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Abstract

In this paper, we consider an acoustic wave transmission problem with mixed boundary conditions of
Dirichlet, Neumann, and impedance type. We will derive a formulation as a direct, space-time retarded
boundary integral equation, where both Cauchy data are kept as unknowns on the impedance part of the
boundary. This requires the definition of single-trace spaces which incorporate homogeneous Dirichlet and
Neumann conditions on the corresponding parts on the boundary. We prove the continuity and coercivity
of the formulation by employing the technique of operational calculus in the Laplace domain.

Keywords: acoustic wave equation, transmission problem, impedance boundary condition, retarded po-
tentials, convolution quadrature

1 Introduction

1.1 Transmission Problems

In physics and engineering there are many important applications where it is essential to obtain information
on material properties inside (large) solid objects, e.g., the detection of oil reservoirs, the investigation of the
interior of rocks and soil to understand its stability properties, or the assessment of the ice volume in glaciers
to name just a few of them. For this purpose, typically, a wave is sent into the solid. Then the scattered wave
is recorded and used to solve the governing mathematical equations for the quantity of interest.

Our goal is to employ the method of integral equation to reformulate the scalar wave equation as a system
of space-time boundary integral equations; standard references on this topic include [2,6,15,16]. The Cauchy
data, i.e., Dirichlet and Neumann traces on the boundary, of the wave (or boundary densities if an indirect
formulation is employed) is determined as the solution of a system of retarded potential integral equations
(RPIE). To investigate well-posedness we employ the Laplace transform and prove continuity and coercivity
with respect to the frequency variable. These techniques in the context of numerical analysis go back to the
pioneering works [2,8,11,12]; a monograph on this topic is [15] and some further developments can be found,
e.g., in [9] and [3].

We emphasize that the derivation of coercive and continuous integral equations in the Laplace domain is key
for their discretization by convolution quadrature. However, here we will focus on the continuous formulation
and prove its well-posedness.

We consider a bounded Lipschitz domain Ω ⊆ R3 partitioned as in Fig. 1 by an interface ΓJ into Ω1,Ω2.
The results of this paper also hold for exterior problems in Ω0 := R\Ω with bounded interface ΓJ lying in the
exterior domain, and when splitting Ω to any finite number of subdomains. In order to simplify the notations,
we restrict ourselves to the case of the interior problem and two subdomains.

For i ∈ {0, 1, 2} we set Γi := ∂Ωi and employ the convention that ni is the unit normal vector field at ∂Ωi
pointing into the exterior of Ωi. The skeleton manifold is defined by Σ := Γ1 ∪ Γ2.
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Figure 1: Cross section of the computational domain. The domain Ω is split into the disjoint open sets Ω1,Ω2,
corresponding to different materials, and their interface ΓJ := Ω1 ∩ Ω2. We set Γ1 := ∂Ω1 and Γ2 := ∂Ω2.
The unbounded exterior domain is denoted by Ω0 := R3 \ Ω. For j = 0, 1, 2 the unit normal vector pointing
outside Ωj is denoted by nj . The auxiliary domains ΩZD

,ΩZN
are used in the definition of X0 (cf. (2.15)).

We also introduce a partition of the boundary, corresponding to different types of boundary conditions
(see again Fig. 1): we split Σ = ΓD ∪ ΓN ∪ ΓI ∪ ΓJ; transmission (jump) conditions will be imposed at ΓJ,
Dirichlet boundary conditions at ΓD, Neumann boundary conditions at ΓN, and an impedance condition at
ΓI; we do not require ΓD,ΓN,ΓI to be connected – however we assume the relative interiors of these subsets
are disjoint.

The new mathematical aspect of our setting is the presence of an interface and general mixed boundary
conditions of Dirichlet, Neumann, and impedance type. We do not impose restrictions on where the interface
meets the domain boundary.

The resulting transmission initial-boundary value problem to be solved for u ∈ H1 ([0, T ]× Ω) is

p2
1∂

2
t u1 − a2

1∆u1 =0 in Ω1 × [0, T ],

p2
2∂

2
t u2 − a2

2∆u2 =0 in Ω2 × [0, T ],

[u]ΓJ =

[
a2 ∂u

∂n

]
ΓJ

=0 on ΓJ × [0, T ],

u =gD on ΓD × [0, T ],

a2 ∂u

∂n
− T ∗ u̇ =dI on ΓI × [0, T ],

a2 ∂u

∂n
=dN on ΓN × [0, T ],

u(0, ·) = u̇(0, ·) =0 in Ω;

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

(1.1f)

(1.1g)

here and in the following, we employ the shorthand u̇ for ∂tu; ∗ denotes the convolution in time, for i ∈ {1, 2},
ui := u|Ωi and the functions a and p are defined on Ω0 ∪ Ω1 ∪ Ω2:

a|Ω` = a`, p|Ω` = p`, ` = 0, 1, 2 (1.2)

via the material-dependent constant coefficients a1, a2, p1, p2 > 0. They are extended to positive functions
a0(x), p0(x) to the exterior domain Ω0, such that a, p are continuous across the interface Γ0, while they are,
in general, discontinuous along Γ0 at points where the interface meets ∂Ω. The temporal convolution operator
T may depend on p and a. For the boundary data we assume (postponing the introduction of the relevant
Sobolev spaces to Section 3):

gD ∈ H̃1/2
I (ΓD), dN ∈ H̃−1/2

I (ΓN), dI ∈ H̃−1/2
N (ΓI).
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In (1.1c), the direction is not relevant; [·]ΓJ
denotes the jump of a function across the interface ΓJ. The

temporal convolution operator T is a Dirichlet-to-Neumann (DtN) operator or an approximation to it. The
simplest approximation is given by impedance boundary conditions: T (t) = −apδ0(t), where δ0 is the Dirac
distribution. At this point we are vague concerning the function spaces which are mapped by T (t) in a
continuous way but postpone this to Section 2.2.2, where also a dissipative condition will be imposed on T (t)
(Assumption 2.3).

1.2 Retarded Potential Integral Equations

To formulate a RPIE we need trace operators. For vector-valued functions w, sufficiently smooth in Ωi, we
define the normal component trace by

γn,iw :=
〈
ni, w|Γi

〉
, i ∈ {0, 1, 2} (1.3)

where for v = (v1, v2, v3)>,w = (w1, w2, w3)> ∈ C3 we set 〈v,w〉 :=
∑3
j=1 vjwj (without complex conjugation)

and the unit normal vector ni points outside Ωi.
For u sufficiently regular in Ωi and a as in (1.2), the Dirichlet (D) and Neumann (N) trace operators are

denoted by γD,i, γN,i and are given by

γD,iu :=
(
u|Ωi

)
|Γi , γN,iu :=γn,i

(
a2
i∇u|Ωi

)
, (1.4)

where the index i ∈ {0, 1, 2} indicates that the limit is taken from the subdomain Ωi. We also need a notation
for the case where the limit of a function u regular enough in the complement Ωci := R3 \ Ωi is taken from
outside Ωi (and the unit normal ni still points outside Ωi):

γcD,iu :=
(
u|Ωci

)
|Γi , γcN,iu :=γn,i

(
a2
i∇u|Ωci

)
.

Each part of the skeleton Σ is endowed with an intrinsic orientation. We introduce (for j = 1, 2) the
orientation functions Nj : Γj → {−1, 1} to take into account its compatibility with the induced orientations
on Γj :

Nj(x) = 〈nj(x),nΣ(x)〉 for all x ∈ Γj . (1.5)

However we assume that nΣ always points outside Ω on ∂Ω.
At this point we can define, for u regular enough in Ω,

γDu := u|Ω|Σ, γNu :=
〈
nΣ, a

2∇u|Ω
∣∣
Σ

〉
.

Finally, we will use the same symbols for the continuous extensions of the trace operators to appropriate
Sobolev spaces.

We also need the potential Gi: for ϕ = (ϕD, ϕN)> ∈Xi

(Gi ∗ϕ)(t, x) :=

∫ t

0

∫
Ωi

ki(t− τ, x− y)ϕN − γN,i;yki(t− τ, x− y)ϕD dy dτ,

where γN,i;y denotes the co-normal derivative with respect to the y-variable; for i ∈ {1, 2} the kernel function
ki and the (Cauchy-trace) space Xi will be defined in (2.1) and (2.8).

Kirchhoff’s representation formula then gives for the solution u of (1.1) (recall that for i ∈ {1, 2}, ui := u|Ωi)

ui = Gi ∗ γiui,

and applying the trace operator on both sides leads to the Calderón identity

γiui = γiGi ∗ γiui.

By inserting the initial and boundary data (1.1d,1.1f) and the equation (1.1e) one ends up with a system of
retarded potential boundary integral equations for the unknown Cauchy data of the boundary ∂Ω and interface
ΓJ: 


−K1 V1

W1 K′1
−K2 V2

W2 K′2

− δ0

2

 ∗

γD,1u
γN,1u
γD,2u
γN,2u

 = 0, (1.6)
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where the known boundary data are given by (1.1d – 1.1f), and incorporated as part of the unknown traces. We
emphasize that there are several ways to include boundary and jump conditions and we explain our approach
via “single trace spaces” in Section 2.2.2. Here, Vi, Ki, K′i, Wi are scalar retarded potential integral operators
(RPIOs) (defined in Section 2.1).

On the interface we have two sets of traces: those from Ω1 and those from Ω2 and, in order to close this
system of RPIEs, we supplement it by the interface conditions (1.1c)

[u]ΓJ =

[
a2 ∂u

∂n

]
ΓJ

= 0 on ΓJ × [0, T ]. (1.7)

In our approach, we will eliminate these coupling conditions by employing a single-trace ansatz (cf. [4]) which
automatically ensures (1.7).

1.3 Outline and main results

For the analysis of the above system of RPIE (as well as for applying the convolution quadrature for its numer-
ical solution), these equations are transformed to a system of integro-differential equations in the frequency
domain. For this, equation (1.6) is considered as a convolution equation of the abstract form

(O ∗ φ)(t) = r(t), ∀t ∈ [0, T ] . (1.8)

The unknown function φ : [0, T ]→X maps to an appropriate function space X. If the operator O is replaced
by the inverse Laplace transform of its Laplace transform O:

r(t) =

∫ t

0

1

2πi

∫
c+iR

es(t−τ)O(s) dsφ(τ) dτ =
1

2πi

∫
c+iR

O(s)

∫ t

0

es(t−τ)φ(τ) dτ ds,

the inner integral z(s; t) :=
∫ t

0
es(t−τ)φ(τ) dτ is the solution of the initial value problem

ẏ(t) = sy(t) + φ y(0) = 0 ∀t ∈ [0, T ] .

The convolution equation can be reformulated as the following system for the unknown φ and the auxiliary
function z, for some σ0 > 0:

1

2πi

∫
σ0+iR

O (s) z(s, t) ds = r (t)

∂tz(s; t) = sz(s; t) + φ(t), z(s; 0) = 0

 ∀t ∈ [0, T ] , ∀s ∈ σ0 + iR. (1.9)

The solution φ of (1.9) is then also the solution of (1.8).

Remark 1.1 The analysis of the Laplace-transformed retarded potential integral operator (RPIO) is key for
the analysis of the system of RPIE (1.6) since well-posedness results can be transferred from the Laplace to
the time domain via the Herglotz theorem, see [3]. For the numerical discretization of (1.9) by convolution
quadrature, the starting point is the discretization of the ODE in (1.9) by a time stepping method. Also here,
the error analysis relies on frequency-explicit coercivity and continuity properties of the integral operator in
the Laplace domain.

Main results In this paper, we will derive a formulation of the wave transmission problem with mixed
boundary conditions as a retarded potential integral equation for a single trace space of the form (1.8) as well
as an equivalent integro-differential equations of the form (1.9).

Our main theoretical result is the proof of well-posedness of the RPIE (1.6 – 1.7). This will be obtained by
the methodology as explained in Remark 1.1 by proving coercivity and continuity of the Laplace-transformed
RPIO.

Organization of the paper Sections 2.1–2.3 are devoted to the derivation of the system of RPIEs; the
retarded acoustic single and double layer potentials are defined and the corresponding boundary integral
operators are introduced by applying the trace and normal trace operator to these potentials. We end up

4



with a system of integral equations for the unknown Cauchy data. Note that we employ a single-trace ansatz
which involves single Cauchy data across the interface in accordance with the transmission conditions.

In Section 2.4 we propose to incorporate the impedance boundary condition by keeping both Cauchy data
in the equation. The advantage of this approach is that only boundary integral operators are involved which
are defined on closed surfaces.

In Section 3 we will prove well-posedness of the system of integral equations by showing coercivity and
continuity of this system of RPIEs. This allows us to determine the analyticity class of the Laplace-transformed
system and implies existence and uniqueness.

2 Retarded Boundary Integral Equations for the Wave Transmis-
sion Problem

After having sketched the approach we will detail here the operators, function spaces and Calderón identities,
and formulate the wave transmission problem with mixed boundary conditions (1.1) as a retarded boundary
integral equation in variational form (see (2.19)) for the unknown boundary traces. This requires some
preliminaries: first, we introduce the relevant boundary integral operators (Section 2.1). We have chosen the
direct approach based on Kirchhoff’s representation formula (Section 2.2, (2.10)) which involves the Calderón
projector. This operator is expressed in the Laplace domain by using the block operator A(s) (see (2.12)) which
is also needed for the definition of the sesquilinear form in the variational formulation (2.17). In Section 2.3 we
incorporate the Dirichlet and Neumann boundary conditions and finally, in Section 2.4, we take into account
the impedance-type condition. The variational formulation of the RPIE in the Laplace domain is formulated
as Problem 2.7 while the equation in the time domain is presented in (2.19).

2.1 Background: Layer Potentials and Boundary Integral Operators

We recall retarded potentials on two-dimensional compact, orientable manifolds in R3 and start by introducing
some notation. We write Γi,S := Γi ∩ ΓS for S ∈ {D,N, I, J} i.e., the index i ∈ {0, 1, 2} corresponds to the
domain Ωi while S indicates the type of boundary conditions imposed.

Recall the definition of a as in (1.2). Let u be a function in R3 \ Σ; for j ∈ {0, 1, 2}, we assume that the
traces γD,j , γN,j , γ

c
D,j , γ

c
N,j applied to u are well-defined. Then the jump [·]D,j and co-normal jump [·]N,j across

Γj are defined by
[u]D,j := γcD,ju− γD,ju and [u]N,j := γcN,ju− γN,ju.

The averages are defined by

{u}D,j :=
1

2

(
γD,ju+ γcD,ju

)
and {u}N,j :=

1

2

(
γN,ju+ γcN,ju

)
.

This allows us to introduce the following boundary integral operators. The fundamental solution of the wave
equation in R3, more precisely, for the operator p2

i ∂
2
t − a2

i∆ is (see e.g., in the Laplace domain: [16, p. 486,
(18)], [15, Eq. (2.10)]; in cylindrical coordinates: [6]):

ki(t, z) :=
δ0

(
t− pi

ai
‖z‖
)

4πa2
i ‖z‖

for z ∈ R3 \ {0}. (2.1)

Let the coefficient functions a, p be as in (1.2). For functions ϕ : [0, T ]× Γi → C and ψ : [0, T ]× Γi → C
we define the retarded acoustic single and double layer potentials for all (t, x) ∈ [0, T ]×

(
R3 \ Γi

)
:

(Si ∗ ϕ)(t, x) :=

∫
Γi

(ki(·, ‖x− y‖) ∗ ϕ(·, y))(t) dsy =

∫
Γi

ϕ
(
t− pi‖x−y‖

ai
, y
)

4πa2
i ‖x− y‖

dsy,

(Di ∗ ψ)(t, x) :=

∫
Γi

γN,i;y(ki(·, ‖x− y‖) ∗ ψ(·, z))(t)|z=y dsy

=

∫
Γi

γN;i;y

ψ
(
t− pi‖x−y‖

ai
, z
)

4πa2
i ‖x− y‖

∣∣∣∣∣∣
z=y

dsy.

(2.2a)

(2.2b)
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In [8, Eq. (10)] an explicit expression for the integrand of the double layer potential is provided.
These potentials give rise to the following boundary integral operators. For functions ϕ,ψ : [0, T ]×Γj → C

we set
Vj ∗ ϕ := {Sj ∗ ϕ}D;j , Kj ∗ ψ := {Dj ∗ ψ}D;j ,

K′j ∗ ϕ := {Sj ∗ ϕ}N;j , Wj ∗ ψ := −{Dj ∗ ψ}N;j

on [0, T ]× Γj . For j ∈ {0, 1, 2}, it holds almost everywhere on [0, T ]× Γj

γD,j(Sj ∗ ϕ) = Vj ∗ ϕ, γN,j(Sj ∗ ϕ) =

(
K′j +

δ0
2

)
∗ ϕ,

γD,j(Dj ∗ ψ) =

(
Kj −

δ0
2

)
∗ ψ, γN,j(Dj ∗ ψ) = −Wj ∗ ψ.

For κ ∈ R, let
Cκ := {s ∈ C | Re s > κ} .

Convention 2.1 Throughout this paper, σ0 > 0 denotes a fixed positive constant. The constants in the
estimates in this paper will depend continuously on σ0 ∈ R>0 and a1, a2, p1, p2 ∈ R>0 in (1.2). These constants,
possibly, tend to infinity if one or more of the quantities σ0, a1, a2, p1, p2 tend to zero or infinity. We will
suppress this dependence in our notation.

We employ the convention that, if the two functions ϕ and ϕ̂ appear in the same context, then the latter
is the Laplace transform of the former. We recall the formal definition of the Laplace transform L and its
inverse L−1 by

q̂(s) := (Lq) (s) =

∫ ∞
0

e−st q(t) dt and q(t) =
(
L−1q̂

)
(t) =

1

2πi

∫
σ0+iR

est q̂(s) ds.

For the convolution quadrature, we apply the Laplace transform with respect to time and obtain operators in
the frequency variable s ∈ C0. Thus, we end up with the Laplace transformed potentials for (s, x) ∈ C0×R3\Γi
and i ∈ {0, 1, 2}:

(Si(s)ϕ) (x) :=

∫
Γi

k̂i(s, x− y)ϕ(y) dsy,

(Di(s)ψ) (x) :=

∫
Γi

(
γN;i;yk̂i(s, x− y)

)
ψ(y) dsy,

(2.3a)

(2.3b)

for

k̂i(s, z) :=
exp

(
−spi‖z‖ai

)
4πa2

i ‖z‖
, z ∈ R3 \ {0}

and corresponding boundary integral operators on Γj given for s ∈ C0 by

Vj(s)ϕ := {Sj(s)ϕ}D;j , Kj(s)ψ := {Dj(s)ψ}D;j ,

K′j(s)ϕ := {Sj(s)ϕ}N;j , Wj(s)ψ := −{Dj(s)ψ}N;j .

Note that the Laplace transform L applied to the convolution potentials satisfies

L (Si ∗ ϕ) (s) = Si(s)ϕ̂(s), L (Di ∗ ψ) (s) = Di(s)ψ̂(s)

and analogous relations hold for the boundary integral operators in the time and Laplace domain. It is also
well known that the following jump relations hold (see [15, Section 1.3]):

[Sj(s)ϕ]D;j = 0, [Sj(s)ϕ]N;j = −ϕ,

[Dj(s)ψ]D;j = ψ, [Dj(s)ψ]N;j = 0.
(2.4)
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2.2 Representation Formula

2.2.1 Sobolev Spaces

First, we introduce Sobolev spaces in domains and on manifolds – standard references are [1], [10]. Let Ω ⊂ R3

be a bounded Lipschitz domain with boundary Γ. The unit normal vector field n on Γ is chosen to point into
the exterior of Ω and exists almost everywhere. We denote the L2(Ω)-scalar product and norm by

(u, v)Ω :=

∫
Ω

u(x)v(x) dx and ‖u‖Ω := (u, u)
1/2
Ω ,

and suppress the subscript Ω if the domain is clear from the context. For α ∈ R≥0, let Hα (Ω) denote the
usual Sobolev space with norm ‖·‖Hα(Ω) and Hα

0 (Ω) is the closure of C∞0 (Ω) := {u ∈ C∞ (Ω) | suppu ⊂ Ω}
with respect to the ‖·‖Hα(Ω) norm. Its dual space is denoted by H−α (Ω) := (Hα

0 (Ω))
′
. On the boundary Γ,

we define the Sobolev space Hα(Γ), α ≥ 0, in the usual way. Note that the range of α for which Hα(Γ) is
defined may be limited, depending on the global smoothness of the surface Γ; for Lipschitz surfaces, α can be
chosen in the range [0, 1]; for α < 0, the space Hα(Γ) is the dual of H−α (Γ) (see, e.g., [13, p. 98]).

We define, for R,S ∈ {D,N, I}, R 6= S, the Sobolev spaces

H±1/2(ΓR) :=
{
φ|ΓR such that φ ∈ H±1/2(Σ)

}
,

H̃
±1/2
S (ΓR) :=

{
φ|ΓR such that φ ∈ H±1/2(Σ) and φ|ΓS = 0

}
.

(2.5)

(2.6)

We denote by 〈·, ·〉Γj the dual pairing between H1/2 (Γj) and H−1/2 (Γj) (without complex conjugation) so

that 〈u, v〉Γj is the continuous extension of the L2 (Γj) scalar product. We can thus introduce the symmetric

and skew-symmetric dual pairing: for j = 1, 2 and φ = (φD, φN)>,ψ = (ψD, ψN)> ∈ H1/2(Γj)×H−1/2(Γj)

〈φ,ψ〉+Γj := 〈φD, ψN〉Γj + 〈φN, ψD〉Γj ,

〈φ,ψ〉−Γj := 〈φD, ψN〉Γj − 〈φN, ψD〉Γj .

(2.7a)

(2.7b)

2.2.2 Trace Operators and Trace Spaces

Note that the trace operators γD;i, γN;i in (1.4) can be extended to continuous operators acting on functions
in the Sobolev space H (∆,Ωi) :=

{
u ∈ H1 (Ωi) | ∆u ∈ L2 (Ωi)

}
. We collect the range of these traces into the

space of Cauchy traces, and the multi-trace space:

Xi := H1/2 (Γi)×H−1/2 (Γi) for i ∈ {1, 2} and Xmult := X1 ×X2, (2.8)

and equip these spaces with the graph norm:

‖φi‖Xi
:=
(
‖φi,D‖2H1/2(Γi)

+ ‖φi,N‖2H−1/2(Γi)

)1/2

for φi = (φi,D, φi,N) ∈Xi,

‖φ‖Xmult :=
√
‖φ1‖

2
X1

+ ‖φ2‖
2
X2

for φ = (φ1,φ2) ∈Xmult.

The single trace space is a subspace of Xmult and defined by

Xsingle :=

{((
φi,D
φi,N

))
i=1,2

∈Xmult | ∃
(

v ∈ H1
(
R3
)

w ∈H
(
R3,div

)) ,∀i = 1, 2

(
φi,D = γD;iv
φi,N = γn;iw

)}
, (2.9)

where the components of φi are denoted by φi,D, φi,N; the space H
(
R3,div

)
is defined e.g., in [7, p. 26].

The corresponding Cauchy trace operators are given by

γi : H (∆,Ωi)→Xi, γi(v) = (γD,iv, γN,iv)
>
,

γC = (γ1,γ2) : H (∆,Ω1)×H (∆,Ω2)→Xmult.

It is known from [5, Lem. 3.5] that the range of γi is dense in Xi. Since the spaces H1/2 (Γi) and H−1/2 (Γi)
are dual to each other, we have that the Cauchy trace spaces are in self-duality with respect to the symmetric
dual pairing 〈·, ·〉+Γi .

7



In the context of the wave equation, these (spatial) trace spaces are considered as spaces of values of
time-depending functions (distributions). To define the relevant function space we first consider the Schwartz
class

S (R) :=
{
ϕ ∈ C∞ (R) | ∀k ∈ N0, ∀p ∈ P (R) : pϕ(k) ∈ L∞ (R)

}
,

where P (R) denotes the space of polynomials (with complex coefficients). S (R) can be equipped with a metric
that makes this space complete. A tempered distribution with values in a Banach space X is a continuous linear
map f : S (R) → X. A causal tempered distribution with values in X is a tempered X-valued distribution
such that

f(ϕ) = 0 ∀ϕ ∈ S(R) such that suppϕ ⊂ ]−∞, 0[ ,

and following the notation in [15] we write

f ∈ CT(X), CT(X) : space of causal tempered distributions with values in X.

Definition 2.2 The space1 TD (X) consists of all (possibly distributional) derivatives of continuous causal
X-valued functions with, at most, polynomial growth.

We employ the direct method to transform the wave equation into a space-time boundary integral equation
and start with the Kirchhoff representation formula. The key potential is given by

(Giφ) (t, x) :=

∫ t

0

〈γiki(t− τ, x− ·),φ(τ)〉−Γi dτ

for φ ∈ TD (Xi) and ki as in (2.1).
Then, every ui ∈ TD

(
H1 (∆,Ωi)

)
that satisfies p2

i ∂
2
t ui − a2

i∆ui = 0 and ui(0) = ∂tui(0) = 0 also satisfies
the representation formula (see [15, Prop. 3.5.1])

ui = Gi ∗ γiui.

We introduce the Calderón projector Pi(t) : Xi →Xi by

Pi(t) := γiGi(t).

ui ∈ TD
(
H1 (∆,Ωi)

)
solves the homogeneous wave equation p2

i ∂
2
t ui−a2

i∆ui = 0 in Ωi and ui(0) = ∂tui(0) = 0,
if and only if ( [15, Section 3.5])

(Pi(·)− δ0) ∗ γiui(·) = 0. (2.10)

This equation will be our starting point for the formulation of problem (1.1) as a system of integral equations.
Next we transform this equation to the Laplace domain; cf. Remark 1.1. The Laplace transform of (2.10) is
given by

(Pi(s)− Id)γiûi(s) = 0, (2.11)

where Id denotes the identity operator and

Pi := γiGi with Gi(φ̂(s); s, x) :=
〈
γik̂i(s, x− ·), φ̂(s)

〉−
Γi

for φ̂(s) ∈Xi, s ∈ Cσ0
.

The operator Pi(s)− Id
2 is denoted as the Calderón operator. It turns out, that this operator is not optimally

scaled in terms of the frequency variable s for its stability analysis. We employ a further transformation and
introduce the frequency dependent diagonal matrix and frequency-weighted trace operators

D(s) := diag
[
s1/2, s−1/2

]
∈ C2×2;γi(s) := D(s)γi = (s1/2γD,i, s

−1/2γN,i)
> and γC(s) := diag (D(s),D(s))γC.

This allows us to define the scaled version of the block Calderón operator A(s) := diag(A1(s),A2(s)), with

Ai(s) := D(s)

(
Pi(s)−

Id

2

)
D−1(s) :=

[
−Ki(s) sVi(s)
1
sWi(s) K′i(s)

]
for i = 1, 2. (2.12)

Then, (2.11) can be written in the form (
A(s)− Id

2

)
γC(s)û = 0.

We will also need the following assumption on T .

1TD for “time domain”.
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Assumption 2.3 The operator T (t) in (1.1e) and (2.16) is the inverse Laplace transform of a bounded linear

transfer operator T(s) : H̃
1/2
D (ΓI)→ H̃

−1/2
N (ΓI) depending analytically on s ∈ C0, more precisely

(T ∗ ϕ)(t) = L−1 (Tϕ̂) (s)

for any function ϕ ∈ TD
(
H̃

1/2
D (ΓI)

)
; T(s) satisfies the following (dissipative) sign property:

Re
〈
T(s)ϕ̂, ϕ̂

〉
ΓI
≤ 0 ∀ϕ̂ ∈ H̃1/2

D (ΓI). (2.13)

The following duality holds (the proof is a slight generalization of the well-known duality of H̃1/2(Γ) and
H−1/2(Γ), which can be found e.g. in [13, Theorem 3.14])

H̃
±1/2
D (ΓI) =

(
H̃
∓1/2
N (ΓI)

)′
.

Remark 2.4 If the transfer operator T, in the case of impedance boundary condition, is given by minus

identity, T = −Id, then Assumption 2.3 is satisfied trivially since H̃
1/2
D (ΓI) ⊆ L2 (ΓI) ⊆ H̃−1/2

N (ΓI).
If T0(s) denotes the standard DtN operator on ∂Ω, one could define T(s) := Z ′T0(s)Z, where Z :

H̃
1/2
D (ΓI) → H1/2 (Γ0) is a linear and bounded extension operator, e.g., the minimal H1/2 (Γ0) extension

and the projection Z ′ : H−1/2 (Γ0) → H̃
−1/2
N (ΓI) is its dual. The sign condition then is inherited from the

well-known sign property (see [14, Eq. (2.6.93)]) of T0(s) via

Re 〈T(s)ϕ̂, ϕ̂〉ΓI
= Re

〈
T0ϕ̂

ext
0 , ϕ̂ext

0

〉
Γ0
≤ 0 ∀ϕ̂ ∈ H1/2

D (ΓI) ,

where ϕ̂ext
0 denotes the extension of ϕ̂ ∈ H̃1/2

D (ΓI) to Γ0 by zero.

To deal with problem (1.1) we incorporate Dirichlet and Neumann boundary conditions into the space
Xsingle. For this we extend the Dirichlet part ΓD to a closed boundary (see Fig. 1) of a bounded domain
ΩZD ⊂ Ω0 (i.e., ΩZD lies outside the domain Ω where the problem is defined) such that ∂ΩZD ∩ Σ = ΓD. We
extend the Neumann part ΓN in the same way and obtain ΩZN . Then we set

H1
D

(
R3
)

:=
{
v ∈ H1

(
R3 \ ΩZD

)
| v|∂ΩZD

= 0
}
,

HN

(
R3,div

)
:=
{
w ∈H

(
R3 \ ΩZN

,div
)
|
〈

nZN
, w|∂ΩZN

〉
= 0
}
,

(2.14a)

(2.14b)

and define the space of Cauchy traces of global fields whose Dirichlet and Neumann components vanish on ΓD

and ΓN respectively; this space naturally arises when offsetting Cauchy traces with the boundary data (see
Section 2.3).

X0 :=

{((
φi,D
φi,N

))
i=1,2

∈Xsingle | ∃
(

v ∈ H1
D

(
R3
)

w ∈HN

(
R3,div

))∀i = 1, 2 :

(
φi,D = γD,iv
φi,N = γn,iw

)}
. (2.15)

2.3 Treatment of the Neumann and Dirichlet boundary conditions

Now the transmission conditions (1.1c) are built into the function space Xsingle; we take into account the
boundary conditions on ΓD and ΓN next.

To obtain a variational formulation for the unknown Cauchy data of the transmission problem (1.1) with

balanced test and trial spaces we consider an offset function b̂ = b̂(s) ∈ H1(∆,Ω) such that(
γDb̂

)
|ΓD = ĝD,

(
γNb̂

)
|ΓN = d̂N.

In the simplest case, the function b̂ ∈ H1(∆,Ω) is given and the boundary data gD, dN in the problem

formulation (1.1d,1.1f) were obtained from b̂; in this case an immediate extension to Σ is available. If b̂ is
not given, it can be computed as the solution of a well-posed boundary value problem for −∆ with mixed
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boundary conditions. We emphasize that, as far as the boundary problem is concerned, only the traces of b̂
are required.

We set

u0 := u− b with b := L−1b̂

and observe that γC(s)(û(s)− b̂(s)) = γC(s)û0 ∈X0.
The boundary conditions (1.1) for the new function u0 now read

γDu
0|ΓD

= 0, γNu
0|ΓN

= 0, γNu
0|ΓI
− T ∗ (γDu̇0)|ΓI

= dI + γNb|ΓI
+ T ∗

(
γDḃ

)
|ΓI
. (2.16)

Note that the expression T ∗ (γDu̇
0)|ΓI

is well defined, because our assumptions on gD imply that b|ΓI
can be

extended by zero on ΓD.

Since u̇0 vanishes on ΓD and ∂u0

∂n vanishes on ΓN, the function γC(s)û0
∣∣
ΓI

belongs to H̃
1/2
D (ΓI)×H̃−1/2

N (ΓI);

(see (2.6)).
Let Φ = (φ1,D, φ1,N, φ2,D, φ2,N)>,Ψ = (ψ1,D, ψ1,N, ψ2,D, ψ2,N)> ∈ Xmult. In analogy to (2.7), we define

the pairing on Σ:

〈Φ,Ψ〉+Σ :=

2∑
j=1

(
〈φj,D, ψj,N〉Γj + 〈ψj,D, φj,N〉Γj

)
and on the open surface ΓI:

〈Φ,Ψ〉+ΓI
:=

2∑
j=1

(
〈φj,D, ψj,N〉Γj,I + 〈ψj,D, φj,N〉Γj,I

)
.

Proposition 2.5 For any Φ,Ψ ∈X0, 〈Φ,Ψ〉+Σ = 〈Φ,Ψ〉+ΓI
.

Proof. Fix j ∈ {1, 2}; since φj,D|ΓD
= 0 and φj,N|ΓN

= 0 (and the same properties hold for Ψ) we get

〈φj,D, ψj,N〉Γj = 〈φj,D, ψj,N〉Γj,I + 〈φj,D, ψj,N〉Γj,J .

Moreover since Φ ∈Xsingle, φ1,D|ΓJ
= φ2,D|ΓJ

and φ1,N|ΓJ
= −φ2,N|ΓJ

(and the same properties hold for Ψ).
Hence

〈Φ,Ψ〉+Σ =

2∑
j=1

(
〈φj,D, ψj,N〉Γj + 〈ψj,D, φj,N〉Γj

)

=

2∑
j=1

(
〈φj,D, ψj,N〉Γj,I + 〈ψj,D, φj,N〉Γj,I

)
+ 〈φ1,D, ψ1,N〉Γ1,J

+ 〈φ2,D, ψ2,N〉Γ2,J

+ 〈ψ1,D, φ1,N〉Γ1,J
+ 〈ψ2,D, φ2,N〉Γ2,J

= 〈Φ,Ψ〉+ΓI
.

These two pairings therefore coincide on X0.
Define for Φ,Ψ ∈Xmult:

a0 (s; Φ,Ψ) :=

〈(
A(s)− Id

2

)
Φ,Ψ

〉+

Σ

,

`0 (s; Ψ) :=a0(s;γC(s)b̂,Ψ).

(2.17a)

(2.17b)

Problem 2.6 Find the Laplace transformed Cauchy traces γC(s)û0 ∈X0

a0(s;γC(s)û0, Ψ̂(s)) =− `0
(
s; Ψ̂(s)

)
∀Ψ̂(s) ∈X0, s ∈ Cσ0

;

γNû
0|ΓI
− T

(
γDsû

0
)
|ΓI

=d̂I − γNb̂|ΓI
+ T

(
γDsb̂

)
|ΓI
,

(2.18a)

(2.18b)

where the second equation expresses the boundary condition on ΓI, which will be incorporated in the variational
formulation in Section 2.4.
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2.4 Variational formulation including impedance boundary conditions

Finally, we incorporate the impedance boundary condition (1.1e).

We start by defining, for φ̂ ∈X0, functions φ̂D, φ̂N on ΓI ⊆ ∂Ω such that

φ̂D|Γj,I :=φ̂j,D|Γj,I , φ̂N|Γj,I :=φ̂j,N|Γj,I , for j = 1, 2.

Due to the definition of X0 we have φ̂D ∈ H̃1/2
D (ΓI), φ̂N ∈ H̃−1/2

N (ΓI).
We treat the Dirichlet and Neumann boundary condition as explained in Section 2.3, but incorporate the

impedance condition of (2.16) keeping both the Dirichlet and Neumann trace as unknowns in the resulting

equations. Recall the impedance condition (cf. (2.16)), and set ξ̂ := γC(s)û0:

ξ̂N(s)− T(s)ξ̂D(s) = s−1/2d̂I(s)− s−1/2(γN,0b̂(s))|ΓI + s1/2T(s)(γD,0b̂(s))|ΓI .

This gives rise to the definition of the sesquilinear form aimp(s) : X0×X0 → C and right-hand side functional
`imp(s) : X0 → C:

aimp(s;φ,ψ) :=
〈
φN − T(s)φD, ψD

〉
ΓI
,

`imp(s;ψ) :=

〈
s−1/2d̂I(s)− s−1/2 γNb̂(s)

∣∣∣
ΓI

+ s1/2T(s)γDb̂(s)
∣∣∣
ΓI

, ψD

〉
ΓI

.

Problem 2.7 (Mixed Formulation of Acoustic Mixed Transmission Problem) Find φ̂ ∈ X0 such
that

amix
(
s; φ̂, ψ̂

)
= `mix

(
s; ψ̂

)
∀ψ̂ ∈X0,

where amix(s) := a0(s) + aimp(s) and `mix(s) := `0(s) + `imp(s).

The corresponding formulation in the time domain is the following.

Problem 2.7 (Time domain formulation of Acoustic Mixed Transmission Problem) For any t ∈
[0, T ], find φ ∈X0 such that〈(

A(t)− δ0
2

)
∗ φ(t),ψ

〉+

Σ

+
〈
φN − T (t) ∗ φD(t), ψD

〉
ΓI

=〈(
A(t)− δ0

2

)
∗ γC(t)b(t),ψ

〉+

Σ

+

〈
∂
−1/2
t dI(t)− ∂−1/2

t γNb̂(t)
∣∣∣
ΓI

+ T (t) ∗ ∂1/2
t γDb(t)|ΓI

, ψD

〉
ΓI

∀ψ ∈X0,

(2.19)

where γC(t) :=
(
∂

1/2
t γD,1, ∂

−1/2
t γN,1, ∂

1/2
t γD,2, ∂

−1/2
t γN,2

)>
,

A(t) :=


−K1(t) ∂tV1(t)
∂−1
t W1(t) K′1(t)

−K2(t) ∂tV2(t)
∂−1
t W2(t) K′2(t)


and the notation ∂µt for µ ∈ R is defined as the inverse Laplace transform applied to the multiplication by sµ,

i.e., ∂µt φ := L−1(sµφ). For µ = −1, ∂−1
t is the antiderivative with respect to t: ∂−1

t φ(t) =
∫ t

0
φ(τ) dτ .

The solution of this problem gives the trace γC(t)u0. The solution of the wave equation (1.1) is then
obtained in two steps: first the offset γC(t)b is added to obtain the solution for the boundary data (Section 2.3);
then the solution in the whole domain can be obtained using the layer potentials (Section 2.1).
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Remark 2.8 It is also possible to use (2.16) to eliminate the Neumann data on ΓI. This would lead to a
system of integral equations containing the minimal number of unknowns: the Neumann data on ΓD, the
Dirichlet data on ΓN∪ΓI, the Dirichlet and Neumann data on ΓJ. The drawback is that a function d̂ on Ω has
to be constructed, which provides a skeleton extension of the impedance data; more precisely, d̂ must satisfy

−s−1/2 γNd̂
∣∣∣
ΓI

− s1/2TγDd̂
∣∣∣
ΓI

= s−1/2d̂I + s−1/2 γNb̂
∣∣∣
ΓI

+ s1/2TγDb̂
∣∣∣
ΓI

,[
d̂
]

ΓJ

=

[
a2 ∂d̂

∂n

]
ΓJ

= 0,

γNd̂
∣∣∣
ΓN

= 0,

γDd̂
∣∣∣
ΓD

= 0.

3 Well-Posedness of Time Domain Boundary Integral Equation

In the following we will recall mapping properties of the single and double layer potentials and their corre-
sponding integral equations.

For j ∈ {0, 1, 2}, the proofs of the following propositions (Prop. 3.2 and the 3rd and 6th inequality in
Prop. 3.1, (3.1)) go back to [2]. We have used here the estimates for the boundary integral operators as in [9].

Proposition 3.1 Let s ∈ Cσ0
and recall (1.2). Then, for j ∈ {0, 1, 2}, the operators Sj(s), Dj(s), Vj(s),

Kj(s), K
′
j(s), Wj(s), satisfy the following mapping properties: for all Φ ∈ H−1/2 (Γj) and Ψ ∈ H1/2 (Γj) there

is some constant C independent of s such that

Sj(s) : H−1/2 (Γj)→ H1
(
R3
)
, ‖Si(s)Φ‖H1(R3) ≤ C|s|‖Φ‖H−1/2(Γj)

,

Dj(s) : H1/2 (Γj)→ H1
(
R3 \ Γj

)
, ‖Di(s)Ψ‖H1(R3\Γj) ≤ C|s|

3/2‖Ψ‖H1/2(Γj)
,

Vj(s) : H−1/2 (Γj)→ H1/2 (Γj) , ‖Vj(s)Φ‖H1/2(Γj)
≤ C|s|‖Φ‖H−1/2(Γj)

,

Kj(s) : H1/2 (Γj)→ H1/2 (Γj) , ‖Kj(s)Ψ‖H1/2(Γj)
≤ C|s|3/2‖Ψ‖H1/2(Γj)

,

K′j(s) : H−1/2 (Γj)→ H−1/2 (Γj) ,
∥∥K′j(s)Φ∥∥H−1/2(Γj)

≤ C|s|3/2‖Φ‖H−1/2(Γj)
,

Wj(s) : H1/2 (Γj)→ H−1/2 (Γj) , ‖Wj(s)Ψ‖H−1/2(Γj)
≤ C|s|2‖Ψ‖H1/2(Γj)

.

(3.1)

Next we analyse the operators Ai(s) which appear (through A(s)) in the definition of the sesquilinear form
(2.17a)

Proposition 3.2 Let s ∈ Cσ0
and recall (1.2). Then, for i ∈ {1, 2}, Ai(s) defined in (2.12) satisfies the

coercivity estimate

Re

〈
Ai(s)

(
ψ
ϕ

)
,

(
ψ
ϕ

)〉+

Γi

≥ βmin
{

1, |s|2
} Re s

|s|2
(
‖ϕ‖2H1/2(Γi)

+ ‖ψ‖2H−1/2(Γi)

)
,

for all (ϕ,ψ) ∈ H1/2 (Γi)×H−1/2 (Γi), for some β > 0 and for all s ∈ Cσ0
.

Proof. Fix i ∈ {1, 2}. A straightforward calculation shows that〈
Ai(s)

(
ϕ
ψ

)
,

(
κ
ρ

)〉+

Γi

=

〈(
ρ
−κ

)
,Bi(s)

(
ψ
−ϕ

)〉
Γi

for B(s) :=

[
sVi(s) Ki(s)
−K′i(s) 1

sWi(s)

]
.

This operator was analyzed in [3, Lem. 3.1]: it maps H−1/2 (Γi)×H1/2 (Γi) continuously into H1/2 (Γi)×
H−1/2 (Γi) and satisfies the coercivity estimate

Re

〈(
ψ
ϕ

)
,Bi(s)

(
ψ
ϕ

)〉
Γi

≥ βmin
{

1, |s|2
} Re s

|s|2
(
‖ϕ‖2H1/2(Γi)

+ ‖ψ‖2H−1/2(Γi)

)
,

for all (ϕ,ψ) ∈ H1/2 (Γi)×H−1/2 (Γi).

12



Lemma 3.3 The sesquilinear form
(
φ̂, ψ̂

)
7→
〈
A(s)φ̂, ψ̂

〉+

Σ
is continuous and coercive: there exist constants

η, ζ > 0, possibly depending on σ0 but not on s ∈ Cσ0
such that∣∣∣∣〈A(s)φ̂, ψ̂

〉+

Σ

∣∣∣∣ ≤ η|s|2 (∥∥∥φ̂∥∥∥
Xmult

∥∥∥ψ̂∥∥∥
Xmult

)
∀φ̂, ψ̂ ∈Xmult,

Re
〈
A(s)φ̂, φ̂

〉+

Σ
≥ ζRe s

|s|2
∥∥∥φ̂∥∥∥2

Xmult
∀φ̂ ∈Xmult.

Proof. We write ‖sVj‖ short for the natural operator norm, i.e., ‖sVj‖ = ‖sVj‖H1/2(Γj)←H−1/2(Γj)
and apply

this convention also for ‖Kj‖,
∥∥K ′j∥∥,

∥∥ 1
sWj

∥∥ denoting the natural operator norms according to the mapping
properties listed in (3.1). We employ the mapping properties as in (3.1) and obtain, for any

φ̂ =


φ̂1,D

φ̂1,N

φ̂2,D

φ̂2,N

 , ψ̂ =


ψ̂1,D

ψ̂1,N

ψ̂2,D

ψ̂2,N

 ∈Xmult

∣∣∣∣∣∣
2∑
j=1

〈
Aj(s)

(
φ̂j,D
φ̂j,N

)
,

(
ψ̂j,D

ψ̂j,N

)〉+

Xj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2∑
j=1

(〈
−Kj φ̂j,D + sVj φ̂j,N, ψ̂j,N

〉
Γj

+

〈
1

s
Wj φ̂j,D + K′j φ̂j,N, ψ̂j,D

〉
Γj

)∣∣∣∣∣∣
≤ max
j∈{1,2}

max

{
‖sVj‖, ‖Kj‖,

∥∥K′j∥∥,∥∥∥∥1

s
Wj

∥∥∥∥}
×

2∑
j=1

(∥∥∥φ̂j,D∥∥∥
H

1
2 (Γj)

+
∥∥∥φ̂j,N∥∥∥

H− 1
2 (Γj)

)(∥∥∥ψ̂j,D∥∥∥
H

1
2 (Γj)

+
∥∥∥ψ̂j,N∥∥∥

H− 1
2 (Γj)

)
(3.1)

≤ C max{|s|2, |s|}2
∥∥∥φ̂∥∥∥

Xmult

∥∥∥ψ̂∥∥∥
Xmult

,

where the constant C is the same as in (3.1); since |s| ≥ σ0, taking η = 2C min {1, 1/σ0} the continuity
estimate follows. The coercivity directly follows from Prop. 3.2.

Remark 3.4 The properties of 〈A(s)·, ·〉+Σ as stated in Lemma 3.3 trivially carry over to its restriction to any

subspace of Xmult. For our application, the subspace X0 ⊂Xmult is of particular interest.

Lemma 3.5 The sesquilinear form a0(s) : Xmult ×Xmult → C defined in (2.17a) is continuous: there exists
a constant η > 0 independent of s such that∣∣∣a0

(
s; φ̂, ψ̂

)∣∣∣ ≤ (1

2
+ ηmax

{
|s|2, |s|

})∥∥∥φ̂∥∥∥
Xmult

∥∥∥ψ̂∥∥∥
Xmult

∀φ̂, ψ̂ ∈Xmult.

Proof. For the second term in (2.17a) related to “− Id
2 ” we get 1

2

∣∣∣∣〈φ̂, ψ̂〉+

Xmult

∣∣∣∣ ≤ 1
2

∥∥∥φ̂∥∥∥
Xmult

∥∥∥ψ̂∥∥∥
Xmult

. For

the term in (2.17a) related to A(s), we use Lemma 3.3, and the continuity estimate follows.
Next, we will prove continuity and coercivity of amix(s);

Theorem 3.6 The sesquilinear form amix(s) is coercive: for the constant ζ > 0 as in Lemma 3.3, it holds

Re amix
(
s; φ̂, φ̂

)
≥ ζRe s

|s|2
∥∥∥φ̂∥∥∥2

Xmult
∀φ̂ ∈X0,∀s ∈ Cσ0

.

Proof. From (2.17a), (2.5) and the definition of aimp(s) we obtain

Re amix(s; φ̂, φ̂) = Re

(〈
A(s)φ̂, φ̂

〉+

Σ
+ aimp(s; φ̂, φ̂)− 1

2

〈
φ̂, φ̂

〉+

ΓI

)
= Re

(〈
A(s)φ̂, φ̂

〉+

Σ
+
〈
φ̂N − T(s)φ̂D, φ̂D

〉
ΓI

− 1

2

〈
φ̂, φ̂

〉+

ΓI

)
= Re

(〈
A(s)φ̂, φ̂

〉+

Σ
−
〈
T(s)φ̂D, φ̂D

〉
ΓI

)
.
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We employ Assumption 2.3 and Lemma 3.3 to obtain

Re amix(s; φ̂, φ̂) ≥ Re
〈
A(s)φ̂, φ̂

〉+

Σ
≥ ζRe s

|s|2
∥∥∥φ̂∥∥∥2

Xmult
,∀φ̂ ∈X0, s ∈ Cσ0

.

Theorem 3.7 The sesquilinear form amix(s) is continuous: there exists a constant η > 0 independent of
s ∈ Cσ0

such that for all s ∈ Cσ0∣∣∣amix(s; φ̂, ψ̂)
∣∣∣ ≤ (‖T(s)‖

H
−1/2
N (ΓI)←H1/2

D (ΓI)
+ ηmax

{
|s|2, |s|

})∥∥∥φ̂∥∥∥
Xmult

∥∥∥ψ̂∥∥∥
Xmult

∀φ̂, ψ̂ ∈X0.

Proof. The definition of amix(s) implies∣∣∣amix
(
s; φ̂, ψ̂

)∣∣∣ ≤ ∣∣∣a0(s; φ̂, ψ̂)
∣∣∣+

∣∣∣∣〈T(s)φ̂D, ψ̂D

〉
ΓI

∣∣∣∣.
Lemma 3.5 gives an estimate for the first term, while the continuity of the second term follows from the

continuity of T: ∣∣∣∣〈T(s)φ̂D, ψ̂D

〉
ΓI

∣∣∣∣ ≤ ‖T(s)‖
H

−1/2
N (ΓI)←H1/2

D (ΓI)

∥∥∥φ̂∥∥∥
Xmult

∥∥∥ψ̂∥∥∥
Xmult

.

Coercivity in time domain is obtained as in [15, Section 3.7]: recall the coercivity estimate:

Re amix
(
s; φ̂, φ̂

)
≥ ζRe s

|s|2
∥∥∥φ̂∥∥∥2

Xmult
≥ ζσ0

∥∥∥s−1φ̂
∥∥∥2

Xmult
,

since Re s ≥ σ0; from

Re amix(s; φ̂, φ̂) = Re

(〈
A(s)φ̂, φ̂

〉+

Σ
−
〈
T(s)φ̂D, φ̂D

〉
ΓI

)
,

we get that the time domain form of the coercivity estimate is, for φ ∈ C0([0,∞[ ,X0), σ0 > 0:

Re

∫ ∞
0

e−2σ0t
(〈

A(t) ∗ φ,φ
〉+

Σ
−
〈
T (t) ∗ φD, φD

〉
ΓI

)
dt ≥ ζσ0

∫ ∞
0

e−2σ0t
∥∥∂−1

t φ(t)
∥∥2

Xmult .
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