (5.22)

(T (x,Ψ)f)(u) =

∫

Y

∫

U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′), for f ∈ Lip(U) . (5.25)

Recalling, from (3.1) and (3.29), that λ̇ = T ∗(x,Ψ)λ , for f ∈ Lip(U) we have, using (5.19),

〈λ̇, f〉 =〈T ∗(x,Ψ)λ, f〉 = 〈λ, T (x,Ψ)f〉

=

〈

λ,

∫

Y

∫

U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′)

〉

=

∫

U

∫

Y

∫

U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dΨ(x′, λ′)dλ(u)

=

∫

Y

[∫

U

∫

U

J(x, u, x′, u′)[f(u′)− f(u)] dλ′(u′)dλ(u)

]

dΨ(x′, λ′),

which is (5.24). The proof is complete. �

Remark 5.9. Let us assume that the hypotheses of Proposition 5.8 hold; the ODE in (3.29),
written component-wise, reads

(

ẋ

λ̇

)

=

(

vΨ(y)

T ∗(x,Ψ)λ

)

, (5.26)

for y = (x, λ) ∈ Y = R
d × P(U) and Ψ ∈ P1(Y ) .
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A comparison with [5] is in order. In [5, equations (1.3), (1.4), and (1.8)] the ODE studied

is (keeping the notations of [5])
(

ẋ

σ̇

)

=

(

a(y)

∆Σ,yσ

)

, (5.27)

where y = (x, σ) ∈ C := R
d × P(U) and Σ ∈ P1(C) . The right-hand sides are

a(y) =

∫

U

e(x, u) dσ(u),

∆Σ,yσ =

(∫

C

∫

U

J(x, u, x′, u′) dσ′(u′)dΣ(x′, σ′)

−

∫

U

∫

C

∫

U

J(x,w, x′, u′) dσ′(u′)dΣ(x′, σ′)dσ(w)

)

σ,

(5.28)

where e : Rd × U → R
d and J : (Rd × U)2 → R . The equation for σ in (5.27) is known in the

literature of evolutionary games as replicator equation (see, e.g., [28]).
In comparison with (5.28), we notice that the theory developed in Section 3 allows us

to deal with a broader class of velocity fields, that include agent interaction. Indeed, the

velocity field a : C → R
d in (5.28) is linear in the mixed strategy σ and depends only on

the position x of the agent; it does not depend neither on the global distribution Σ of the

system nor on any interaction between the agents. The velocity field vΨ : Y → R
d in (5.21),

instead, additionally takes into account the global distribution Ψ of the system as well as

the interaction between players through the kernel V .

The equations for the second component of y , namely λ and σ in (5.26) and (5.27), re-

spectively, share even fewer features. If, on the one hand, they both depend on the global

distribution of the system Ψ or Σ , on the other hand the second equation in (5.26) is lin-

ear in λ (see (5.24)), whereas the replicator equation is quadratic in σ , through the triple

integral in (5.28).
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