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A HIGHER-ORDER MAXIMUM PRINCIPLE

FOR IMPULSIVE OPTIMAL CONTROL PROBLEMS

M. SOLEDAD ARONNA, MONICA MOTTA, AND FRANCO RAMPAZZO

Abstract. We consider a nonlinear system, affine with respect to an unbounded control
u which is allowed to range in a closed cone. To this system we associate a Bolza type
minimum problem, with a Lagrangian having sublinear growth with respect to u. This
lack of coercivity gives the problem an impulsive character, meaning that minimizing
sequences of trajectories happen to converge towards discontinuous paths. As is known,
a distributional approach does not make sense in such a nonlinear setting, where, instead,
a suitable embedding in the graph-space is needed. We provide higher order necessary
optimality conditions for properly defined impulsive minima, in the form of equalities
and inequalities involving iterated Lie brackets of the dynamical vector fields. These
conditions are derived under very weak regularity assumptions and without any constant
rank conditions.

1. Introduction

In this paper we establish necessary optimality conditions for the space-time, impul-
sive extension of the free end-time optimal control problem

(1) minimize Ψ(T, x(T )) +

∫ T

0
ℓ(x(t), u(t), a(t)) dt,

where the minimization is performed over the set of processes (T, u, a, x, v) verifying

(2)



























dx

dt
(t) = f(x(t), a(t)) +

m
∑

i=1

gi(x(t))u
i(t), a.e. t ∈ [0, T ],

dv

dt
(t) = |u(t)|,

(x, v)(0) = (x̌, 0), v(T ) ≤ K, (T, x(T )) ∈ T.

Here, 0 < K ≤ +∞, the target T is a closed subset of R+ × R
n, the control a ranges in a

compact set A ⊂ R
q, and standard regularity hypotheses are verified by the vector fields

f , gi and the cost functions ℓ, Ψ. Instead, less usual assumptions are made on the control
maps u and on the u-growth of the Lagrangian ℓ. Precisely:
(i) the unbounded controls u, which take values in a closed cone C ⊆ R

m, are L1 functions

verifying ‖u‖1 :=
∫ T
0 |u(t)|dt = v(T ) ≤ K;

(ii) the Lagrangian ℓ : Rn × C ×A → R has the form ℓ(x, u, a) = ℓ0(x, a) + ℓ1(x, u), with

a continuous recession function ℓ̂1 given by

ℓ̂1(x,w
0, w) := lim

r→w0
rℓ1

(

x,
w

r

)

, for (x,w0, w) ∈ R
n ×R+ × C.

In particular ℓ has sublinear growth in u.
On the one hand, optimal control problems with such a slow u-growth in the cost are

motivated by several applications [13, 15, 22, 17, 27, 9, 34, 16]. For instance, a dynamics
affine in the unbounded controls governs the motion of a mechanical system of mutually
linked rigid bodies. In that case, the controlled parameters are the speeds of the shape
coordinates.
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On the other hand, the lack of a sufficiently fast u-growth of the cost ℓ may cause min-
imizing sequences of trajectories to tend towards discontinuous paths.1 Motivated by that,
and following a nowadays standard approach 2 [42, 37, 14, 29, 28, 39, 23], one ‘compact-
ifies’ the problem by embedding the original control system in the extended, space-time,
system

(3)















































dy0

ds
(s) = w0(s),

dy

ds
(s) = f(y(s), α(s))w0(s) +

m
∑

i=1

gi(y(s))w
i(s),

dβ

ds
(s) = |w(s)|,

(y0, y, β)(0) = (0, x̌, 0),
(y0(S), y(S), β(S)) ∈ T× [0,K],

a.e. s ∈ [0, S],

and considering the extended cost functional

(4) Ψ(y0(S), y(S)) +

∫ S

0
ℓe(y(s), w0(s), w(s), α(s))ds,

where ℓe(x,w0, w, a) := ℓ0(x, a)w
0+ ℓ̂1(x,w

0, w). In particular, for problem (3)-(4) one can
consider bounded controls verifying w0(s)+ |w(s)| = 1, w(s) ∈ C, w0(s) ≥ 0, and a(s) ∈ A,
for a.e. s ∈ [0, S]. As soon as w0 > 0 a.e., (3)-(4) is nothing but a time reparameterization
of the original control problem (1)-(2), and the unboundedness of u is reflected in the
possibility of taking w0 going to 0. By allowing processes (S,w0, w, α, y0, y, β) such that
w0 = 0 a.e. on non-degenerate subintervals [s1, s2], we are embedding (1)-(2) in a more
general problem. More precisely, the time-variable t = y0(s) has a constant value t̄ on
such an interval [s1, s2], while the space trajectory y(s) evolves according to the nonlinear

dynamics dy
ds =

∑m
i=1 gi(y)w

i. In particular, the jump x(t̄+) − x(t̄−) = y(s2) − y(s1)
depends on the restriction w|[s1,s2]

. Our necessary conditions concern a minimum for the

extended, space-time, problem (3)-(4). We begin by exploiting the rate-independence of
the extended problem in order to establish a First Order Maximum Principle, in Theorem
3.1. While the idea is nothing but new –see, for instance, [40, 32, 28, 7, 30]– here we stress a
kind of competition among the Hamiltonian corresponding to the drift and the ‘non-drift’
Hamiltonian.

However, the main novelty of the present paper consists in a Maximum Principle con-
taining higher-order necessary conditions which involve iterated Lie brackets (see Theorem
4.1). The crucial tool to prove our conditions consists in the construction of variations by
coupling asymptotic formulas for Lie brackets and suitable insertions of impulsive inter-
vals. In particular, in connection with sets of lines contained in the cone C (see Section 2),
the dual product of the adjoint path with the corresponding iterated Lie brackets turns
out to vanish.

Lie bracket-involving necessary conditions have been widely investigated within classi-
cal geometric control theory, a quite incomplete list of reference being [3, 25, 26, 41, 38, 10].
Instead, as far as impulsive control theory is concerned, the only results involving higher
order –actually, second order– conditions deal, at our knowledge, with the so-called com-
mutative case, where [gi, gj ] ≡ 0 for all i, j = 1, . . . ,m, (see e.g. [8, 6, 19]). Let us mention
that our conditions might be regarded as a generalization to impulsive trajectories of [18],
where one considers the (non extended) minimum time problem with L∞, but not a priori

1 For instance, if one considers the minimum time problem –i.e. ℓ ≡ 1 and Ψ ≡ 0– with a target in R
n

intersecting the orbit of the vector field g1 issuing from the initial point x̌, the infimum value is zero and
the ‘extended’ optimal trajectory should run through the mentioned orbit with infinite speed.

2Because of the nonlinearity of the dynamics, a distributional interpretation lacks essential prerequisites
for robustness [24].
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bounded, controls (see Remark 4.2). Let us stress that we assume neither the invariance
of the dimension of the Lie algebra generated by g1, . . . , gm nor the mere existence of such
algebra. This is made possible by the fact that our Lie bracket-shaped variations are based
on rather general asymptotic formulas, which demand very low regularity on the vector
fields: in particular, most of these formulas assume just the continuity of the involved Lie
brackets.

The article is organized as follows. In Subsection 1.1 we introduce some general no-
tation and a set of definitions and technical results involving Lie brackets. The optimal
control problem is described in detail in Section 2, together with its space-time exten-
sion. In Section 3, Theorem 3.1, we state a First Order Maximum Principle. In Section 4,
Theorem 4.1, we establish our main result, namely the Higher Order Maximum Principle,
whose proof is given in Section 5.

1.1. Notations and preliminaries.

1.1.1. Some basic notation. Let N ≥ 1 be an integer. For any i ∈ {1, . . . , N}, we write
ei for the ith element of the canonical basis of RN . Given x̌ ∈ R

N , BN (x̌) := {x ∈ R
N :

|x − x̌| ≤ 1}, BN := BN (0), and ∂BN := {x ∈ R
N : |x| = 1}. A subset K ⊆ R

N is
a cone if αx ∈ K whenever α > 0, x ∈ K. Given a subset X ⊆ R

N , we will use X⊥

to denote the polar of X, i.e. X⊥ .
= {p ∈ R

N : p · x ≤ 0, for all x ∈ X}. Given
an interval I and X ⊆ R

N , we write AC(I,X) for the space of absolutely continuous
functions, C0(I,X) for the space of continuous functions, L1(I,X) for the Lebesgue space
of L1-functions, and L∞(I,X) for the Lebesgue space of measurable, essentially bounded
functions, respectively, defined on I and assuming values in X. As customary, we shall
use ‖ · ‖L∞(I,X), and ‖ · ‖L1(I,X) to denote the essential supremum norm and the L1-norm,
respectively. When no confusion may arise, we will simply write ‖ · ‖∞ and ‖ · ‖1. We set
R+ := [0,+∞) and R− := (−∞, 0]. Given an integer k ≥ 0 and an open subset Θ ⊆ R

N , we
say that a function F : Θ → R

N is of class Ck if it possesses continuous partial derivatives
up to order k in Θ. Given a real-valued function F : [a, b] → R, we define the essential
infimum of F as ess infF := sup

{

r ∈ R : meas{x ∈ [a, b] : F (x) < r} = 0
}

, where
meas denotes the Lebesgue measure. Finally, for all τ1, τ2 ∈ (0,+∞) and for any pair
(z1, z2) ∈ C0([0, τ1],R

N )× C0([0, τ2],R
N ), let us define the distance

(5) d
(

(τ1, z1), (τ2, z2)
)

:= |τ1 − τ2|+ ‖z̃1 − z̃2‖∞,

where for any z ∈ C0([0, τ ],RN ), z̃ denotes its continuous constant extension to R+.

1.1.2. Boltyanski approximating cones.

Definition 1.1. Let Z be a subset of RN for some integer N ≥ 1. Fix z ∈ Z. We say that
a convex cone K ⊆ R

N is a Boltyanski approximating cone for Z at z if there exist a convex
cone C ⊂ R

M for some integer M ≥ 0, a neighborhood V of 0 in R
M , and a continuous

map F : V ∩C → Z such that: F (0) = z; there exists a linear map L : RM → R
N verifying

F (v) = F (0) + Lv + o(|v|) for all v ∈ V ∩C; LC = K.

Definition 1.2. Let us consider two subsets A1,A2 of a topological space X . If y ∈ A1∩A2,
we say that A1 and A2 are locally separated at y provided there exists a neighborhood V

of y such that A1 ∩ A2 ∩ V = {y}.

The following open-mapping-based result characterizes set-separation in terms of lin-
ear separation of approximating cones (see e.g. [41]).

Theorem 1.1. Let Z1 and Z2 be subsets of RN , z ∈ Z1 ∩ Z2 and let K1, K2 ⊆ R
N be

Boltyanski approximating cones for Z1 and Z2, respectively, at z. If K1 or K2 is not a
subspace and Z1, Z2 are locally separated at z, then K1 and K2 are linearly separated,
namely there exists a covector λ ∈ R

N such that 0 6= λ ∈ K⊥
1 ∩ (−K⊥

2 ).
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1.1.3. Lie brackets. Given a fixed sequence X = (X1,X2, . . .) of distinct objects called
variables, we call words the finite ordered strings consisting of the variables Xi, the left
parenthesis [ and the right parenthesis ], and the comma. We shall use W (X) to denote
the set of words. For instance, X2X5X4 and X3, [X13[, ]]X61[ are words.
Given any wordW ∈ W (X), we use Seq(W ) to denote the word obtained fromW by delet-
ing all left and right brackets and all commas. We call length of a word W ∈ W (X), and
write Lgth(W ), the cardinality of Seq(W ). For instance, if W = [[[X4,X6],X7], [X8,X9]],
Seq(W ) = X4X6X7X8X9 and Lgth(W ) = 5.

Definition 1.3. We call formal bracket of length 1 any word of length 1 and we will say
that the bracket of two members W1, W2 of W (X) is the word [W1,W2].
We call formal iterated brackets –or, simply, brackets– of X the elements of the smallest
subset IB(X) ⊆ W (X) such that: IB(X) contains the brackets of length 1; if W1, W2 ∈
IB(X), then [W1,W2] ∈ IB(X); for any b ∈ IB(X), Seq(b) = Xµ+1, . . . ,Xµ+m for some
µ ≥ 0 and m > 0.

Notice that Lgth([b1, b2]) = Lgth(b1)+Lgth(b2), for every pair of brackets b1, b2. Let b
be a bracket of length m > 1. Then there exists a unique pair (b1, b2) of brackets such that
b = [b1, b2]. The pair (b1, b2) is the factorization of b, and b1, b2 are known, respectively,
as the left factor and the right factor of b. Any substring of b which is itself an iterated
bracket is called a subbracket of b.

Definition 1.4. If b is a bracket and S is a subbracket of b, let us define d(S; b) by a
backward recursion on S: d(b; b) := 0, d(S1; b) := d(S2; b) := 1 + d([S1, S2]; b). We shall
refer to d(S; b) as the number of differentiations of S in b.

It is easy to prove that d(S; b) is equal to the number of right brackets that occur in
b to the right of S minus the number of left brackets that occur in b to the right of S.
For example, if b = b(X3,X4,X5) :=

[

X3 , [X4,X5]
]

, then d([X4,X5]; b) = 1, d(X3; b) = 1,
d(X4; b) = 2, d(X5; b) = 2.

Definition 1.5 (Classes Cb+k and Cb+k−1,1). Let b be a bracket of degree m ≥ 1, with
Seq(b) = Xµ+1 . . . Xµ+m, µ ≥ 0. Let f = (f1, . . . , fν) be a finite sequence of vector fields,

with ν ≥ µ+m, and let k ≥ 0 be an integer. We say that f is of class Cb+k if fj is of class

Cd(Xj ;b)+k for each j ∈ {µ+ 1, . . . , µ+m}.

For example, if b =
[

[X3,X4], [[X5,X6],X7]
]

and f = (f1, . . . , f8) (so m = 5, ν = 8,

µ = 2), then f ∈ Cb+3 if, and only if, f3, f4, f7 ∈ C5 and f5, f6 ∈ C6. It is easy to verify
the following result.

Proposition 1.2. Let b, k, and f = (f1, . . . , fν) be as in Def. 1.5, and let (b1, b2) be the
factorization of b. Then f ∈ Cb+k if, and only if, f ∈ Cb1+k+1 and f ∈ Cb2+k+1.

We are now ready to plug vector fields in place of indeterminates in a bracket.

Definition 1.6. For integers µ ≥ 0, m, ν ≥ 1, such that µ+m ≤ ν, let b be a formal bracket
such that Seq(b) = Xµ+1 . . . Xµ+m and let f = (f1, . . . , fν) be a ν-tuple of continuous vector
fields. Let S be a subbracket of b. If Lgth(S) = 1, i.e. S = Xj for some j = µ+1, . . . , µ+m,
we define the vector field S(f) as S(f) := Xj(f) := fj. If Lgth(S) > 1, S = [S1, S2], and

either S 6= b or, when S = b, one assumes f ∈ Cb, we set S(f) := [S1(f), S2(f)]. We shall
call S(f) the Lie bracket corresponding to the formal bracket S and the sequence f of vector
fields.

We call switch-number of a formal bracket b the number r
b
defined recursively as:

r
b
:= 1, if b = Xj for some j; r

b
:= 2

(

r
b1

+ r
b2

)

if Lgth(b) ≥ 2 and b = [b1, b2]. For

instance, the switch-numbers of
[

[X3,X4], [[X5,X6],X7]
]

and [[X5,X6],X7] are 28 and 10,
respectively. We will call length and switch-number of a Lie bracket B = b(fµ+1, . . . fµ+m)
the length and the switch-number of the associated formal bracket b, respectively.
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2. The optimization problems

In this section we introduce rigorously the optimization problem over L1-controls and
its embedding in an impulsive problem.

Throughout the paper we shall assume the following set of hypotheses:

(Hp) (i) the target T ⊂ R+ × R
n is a closed subset; the control set A ⊂ R

q is compact;3

the unbounded control set C ⊆ R
m is a closed cone of the form C = C1 ×C2, where

m1 + m2 = m, C1 ⊆ R
m1 is a closed cone that contains the lines {rei : r ∈ R},

for i = 1, . . . ,m1, and C2 ⊂ R
m2 is a closed cone which does not contain straight

lines; 4

(ii) the drift dynamics f : Rn×A → R
n is continuous and has continuous partial

derivatives
∂f

∂x1
, . . . ,

∂f

∂xn
;

(iii) the vector fields g1, . . . , gm : Rn → R
n are continuously differentiable;

(iv) the Lagrangian ℓ : R
n × C × A → R can be written as

ℓ(x, u, a) = ℓ0(x, a) + ℓ1(x, u), where ℓ0 and the recession function

ℓ̂1(x,w
0, w) := lim

r→w0
rℓ1

(

x,
w

r

)

, for all (x,w0, w) ∈ R
n × R+ × C

are continuous with continuous partial derivatives with respect to x.

(v) the final cost Ψ : R× R
n → R is continuously differentiable.

Clearly, by standard cut-off methods one might assume the differentiability hypotheses in
(ii)-(v) only on a neighborhood of the extended optimal trajectory considered in Thms.
3.1, 4.1.

2.1. The original optimal control problem. We define the set U of strict-sense con-
trols as U :=

⋃

T>0{T} × L1
(

[0, T ], C ×A
)

.

Definition 2.1. For any strict-sense control (T, u, a) ∈ U , we call (T, u, a, x, v) a strict-
sense process if (x, v) is the (unique) Carathéodory solution to

(6)



























dx

dt
(t) = f(x(t), a(t)) +

m
∑

i=1

gi(x(t))u
i(t),

dv

dt
(t) = |u(t)|,

(x, v)(0) = (x̌, 0).

a.e. t ∈ [0, T ],

Furthermore, we say that (T, u, a, x, v) is feasible if (T, x(T ), v(T )) ∈ T× [0,K].

The original optimal control problem is defined as

(P)







minimize Ψ(T, x(T )) +

∫ T

0
ℓ(x(t), u(t), a(t)) dt

over the set of feasible strict-sense processes (T, u, a, x, v).

Definition 2.2. We call a feasible strict-sense process (T̄ , ū, ā, x̄, v̄) a local strict-sense
minimizer of (P) if there exists δ > 0 such that

(7) Ψ(T̄ , x̄(T̄ )) +

∫ T̄

0
ℓ(x̄(t), ū(t), ā(t))dt ≤ Ψ(T, x(T )) +

∫ T

0
ℓ(x(t), u(t), a(t))dt

3Through minor changes one might generalize this hypothesis with the fact that, for every (x, u), the
function a 7→ (f(x, a), l(x, u, a)) is bounded.

4Hypothesis (i) on C is by no means restrictive, since it can be recovered by replacing the single vector
fields gi with suitable linear combinations of {g1, . . . , gm}.
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for every feasible strict-sense process (T, u, a, x, v) verifying d
(

(T, x, v), (T̄ , x̄, v̄)
)

< δ,

where d is the distance defined in (5). If relation (7) is satisfied for all feasible strict-sense
processes, we say that (T̄ , ū, ā, x̄, v̄) is a global strict-sense minimizer.

Remark 2.1. By adding the trivial equations
dx0

dt
(t) = 1,

dx̂

dt
(t) = u(t), where x̂ =

(xn+1, . . . , xn+m), we can allow ℓ, f , gi, for i = 1, . . . ,m, to depend on t and on the

function U(t) :=
∫ t
0 u(τ) dτ, while Ψ might depend on U as well.

2.2. The space-time optimal control problem. We refer to the set

W :=
⋃

S>0{S} ×
{

(w0, w, α) ∈ L∞([0, S],R+ × C ×A) : ess inf(w0 + |w|) > 0
}

as the set

of space-time controls.

Definition 2.3. For any (S,w0, w, α) ∈ W, we say that (S,w0, w, α, y0, y, β) is a space-
time process if (y0, y, β) is the unique Carathéodory solution of

(8)















































dy0

ds
(s) = w0(s),

dy

ds
(s) = f(y(s), α(s))w0(s) +

m
∑

i=1

gi(y(s))w
i(s),

dβ

ds
(s) = |w(s)|,

(y0, y,β)(0) = (0, x̌, 0).

a.e. s ∈ [0, S],

We say that (S,w0, w, α, y0, y, β) is feasible if (y0(S), y(S), β(S)) belongs to T× [0,K].

We define the extended or space-time problem as

(Ps-t)







minimize Ψ(y0(S), y(S)) +

∫ S

0
ℓe
(

(y,w0, w, α)(s)
)

ds

over feasible space-time processes (S,w0, w, α, y0, y, β),

where the extended Lagrangian ℓe is given by

ℓe(x,w0, w, a) := ℓ0(x, a)w
0 + ℓ̂1(x,w

0, w), for (x,w0, w, a) ∈ R
n × R+ × C ×A.

Definition 2.4. A feasible space-time process (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) is said to be a local
minimizer for the space-time problem (Ps-t) if there exists δ > 0 such that

(9) Ψ((ȳ0, ȳ)(S̄))+

∫ S̄

0
ℓe((ȳ, w̄0, w̄, ᾱ)(s)) ds ≤ Ψ((y0, y)(S))+

∫ S

0
ℓe((y,w0, w, α)(s)) ds

for all feasible (S,w0, w, α, y0, y, β) satisfying d
(

(S, y0, y, β), (S̄, ȳ0, ȳ, β̄)
)

< δ, where d is

as in (5). If (9) is satisfied for all feasible space-time processes, we call (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β)
a global space-time minimizer.

Observe that the space-time system (8) is rate-independent. Precisely, given a strictly

increasing, surjective, and bi-Lipschitzian function σ : [0, S] → [0, S̃],

(S̃, w̃0, w̃, α̃, ỹ0, ỹ, β̃) is a space-time process if, and only if, (S,w0, w, α, y0, y, β) given

by (w0, w) :=
(

(w̃0, w̃) ◦ σ
) dσ

ds
, (α, y0, y, β) :=

(

α̃, ỹ0, ỹ, β̃
)

◦ σ 5 is a space-time pro-

cess of (8) (see [29, Sect. 3]). In this case, (S̃, w̃0, w̃, α̃, ỹ0, ỹ, β̃) is feasible if, and only
if, (S,w0, w, α, y0, y, β) is feasible, and the associated costs coincide. Let us call equiva-

lent any two space-time processes (S̃, w̃0, w̃, α̃, ỹ0, ỹ, β̃), (S,w0, w, α, y0, y, β) as above. The
following result is quite straightforward:

5Since every L1-equivalence class contains Borel measurable representatives, we tacitly assume that all
L1-maps we are considering are Borel measurable when necessary.
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Lemma 2.1. A feasible space-time process (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) is a local (resp., a global)
minimizer for the space-time problem (Ps-t) if, and only if, every equivalent space-time
process is a local (resp., a global) minimizer, and the costs coincide.

As a consequence, the extended problem can be regarded as a problem on the quotient
space. Therefore, without loss of generality, one can replace a minimizer with its canonical
parameterization, defined as follows:

Definition 2.5. We say that (Sc, w
0
c , wc, αc, y

0
c , yc, βc) is the canonical parameterization

of a space-time process (S,w0, w, α, y0, y, β) if

(w0
c , wc) :=

(

(w0, w) ◦ σ−1
) dσ−1

ds
, (αc, y

0
c , yc, βc) := (α, y0, y, β) ◦ σ−1,

where σ(s) :=
∫ s
0

(

w0(r) + |w(r)|
)

dr, s ∈ [0, S], Sc := σ(S) = y0(S) + β(S).

Note that w0
c (s)+ |wc(s)| = 1 for a.e. s ∈ [0, Sc]. We introduce the subset of canonical

space-time controls

Wc :=
{

(S,w0, w, α) ∈ W : w0(s) + |w(s)| = 1 a.e. s ∈ [0, S]
}

,

and call canonical also the corresponding space-time processes. One can easily verify that
a canonical space-time process coincides with its canonical parameterization.

2.3. The space-time embedding. The original control system (6) can be embedded
into the space-time system (8). Precisely, by the chain rule, given a strict-sense process
(T, u, a, x, v), by setting

(10) σ(t) :=

∫ t

0
(1 + |u(τ)|) dτ, S := σ(T ), y0 := σ−1 : [0, S] → [0, T ],

one obtains that

(11) (S,w0, w, α, y0, y, β) :=

(

S,
dy0

ds
, (u ◦ y0) ·

dy0

ds
, a ◦ y0, y0, x ◦ y0, v ◦ y0

)

is a (canonical) space-time process with w0 > 0 a.e.. Conversely, given a space-time process
(S,w0, w, α, y0, y, β) with w0 > 0 a.e., the increasing surjective function y0 : [0, S] → [0, T ],
has an absolutely continuous inverse σ : [0, T ] → [0, S] (see e.g. [20]), and (T, u, a, x, v) :=
(

T, (w ◦ σ)dσdt , α ◦ σ, y ◦ σ, β ◦ σ
)

is a strict-sense process. Hence, the family of strict-sense

processes can be identified with the subfamily of space-time processes (S,w0, w, α, y0, y, β)
having w0 > 0 a.e..

The impulsive, space-time extension of the original optimal control problem consists
in allowing the control w0 to vanish in a set of positive measure. The s-intervals where
w0 vanishes represent the ‘impulses’, namely the s-intervals of instantaneous evolution of
both the control and the state (see e.g. [14, 29]).6

The notions of strict-sense and space-time local minimizer are consistent, as stated
in the following easy consequence of Lemma 2.1 above and [4, Prop. 2.7]:

Lemma 2.2. A process (T̄ , ū, ā, x̄, v̄) is a strict-sense local minimizer for problem (P) if,
and only if, (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) defined as in (10)-(11) is a space-time local minimizer
for (Ps-t) among feasible space-time processes with w0 > 0 a.e..

6Let us point out that one can equivalently give a t-based description of this extension using bounded
variation trajectories as in [5, 31, 7].
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3. A First Order Maximum Principle

Due to the rate-independence of the space-time control system discussed in Subsec-
tion 2.2, we can always assume that a local minimizer (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) for (Ps-t) is
canonical.

Let us set

(12) W := {(w0, w) ∈ R+ × C : w0 + |w| = 1}.

Let us consider the unmaximized Hamiltonian H : Rn+1+n+1+1 × R+ × C × A → R and
the Hamiltonian H : Rn+1+x+1+1 → R, defined by setting

H(x, p0, p, π, λ,w
0, w, a) := p0w

0 + p ·
(

f(x, a)w0 +

m
∑

i=1

gi(x)w
i
)

+ π|w| − λℓe(x,w0, w, a),

H(x, p0, p, π, λ) := max
(w0,w,a)∈W×A

H(x, p0, p, π, λ,w
0, w, a).

Theorem 3.1 (First Order Maximum Principle). Let (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a
canonical local minimizer for the space-time problem (Ps-t). Then, for every
Boltyanski approximating cone Γ of the target T at (ȳ0, ȳ)(S̄), there exists a multiplier
(p0, p, π, λ) ∈ R×AC

(

[0, S̄],Rn
)

× R− × R+ verifying:

(i) (non-triviality)

(13) (p0, p, λ) 6= (0, 0, 0) .

Furthermore, if ȳ0(S̄) > 0, then (13) can be strengthened to

(14) (p, λ) 6= (0, 0).

(ii) (non-tranversality)

(15) (p0, p(S̄), π) ∈

[

−λ

(

∂Ψ

∂t

(

(ȳ0, ȳ)(S̄)
)

,
∂Ψ

∂x

(

(ȳ0, ȳ)(S̄)
)

)

− Γ⊥

]

× J,

where J := {0} if β̄(S̄) < K, and J := (0,+∞) if β̄(S̄) = K.7 In particular,

(16) π = 0 provided β̄(S̄) < K.

(iii) (adjoint equation) The path p solves, for a.e. s ∈ [0, S̄],

(17)
dp

ds
(s) = −

∂H

∂x

(

ȳ(s), p(s), π, λ, w̄0(s), w̄(s), ᾱ(s)
)

.

(iv) (First order maximization) For a.e. s ∈ [0, S̄],

(18) H
(

ȳ(s), p0, p(s), π, λ, w̄
0(s), w̄(s), ᾱ(s)

)

= H
(

ȳ(s), p0, p(s), π, λ
)

.

(v) (Vanishing of the Hamiltonian)

(19) H
(

ȳ(s), p0, p(s), π, λ
)

= 0, for all s ∈ [0, S̄].

Proof. The Pontryagin Maximum Principle based on Boltyanski approximating cones (see
e.g. [41, 38]) yields the existence of a multiplier (p0, p, π, λ) ∈ R×AC

(

[0, S̄],Rn
)

×R−×R+

verifying the non-transversality condition (15), the adjoint equation (17), the maximum
relation (18), the conservation (19), and the non-triviality condition (p0, p, π, λ) 6= 0. So,
it remains to prove the strengthened non-triviality condition (13). This can be done by
using the same elementary arguments as in the proof of [30, Theorem 3.1].8 �

7It is tacitly meant that, as an approximating cone to the (T, x, v)-target T× [0, K] at (ȳ0, ȳ, β̄)(S̄), one
chooses Γ×R if β̄(S̄) < K and Γ× (−∞, 0] if β̄(S̄) = K. In particular, (Γ×R)⊥ = Γ⊥ × {0} if β̄(S̄) < K

and (Γ× (−∞, 0])⊥ = Γ⊥ × R+ when β̄(S̄) = K.
8The fact that in [30] one makes use of the limiting normal cone instead of the polar of the Boltyanski

cone plays no role in the proof of this result.
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Definition 3.1. A process (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) is called an extremal if it obeys the condi-
tions in Theorem 3.1 for some multiplier (p0, p, π, λ). If there is a choice of the multiplier
with λ = 0, then the extremal (S̄, ȳ0, ȳ, β̄, w̄0, w̄, ᾱ) is called abnormal, otherwise it is
called normal. Finally, the extremal is said to be strictly abnormal if every choice of the
multiplier (p0, p, π, λ) verifies λ = 0.

When ℓ1(x, ·) is positively 1-homogeneous, so that for any (x,w0, w, a) ∈ R
n × R+ ×

C × A one has ℓe(x,w0, w, a) = ℓ0(x, a)w
0 + ℓ1(x,w), let us define the drift Hamiltonian

H(dr) and the impulse Hamiltonian H(imp):

H(dr)
(

x, p0, p, λ
)

:= max
a∈A

{

p0 + p · f(x, a)− λℓ0(x, a)
}

,

H(imp)
(

x, p, π, λ
)

:= max
w∈C,|w|=1

{

p ·
m
∑

i=1

gi(x)w
i + π − λℓ1(x,w)

}

.

Corollary 3.2. Let ℓ1(x, ·) be positively 1-homogeneous and let
(S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical extremal obeying the conditions in Theorem 3.1 for
some multiplier (p0, p, π, λ). Then there exists a zero-measure subset N ⊂ [0, S̄] such that,
for every s ∈ [0, S̄] \ N , one has

H
(

ȳ(s), p0, p(s), π, λ, w̄
0(s), w̄(s), ᾱ(s)

)

= H
(

ȳ(s), p0, p(s), π, λ
)

(20)

= max
{

H(dr)(ȳ(s), p0, p(s), λ) , H
(imp)(ȳ(s), p(s), π, λ)

}

= 0,

w̄0(s)
[

p0 + p(s) · f(ȳ(s), ᾱ(s))− λℓ0(ȳ(s), ᾱ(s))
]

= 0,(21)

p(s) ·
m
∑

i=1

gi(ȳ(s))w̄
i(s) + π|w̄(s)| − λℓ1(ȳ(s), w̄(s)) = 0.(22)

In particular, if for some s ∈ [0, S̄] \ N one has

i) H(dr)(ȳ(s), p0, p(s), λ) < 0, then w̄0(s) = 0 and

p(s) ·
m
∑

i=1

gi(ȳ(s))w̄
i(s) + π − λℓ1(ȳ(s), w̄(s)) = H(imp)(ȳ(s), p0, p(s), π, λ) = 0;

ii) H(imp)(ȳ(s), p(s), π, λ) < 0, then w̄(s) = 0 and

p0 + p(s) · f(ȳ(s), ᾱ(s))− λℓ0(ȳ(s), ᾱ(s)) = H(dr)(ȳ(s), p0, p(s), λ) = 0.

Proof. By (19) it follows that for every s ∈ [0, S̄], one has

p0w
0 + p(s) ·

(

f(ȳ(s), a)w0 +

m
∑

i=1

gi(ȳ(s))w
i
)

+ π|w| − λ
(

ℓ0(ȳ(s), a)w
0 + ℓ1(ȳ(s), w)

)

≤ 0

for all (w0, w, a) ∈ W ×A. Now, by choosing w = 0 one gets that w0 = 1 and

p0 + p(s) · f(ȳ(s), a)− λℓ0(ȳ(s), a) ≤ 0, for all a ∈ A,

while taking w0 = 0 one obtains

p(s) ·
m
∑

i=1

gi(ȳ(s))w
i + π − λℓ1(ȳ(s), w) ≤ 0, for all (w, a) ∈ C ×A, |w| = 1.

Therefore, H(dr)(ȳ(s), p(s), π, λ) ≤ 0 and H(imp)(ȳ(s), p(s), π, λ) ≤ 0. In fact, it must

be that max
{

H(dr)(ȳ(s), p0, p(s), λ) , H
(imp)(ȳ(s), p(s), π, λ)

}

= 0, since, otherwise, both

Hamiltonians would be negative, which contradicts (19). By taking N ⊂ [0, S̄] to be the
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zero-measure subset such that the first order maximization (18) is verified in [0, S̄] \ N ,
we get (20). If s ∈ [0, S̄] \ N , by (18), (19) one has that

w̄0(s)
[

p0 + p(s) · f(ȳ(s), ᾱ(s))− λℓ0(ȳ(s), ᾱ(s))
]

+
[

p(s) ·
m
∑

i=1

gi(ȳ(s))w̄
i(s)) + π|w̄(s)| − λℓ1(ȳ(s), w̄(s))

]

= 0.

Since the above argument implies that both terms in this equality are nonpositive, they
necessarily vanish, namely (21) and (22) are verified.

To prove i), suppose H(dr)(ȳ(s), p(s), π, λ) < 0. Then (21) implies w̄0(s) = 0, so
that |w̄(s)| = 1 and the thesis i) follows by (22). Finally, to prove ii) assume that

H(imp)(ȳ(s), p(s), π, λ) < 0, then w̄(s) = 0 due to (22) and in view of the positive 1-
homogeneity of H w.r.t. (w0, w). Hence w̄0(s) = 1 and (21) yields ii). �

Remark 3.1. Under the same hypotheses of Cor. 3.2, H(dr)(ȳ(s), p0, p(s), λ) = 0 for all
s ∈ [s1, s2] as soon as s1, s2 ∈ [0, S̄] are such that w̄0(s) > 0 for a.e. s ∈ [s1, s2] ⊆ [0, S̄].

Corollary 3.3. Let (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical extremal for the space-time prob-
lem (Ps-t) and let (p0, p, π, λ) be a corresponding multiplier. If

(23) π = 0 and λℓe(ȳ(s), 0,±ei, a) = 0, for all s ∈ [0, S̄], i = 1, . . . ,m1,
9

then p(s) · gi(ȳ(s)) = 0 for all s ∈ [0, S̄], i = 1, . . . ,m1.

Proof. By (19) it follows that for every s ∈ [0, S̄] and (w0, w, a) ∈ W × A, one has

p0w
0+p(s)·

(

f(ȳ(s), a)w0+
∑m

i=1 gi(ȳ(s))w
i
)

−λℓe(ȳ(s), w0, w, a) ≤ 0. Therefore, choosing

w0 = 0 and w = ±ei for any i = 1, . . . ,m1, one gets the thesis. �

Remark 3.2. From Theorem 3.1, one has π = 0 as soon as β̄(S̄) < K. Moreover, the hy-
pothesis λℓe(ȳ(s), 0,±ei, a) = 0 is obviously satisfied when the extremal (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄)

is abnormal and one chooses λ = 0, or if ℓ̂1(x, 0, w) = 0 for all (x,w) ∈ R
n×(Rm1×{0}m2).

(This includes, in particular, the case ℓ1 ≡ 0, as in the minimum time problem, where
ℓ0 ≡ 1.)

4. A Higher Order Maximum Principle

Let us begin with a regularity notion for Lie brackets of the vector fields g1, . . . , gm1 .

Definition 4.1. For every integer k ≥ 0, we say that a vector field B is a Ck-admissible
Lie bracket if B = b(F1, . . . , Fq), where b is a formal bracket and (F1, . . . , Fq) is a q-tuple

of class Cb+k of vector fields in {g1, . . . , gm1} (see Def.1.5). We will use Bk to denote the
set of Ck-admissible Lie brackets of length ≥ 2.

4.1. Higher order conditions.

Theorem 4.1 (Higher Order Maximum Principle). Assume that hypothesis (Hp)

is satisfied with ℓ̂1(·, 0, ·) ≡ 0. Let (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical local minimizer
for the space-time problem (Ps-t) that verifies β̄(S̄) < K. Then, for every Boltyanski
approximating cone Γ of the target T at (ȳ0, ȳ)(S̄), there exists a multiplier (p0, p, π, λ) ∈
R×AC

(

[0, S̄],Rn
)

×R− ×R+ with π = 0 that satisfies all the conditions of Theorem 3.1
and, moreover, verifies

p(s) · gi(ȳ(s)) = 0, for all s ∈ [0, S̄], i = 1, . . . ,m1,(24)

p(s) ·B(ȳ(s)) = 0, for all s ∈ [0, S̄], B ∈ B
0.(25)

The proof of this theorem is postponed to Section 5.

9By the definition of ℓe, it is clear that the quantities ℓe(ȳ(s), 0,±ei, a) do not depend on a.
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Remark 4.1. Requiring the condition ℓ̂1(·, 0, ·) ≡ 0 is crucial for the general validity of
Theorem 4.1. Otherwise, the variations corresponding to brackets of length h ≥ 2 would

produce a perturbation of order ε
1
h of the cost variable, so having infinite derivative w.r.t. ε.

Since the same variation would produce a change of order ε in the dynamical variables, the
separation Theorem 1.1 turns out to be not applicable. However, as soon as the minimizer
is strictly abnormal, one might be able to deduce some results involving Lie brackets also
for the case ℓ̂1(·, 0, ·) 6= 0 as well, possibly via some higher-order open mapping argument.
This would be similar to what happens in the case of sub-Riemannian geometry [1]. We
leave this issue as an open question.

Remark 4.2. Since we obtained the higher order necessary conditions under the only
prerequisite that the involved Lie brackets are continuous, one might wonder to which
extent such a regularity hypothesis can be further weakened. For instance, one might prove
an extension of Theorem 4 by means of set-valued Lie brackets of non smooth vector fields,
as studied in [35, 36, 21].

In the sequel we will use the notation fa(·) := f(·, a).

Corollary 4.2. Assume that hypothesis (Hp) is satisfied with ℓ̂1(·, 0, ·) ≡ 0, and let
(S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical local minimizer of (Ps-t) that verifies β̄(S̄) < K. Given
a Boltyanski approximating cone Γ of the target T at (ȳ0, ȳ)(S̄), let (p0, p, λ) be a multiplier
as in Theorem 4.1. Then, for any Lie bracket B ∈ B1 ∪ {g1, . . . , gm}, one has 10

(26) p(s) ·
(

[

fᾱ(s), B
]

(ȳ(s))w̄0(s) +
m
∑

j=m1+1

[

gj , B
]

(ȳ(s))w̄j(s)
)

= −λ
∂ℓe

∂x
(ȳ(s), w̄0(s), w̄(s), ᾱ(s)) ·B(ȳ(s)),

for a.e. s ∈ [0, S]. In particular, if m1 = m and the condition

(27) λ
∂ℓe

∂x
(ȳ(s), w̄0(s), w̄(s), ᾱ(s)) ·B(ȳ(s)) = 0 for a.e. s ∈ [0, S̄]

is satisfied, one obtains

(28) p(s) ·
(

[

fᾱ(s), B
]

(ȳ(s))
)

w̄0(s) = 0 for a.e. s ∈ [0, S̄].

Proof. Condition (26) can be obtained by differentiating (24) or (25) and remembering
that the derivative of p verifies the adjoint equation (17). �

Remark 4.3. Condition (27) is satisfied for all s ∈ [0, S̄] in at least two important
situations, namely in the abnormal case, i.e. if λ = 0, or when ℓ = ℓ0 + ℓ1(u), with ℓ0, ℓ1
independent of x and ℓ̂1(0, w) ≡ 0 (for instance, in the minimum time problem).

Remark 4.4 (Linear Systems). Let us consider the linear system

dx

dt
= Cx+ Eu, u ∈ R

m,

where C, E are n×n and n×m real matrices, respectively. For the vector fields f(x) =: Cx,
and gi, where gij := Eji for each i = 1, . . . ,m, j = 1, . . . , n, the conditions involving Lie
brackets of the gi become trivial, since [gi, gj ] = 0. However, because of the linearity of
f(x) = Cx, further higher order conditions can be trivially deduced under assumption
(27). Indeed, condition (24) reduces to

(29) p(s) ·E = 0, for all s ∈ [0, S̄],

while, due to (27), the adjoint equation now reads dp
dt = −p ·C. Therefore by differentiating

(29) n − 1 times, we get the additional necessary conditions p · [f, gi] = p · [f, [f, gi]] =

10I.e., B is a C1-admissible Lie bracket (possibly of length 1), see Definition 4.1.
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p · [f, [f, [. . . , [f, gi] . . . ]]] = 0, for all i = 1, . . . ,m, which correspond to the n − 1 matrix
relations

(30) p · CE = 0, p · C2E = 0, . . . , p · Cn−1E = 0.

Remark 4.5. As observed in the Introduction, some motivations for studying impulsive
systems are to be found in Classical Mechanics. This is a reason why one might be interested
in extending previous results to manifolds. Actually, such an extension does not present
any special difficulty, in that the thesis of Theorem 4.1 has a chart-independent character.

4.2. Fully impulsive processes. The necessary conditions established in Theorems 3.1
and 4.1 can be used to get information on the structure of optimal trajectories: for instance,
one can wonder under which conditions an optimal trajectory is a finite concatenation of
impulsive and non impulsive paths (as it occurs e.g. in the example in [4]). Though an
accurate investigation in this direction goes beyond the objectives of this paper, let us high-
light some rank conditions that happen to force an optimal process (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄)
to be fully impulsive. By this we mean that it evolves in zero time, namely ȳ0(S̄) = 0, or,
equivalently, w̄0 = 0 a.e. on [0, S̄].

To state our result, we introduce two rank-type assumptions:

(I) C0-Pointwise Rank Conditions at x ∈ R
n.

(I.1)x there exists an integer r ≥ 0 and iterated Lie brackets B1, . . . , Br ∈ B0 such
that

(31) span {B1, . . . , Br, g1, . . . , gm1} (x) = R
n; 11

(I.2)x for every a ∈ A, there exist integers r ≥ 0, k ≥ 0, and iterated Lie brackets

B1, . . . , Br ∈ B0, B̂1, . . . , B̂k ∈ B1, such that

(32) span
{

B1, ..., Br, [fa, B̂1], ..., [fa, B̂k], g1, ..., gm1 , [fa, g1], ..., [fa, gm1 ]
}

(x) = R
n.

(II) Kalman Controllability Condition. The system is linear and the Kalman Con-
trollability Condition is verified, namely

dx

dt
= Cx+ Eu, and rank(E CE C2E . . . Cn−1E) = n,

where C, E are n× n and n×m real matrices, respectively.

We will consider the following assumption:

(Hp1) Hypothesis (Hp) holds and, moreover, (i) the target is time-invariant, namely T =

R× T̂, with T̂ ⊆ R
n; (ii) the final cost Ψ is time-independent; (iii) the Lagrangian

ℓ is strictly positive and ℓ̂(·, 0, ·) ≡ 0.

Theorem 4.3. Let us assume hypothesis (Hp1). Let (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical
local minimizer for (Ps-t) such that β(S̄) < K, and let (p0, p, λ) be a multiplier as in Theo-
rem 4.1. If one of the options (a)–(c) below is verified, then the process (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄)
is fully impulsive.

(a) For every s ∈ [0, S̄], the C0-Pointwise Rank Condition (I.1)ȳ(s) is verified.

(b) For every s ∈ [0, S̄], the C0-Pointwise Rank Condition (I.2)ȳ(s) is verified, while

J :=
{

s ∈ [0, S̄] : (I.1)ȳ(s) is not verified
}

6= ∅. Furthermore, m1 = m, and

λ ∂ℓe

∂x (ȳ(s), w̄
0(s), w̄(s), ᾱ(s)) = 0 for a.e. s ∈ J .

(c) The system is linear, the Kalman Controllability Condition (II) is verified, and
λ ∂ℓe

∂x (ȳ(s), w̄
0(s), w̄(s), ᾱ(s)) = 0 for a.e. s ∈ [0, S̄].

Preliminarily, let us prove the following result:

11We mean that {ζ1, . . . , ζN} = ∅ as soon as N = 0.
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Lemma 4.4. Assume (i) and (ii) in hypothesis (Hp1), and let π = 0. Then for any subset
J ⊆ [0, T ] of positive measure one has neither

(33) p(s) = 0 and ℓe
(

ȳ(s), (ȳ(s), w̄0(s), w̄(s), α(s)
)

> 0, for a.e. s ∈ J

nor

(34) p(s) = 0 and
∂ℓe

∂x

(

ȳ(s), w̄0(s), w̄(s), α(s)
)

6= 0, for a.e. s ∈ J .

Proof. By hypothesis (Hp1) (i), Γ = R × Γ̂, with Γ̂ a cone of R
n. Because of (Hp1)

(ii) and of the identity Γ⊥ = {0} × Γ̂⊥, the non-transversality condition yields p0 =
−λ∂Ψ

∂t

(

ȳ0(S̄), ȳ(S̄)
)

+ 0 = 0.

First, let us assume by contradiction that (33) is verified on a subset J ⊆ [0, S̄]
of positive measure. Since (p0, p(s), π) = (0, 0, 0) for all s ∈ J , by (19) we obtain that
λℓe
(

ȳ(s), w̄0(s), w̄(s), ᾱ(s)
)

= 0 for a.e. s ∈ J , which by (33) implies that λ = 0.

Secondly, assume that (34) is verified on a subset J ⊆ [0, S̄] of positive measure.
We still have (p0, p(s), π) = (0, 0, 0) on J and, by the adjoint equation, we deduce
λ∂ℓe

∂x

(

ȳ(s), w̄0(s), w̄(s), ᾱ(s)
)

= 0 for a.e. s ∈ J so that by (34) one gets again λ = 0.
Choose a point ŝ ∈ J , so that p(ŝ) = 0. Since in both cases one has λ = 0, the

adjoint equation is linear in p, which in turn implies that p ≡ 0 on [0, S̄]. Therefore,
(p0, p, π, λ) = 0, which contradicts the non-triviality condition. �

Proof of Theorem 4.3. Observe that, since β(S̄) < K, one has π = 0.
Suppose first that hypothesis (a) is verified. For every s ∈ [0, S̄], by (I.1)ȳ(s) there

exist an integer r ≥ 0 and Lie brackets B1, . . . , Br ∈ B0 verifying the rank condition (31)
and, in view of (24), (25), for all s ∈ [0, S̄], one has

p(s) · gi(ȳ(s)) = 0, p(s) ·Bj(ȳ(s)) = 0

for all i = 1, . . . ,m1, j = 1, . . . , r. Therefore, we obtain p(s) = 0 for all s ∈ [0, S̄].
Assume by contradiction that there exists a subset of positive measure J ⊆ [0, S̄] such
that w̄0(s) > 0 for a.e. s ∈ J . By the positivity of the function ℓ, this implies that
ℓe
(

ȳ0(s), ȳ(s), w̄0(s), w̄(s), ᾱ(s)
)

> 0 for a.e. s ∈ J , which in turn is ruled out by Lemma
4.4 above.

Assume now that (b) holds true. If s ∈ [0, S̄]\J , we get p(s) = 0 arguing as in the
previous case. If J has zero-measure, this also implies that p(s) = 0 for all s ∈ [0, S̄].
On the contrary, assume that J has positive measure. For almost every s ∈ J and for
a := ᾱ(s), by (I.2)ȳ(s) there exist integers r, k ≥ 0 and Lie brackets B1, . . . , Br ∈ B0,

B̂1, . . . , B̂k ∈ B1 verifying the rank condition (32). Moreover, for almost every s ∈ J , by
(24), (25), and (28) one has

p(s) · gi(ȳ(s)) = 0, p(s) · Bj(ȳ(s)) = 0,

p(s) · [fᾱ(s), gi](ȳ(s)) = 0, p(s) · [fᾱ(s), B̂l](ȳ(s)) = 0,

for all i = 1, . . . ,m, j = 1, . . . , r, l = 1, . . . , k. We then deduce that p(s) = 0 for almost
every s ∈ J . Summing up the above occurrences, by the continuity of p we get p(s) = 0
for every s ∈ [0, S̄]. Now assume by contradiction that there exists a subset J ⊆ [0, S̄]
of positive measure such that w̄0(s) > 0 for a.e. s ∈ J . At this point, the thesis follows
arguing exactly as in case (a).

Finally, suppose that (c) holds true. The linear relations (29), (30) imply p ≡ 0, so,
in view of the hypothesis ℓ > 0 one concludes as in cases (b) and (c). �

Remark 4.6. As mentioned in the introduction, our conditions might be regarded as a
generalization to impulsive trajectories of [18], where one assumes further that C = R

m,
the vector fields g1, . . . , gm are of class C∞, and their Lie algebra has constant dimension.
In [18] one considers the (non extended) minimum time problem with L∞ controls taking
values in an unbounded set. Now, since the dynamics is control-affine, an optimal control
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might fail to exist in this class or even in the class of L1 functions. On the other hand,
if such an optimal control existed, the corresponding cost might or might not coincide
with the infimum value of the extended, impulsive problem. Actually, in [18] one assumes
that the optimal process is a normal extremal, and this is similar to a sufficient condition
established in [30] for the avoidance of infimum-gaps. One might conjecture that, for
some reason,12 a higher-order Maximum Principle valid for the impulsive system can be a
necessary condition for the non-impulsive unbounded system as well.

5. Proof of Theorem 4.1

Let (S̄, w̄0, w̄, ᾱ, ȳ0, ȳ, β̄) be a canonical local minimizer of (Ps-t) verifying β̄(S̄) < K,

that we will call the reference process. Throughout this section ℓ̂1(·, 0, ·) ≡ 0, as required
in the statement of Thm. 4.1. Moreover, we set

F e(x,w0, w, a) := f(x, a)w0 +
m
∑

i=1

gi(x)w
i, for all (x,w0, w, a) ∈ R

n × R+ × C ×A,

F̄ e(s) := Fe(ȳ, w̄
0, w̄, ᾱ)(s), ℓ̄e(s) := ℓe(ȳ, w̄0, w̄, ᾱ)(s), for a.e. s ∈ [0, S̄].

The proof will be divided in several steps. First, following a time-rescaling procedure, we
transform problem (Ps-t) into a problem on the fixed interval [0, S̄]. At this point, we define
two classes of variations, comprising standard needle variations and bracket-like variations,
the latter being produced by suitable instantaneous perturbations of the reference process.
By using appropriate powers of the perturbation parameter ε, all these variations turn out
to be of the same order ε. Once this is done, the proof proceeds by some set-separation
arguments.

5.1. Rescaling the problem.

Definition 5.1. Fix ρ > 0. For any (S,w0, w, α, ζ) ∈ W ×L∞([0, S̄], [−ρ, ρ]), we say that
(S,w0, w, α, ζ, y0, y, yℓ, β) is a rescaled (space-time) process if (y0, y, yℓ, β) is the unique
Carathéodory solution of

(35)



























































dy0

ds
= w0(1 + ζ),

dy

ds
= F e(y,w0, w, α)(1 + ζ),

dyℓ

ds
= ℓe(y,w0, w, α)(1 + ζ),

dβ

ds
= |w|(1 + ζ),

(y0,y, yℓ, β)(0) = (0, x̌, 0, 0),

a.e. s ∈ [0, S̄],

and (S,w0, w, α, y0, y, yℓ, β) is called feasible if (y0(S), y(S), β(S)) ∈ T× [0,K].

We define the rescaled space-time optimization problem as

(Pe)

{

minimize
{

Ψ((y0, y)(S̄)) + yℓ(S̄)
}

,

over feasible rescaled processes (S̄, w0, w, α, ζ, y0, y, yℓ, β).

It is easy to see that, for ρ > 0 sufficiently small, the reference process, regarded as a
process (S̄, w̄0, w̄, ᾱ, 0, ȳ0, ȳ, ȳℓ, β̄) of (35), is a local minimizer for (Pe), which is a fixed
end-time problem.13 Since the proof involves only space-time trajectories which are close

12E.g. because of the abundantness (see [42]) of the absolutely continuous trajectories in the set of
extended, impulsive trajectories.

13I.e., there exists δ > 0 such that Ψ((ȳ0, ȳ)(S̄))+ ȳℓ(S̄) ≤ Ψ((y0, y)(S̄))+yℓ(S̄) for all feasible processes

(S̄, w0, w, α, ζ, y0, y, yℓ, β) satisfying d
(

(S̄, y0, y, yℓ, β), (S̄, ȳ0, ȳ, ȳℓ, β̄)
)

< δ.
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to the reference space-time trajectory (ȳ0, ȳ), using standard truncation and mollification
arguments, we can assume the following hypothesis:

(Hp)∗ all the assumptions in (Hp) are verified and, moreover, ℓe, f , the gi, their partial

derivatives
∂ℓe

∂xj
,

∂f

∂xj
,
∂gi

∂xj
and all the iterated brackets B ∈ B0 (as defined in

Definition 4.1) are uniformly continuous and bounded.

Hypothesis (Hp)∗ guarantees that for any (w0, w, α, ζ) ∈ L∞([0, S̄],W ×A× [−ρ, ρ]) there
exists a unique solution (y0, y, yℓ, β) to (35), defined on the whole interval [0, S̄]. Moreover,
the input-output map

(36) Φ : L∞
(

[0, S̄],W ×A× [−ρ, ρ]
)

→ C0([0, S̄],R× R
n × R× R),

which associates to any control the corresponding solution to (35), turns out to be Lipschitz
continuous when one considers the sup-norm over the set of trajectories, and the distance
d̃
(

(w0, w, α, ζ), (w̃0, w̃, α̃, ζ̃)
)

:= meas
{

(w0, w, α, ζ)(s) 6= (w̃0, w̃, α̃, ζ̃)(s) : s ∈ [0, S̄]
}

for

every pair (w0, w, α, ζ), (w̃0, w̃, α̃, ζ̃) of controls.

5.2. Needle and bracket-like approximations.

Definition 5.2 (Variation generator). Let us define the set of variation generators as

V := (W ×A× [−ρ, ρ])
⋃

B
0. 14

More specifically, any c = (w0, w, a, ζ) ∈ W ×A× [−ρ, ρ] will be called a needle variation
generator, or a variation generator of length 1, while any bracket c = B ∈ B0 of length h

(≥ 2) will be called a bracket-like variation generator of length h.

To every variation generator c and to each instant s̄ ∈ (0, S̄), we now associate
an infinitesimal space-time variation of the reference trajectory (ȳ0, ȳ, ȳℓ, β̄), whose y-
component coincides with either a standard needle variation or a Lie bracket. As usual,
the needle variations will be considered at Lebesgue points of an appropriate associated
function as given in next definition.15

Definition 5.3. We will use (0, S̄)Leb to denote the full measure subset of (0, S̄) consisting
of the Lebesgue points of the function s 7→

(

w̄0(s), F̄ e(s), ℓ̄e(s), |w̄|(s)
)

, s ∈ [0, S̄].

Definition 5.4. (Needle variation). For every s̄ ∈ (0, S̄)Leb and every needle variation
generator c = (w0, w, a, ζ), consider the vector

(37)









v0
c,s̄

vc,s̄

vℓ
c,s̄

vv
c,s̄









:=









w0(1 + ζ)− w̄0(s̄)
F e(ȳ(s̄), w0, w, a)(1 + ζ)− F̄ e(s̄)
ℓe(ȳ(s̄), w0, w, a)(1 + ζ)− ℓ̄e(s̄)

|w|(1 + ζ)− |w̄(s̄)|









.

(Bracket-like variation). For every s̄ ∈ (0, S̄) and every bracket-like variation generator
c = B ∈ B0, one sets

(38)





v0
c,s̄

vc,s̄

vℓ
c,s̄



 :=







0
B(ȳ(s̄))

rh
B

0






,

where r
B
is defined as in Subsection 1.1.

14We recall that W = {(w0, w) ∈ R+ × C : w0 + |w| = 1} and B
0 is the set of C0-admissible iterated

Lie brackets of length ≥ 2, as in Def. 4.1.
15Given F ∈ L1([a, b],RN ), s ∈ (a, b) is called a Lebesgue point if lim

δ→0

1
δ

∫ s+δ

s−δ
|F (σ) − F (s)|dσ = 0. By

the Lebesgue Differentiation Theorem, the set of Lebesgue points has measure b− a.
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Definition 5.5 (Needle approximation). Let c = (w0, w, a, ζ) be a needle variation genera-

tor and let s̄ ∈ (0, S̄). For any control (w̃0, w̃, α̃, ζ̃) belonging to the set L∞
(

[0, S̄],W ×A× [−ρ, ρ]
)

,

the family
{

(w̃0, w̃, α̃, ζ̃)ε
c,s̄ : ε ∈ (0, s̄)

}

, defined by

(39) (w̃0, w̃, α̃, ζ̃)ε
c,s̄(s) :=

{

(w0, w, a, ζ), if s ∈ [s̄− ε, s̄],

(w̃0, w̃, α̃, ζ̃)(s), if s ∈ [0, s̄ − ε) ∪ (s̄, S̄],

is called a needle control approximation of (w̃0, w̃, α̃, ζ̃) at s̄ associated to c.

In order to state Lemma 5.1 below –which is a standard result (see e.g. [33]) –, for
any ỹ := (y0, y, yℓ, β) ∈ R× R

n × R× R and any (w0, w, a) ∈ W ×A, let us set

F̃ (ỹ, w0, w, a) := (w0, F e(y,w0, w, a), ℓe(y,w0, w, a), |w|)

and use M̃(·, ·) to denote the fundamental matrix of the variational equation

(40)
dṼ

ds
(s) =

∂F̃

∂x̃
(ȳ0(s), ȳ(s), ȳℓ(s), β̄(s), w̄0(s), w̄(s), ᾱ(s)) · Ṽ (s), a.e. s ∈ [0, S̄].

Namely, for each vector ṽ :=
(

v0, v, vℓ, vv
)

∈ R
1+n+1+1 and each s1 ∈ [0, S̄], the function

Ṽ (·) := M̃(·, s1)ṽ is the solution of (40) with initial condition Ṽ (s1) =
(

V 0, V, V ℓ, V v
)

(s1) =

ṽ. It is straightforward to check that, for all s ∈ [0, S̄] one has:

• M̃0,j(s, s1) = M̃j,0(s, s1) = δ0,j , for j = 0, . . . , n+ 2,

• M̃n+2,j(s, s1) = Mj,n+2(s, s1) = δn+2,j, for j = 0, . . . , n+ 2,

• M̃i,r(s, s1) = Mi,r(s, s1), for i, r = 1, . . . , n,

• M̃r,n+1(s, s1) = µr(s, s1) :=

∫ s

s1

n
∑

j=1

∂ℓe

∂xj
((ȳ, w̄0, w̄, ᾱ)(σ)) · Mj,r(s, σ)dσ, for r =

1, . . . , n,
• M̃n+1,n+1(s, s1) = 1,

where M(·, ·) denotes the fundamental matrix of the state-variational equation in R
n

(41)
dV

ds
(s) =

∂F e

∂x
(ȳ(s), w̄0(s), w̄(s), ᾱ(s)) · V (s), a.e. s ∈ [0, S̄].

Lemma 5.1 (Asymptotics of needle variations). Assume that s̄ ∈ (0, S̄)Leb. For every
needle variation generator c = (w0, w, a, ζ) ∈ W × A × [−ρ, ρ] and for every s ∈ (s̄, S̄],
setting µ(s, s̄) := (µ1, . . . , µn)(s, s̄) we get

(42)









y0ε(s)− ȳ0(s)
yε(s)− ȳ(s)
yℓε(s)− ȳℓ(s)
βε(s)− β̄(s)









= εM̃(s, s̄) ·









v0
c,s̄

vc,s̄

vℓ
c,s̄

vv
c,s̄









+ o(ε) = ε









v0
c,s̄

M(s, s̄) · vc,s̄

µ(s, s̄) · vc,s̄ + vℓ
c,s̄

vv
c,s̄









+ o(ε),

where
(

y0ε, yε, yℓε, βε
)

denotes the solution of system (35) corresponding to the needle

control approximation (w̄0, w̄, ᾱ, 0)ε
c,s̄ of (w̄0, w̄, ᾱ, 0) at s̄ associated to c.

Bracket-like approximations, which can be performed in various ways (see e.g. [2, 25,
12, 11, 18] and references therein), are here based on the following result:

Lemma 5.2. Assume (Hp)∗ with ℓ̂1(·, 0, ·) ≡ 0. Fix a point (ỹ0, ỹ, ỹℓ, β̃) ∈ R×R
n×R×R

and some a ∈ A. For every Lie bracket B ∈ B0 of length h, there is ε̄ > 0 such that, for
any s ∈ (0, ε̄1/h], there exists a piecewise constant control (w0

c,s,wc,s), with w
0
c,s(σ) = 0 for
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all σ ∈ [0, s], wc,s : [0, s] →
{

± e1, . . . ,±em1

}

, verifying

(y0, y
ℓ)(σ) = (ỹ0, ỹℓ), β(σ) = β̃ + σ, for all σ ∈ [0, s],(43)

y(s) = ỹ +

(

s

rB

)h

B(ỹ) + o(sh),(44)

where rB is the switch-number introduced in Subsect.1.1 and (y0, y , y
ℓ,β) denotes the solu-

tion to the space-time control system in (35) corresponding to the control (w0
c,s,wc,s, a, 0)

16 and the initial condition (y0, y , y
ℓ,β)(0) = (ỹ0, ỹ, ỹℓ, β̃).

Proof. While the first relation in (43) is trivial, in that w
0
c,s ≡ 0 and the Lagrangian

ℓe(y, a,w
0
c,s,wc,s) = ℓ0(y, a)w

0
c,s ≡ 0, a proof of (44) can be found in [21]. Finally, the

second relation in (43) is trivial as well, for |wc,s| ≡ 1 on [0, s]. �

Definition 5.6 (Bracket-like approximation). Fix s̄ ∈ (0, S̄) and let c = B ∈ B0 be a
bracket-like variation generator of length h. For each ε > 0 such that ε < ε̄ and 2ε1/h < s̄,
where ε̄ is as in Lemma 5.2, consider the dilation

γε : [s̄− 2ε1/h, s̄− ε1/h] → [s̄− 2ε1/h, s̄]

γε(σ) := (s̄− 2ε1/h) + 2
(

σ − (s̄ − 2ε1/h)
)

.
(45)

For any control (w̃0, w̃, α̃, ζ̃) ∈ L∞
(

[0, S̄],W ×A× [−ρ, ρ]
)

, let us set

(46) (w̃0, w̃, α̃, ζ̃)ε
c,s̄(s) :=



















(

2 w̃0, 2 w̃, α̃, ζ̃
)

◦ γε(s), if s ∈ [s̄− 2ε1/h, s̄ − ε1/h),
(

0,w
c,ε1/h(s − (s̄− ε1/h)), a

)

, if s ∈ [s̄− ε1/h, s̄],
(

w̃0, w̃, α̃, ζ̃
)

(s), if s ∈ [0, s̄ − 2ε1/h) ∪ (s̄, S],

where a ∈ A is arbitrary and w
c,ε1/h is as in Lemma 5.2. We refer to the family of

controls
{

(w̃0, w̃, α̃, ζ̃)ε
c,s̄ : ε ∈ (0, ε̄), 2ε1/h < s̄

}

as a bracket-like control approximation of

(w̃0, w̃, α̃, ζ̃) at s̄ associated to c = B.

Lemma 5.3 (Asymptotics of bracket-like variations). Let us consider a bracket-like vari-
ation generator c = B ∈ B0, with B of length h. For every point s̄ ∈ (0, S̄) and for
each ε > 0 as in Def. 5.6, let (w̄0, w̄, ᾱ, 0)ε

c,s̄ be a bracket-like control approximation of

(w̄0, w̄, ᾱ, 0) at s̄ associated to c = B, and let (y0ε, yε, yℓε, βε) be the corresponding solu-
tion of system (35). Then, for every s ∈ (s̄, S̄] one has





y0ε(s)− ȳ0(s)
yε(s)− ȳ(s)
yℓε(s)− ȳℓ(s)



 = ε





v0
c,s̄

M(s, s̄) · vc,s̄

µ(s, s̄) · vc,s̄ + vℓ
c,s̄



+





0
o(ε)
o(ε)



 = ε













0

M(s, s̄) ·
B(ȳ(s̄))

(r
B
)h

µ(s, s̄) ·
B(ȳ(s̄))

(r
B
)h













+





0
o(ε)
o(ε)



 ,

and βε(s)− β̄(s) = ε
1
h .

Proof. By the rate-independence of the control system (35), (y0ε, yε, yℓε) = (ȳ0, ȳ, ȳℓ)◦γε on
[s̄−2ε1/h, s̄−ε1/h], so that (y0ε, yε, yℓε)(s̄−ε1/h) = (ȳ0, ȳ, ȳℓ)(s̄). Hence y0ε(s̄)− ȳ0(s̄) = 0,
yℓε(s̄)− ȳℓ(s̄) = 0, while

yε(s̄)− ȳ(s̄) =

∫ s̄

s̄−ε1/h

m
∑

i=1

gi(y
ε(s))w i

c,ε1/h
(s− (s̄− ε1/h)) ds

=

∫ ε1/h

0

m
∑

i=1

gi(y
ε(s+ (s̄− ε1/h))w i

c,ε1/h
(s) ds,

(47)

16Note that the choice of the element a is irrelevant.
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where w
c,ε1/h is the control associated to the bracket B as in Lemma 5.2. It follows that

yε(s̄) = yε
(

s+ (s̄− ε1/h)
)

∣

∣

∣

s=ε1/h
= y

ε(ε1/h), where we have used y
ε to denote the solution

to the Cauchy problem
dy

dσ
(σ) =

m
∑

i=1

gi(y(σ))w
i
c,ε1/h

(σ), y(0) = ȳ(s̄), so that, by Lemma

5.2, we get

yε(s̄)− ȳ(s̄)−

(

ε1/h

r
B

)h

B(ȳ(s̄)) = y
ε(ε1/h)− ȳ(s̄)− ε

B(ȳ(s̄))

(r
B
)h

= o(ε).

Therefore, yε(s̄) − ȳ(s̄) = ε
B(ȳ(s̄))

(r
B
)h

+ o(ε), and the proof of the first relation of the

thesis is concluded, since for every s ∈ (s̄, S̄], the fundamental matrix M̃ (s, s̄) is the
differential of the flow map from s̄ to s. Finally, by the second relation in (43), one has

βε(s)− β̄(s) = βε(s̄)− β̄(s̄) = ε
1
h . �

5.3. Composition of variations. Let c ∈ V be a variation generator of length h ≥ 1,
and let s̄ ∈ (0, S̄). For any ε > 0 small enough 17, let us introduce the operator Aε

c,s̄ :

L∞
(

[0, S̄],R+ × C ×A× [−ρ, ρ]
)

→ L∞
(

[0, S̄],R+ × C ×A× [−ρ, ρ]
)

given by

(48) Aε
c,s̄(w

0, w, α, ζ) := (w0, w, α, ζ)ε
c,s̄,

Lemma 5.4 (Multiple variations at different times). Let N > 0 be an integer and let

~c := (c1, . . . , cN ) ∈ VN be an N -uple of variations of lengths ~h := (h1, . . . , hN ) ∈ N
N . Fix

~s := (s̄1, . . . , s̄N ) ∈ (0, S̄)N , where 0 =: s̄0 < s̄1 < · · · < s̄N < S̄ and s̄j ∈ (0, S̄)Leb as soon
as hj = 1. For each ~ǫ := (ε1, . . . , εN ) ∈ (0,+∞)N small enough, let us set

(49) (w0~ǫ, w~ǫ, α~ǫ, ζ~ǫ) := AεN
cN ,s̄N ◦ · · · ◦ A

εj
cj ,s̄j ◦ · · · ◦ A

ε1
c1,s̄1(w̄

0, w̄, ᾱ, 0),

and let
(

S̄, w0~ǫ, w~ǫ, α~ǫ, ζ~ǫ, y0~ǫ, y~ǫ, yℓ~ǫ, β~ǫ
)

denote the corresponding process of (35).

Then, for every s ∈ (s̄N , S̄], one has

(50)





y0~ǫ(s)− ȳ0(s)
y~ǫ(s)− ȳ(s)
yℓ~ǫ(s)− ȳℓ(s)



 =

N
∑

j=1

εj





v0
cj ,s̄j

M(s, s̄j)vcj ,s̄j

µ(s, s̄j) · vcj ,s̄j + vℓ
cj ,s̄j



+ o(|~ǫ|),

and

(51) β~ǫ(s)− β̄(s) =
∑

j∈I1

εj (|wj |(1 + ζj)− |w̄(s̄j)|) + o(|~ǫ|) +
∑

j∈{1,...,N}\I1

(εj)
1
hj ,

where I1 := {j = 1, . . . , N : hj = 1}. In particular, if all cj are needle variations, i.e.
cj := (w0

j , wj , aj , ζj) for every j = 1, . . . , N , one gets

(52) β~ǫ(s)− β̄(s) =

N
∑

j=1

εj
(

|wj|(1 + ζj)− |w̄(s̄j)|
)

+ o(|~ǫ|).

Proof. Let us prove the result by induction on N, the number of composed variations. For
N = 1, the result is proved in Lemmas 5.1 and 5.3. If N ≥ 2, let us assume that the result
holds true for N −1 and let us show that it is valid for N as well. Let us use (y0, y, yℓ, β)N

and (y0, y, yℓ, β)N−1 to denote the trajectories associated to the N variations and to the

17Precisely, if h ≥ 2, we require 0 < ε < ε̄, 2ε1/h < s̄, as in Def. 5.6, while, in case h = 1, ε < s̄.
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first N − 1 variations, respectively (we omit the dependence on ~ǫ for brevity). Then one
has

(53)









y0,N(s̄N )− ȳ0(s̄N )
yN(s̄N )− ȳ(s̄N )
yℓ,N(s̄N )− ȳℓ(s̄N )
βN (s̄N )− β̄(s̄N )









=









y0,N (s̄N )− y0,(N−1)(s̄N )
yN (s̄N )− yN−1(s̄N )

yℓ,N(s̄N )− yℓ,(N−1)(s̄N )
βN (s̄N )− βN−1(s̄N )









+









y0,(N−1)(s̄N )− ȳ0(s̄N )
yN−1(s̄N )− ȳ(s̄N )

yℓ,(N−1)(s̄N )− ȳℓ(s̄N )
βN−1(s̄N )− β̄(s̄N )









.

By the inductive hypothesis, we get that
(54)




y0,(N−1)(s̄N )− ȳ0(s̄N )
yN−1(s̄N )− ȳ(s̄N )

yℓ,(N−1)(s̄N )− ȳℓ(s̄N )



 =

N−1
∑

j=1

εj





v0
cj ,s̄j

M(s̄N , s̄j)vcj ,s̄j

µ(s̄N , s̄j)vcj ,s̄j + vℓ
cj ,s̄j



+ o(|(ε1, . . . , εN−1)|),

and, setting IN−1
1 := {j = 1, . . . , N − 1 : hj = 1},

(55)

βN−1(s̄N )− β̄(s̄N ) =
∑

j∈IN−1
1

εj (|wj |(1 + ζj)− |w̄(s̄j)|)

+o(|(ε1, . . . , εN−1)|) +
∑

j∈{1,...,N−1}\IN−1
1

(εj)
1
hj .

We claim that

(56)





y0,N (s̄N )− y0,(N−1)(s̄N )
yN (s̄N )− yN−1(s̄N )

yℓ,N (s̄N )− yℓ,(N−1)(s̄N )



 = εN





v0
cN ,s̄N

vcN ,s̄N

vℓ
cN ,s̄N



+ o(|~ǫ|),

and

(57) βN (s̄N )− βN−1(s̄N ) =

{

εN
(

|wN |(1 + ζN )− |w̄(s̄N )|
)

+ o(|εN |), if hN = 1,

(εN )
1

hN , if hN ≥ 2.

Once one has proven the claim, the validity of (50) and (51) follows easily by (53)-(55), by

the properties of the fundamental matrix M̃(s, s̄N ). To prove (56), (57) we first consider
the case when the length hN of the Nth variation cN is ≥ 2.

Case hN ≥ 2. Here cN = BN ∈ B0 is a bracket-like variation and one has








y0,N

yN

yℓ,N

βN









(s̄N − ε
1/hN

N ) =









y0,N−1

yN−1

yℓ,N−1

βN−1









(s̄N ),

so that y0,N (s̄N ) − y0,N−1(s̄N ) = 0, yℓ,N (s̄N ) − yℓ,N−1(s̄N ) = 0, βN (s̄N ) − βN−1(s̄N ) =

ε
1/hN

N , while

yN (s̄N )− yN−1(s̄N ) =

∫ s̄N

s̄N−ε
1/hN
N

∑

gi(y
N (s))w i

cN ,ε
1/hN
N

(

s−
(

s̄N − ε
1/hN

N

)

)

ds

=

∫ ε1/h

0

m
∑

i=1

gi(y
N (s + (s̄N − ε

1/hN

N ))w i

cN ,ε
1/hN
N

(s) ds,

where the control w
cN ,ε

1/hN
N

is as in Lemma 5.2. If y
N denotes the solution to the Cauchy

problem
dy

dσ
(σ) =

m
∑

i=1

gi(y(σ))w
i

cN ,ε
1/hN
N

(σ), y(0) = yN−1(s̄N ), then yN (s̄N ) = yN
(

s +
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(s̄N − ε
1/hN

N )
)

∣

∣

∣

s=ε
1/hN
N

= y
N (ε

1/hN

N ) and, by Lemma 5.2, we get

yN (s̄N )− yN−1(s̄N )−

(

ε
1/hN

N

r
BN

)hN

BN (ȳ(s̄N ))

= y
N (ε

1/hN

N )− yN−1(s̄N )−
εN

(r
BN

)hN
BN (yN−1(s̄N ))

+
εN

(r
BN

)hN
BN (yN−1(s̄N ))−

εN

(r
BN

)hN
BN (ȳ(s̄N ))

= o(εN ) +
εN

(r
BN

)hN
BN (yN−1(s̄N ))−

εN

(r
BN

)hN
BN (ȳ(s̄N )).

Now by the continuity of BN and the inductive hypothesis (54), it follows that

∣

∣

∣

∣

∣

εN

(r
BN

)hN
BN (yN−1(s̄N ))−

εN

(r
BN

)hN
BN (ȳ(s̄N ))

∣

∣

∣

∣

∣

≤
εN

(r
BN

)hN
ωBN

(

|yN−1(s̄N )− ȳ(s̄N )|
)

≤
εN

(r
BN

)hN
ωBN

(O (ε1 + · · ·+ εN−1)) ,

where ωBN
denotes the modulus of continuity of BN and we use O to mean a nonnegative

function such that O(r) ≤ Cr for all r ≥ 0, for some constant C > 0. Therefore, yN (s̄N )−

yN−1(s̄N ) =
εN

(r
BN

)hN
BN (ȳ(s̄N )) + o(|~ǫ|), which concludes the proof in this case.

Case hN = 1. Here cN = (w0
N , wN , aN , ζN ) and the aimed estimate is rather standard.

Nonetheless, we perform it for the sake of self-consistency. One has

yN (s̄N )− yN−1(s̄N ) =

∫ s̄N

s̄N−εN

[

F e(yN (s), w0
N , wN , aN )(1 + ζN )

−F e(yN−1(s), w̄0(s), w̄(s), ᾱ(s))
]

ds =

∫ s̄N

s̄N−εN

(

r1(s) + r2 + r3(s)
)

ds,

where

r1(s) := F e(yN (s), w0
N , wN , aN )(1 + ζN )− F e(ȳ(s̄N ), w0

N , wN , aN )(1 + ζN ),

r2 := F e(ȳ(s̄N ), w0
N , wN , aN )(1 + ζN )− F̄ e(s̄N ),

r3(s) := F̄ e(s̄N )− F e(yN−1(s), w̄0(s̄N ), w̄(s̄N ), ᾱ(s̄N )).

Let us start by estimating r1. Observe that, for s ∈ [s̄N − εN , s̄N ],

|yN (s)− ȳ(s̄N )| ≤ |yN (s)− yN−1(s)|+ |yN−1(s)− ȳ(s)|+ |ȳ(s)− ȳ(s̄N )|.

Moreover, on [s̄N − εN , s̄N ], one has ‖yN − yN−1‖∞ = O (εN ) by the Lipschitz continuity
of the input-output map Φ defined in (36); ‖yN−1 − ȳ‖∞ = O (ε1 + · · · + εN−1) by the
inductive hypothesis (54); and ‖ȳ(s) − ȳ(s̄N )‖∞ = O (εN ) by the Lipschitz continuity of
the reference trajectory. Hence ‖yN (s)− ȳ(s̄N )‖∞ = O(|~ǫ|), so that

∣

∣

∣

∣

∫ s̄N

s̄N−εN

r1(s)ds

∣

∣

∣

∣

≤

∫ s̄N

s̄N−εN

L |yN (s)− ȳ(s̄N )|ds = εN O(|~ǫ|),
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where L is a suitable positive constant. By the previous estimates and recalling that s̄N
is a Lebesgue point of the map in Def. 5.3, we get

∣

∣

∣

∫ s̄N

s̄N−εN

r3(s)ds
∣

∣

∣
≤
∣

∣

∣

∫ s̄N

s̄N−εN

[

F̄ e(s̄N )− F̄ e(s)
]

ds
∣

∣

∣

+
∣

∣

∣

∫ s̄N

s̄N−εN

[

F̄ e(s)− F e(yN−1(s), w̄0(s), w̄(s), ᾱ(s))
]

ds
∣

∣

∣

≤ o(εN ) + εN O(|(ε1, . . . , εN−1)|).

Therefore, yN (s̄N ) − yN−1(s̄N ) = εN r2 + o(|~ǫ|), and the relation in (56) concerning the
state variables is proven. The proofs of the other relations are similar and actually easier,
so we omit them. �

5.4. Set separation. Given a process (S̄, w0, w, α, ζ, y0, y, yℓ, β) of the rescaled problem
(Pe), let us introduce the total cost component

(58) yc(s) := Ψ(y0(s), y(s)) + yℓ(s), s ∈ [0, S̄]. 18

Setting ȳc(s) := Ψ(ȳ0(s), ȳ(s)) + ȳℓ(s), s ∈ [0, S̄], for any δ > 0 we define the δ-
reachable set Rδ and its projection R

′
δ as

Rδ :=

{ (

y0, y, yc, β
)

(S̄) : (S,w0, w, α, ζ, y0, y, yℓ, β) verifies
d
(

(S̄, y0, y, yc, β), (S̄, ȳ0, ȳ, ȳc, β̄)
)

< δ

}

⊆ R
1+n+1+1,

R
′
δ :=

{

(y0, y, yc)(S̄) : (y0, y, yc, β)(S̄) ∈ Rδ

}

⊆ R
1+n+1.

When all cj = (w0
j , wj , aj , ζj) , j = 1, . . . N , are needle variations, we define the set

E :=































v0
cj ,s̄j

M(S̄, s̄j) · vcj ,s̄j
∂Ψ̄
∂t ((S̄)v

0
cj ,s̄j +

∂Ψ̄
∂x (S̄) ·M(S̄, s̄j) · vcj ,s̄j + µ(S̄, s̄j) · vcj ,s̄j + vℓ

cj ,s̄j

|w|(1 + ζj)− |w̄(s̄j)|









,

j = 1, . . . N























where
∂Ψ̄

∂t
(S̄) :=

∂Ψ

∂t
((ȳ0, ȳ)(S̄)), ∂Ψ̄

∂x (S̄) :=
∂Ψ
∂x ((ȳ

0, ȳ)(S̄)), and its projection E′,

E′ :=



















v0
cj ,s̄j

M(S̄, s̄j) · vcj ,s̄j
∂Ψ̄
∂t ((S̄)v

0
cj ,s̄j +

∂Ψ̄
∂x (S̄) ·M(S̄, s̄j) · vcj ,s̄j + µ(S̄, s̄j) · vcj ,s̄j + vℓ

cj ,s̄j



 ,

j = 1, . . . N















.

Finally, let us define the convex cones

(59) R := span+(E) ⊂ R
1+n+1+1, R′ := span+(E′) ⊂ R

1+n+1,

where, for a given subset Θ of a vector space, span+(Θ) denotes its positive span.

Lemma 5.5. (i) The set R′ is a Boltyanski approximating cone of the set R′
δ at the point

(ȳ0, ȳ, ȳc)(S̄).
(ii) When all cj = (w0

j , wj , aj , ζj), for j = 1, . . . , N , are needle variations, the set R

is a Boltyanski approximating cone of the set R at (ȳ0, ȳ, ȳc, β̄)(S̄).

18 The function yc can be obviously regarded as the solution of
dyc

ds
=

(

∂Ψ
∂t

w0 + ∂Ψ
∂x

(

f(y,α)w0 +
∑m

i=1 gi(y)w
i
)

+ ℓe(y, w0, w, α)
)

(1 + ζ), yc(0) = Ψ(0, x̌, 0).
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Proof. Let us set yc~ǫ(s) := Ψ((y0~ǫ, y~ǫ)(s)) + yℓ~ǫ(s), where yℓ~ǫ, y0~ǫ, and y~ǫ are as in Lemma
5.4. By (50) we get

yc~ǫ(S̄)− ȳc(S̄) =

N
∑

j=1

εj

(∂Ψ̄

∂t
(S̄)v0

cj ,s̄j +
∂Ψ̄

∂x
(S̄) ·M(S̄, s̄j) · vcj ,s̄j

+ µ(S̄, s̄j) · vcj ,s̄j + vℓ
cj ,s̄j

)

+ o(|~ǫ|).

Therefore, part (ii) of the statement follows from Lemma 5.4.
To prove part (i), for some ε̃ > 0 sufficiently small, let us define the function F :

(0,+∞)N∩ε̃BN → R
1+n+2 by setting F (~ǫ) :=

(

y0~ǫ(S̄), y~ǫ(S̄), yc~ǫ(S̄)
)

. It is straightforward

to prove that F (~ǫ) =
(

y0(S̄), y(S̄), yc(S̄))
)

+ L · ~ǫ + o(|~ǫ|), where the linear operator L ∈

Hom(RN ,R1+n+1) is defined by

L · ~ǫ :=
N
∑

j=1

εj





v0
cj ,s̄j

M(S̄, s̄j)vcj ,s̄j
∂Ψ̄
∂t (S̄)v

0
cj ,s̄j +

∂Ψ̄
∂x (S̄) ·M(S̄, s̄j) · vcj ,s̄j + µ(S̄, s̄j) · vcj ,s̄j + vℓ

cj ,s̄j



 .

Hence (i) is proved, in that R′ = L · (0,+∞)N . �

Let us consider the profitable set P and its projection P
′, defined as

P := T×
(

−∞, ȳc(S̄)
)

× [0,K]
⋃
{

(ȳ0, ȳ, ȳc, β̄)(S̄)
}

,

P
′ := T×

(

−∞, ȳc(S̄)
)
⋃
{

(ȳ0, ȳ, ȳc)(S̄)
}

,

and let Γ be a Boltyanski approximating cone for the target T at (ȳ0, ȳ)(S̄). Recalling that
β̄(S̄) < K, one trivially checks that the sets

P := Γ× R− × {0}, P ′ := Γ× R−,

are Boltyanski approximating cones of P at (ȳ0, ȳ, ȳc, β̄)(S̄) and of P
′ at (ȳ0, ȳ, ȳc)(S̄),

respectively. We will need the following elementary result:

Lemma 5.6. There exists δ > 0 such that the sets P
′ and R

′
δ are locally separated at

(ȳ0, ȳ, ȳc)(S̄).

Proof. Suppose by contradiction that for every δ > 0 the sets P
′ and R

′
δ are not lo-

cally separated at (ȳ0, ȳ, ȳc)(S̄). Then, given δ ∈ (0,K − β̄(S̄)),19 there exists a process
(S̄, w0, w, α, ζ, y0, y, yℓ, β) of (35) verifying

(y0, y, yc)(S̄) ∈ R
′
δ ∩ P

′, d((y0, y, yc, β), (ȳ0, ȳ, ȳc, β̄)) < δ.

This implies that β(S̄) ≤ δ + β̄(S̄) < K, thus the final point (y0, y, yc, β)(S̄) ∈ Rδ ∩ P.
Hence, for every δ ∈ (0,K − β̄(S̄)) the sets P and Rδ are not locally separated, which
contradicts the local optimality of the reference process. �

By Lemma 5.6 the projected reachable set R′
δ is locally separated from the projected

profitable set P′ at (ȳ0, ȳ, ȳc)(S̄), for some δ > 0. Therefore, since R′ and P ′ are approxi-
mating cones to R

′
δ and P

′, respectively, and P ′ is not a subspace, in view of Theorem 1.1
there exists a vector (ξ0, ξ, ξc) ∈ R

1+n+1 verifying

0 6= (ξ0, ξ, ξc) ∈ R′⊥ ∩ (−P ′⊥).

Since P ′⊥ = Γ⊥ × R+, one gets (ξ0, ξ) ∈ −Γ⊥, ξc = −λ ≤ 0, and

ξ0v
0 + ξ · v + ξcv

c ≤ 0 ∀(v0,v,vc) ∈ R′.

19This interval is not empty, for β̄(S̄) < K.
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By the definition of R′ given in (59), the latter relation is verified if and only if

(

ξ0 − λ
∂Ψ̄

∂t
(S̄)
)

v0
cj ,s̄j +

(

ξ − λ
∂Ψ̄

∂x
(S̄)
)

·M(S̄, s̄j) · vcj ,s̄j

− λ
(

µ(S̄, s̄j) · vcj ,s̄j + vℓ
cj ,s̄j

)

≤ 0, for all j = 1, . . . , N.

Therefore, setting

(p0, p)(s) :=

(

ξ0 − λ
∂Ψ̄

∂t
(S̄) ,

(

ξ − λ
∂Ψ̄

∂x
(S̄)

)

·M(S̄, s)− λµ(S̄, s)

)

,

we obtain that the multiplier (p0, p, λ) ∈ R×AC
(

[0, S̄],Rn
)

×R+ verifies

(60) p0v
0
cj ,s̄j + p(s̄j) · vcj ,s̄j − λvℓ

cj ,s̄j ≤ 0, for every j = 1, . . . , N,

the non-triviality condition (13), and (byM(S̄, S̄) = Id, µ(S̄, S̄) = 0) the non-transversality
condition (15). Moreover, by the definitions of M(S̄, ·) and µ(S̄, ·), the path p solves the
adjoint equation (17). Finally, for a needle variation generator cj = (w0

j , wj , aj , ζj), by

(60) we get

H
(

ȳ(s̄j), p0, p(s̄j), 0, λ, w
0
j (1 + ζj), wj(1 + ζj), aj

)

−H
(

ȳ(s̄j), p0, p(s̄j), 0, λ, w̄
0(s̄j), w̄(s̄j), ᾱ(s̄j)

)

≤ 0,

while, for a bracket-like variation generator cj = Bj, we obtain p(s̄j) · Bj(ȳ(s̄j)) ≤ 0.

5.5. Conclusion of the proof. To conclude the proof we need to extend the previous
inequalities to almost all s ∈ [0, S̄] and all variations generators c ∈ V. This will be
achieved via density arguments coupled with infinite intersection criteria. Though this is
a quite standard procedure, we give the details for the sake of completeness. By Lusin’s

Theorem, one has that (0, S̄)Leb =
+∞
⋃

k=0

Ek, where E0 has null measure and, for every

k ∈ N, the set Ek is compact and the restriction to Ek of the measurable map considered
in Definition 5.3 is continuous. For every k, let Dk ⊆ Ek be the set of density points20

of Ek. Since Dk and Ek have the same measure, by the Lebesgue density Theorem, D =
+∞
⋃

k=0

Dk ⊂ [0, S̄] has full measure.

Definition 5.7. Let F be an arbitrary subset of D ×V. We say that a triple (p̄0, p̄, λ) ∈
R
1+n+1 verifies (P)F if λ ≥ 0 and, setting p0 := p̄0, p(·) := p̄ ·M(S̄, ·), one has that:

(i) (p0, p(S̄)) + λ

(

∂Ψ̄

∂t
(S̄) ,

∂Ψ̄

∂x
(S̄)

)

∈ −Γ⊥;

(ii) for every (s, c) ∈ F with c = (w0, w, a, ζ), the following inequality

H
(

ȳ(s), p0, p(s), 0, λ, w
0(1+ζ), w(1+ζ), a

)

≤ H
(

ȳ(s), p0, p(s), 0, λ, w̄
0(s), w̄(s), ᾱ(s)

)

holds

true, while for every (s, c) ∈ F such that c = B ∈ B0, p(s) · B(ȳ(s)) ≤ 0.

For any given subset F ⊂ D ×V, let us set

Λ(F ) :=
{

(p̄0, p̄, λ) ∈ R
1+n+1 : |(p̄0, p̄, λ)| = 1, (p̄0, p̄, λ) verifies (P)F

}

.

Our goal consists in showing that Λ(F ) 6= ∅ for some F comprising pairs (s, c), such that
the union of all times s is a full measure subset of [0, S̄] and c can range over all V. Clearly,
for arbitrary subsets F1, F2 of D×V the sets Λ(F1),Λ(F2), if not empty, are compact and

20 We recall that t ∈ Ẽ ⊂ R is a density point for Ẽ if lim
δ→0+

meas
(

[t − δ, t+ δ] ∩ Ẽ
)

2δ
= 1.
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Λ(F1 ∪ F2) = Λ(F1) ∩Λ(F2). By the previous step, Λ(F ) 6= ∅ as soon as F is finite and of
the form

(61)
{

(s̄1, c1), . . . , (s̄N , cN )
}

, with 0 =: s̄0 < s̄1 < · · · < s̄N < S̄.

In order to prove that Λ(F ) 6= ∅ for an arbitrary finite set F ⊂ D×V, we have to show that

it is non-empty even when F =
{

(s̄1, c1), . . . , (s̄N , cN )
}

with 0 =: s̄0 ≤ s̄1 ≤ · · · ≤ s̄N < S̄

and one allows that s̄j = s̄j+1 for some j = 0, . . . , N − 1. To this end, observe that every
s̄j belongs to some set of density points Dk, that we denote Dk(j). Hence, there exist
sequences (s̄j,i)i∈N, for j = 1, . . . , N, such that

s̄j,i ∈ Dk(j) and s̄1,i < · · · < s̄N,i, for all i ∈ N, and lim
i→+∞

s̄j,i = s̄j,

For each i ∈ N, set Fi :=
{

(s̄1,i, c1), . . . , (s̄N,i, cN )
}

, so that Fi has the form (61) and

hence Λ(Fi) 6= ∅. For each i ∈ N, let us select (p̄0i , p̄i, λi) ∈ Λ(Fi). Since |(p̄0i , p̄i, λi)| = 1,
by possibly taking a subsequence, we can assume that (p̄0i , p̄i, λi) converges to a point
(p̄0, p̄, λ) with |(p̄0, p̄, λ)| = 1. By the definition of Dk(j)(⊆ Ek(j)), passing to the limit as
i → +∞ one obtains that (p̄0, p̄, λ) ∈ Λ(F ). Hence we have proved that Λ(F ) 6= ∅ as soon
as card(F ) < +∞ 21. In particular, if we take a finite family of subsets F1, . . . , FM ⊂ D×V

with card(Fi) < +∞ for all i = 1, . . . ,M , we get Λ(F1) ∩ · · · ∩ Λ(FM ) = Λ
(

∪M
i=1Fi

)

6=

∅. Hence
{

Λ(F ) : F ⊂ D × V, card(F ) < +∞
}

is a family of compact subsets such

that the intersection of each finite subfamily is non-empty. This implies that also the
(infinite) intersection of all Λ(F ) over finite sets F is non-empty. Therefore Λ(D ×V) =

Λ
(

⋃

card(F )<+∞ F
)

=
⋂

card(F )<+∞ Λ(F ) 6= ∅. This means that there exists some covector

(p̄0, p̄, λ) 6= 0 such that, setting p0 := p̄0, p(·) := p̄·M(S̄, ·), for all time s in the full-measure
set D, one gets

H
(

ȳ(s), p0, p(s), 0, λ
)

= H
(

ȳ(s), p0, p(s), 0, λ, w̄
0(s), w̄(s), ᾱ(s)

)

= max
(w0,w,a,ζ)∈W×A×[− 1

2
, 1
2 ]
H
(

ȳ(s), p0, p(s), 0, λ, w
0(1 + ζ), w(1 + ζ), a

)

= max
ζ∈[− 1

2
, 1
2 ]
(1 + ζ)H

(

ȳ(s), p0, p(s), 0, λ
)

,

(62)

(63) p(s) ·B(ȳ(s)) ≤ 0, for all B ∈ B
0.

The first relation in (62) coincides with (18), while the last one immediately implies
(19). Finally, observe that B ∈ B0 if and only if −B ∈ B0, so that (63) yields (25). This
concludes the proof, since, in case ȳ(S̄) > 0, the strengthened non-triviality condition (14)
can be obtained as in the proof of the First Order Maximum Principle.

Acknowledgments

This research is partially supported by the Padua University grant SID 2018 “Con-
trollability, stabilizability and infimum gaps for control systems”, prot. BIRD 187147;
by the “National Group for Mathematical Analysis, Probability and their Applications”
(GNAMPA-INdAM) (Italy); by the European Union under the 7th Framework Programme
FP7-PEOPLE-2010-ITN Grant agreement number 264735-SADCO; by FAPERJ (Brazil)
trough the “Jovem Cientista do Nosso Estado” Program; by CNPq and CAPES (Brazil)
and by the Alexander von Humboldt Foundation (Germany).

21Here card(Q) denotes the cardinality of the set Q



NONLINEAR IMPULSIVE SYSTEMS 25

References

[1] A. Agrachev, D. Barilari, and U. Boscain, A comprehensive introduction to Sub-Riemannian

Geometry, Cambridge University Press, 2019.
[2] A. Agrachev and Y. Sachkov, Control theory from the geometric viewpoint, vol. 87, Springer

Science & Business Media, 2013.
[3] M. Aronna, J. Bonnans, A. Dmitruk, and P. Lotito, Quadratic order conditions for bang-singular

extremals, Numer. Algebra, Control Optim., AIMS Journal, special issue dedicated to Professor Hel-
mut Maurer on the occasion of his 65th birthday, 2 (2012), pp. 511–546.

[4] M. Aronna, M. Motta, and F. Rampazzo,Necessary conditions involving Lie brackets for impulsive

optimal control problems, arXiv preprint 1903.06109v1, (2019).
[5] M. Aronna and F. Rampazzo, L1 limit solutions for control systems, J. Differential Equations, 258

(2015), pp. 954–979.
[6] A. Arutyunov, V. Dykhta, and F. Pereira, Necessary conditions for impulsive nonlinear optimal

control problems without a priori normality assumptions, J. Optim. Theory Appl., 124 (2005), pp. 55–
77.

[7] A. Arutyunov, D. Karamzin, and F. Pereira, L. S. Pontryagin’s maximum principle for optimal

impulsive control problems, Dokl. Akad. Nauk, 432 (2010), pp. 439–442.
[8] A. Arutyunov, D. Karamzin, F. Pereira, and N. Chernikova, Second-order necessary optimality

conditions in optimal impulsive control problems, Differential Equations, 54 (2018), pp. 1083–1101.
[9] D. Azimov and R. Bishop, New trends in astrodynamics and applications: Optimal trajectories for

space guidance, Annals of the New York Academy of Sciences, 1065 (2005), pp. 189–209.
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E-mail address: rampazzo@math.unipd.it


	1. Introduction
	1.1. Notations and preliminaries

	2. The optimization problems
	2.1. The original optimal control problem
	2.2. The space-time optimal control problem
	2.3. The space-time embedding

	3. A First Order Maximum Principle
	4. A Higher Order Maximum Principle
	4.1. Higher order conditions
	4.2. Fully impulsive processes

	5. Proof of Theorem ??
	5.1. Rescaling the problem
	5.2. Needle and bracket-like approximations
	5.3. Composition of variations
	5.4. Set separation
	5.5. Conclusion of the proof

	Acknowledgments
	References

