arXiv:1907.05980v2 [math.OC] 29 Mar 2021

CONVERGENCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR
THE NUMERICAL SOLUTION OF MEAN FIELD CONTROL AND GAMES: I
THE ERGODIC CASE.

RENE CARMONA & MATHIEU LAURIERE

ABSTRACT. We propose two algorithms for the solution of the optimal control of ergodic McKean-Vlasov
dynamics. Both algorithms are based on approximations of the theoretical solutions by neural networks,
the latter being characterized by their architecture and a set of parameters. This allows the use of
modern machine learning tools, and efficient implementations of stochastic gradient descent.

The first algorithm is based on the idiosyncrasies of the ergodic optimal control problem. We provide
a mathematical proof of the convergence of the approximation scheme, and we analyze rigorously the
approximation by controlling the different sources of error. The second method is an adaptation of the
deep Galerkin method to the system of partial differential equations issued from the optimality condition.

We demonstrate the efficiency of these algorithms on several numerical examples, some of them being
chosen to show that our algorithms succeed where existing ones failed. We also argue that both methods
can easily be applied to problems in dimensions larger than what can be found in the existing literature.
Finally, we illustrate the fact that, although the first algorithm is specifically designed for mean field
control problems, the second one is more general and can also be applied to the partial differential
equation systems arising in the theory of mean field games.

Key words. Ergodic Mean Field Control, Ergodic Mean Field Game, Numerical Solution, Machine

Learning, Rate of Convergence
AMS subject classification. 656M12, 656M99, 93E20, 93E25

1. INTRODUCTION

The purpose of this paper is to develop numerical schemes for the solution of Mean Field Games
(MFGs) and Mean Field Control (MFC) problems. The mathematical theory of these problems has
attracted a lot of attention in the last decade (see e.g. [28] 14, [§, (16, 17]), and from the numerical
standpoint several methods have been proposed, see e.g. [2 [1} 15l 10, 20] and [29] [34, 6] for finite
time horizon MFG and MFC respectively, and [5], 13| [11] for stationary MFG. However, despite recent
progress, the numerical analysis of these problems is still lagging behind because of their complexity,
in particular when the dimension is high. Here, we choose a periodic model to demonstrate that pow-
erful tools developed for machine learning applications can be harnessed to produce efficient numerical
schemes performing better than existing technology in the solution of these problems. We derive system-
atically the mathematical formulation of the optimization problem amenable to the numerical analysis,
and we prove rigorously the convergence of a numerical scheme based on feed-forward neural network
architectures. Our first method is designed for the optimal control of McKean-Vlasov dynamics, which
is the primary purpose of the present work. Besides the intrinsic motivations for this type of problems,
a large class of MFGs has a variational structure and can be recast in this form, see e.g. [28, [7]. Fur-
thermore, the second method we present tackles the PDE system characterizing optimality conditions
satisfied by the solution, and it can be directly adapted to solve the PDE system arising in MFGs as
we shall explain.

2 RENE CARMONA & MATHIEU LAURIERE

In the subsequent analysis of finite horizon mean field control problems, see [I§], the thrust of the
study will be the numerical solution of Forward-Backward Stochastic Differential Equations (FBSDEs)
of the McKean-Vlasov type, which generalizes to the mean-field setting techniques introduced in [24]
for standard BSDEs. Indeed, the well established probabilistic approach to MFGs and MFC posits that
the search for Nash equilibria for MFGs, as well as the search for optimal controls for MFC problems,
can be reduced to the solutions of FBSDEs of this type. See for example the books [16] [17] for a
comprehensive exposé of this approach. Here, we concentrate on the ergodic problem for which we
can provide a direct analytic approach. Our mathematical analysis of the model leads to an infinite
dimensional optimization problem for which we can identify and implement numerical schemes capable
of providing stable numerical solutions. We prove the theoretical convergence of these approximation
schemes and we demonstrate the efficiency of their implementations by comparing their outputs to
solutions of benchmark models obtained either by analytical formulas or by a deterministic method
for Partial Differential Equations (PDEs). Note that when a game is potential, the search for Nash
equilibria can be reformulated as an optimal control problem for a central planner, and because of
the McKean-Vlasov nature of this control problem, it can be reformulated as a deterministic control
problem for which the state is a probability distribution. This control problem can be tackled by
dynamic programing, leading to a Hamilton-Jacobi equation. This is the approach taken in [21]. See
also [35] for a recent contribution.

The reasons for our choice of the ergodic case as a prime testbed for our numerical schemes are
twofold. First, the absence of the time variable lowers the complexity of the problem and gives us the
opportunity to avoid the use of FBSDEs and to rely on strong approximation results from the theory
of feed-forward neural networks which we use in this paper. Second, the objective function can be
expressed as an integral over the state space with respect to the invariant measure of the controlled
system, leading to a much simpler deterministic optimization problem. Indeed, after proving that the
state dynamics at the optimum are given by a gradient diffusion, we postulate the form of the invariant
measure and optimize accordingly. Last, the choice of the ergodic case for the first model which we
consider is motivated by a forthcoming work on reinforcement learning [19].

As a final remark we emphasize that, while all the results and numerical implementations concern
Markovian controls and equilibria, in most cases, both theoretical and numerical results still hold for
controls and strategies being feedback functions of the history of the path of the state of the system.
The theoretical extensions are straightforward, and the numerical implementations rely on the so-called
recurrent neural networks instead of the standard feed-forward networks. We refrain from discussing
these extensions to avoid the extra technicalities, especially in the notations and the statements of the
results.

The paper is structured as follows. In Section [2| we present the framework of ergodic mean field
control, derive formally necessary optimality conditions and introduce a setting amenable to numerical
computations. To wit, we provide the mathematics that lead to natural introductions of the algorithms
and their analyses. The first algorithm is presented in Section [3] We study rigorously its convergence
and its accuracy by proving bounds on the approximation and estimation errors (see Theorems |§| and
respectively). Section 4] is dedicated to the second of our algorithms. It is based on a variation over
the deep Galerkin solver for the PDE system stemming from the aforementioned optimality conditions.
Computational results are presented in Section [5l They demonstrate the applicability and the perfor-
mance of our algorithms. Several test cases are considered. They were chosen for comparison purposes
because they can be solved either explicitly via analytical formulas, or numerically by classical PDE
system solvers like in the case of ergodic mean field games.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 3

Acknowledgements: Both authors were partially supported by ARO grant AWD1005491 and NSF award
AWD1005433. Also, we would like to thank two anonymous referees for a rigorous review of the original
version of the paper. Their insightful comments helped us improve significantly the quality of the paper.

2. ErRcobpIC MEAN FIELD CONTROL

Since we are not aiming at the greatest possible generality, for the sake of definiteness, we work with
a standard infinite horizon drift-controlled It6 process:

dX; = b(Xt, ﬁ(Xt), Oét)dt + dW;

where W = (W})i=0 is a d-dimensional Wiener process and where we use the notation £(X;) for
the law of the random variable X;. For notational convenience only, we take the volatility coefficient
to be 1. We limit ourselves to stationary controls e = (ay)i=0 of the form oy = ¢(X;) given by
deterministic measurable and time-independent feedback functions ¢ taking values in a closed convex
subset A of a Euclidean space R¥. We shall assume that the function b is measurable and bounded on
RY x Py(R?) x A. The space Po(R?) is the space of probability measures on R? having a finite second
moment. We assume that it is equipped with the 2-Wasserstein distance and the corresponding Borel
o-field. Since we consider controls in feedback form, the above controlled state evolution is in fact a
stochastic differential equation, but according to Veretennikov’s classical result, this equation:

(1) dXy = b(Xy, L(Xy), 9(Xy))dt + dW;

has a unique strong solution. See for example [39, 40] and [33, Theorem 2]. We say that the feedback
control function ¢ is admissible if it is continuous and if the solution X = (X});> is ergodic in the sense
that it has a unique invariant measure which we denote by v?, and that £(X;) converges toward v? in
Po(R%). The ergodic theory of McKean-Vlasov stochastic differential equations has recently received a
lot of attention. See for example [12, [40] 41] for some specific ergodicity sufficient conditions.

2.1. Ergodic Mean Field Costs. The goal of the ergodic control problem is to minimize the cost:

J(¢) = lim sup ;EUT F(X0, £(Xy), ng(Xt))dt].

T—oo 0

For the sake of definiteness, we assume that the running cost function f : R? x Pa(R%) x A 3 (z, u, @) >
f(z, u,) € R is continuous and bounded. The cost can be rewritten in the form:

1 T
) 90) = timsup £ [< (o 6Ot g = £(X0)

T—o0

if we use the standard notation (¢,) for the integral of the function ¢ with respect to the measure
v. When ¢ is admissible, the invariant measure v® appears as the limit as ¢ — o0 of py, and if f is
uniformly continuous in the measure argument, uniformly with respect to the other two arguments,
then we can take the limit 7' — o0 in the formula giving the ergodic cost and obtain:

(3) J(d) ={f (v, 8(),v") = F(v?, ¢)

if, for each probability measure p € P2(R%), and each time-independent A-valued feedback function ¢
on R%, we use the notation:

(4) () = f £ (@ 6(2)) pi(da).

4 RENE CARMONA & MATHIEU LAURIERE

The controlled process solving being ergodic, we can characterize the unique invariant probability
measure as the solutions of the non-linear Poisson equation:

(5) %AV —div(b(-,v, ¢(-))v) = 0.

So the goal of our mean field control problem is to minimize, over the admissible feedback functions ¢,
the quantity:

(6) J(¢) = F(v?,9),
with F' defined above in , and % solving the Poisson equation .

2.2. The Adjoint Equation and Optimality Conditions. In order to characterize the minima
of the functional .J, we compute its Gateaux derivative. To do so, we assume that the function b :
R? x Po(RY) x A 3 (z,pu,«) — bz, i,) € R? is continuously differentiable in the variables (z,q) €
R? x A c R? x RF and has a continuous functional (i.e. linear) differential in the variable p when g
is viewed as an element of the (linear) space M(R?) of finite signed measures on R%. We denote this
derivative by D,b. We stress that it is different from the Wasserstein derivative or L-derivative in the
sense of Lions.

Let ¢ be fixed and let 1 provide a small perturbation of ¢. We first compute, at least formally, the
derivative of the probability v in the direction v, namely:

1
(7) SvPV = lim —[p?TY — 9]
eN0 €

when we view probability measures as elements of the space M(R?) of finite (signed) measures on R
Notice that since {v? = {v?7¥ = 1, we must have {v%¥ = 0. The Poisson equation (f]) implies:

Y

0- %A[zﬂ”“/’ U] — div[b, P, () + () [P — vP]

— div[[b(, 7T, () + () — b, TV G()] 0]
= div[[b(, v, () = b(-, vPe())] V7]

and from this equality, we find that if the directional derivative exists, it must solve the following
Partial Differential Equation (PDE):

(8)
1
0= SAV*)=div[(-, 17, ¢()) (6v) | =div[ab(-, 17, G())e()?]=div[(Dub(, 17, G()e(),)],
just by dividing both sides by € and taking the limit € N\, 0. Note that the quantity
Oub(,v?, 6())(-), 6v2¥)
is merely the integral of the function d,b(-,v%, ¢(-))¥(-) with respect to the measure §v/%¥.

Before we turn to the objective function J, we introduce the notion of adjoint equation and adjoint
function.

Definition 1. For each admissible feedback function ¢ (and associated solution v® of the Poisson
equation), we say that the couple (p, \) where p is a function on the state space and X is a constant, is
a couple of adjoint variables if they satisfy the following linear elliptic PDE:

O) A+ 58p(0) + blow,0(a)) - Vala) = f(o.0%,0(a)) + | Dt 0(€)) () v4(d),

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 5

which we call the adjoint equation. Any solution will be denoted by (p®, \?).

Recall that here, the derivative D, f is the standard linear functional derivative (of smooth functions
on the vector space M(R?)), which is a function of x.

Proposition 2. The directional derivative of the cost function J defined in @ is given by the formula:
d
(10) TG+ ew)| = IPHW),

where 6%V denotes the functional derivative with respect to ¢ in the direction v, and the Hamiltonian
H is defined by:

(1) H(jp,6) = F(1.) + [pla)divloC, e o)l (a)do
Proof. Using the definitions (6) and (4) we get:
I+) = J0) = [£ ow) + o)t Vo)~ [fa0?, o) do)
= [0, 0(0) + (@) = a7, 6(z) + b)) (da)
+ [2,000 + evta)) = fla,?, (@)] (da)
ffxy v+ — % (dx),
so that, using Fubini’s theorem we have:
76+)| _ = [[Dut@.v?, o)) 602)1de) v*(a
+ | tut (@ 6()o(e) v (de) + [S0, 0(0)) (00 o)
~ [Pustr o) + s, o] 607 a0

+ | tut@ o)) v (da),

Now, using the adjoint equation (9) and the fact that the integral of 6v%¥ is 0, we get:

d
aJ(éb + €y) o~

- J[)\ + %Ap(:v) +b(z, %, B()) - Vp(x)] (6v9%)(dx)
| tutta? o)) v (da)

~ [pla)3 A6) @)d + [ba, . 0(0)) - Vo) G0) o)
+ | tutta s, 6(@)i(o) v (da).

6 RENE CARMONA & MATHIEU LAURIERE
Finally, using we get:

0+ en)| = [p)(Avlaab, o)) e) + divDLb P, 600, 80P a)) o

€=

(12)
n f Do (1,1%, () 0() v* (d).

To complete the proof, we express this directional derivative in terms of the Hamiltonian function
defined in . The latter can be rewritten as:

Hjup,d) = Flu, ¢) — j Vp(a)b(e, 1, ¢())u(dz),

and its directional derivative is given by:

8PV H (p,p, ¢) = 1{% %[H(M,Z% ¢ +eb) — H(p,p,9)]
(13) = f(?af(l‘»u’ o(x))(x) pu(dx) — pr(fv)(?ab(w,u, d(x))Y () pu(dz)

= [[2at (@, 0() = Tp(o)2able. p,ola)) [(@htde).
Putting together and we get the desired result. O

So, at least informally, solving the ergodic McKean-Vlasov control problem reduces to the solution
of the system:

0= 3Av —div(b(-, v, ¢(-))v)
(14) 0 =X+ 3Ap(x) + bz, v, ¢(x)) - Vp(x) — § Duf (€, v,6(6)) () v(dE) — f(x,v, d(x))
0= aaf(x7y7 gb(m)) - Vp(l')aab(x,y, gb(.’ﬁ))

Note that the third equation guarantees the criticality of the function o — f(x,v,) —y - b(z, v, a), so
if we define the minimized Hamiltonian H* by:

(15) H*(w, p,y) = inf (f(z, 1, 0) =y - bz, p,),
the above system can be written as:
{ 0 = $Av + div(0,H*(-,v, Vp(-))v)
0=A+ 5Ap(x) — H*(z,v,Vp(x)) = { D H* (€, v, $(€)) (x) v(dE).

Both systems should be completed with appropriate boundary conditions when needed (like for example
in the next subsection where we use periodic boundary conditions to analyze the system on the torus)
and the following condition:

(16)

fy(x)dx =1,
to which we can add the normalization condition:
fp(a:)da: =0

to guarantee uniqueness for p. Indeed, the above equations can only determine p up to an additive
constant.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 7

2.3. A Class of Models Amenable to Numerical Computations. In general, computing the
invariant distribution solving for a given ¢ can be costly. For example, it can be estimated by
solving the PDE or by using Monte Carlo simulations for the MKV dynamics , see e.g. [9]. To
simplify the presentation and focus on the main ingredients of the method proposed here, we shall
consider a setting in which the optimal invariant distribution as well as the optimal control can both
be expressed directly in terms of an adjoint variable.

From now on we assume that k = d and:

(17) b(z,0) = bpor + Vh(z), and ﬂ%m®=;MP+Jﬂ%OM%)

for a constant by and functions b and f satisfying the following assumption.
Assumption: b is of class C!, and Vb and f are Lipschitz in both variables.

Remark 3. The dependence on the measure p of the functions f identified in 18 linear. Howewver,
the derivations and the results in the remainder of the paper extend easily to more general classes of
dependence. For example, similar proofs can be applied to functions f of the form

faama) = ylaf + | Fla, & Oudu(do).

In this case, the cost will be a triple integral of the same form which can be analyzed in the same
way, even if the numerical computations may be slower.

So it should be clear that many more functions f can be handled as long as the functional derivative
D, f can be computed and the cost can be expressed as the multiple integral with respect to the
Lebesque measure over the product of tori, of a function F of the variables of the tori, Vh(zx), Seh(z)dz
and the function e® evaluated on the different tori.

Remark 4. Models with local interactions have frequently been considered in the existing literature, and
some of the numerical examples presented in Section [3 do involve local interactions. In these models,
the function f is of the form f(x,p, o) = f(z, p(x),) where u(x) represents the value of the density
of the measure p at the point x. In most cases, these models are more difficult to study analytically.
Howewver in the present situation, they represent a simplification when compared to the models with non
local interactions studied here. Indeed, because of the special form of the measures we work with,
the fact that f depends only upon the density of p at the point x streamlines the formula giving the

cost J(h) which is now expressed as a single integral over the variable x only.

Let (v*,p*, »*) be a solution to the optimality system . In this setting, the third equation of
gives ¢*(x) = bpVp*(z). Substituting in the expression for the drift b and the feedback function ¢* into
the state equation ((1)), we see that at the optimum, we are dealing with a gradient diffusion:

1
dX; = SVh* (X))dt + W,

for the function

(18) h*(z) = 2(b(2)p*(:c) + 5(3:))

Accordingly, the invariant measure is necessarily of the form:
eh* (@)

(19) v (z) =

§eh (@) dy

8 RENE CARMONA & MATHIEU LAURIERE

Notice that in this case, the optimal control is given by
* * 1,1, -
(20) ¢*(x) = boVp*(z) = %(§Vh (z) — Vb(x)).

Hence minimizing the ergodic cost over controls ¢ under the constraint coming from the Poisson
equation ([5)) can be rephrased as the problem of minimizing the functional:

(21) j(h) = Jfﬁ’ <x,y, Vh(x),eh(z),eh(y),feh(z)dz> dxdy,
over functions h, where:
(22) F(2,9,9,X,Y,2) = [(2,y,q) XYZ*
with:
f.v.0) = 3|;-(Ga— Vi@)[+)
'Y, 4q _2b0 2q ' Y)-

Notice that F(z,y,q,aX,aY,aZ) = F(x,y,q,X,Y, Z) for all non-zero o € R. Hence, J(h + ¢) = j(h)
for every constant ¢ € R. So if h* minimizes J, so does h* + ¢ for any constant ¢ € R. This is not
an issue to guarantee that the optimal value of J is close to the optimal value of the original cost J,
but it can lead to numerical difficulties. For this reason it is possible to add a term of the form |Sﬁ|
in in order to enforce a normalization condition and hence, uniqueness of the minimizer. The
analysis presented below could be adapted to take into account this extra term at the expense of more
cumbersome notations, so for the sake of clarity we only consider (21)).

From this point on, instead of attempting to solve the system numerically, we search for the
right function h in a family of functions x — hg(z) parameterized by the parameter § € ©. The desired
parameter 6* minimizes the functional:

M@=JJM@WWMy
where:
eho(x) eho(y)
)> S ehe(®) do S eho (y)dy)

One should think of the function hg(-) as a computable approximation of h(-) = 2(b2p(-) + 5()), allowing
us to replace the minimization of the ergodic cost by the minimization:

]Fe(xay) = ﬁ(%y, Vh9($)7ehe(x)aehG(y)asehg(Z)dZ> = fv(x7y> Vh@(x

(23) inf jflﬁ‘g(x, y)dzdy.
0e©
Notice that the gradient (with respect to the parameter #) of F can easily be computed. It reads:
S Ophyg eho

0oFo(w,y) = Folw,) (Poho(x) + dohaly) - 225+ dolos f (o, Vho()))

In anticipation of the set-up of next section where we consider our optimization problem on the
torus, the double integral appearing in can be viewed as an expectation, and its minimization is
screaming for the use of the Robbins-Monro procedure. Moreover, if we use the family (hg)peo given
by a feed-forward neural network, this minimization can be implemented efficiently with the powerful
tools based on the so-called Stochastic Gradient Descent (SGD) developed for the purpose of machine
learning.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 9

3. A FIRST MACHINE LEARNING ALGORITHM

We now restrict ourselves to the case of the torus T¢ = [0, 27]¢ for the purpose of numerical compu-
tations. The admissible feedback functions ¢ being continuous, the drift T¢ 3 z — b(z, ¢(z)) € R? is
a bounded continuous function on the torus and the controlled state process X = (X;);>0 is a Markov
process with infinitesimal generator:

L= %A +b(-,0(-)V.

The compactness of the state space T and the uniform ellipticity of this generator guarantee that this
state process is ergodic and that its invariant probability measure v? has a C* density with respect to
the Riemannian measure on T? (which we assumed to be normalized to have total mass 1). Note that,
because the torus T? does not have a boundary, the integration by parts which we used freely in the
computations of the above subsection are fully justified in the present situation.

We introduce new notation to define the class of functions (hg)pee Wwhich we use for numerical ap-
proximation purposes. We denote by:

dy
Ly 4 = {gf) ‘RY - R%2 |38 e R%, Jw e R2*4 Vie (1,...,da}, ¢p(x); = (& +)] wi,jxj) }
j=1

the set of layer functions with input dimension di, output dimension dy, and activation function v :
R — R. Here, o denotes the composition of functions. Building on this notation we define:

NY = {(p (R — R Vi€ {0, 0~ 1},3¢ € LY 43¢0 € Laya,,,,® = $ro b1 0 --~o¢0}

do,-dey1

the set of regression neural networks with £ hidden layers and one output layer, the activation function
of the output layer being the identity 1 (x) = z. Note that as a general rule, we shall not use the
superscript ¢ in that case. The number ¢ of hidden layers, the numbers dy, di, --- , dps1 of units per
layer, and the activation functions (one single function ¢ in the present situation), are what is usually

called the architecture of the network. Once it is fixed, the actual network function ¢ € Ngo is

dey1
determined by the remaining parameters: ’
0= (B8O w® M M ... BUD w1 B 4y (0
defining the functions ¢q, ¢1, -+ , ¢r_1 and ¢y respectively. Their set is denoted by ©. For each 6 € O,

the function ¢ computed by the network will be denoted by hg. As it should be clear from the discussion
of the previous section, here, we are interested in the case where dyp = d and dp,1 = 1.

Our analysis is based on the following algorithm. In practice, instead of having a fixed number of
iterations M, one can use a criterion of the form: at iteration m, if |VJg(6,,)| is small enough, stop;
otherwise continue.

3.1. The Approximation Estimates. Our goal is now to analyze the error made by the numerical
procedure described in Algorithm We split the error into two parts: the approximation error and
the estimation error (or generalization error). The approximation error quantifies the error made by
shrinking the class of admissible controls (here we use neural networks of a certain architecture instead
of all possible feedback controls). The estimation error quantifies the error made by replacing the
integrals by averages over a finite number of Monte Carlo samples.

10 RENE CARMONA & MATHIEU LAURIERE

Algorithm 1: SGD for ergodic MFC

Data: An initial parameter 6y € ©. A sequence (a;,)m=o0 of learning rates.
Result: Parameters 6* such that hy« approximates h*
1 begin

2 for m=0,1,2,..., M do

3 Pick S = (w4, y¢)k_ | where 2, and y, are picked i.i.d. uniform in [0, 27]
4 Compute the gradient VJg(6,,) of Js(0,,) = %Zle Fo,, (z¢, y0)

5 Set Oppi1 = O + @, VIs(01)

6 | return O

In this section, o : R — R denotes a 2w —periodic activation function of class C' whose Fourier
expansion contains 1, i.e.,
1 T

:%_W

(24) le {k eZ|o(k):

o(z)e ke dy # 0} .

More general activation functions (such as the hyperbolic tangent) could probably be considered at the
expense of additional technicalities. The choice of this class of activation functions is motivated by the
fact that we will use it to build a neural network which can approximate a periodic function together
with its first order derivatives (namely, h* and Vh*).

Approximation Error. The proof of our first estimate is based on the following special case
of [32, Theorems 2.3 and 6.1]EI We state it for the sake of completeness. It provides a neural network
approximation for a function and its derivative. For positive integers n and m, and a function g € C(T™),
let E)"(g) denote the trigonometric degree of approximation of g defined by:

E;'(9) = infllg = Tlecrm)
where the infimum is over trigonometric polynomials of degree at most n in each of its m variables.

Theorem 5 (Theorems 2.3 and 6.1 in [32]). Let f : T — R be of class C2, and let n and N be positive
integers. Then there exist ny, € O(Nn?) and 5 € Ng .. 1 such that:

(25) If = ¢sleqa < | B + EN@n"? flecra |
(26) I6:F = dpileqrs < | B + BA (@ |oiflees |+ i=1,-.d,
where ¢ depends on the activation function through &(1) but does not depend on n, N, niy.

The workhorse of our control of the approximation error is the following.

Theorem 6. Assume that for some integer K > 1, there exists a minimizer over CK+1(T%), say h*, of
the cost function J defined in ([21)). Assume that o € CEFY(TY). Then, for ni, large enough we have:

J(h*) < inf J(¢) < J(h*) + e1(nim)
weN9g

d,niy,1

Lwe use a special case of the neural networks considered in [32]. For us, using the notation of Mhaskar and Micchelli,
my = 6(1) and N, =1 for all n.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 11

where
€1 (i) € O ((nm)*K/@d)) .

The constants in the above big Bachmann - Landau term O(-) depend only on the data of the problem
as well as 6(1), K, and the C'—norms of the partial derivatives of o and h* of order up to K + 1 (but
they do not depend upon niy).

Remark 7. The exponent in the O term in the statement of the proposition is what is blamed for the
so-called curse of dimensionality. In some settings, the constants in the O term can be estimated if
bounds on the CO—norms of the partial derivatives of h* of order up to K + 1 are known, for instance
from a priori estimates on the solution of the PDE system (|16]).

Proof of Theorem [0 The first inequality holds by definition of 2* and because NG 1S CE+L(T?). In
order to apply the result of Theorem |5(to f = h*, we bound from above the right hand sides of
and . We use the fact that the trigonometric degree of approximation of a function of class C" is
of order O(n™") when using polynomials of degree at most n. More precisely, by [36, Theorem 4.3], if
f:R% - R is an r-times continuously differentiable function which is 2r-periodic in each variable, then
for every positive integer n, there exists a trigonometric polynomial 7, of degree at most n such that

f(z) = To(z)| <Cn", ze[0,27]%,

where C' depends only on r and on the bounds on the r-th derivatives of f in each direction: H@Z-(T) fllco,
i =1,...,d. We apply this result, with some integer n to be specified later, to f = h* and f = VA"
with r = K, since h* is of class CK*1. By [36, Theorem 4.3] again, since o and ¢’ are both of class
CE . we obtain that for any integer N there exist trigonometric polynomials T, Ty of degree at most
N such that

lo(z) = Ty(z)] <K CN™", |o'(z) — TN(:U)] <CN™, 0 <z < 2m,

where C depends only on r and on the bounds on the K-th derivatives of o and ¢’, namely oK), g(E+1)
We apply this result with N = nltd/2K) Note that N=" = n~K-4/2,

So by Theorem |5, we obtain that there exists n;, € O(Nn?) and pp« € Ng ... 1 such that
(27) 1P* = onelleqrey + IVR* = Veonslogray < Cin ™%,
where the constant C depends on K, d, “ai(K)h*Hc(Td), Hc?EKH)h*HC(Td), i=1,...,d, HU(K)HC(R)v HU(KH)HC(R),
but not on n or ny,. This implies in particular (since n, K > 1) that

lenleeray + 1Vonsleeay < Co = [h*|eeray + VR |l¢eray + C1.

Notice that, since Nnd = nltd/@CK)+d an+II§+d/2 < n3?, the number of units in the hidden layer is

nin € O(n3?), hence the right hand side in is of order O(n-_K/ (3d)

in). In other words,

* * —K/(3d
(28) IR* = nslleqray + VR —v%”C(W)EO@m /(3))7

where the constant in the big O might depend on C; but is independent of ny,.

Going back to the definition of .J, we note that, by [27), for all z € T¢, h*(x) and ¢y« (x) both
lie in the interval [—C4,Cs]. Since z +— e® is Lipschitz continuous on this interval with a Lipschitz
constant depending only on Cs, we obtain that:

M @) — e @) < b — ppellopay, xeTY

12 RENE CARMONA & MATHIEU LAURIERE

where here and thereafter ¢ denotes a generic constant which depends on the data of the problem as
well as K, and bounds on the C®—norms of the partial derivatives of o and h* up to order K + 1, and
whose exact value might change from line to line. Moreover, {e"”, §e#* lie in the interval [e=C2,e®?],
and x +— 272 is Lipschitz continuous on this interval with a Lipschitz constant depending only on Cs

so we also have: . .
(5e) = (Sem) T < el = ol
Hence, recalling the definition of ﬁ’, one can check after some calculations that for all z,y € T,
F (f”y Vh*(2), ") W), Jeh*(Z)dZ> -F <x Y, Vipps (), €m0 e (v), f ew(Z)dz>
< | — onrlleeray-
From the definition of J , the considerations above and , we deduce that:
(29) [T = T(one)| < clh® = ol € O (mi /)
which completes the proof. O

Corollary 8. If o € C?, beC? and if there exists a classical solution (v*,p*,*) to the optimality
system , then we have:

~

inf J(h)— inf J
Jnf J(h) gt ()

€O (ni;l/ d) .

Proof. Indeed, if b € C? and if we have existence of a classical solution (v*,p*, A*) to the optimality
system (16), in particular if p* € C*, and |p*|c(ra), |0ip*leeray and [|0; jp*[(rays @55 € {1,...,d}, are
bounded by constants depending only on the data of the problem, we obtain that h* given by
provides a minimizer of J of class C2. We can then apply Theorem |§| with K = 1. O

Remark 9. For mean field games, existence of classical solutions to the ergodic PDE system has been
studied in several settings, see e.g. [27, 28]. To the best of our knowledge, corresponding results do not
exist yet for the PDE system arising in the ergodic optimal control of MKV dynamics and this question
will be addressed in o future work. In finite time horizon, existence of classical solutions has been studied
e.g. in [3].

Estimation Error. We then turn our attention to the estimation (or generalization) error. Let ni,
be a fixed positive integer. In the numerical implementation, we do not minimize directly J over a set of
neural networks with say ni, units. Instead, we minimize over empirical versions computed from Monte
Carlo samples. To be specific, for a given sample:

(30) S = (@6, y0)e=1,..,1, (7g)g=1,...@) € (T? x T)F x (T%)?
for which the zy, ys, 24 are picked independently and uniformly in [0, 27], we minimize:
1 & 1 &
7. i i h(we) hlye) h(zq)
(31) Js(h) = I ZZIF (xg,yg,Vh(:zg),e T ML "0 ;6 &) ,

where F is defined by . The intuition is to approximate the double integral over dxdy by an average
over L independent Monte Carlo samples (¢, y¢), and likewise, the integral § e® by an empirical average
over a sample of points uniformly distributed over T¢.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 13

Remark 10. The reader may be concerned by the slow rate of convergence of the Monte Carlo ap-
prozimation. Indeed, this could be an issue as the convergence is only of the order 0(1—71/2)' In fact,
there are numerical approximations of the integrals which converge faster, and for which proven rates
of convergence involve the number L of sample points as well as the dimension d of the torus. Many
Quasi Monte Carlo methods based on low discrepancy sequences (as opposed to independent identically
distributed uniform samples as in the case of plain Monte Carlo computations) provide such improved
rates of convergence. Depending upon the choice of the quasi Monte Carlo method, we can guarantee
rates of convergence of the order (log L)?/L. See for example the excellent survey [23] for details and
comparisons between various methods to compute integrals with respect to the Lebesgue measure over
high dimensional cubes. While the rate of convergence O(L*1/2) of the classical Monte Carlo method is
independent of the dimension, the advantage of these new rates of convergence is that not only do they
guarantee faster convergence, but they also explicitly quantify how higher dimensions can slow down the
convergence. We chose to use plain Monte Carlo approximation procedures for the sake of simplicity.

We shall use the following notation. For two positive constants v and 2, we denote by NUm "7 the

set of functions ¢ € Ng | for which there exist (w,u) € R x R7inx(d+1) gatisfying

o [wli<m,
o |u,l2 <o forallne{l,..., np},

and such that ¢(z) = Y, w,o(u,-(x7,1)T), where the superscript T denotes the transpose operation.
Here, w1 = Y0, [wn| and [unfo = 4/ 3FE] Jun el

We are now in a position to prove the following bound on the uniform deviation between J and its
empirical counterpart J. It is our main insight into the estimation error.

Theorem 11. Let v1,v2 be positive constants. We have:

Eg sup

goeNU 102

Tty - Jste)| [e 0 (= + 75

where the expectation is over the samples S as in , and the constants in the big Bachmann - Landau
term O(-) depend only on the data of the problem and on 1 and 72, but neither on L nor on Q.

Proof. First, introducing ghost Monte Carlo samples S = ((Z¢, §¢)s, (Z4)q) picked with the same distri-
bution as S, and independent of the latter, we can rewrite as:

L
~ 1 ~ . _
J(p) =Eg [L Z F (ig,gjg,Vgo(@),e“"(”),es"(y@),fe“"(z)dz>] 7

(=1

where the expectation is over the samples S. Note that the variables Zq do not appear in this expression.
We kept them in the ghost sample for the sake of symmetry. Hence, for each fixed S = ((x¢, yr)e, (24)q)s

L

% Z |:ﬁ <§7£7 Yr, VSO('fz)’ 650(@)’ e‘P(@Z)7 f€¢(z)dz>

(=1

Q
—F (we, ye Vip(a), e?0), e?e), Z)] ‘

~

sup |J(p) — js(@)’ < Egsup
® ®

Taking expectation over S we get:

14 RENE CARMONA & MATHIEU LAURIERE

L
Essup|J(¢) - Js(o)| < Egg sup| = 2| F (e, Viplae), e, eﬂw%je%ﬂ(z)dz)
¢ =1

& 2]

1 &re] i
E. - - F (%, 50, Voo(Z0), @(xé)’ so(ye)7 e(2) g
Ssgp’L ;1[(:Ug e, Vo(Zy), e e e Z)

- ﬁ<xéa Y, VSO(CEZ) ego 2¢) 690 ye)

ol - \

= F (i, i, Vipla), 9150, 67000, qlz S|
1 Gra - S
+ Es,ésip‘L | P (@0, e, Viplae), 70, 00 Z “)
Z =

Q
)

Q
- F<x€7 Y, v@(xf) ego 2¢) e(P ye) Z

J

(32) = (@) + (i)

and we analyze separately the contributions of the two double expectations to the value of the above

right hand side. By definition of Nggfnwf, there exists a constant C’ > 0 such that for every ¢ € N denfyf

and every sample x,y, Z1,...,2Q € T?, we have:

Q
1 s 1
o(z) Le(y) A ~3d+2 #(2) g ' w(Zq) '
(:L‘,y,Vgo(x),e ,€)E[',] , ﬁrde ZE[C”C] Qq_gle E[C”C]’

g 71 Y2

and given the assumptions on f and the definitions of F and Nin 1> one can find a constant C' > 0

such that:
’ﬁ(w7y7q7X7Y7Z) _ﬁ(x7y7Q7X7Y7 Z/)’ < C’Z_ Z/‘

for all (z,y,q,X,Y) € [-C",C"]?*¥*2 and Z and Z’ in [1/C’, C"]. Notice that the constants C' and C"
depend upon o(-), 71, 72, d, and ny,, but not on the particular ¢ € Nggfnvf Using this Lipschitz bound,
we get:

Q
i) <Eg supUe@('z)dz 1 2 o) |
; Q&

To bound from above the right hand side, we follow a pretty standard strategy. First we notice that:

(2) RS (20)
ePFldy = — Ege?\Za),
f Qq; °

Moreover, we can introduce a family r = (r4)4=1,.. @ of independent Rademacher random variables (i.e.
satisfying P[r, = —1] = P[ry = 1] = 1/2), independent of the samples S and S. Since the samples

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 15

(2¢)g=1,- @ and (Z4)g=1,-. @ are independent and identically distributed, we have

q=1
1]
= EsEgEr Sup‘— Z Tq [ego(zq) _ ew(zq)”
Yo
1 Q@ 1 Q
< EgEgE, Sup‘— S 1ge)| + BgBgRy| L 3 ryeteo
e 1Q g=1 Q =
1 Q
= mESErsup‘ }:7ﬁe¢(”
@ =l
(33) < C’i
Vo)

where we used Khintchine inequality to derive the last inequality.

We now turn our attention to the estimation of the term (é7) in . Because of the introduction of the
ghost samples, for each ¢ € {1,---, L}, the two terms we compute the difference of are independent and
identically distributed, so we can rewrite (i¢) using a family 7 = (74)s—1,... 1, of independent Rademacher
random variables independent of the samples S and S in the following way:

L Q

(”) = E&S’ET Sl;p)ll_/ ;1 Ty [ﬁ <«%€7 Ye, VQO(i'g), ecp(i[)v egﬁ(l}e)’ Clg qz_:l ecp(iq))
Q
— F(a0, y0, Vip(y), e¥®0) e2We), 1 ¢(zq)
(l’g ye, Vio(xg), € e 0 (;16)”
LN B (550 V(). €70 o0 LN o)
< E&SET [sgp‘L Z TgF(:IZg,yg,V(p((lZz),ew e e\t ,a Z e¥'\Fa)‘
(=1 q=1
L Q
n Sup‘l 3 Teﬁ(%% Vo (zy), 2@, g2l L 3 eya(m) H
o L =1 Q g=1
L Q
(34) = 2EqE, sgp‘i Z o F (xg, Yo, Vop(xy), e @) epWe), 22 Z 650(24))‘
{=1 q=1

16 RENE CARMONA & MATHIEU LAURIERE

where we used the fact that S and S are i.i.d. For each fixed ¢ € Ng::jf and samples S and 7 we have

L

Z oF (wz,yzva(xz) e?(we), eelve) Z e#(a)‘

L
<> 7F(0,0,0,0,0,1)
/=1

L

+ ZTg

Q
F (rce,ye,vso(we) e?(e) e#lve), Z > F(0,0,0,0,0, 1)”

Since F (0,0,0,0,0,1) is a constant independent of ¢ € N7 71’7f, we denote it momentarily by C” to
ease the notation. Moreover, for each fixed sample S = (l‘g, Yo, Zq)g’q we have:

L
ZT@
=1

E; sup
(pEN 'Vl 72

Q
I 1
F (st Vit er. o0, eﬂzq)) e

qg=1

<E, sup sup s Z T
peNGTL 2 sel 141} {2

(372, Yo, Vo(y), e?(#0) e#We) Z e#(%a) — C”]

where the variable s is introduced to replace the absolute value. For each ¢ € Nggllnwf and s € {—1, +1},
we define the function g, for (z,y,7) € T x T¢ x (T4? by:

Q
1
¢Z(‘IE, Y, (Zq)qzl,...,Q) = (l’, Y, VSO(f)a e(p(Z)’ e@(y)a @ Z ep(zQ)v S) .
g=1

By definition of Nam"yf, it is clear that the range of the map 7 is contained in a hypercube of the

form:
DIILY2 [_Cl Cl]3d+2

d?nln

3d+4
[C,,C’] [—1,1] c R
where the constant C' = C'(o,v1,72,d, nin) was introduced earlier. Given the assumptions on f and
the definitions of £ and Ng e ’712, one can construct a real valued function ® on R3¢+4
continuous over the Whole space and satisfies:

which is Lipschitz

q)(l‘,y,q,X,Y,Z,S) =S [ﬁ(xayaQ7XaY7Z) —ﬁ(0,0,0,0,0, 1)]7

for (z,y,q,X,Y,Z,s) € D‘ml’72 and whose Lipschitz constant, say K, depends upon o(-), 71, 72, d, Nin

,’Yl Y2
nsl°

and C”, but not on the partlcular pE NU Next, we introduce the set of functions:

Fome = {p T T x (T2 — R¥*H; 3p e NG, 3s € {1, +1},v = v

d’nin

We can then rewrite the right hand side of as:

L

E. sup Z 70 [P (Y (20, e, (29)q))]
YEF T =1

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 17

By the form of Talagrand’s contraction lemma given in Corollary 4 of [31], this quantity is bounded

from above by:
L 3d+4

\/EKE; sup ZZTMT/)(W,W,(%) ,,Q)

YEF i i=1 k=1

where, for z = (24)4=1...0 € (TY)?, ¥(x,y,2); denotes the k-th component of the vector v (z,y,z), and
where the family of random variables 7 = (7 x)¢=1, L, k=1,.- 3d+4 is an independent Rademacher family
with one extra index. Accordingly, this quantity is bounded from above by:

3d+4 L
V2K Z E; sup Z%Z,kd](vayfvz)kv

k=1 WeF 17—

and we proceed to estimate the 3d + 4 terms of the outer sum one by one. Notice that for k < 3d + 2,
the term 1 (x¢,y¢,2), does not depend upon z, and we proceed in the following way. The terms
corresponding to k = 1,...,d (resp. k = d + 1,...,2d) are easy to control since ¥(xy,ys, 2)r = (T¢)g
(resp. ¥(xp,ye,2)r = (Yr)k—aq) do not depend upon ¢ or s, rendering the supremum irrelevant. Moreover,
since the norms of z; and gy, in R? are bounded by C’, Khintchine inequality gives:

L L
Ez Z Fo1|ze| < CVL, and E: Z oo |ye| < CVL.

=1 =1
For k = 2d + h with h e {1,...,d}, (e, yo, 2)k = Onp(xr) = D0 Wty p0’ (0y - (2} ,1)7), and:

Nin

Z Tok [2 WnUn, hO (un : (37;7 1))] ’wnun h|)2 Ték un : (xL 1)T)]‘

(Z |wn U, h|) sup‘Z Tor [0 (uy - (), 1)T)]’

(36) <]3] 7 [0/ T,)|
" =1

’71’72 Consequently, since the above quantity does not depend upon

can be taken over p € N d’Z? ’712 and we have:
2 lny

because of the definition of ¢ € NU

s, the supremum over ¢ € F ’;1’72
’ 1n

L L
Er sup > For(aeye 2)k = Er sup > Tk Onplae)
7,71y
YEF i =1 PeNg VTR =1
L Nin
- T T

=E: sup > k| Y Waltnno! (up - (2, 1))]

PeNG T = n=1

< 1172E= sup 2 To o' (uy, - (33;7 1)T)’

un :funf2<y2 'y

where we used (36). Since the derivative of the activation function o is Lipschitz (without any loss of
generality we use the same constant K > 0 for its Lipschitz constant), we can use the original version

18 RENE CARMONA & MATHIEU LAURIERE

of Talagrand’s contraction lemma to estimate the above right hand side. From [30, Theorem 4.12] with
F(z) =, ¢i(t) = o'(t) = 0'(0), and T = {(u- (27, 1) et .1 [uf2 <72} we get:

L L L
Bz sup > Fort(e,yez)k < CEz sup ‘Z Torlo' (W - (2/,1)7) =o' (0)]’ +Ca'(0 Z ‘
we]-';’giln’w =1 lunl2<y2 'p—7 =1
L L
<C ([E;_ sup Z To k [u . ($Z7 I)T]‘ + Ex Z %E,k’)
[ul2<y2 "p=1 (=1
L
=C (E% sup [u- > Ao (2, I)T]’ + Ez ﬁk’)
[u2<72 (=1 =1
L
< C|[Ez sup \uHQH o | (2,]H + Ez %Z,k‘
(Julz<e Z 2 ;1

ZTék Ly s T]H

L
<C (E% o [(/1) , tE? ﬁ,k‘)
=1 =

< CVIL,

where the value of the constant C' > 0 changed from line to line, and where we used Cauchy-Schwarz
and Khintchine inequalities.

We proceed similarly for the values k = 3d + 1 and k = 3d + 2 since the exponential function is
Lipschitz on the range [—C’, C’'] of the functions ¢ € N7 "2,

aninal
We now focus on the penultimate term. For k = 3d + 3, the term ¥ (z¢, ys,2)) is %Z?Zl e?(za) | Tt
does not depend upon s so the supremum over) € F 77172 can be taken over ¢ € Ngg:w and we have:
L 1
Ez sup > Forth(xeyez) =Bz sup > Fpp =y e
YeFg " 1=1 PeNZ L2 15 Q
L
ﬂ,k‘
/=1

<CVL

because of Khintchine inequality. Finally, the term corresponding to k = 3d + 4 can easily be bounded
in the same way since (s, Y¢, Z)3444 = s € {—1, +1}.

This concludes the analysis of (i7), proving that it is bounded from above by a constant times 1/v/L.
Combining this with and , the proof is complete. O

4. APPLICATION OF THE DEEP GALERKIN METHOD

An alternative way to solve the ergodic mean field control problem is to tackle directly the PDE
system . In order to do so, we adapt the Deep Galerkin Method (DGM) proposed by Sirignano and
Spiliopoulos [37] for a single PDE. The key idea is to rewrite the PDE system as a new minimization
problem where the control is the triple (v, p, A) and the loss function is the sum of the PDE residuals
(plus some terms taking into account the boundary conditions and the normalization conditions). In our
setting, this idea can be implemented as follows. To alleviate the notations, we introduce the sets C; =

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 19

{x; = 0} where i € {1,...,d} and use the shorthand notation (z_;, 27) for (z1,..., 21,27, Tjt1,...,2q)
and we set

(37) L(v.p,A) = LO(,p, A) + L (v,p,\)

where

LO(w,p,\) = ’;Av + div (0, H* (-, v, Vp(-))v)

(38) -
J 1/2
922 da — | v(x)dx
+;(Li|y<x>—y<<x_z,z L S Y
and
LO0p.3) = [\ 580 = H (Vo) = [DL€ RO 1) -
(39)

+ i < Li Ip(2) — p((z_i, 2m)) 2 dx) " ‘ ﬁrd p(z)dz

Each function encodes one of the two PDEs of the optimality system and contains one term for
the residual of the PDE, one term for the periodicity condition, and one term for the normalization
condition. These terms can be weighted to adjust their relative importance. In any case, note that
L(v,p,\) = 0 if (v,p, \) solves the PDE system . Since our primary motivation is the optimal
control of MKV dynamics, we present the method in this setting. However the same ideas can be
readily applied to other PDE systems by designing differently the loss function. For instance, to solve
the PDE system arising in the corresponding stationary MFG, one simply needs to remove the term
§ D, H*(&,v,Vp(€))(-) v(d€) in ([B9). For the sake of illustration, we present several examples below in
the next section.

We then look for v and p in the form of neural networks, say vy, and py, with fixed architectures and
parameterized by 61 and 65 respectively. The unknown A is replaced by a variable coefficient 03 € R
which is learnt along the way. As in the method discussed in the previous sections, the integrals are
interpreted as expectations with respect to a random variable with uniform distribution over T¢, and
one uses SGD to minimize the total loss function. More precisely, for a given S = (5, (Si)ieq1,....q;) Where
S < [0,1] is a finite set of points and S; is a finite set of points in C; for every i € {1,...,d}, we define
the empirical loss function as follows: for § = (61, 602,03),

(40) Ls(9) = LG (8) + LS (6)

where

%Ayel (ZC) + div(ayH*('> V917Vp92('))1/91)(x)

2) 1/2

1-— Z vy, (z)

€S

Lg)(6) = (2

zeS

d 1/2
+ Z (Z ’Vel (z) — Vel((l“_i, 27T))|2) +
i=1

= xESi

20 RENE CARMONA & MATHIEU LAURIERE

and
. o\ 1/2
Lg)(0) = (Z 03 + 5 Apo, () — H' (2, v9,, Vo, (2)) — fDuH*(&Veu Vo, (£)) (@) ve, (d€) >
zeS) o
+ Z (Z ‘pBQ(x) _p92((l‘—i72ﬂ-))|2> + ZP%(I) :
i=1 \z€S; zeS

One can use SGD to minimize the loss function . The approximation power of this method has
been discussed in [37] using a universal approximation theorem. However, this type of results does not
give any rate of convergence. More precise convergence results could be obtained by the techniques
presented in Section In particular, the approximation error can be bounded by combining again
Theorems 2.3 and 6.1 in [32]. For instance, if the PDE system has a solution (v,p, \) such that
p, v € C3(T?), then there exist neural networks ,, o, € N7 ... 1 such that [p—p|e2(pay and [v—epy |2 (14
—2/(3d)

are in O (nin) In turn, this property leads to bounds on both the loss function of the algorithm

and the error on the value function of the control problem. The detailed analysis is left for future work.

An important advantage of the DGM method is its flexibility and its generality since it can, a priori,
be applied to almost any PDE. However, this generality can also be a drawback. Indeed the method
does not exploit the structure of the PDE or in our case, of the PDE system under consideration. In
generalizing this method to the case of our system, our main challenge was the choice of the relative
weights to be assigned to the various terms in the loss function. These coefficients can be used to
give more or less importance to some aspects of the solution. For instance, a large weight for the
penalization terms ensures that the boundary and normalization conditions are likely to be satisfied
at convergence. Also, if the gradient of one of the terms is too small, putting a larger weight can
help the gradient descent to make faster progress. But the weights are hyperparameters that need
to be tuned in accordance with other hyperparameters. Indeed, if they are not chosen appropriately,
the stochastic gradient descent can easily be stuck in local minima. For instance if the weight of the
normalization condition is not sufficiently large, the algorithm goes quickly towards a configuration
which completely ignores this constraint and stays stuck there (although it should reduce the loss to
try to satisfy this constraint). On the other hand, if the weight on the normalization condition is
too large, it obfuscates the role of the other terms. Similarly, giving too much weight to one of the
two PDEs prevents the neural networks from solving accurately the system. We had to find a good
balance between the weights empirically. Furthermore, we found that it is sometimes helpful to adjust
them dynamically during training to guide the neural network towards a satisfactory approximation of
the solution. Although we are convinced that it can improve the results, we refrained from using this
technique in the numerical examples presented below because of its ad hoc nature. In most machine
learning applications, characterizing optimal combinations of hyperparameters is a very challenging
task. In our case, finding optimal choices of weights and learning rates is an interesting question beyond
the scope of the present work. Even without an optimal choice of parameters, we found that from a
numerical standpoint, a good choice can be made by monitoring convergence to zero of each term of
the loss function (the residuals and the penalty terms).

5. NUMERICAL RESULTS

In this section we present numerical results obtained using implementations of the methods described
in the previous sections. Algorithm 1 refers to the method based on minimization of the cost functional

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 21

—— 50000 SGD iterations —— 200000 SGD iterations —— 50000 SGD iterations —— 200000 SGD iterations
100000 SGD iterations — = benchmark 100000 SGD iterations — = benchmark

0.00 N~ 49
~0.25
-0.501
-0.751
-1.001
-1.254
-1.501

=1.754

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Adjoint state p Distribution v

F1GURE 1. Test case 1. Solution computed by Algorithm 1 and benchmark solution
from deterministic method (dashed red line).

introduced in Section 3] Algorithm 2 refers to the DGM method described in Section[d The implemen-
tations have been done in TensorFlow. The details of the neural network architectures are specified
below. We used Adam for the gradient-based optimization. The results are presented on the unit torus
(i.e., [0,1]¢ with periodic boundary conditions) instead of T = [0,27]? as in the text.

5.1. Examples in Dimension 1. For ease of visualization, we start with univariate examples. We
first consider models without explicit solutions, and we compare the solutions computed by the two
algorithms introduced earlier with a benchmark solution computed by a deterministic method based
on a finite difference scheme for the PDE system [2]. For these test cases, we used feed-forward neural
networks with 3 hidden layers, each layer having 20 units.

Test case 1: For the sake of illustration we include a model without mean field interaction, say

b d) =6, S o) = S0P + (z).
with
(41) f(a:) =50 (0.1 cos(2mx) + cos(4mzx) + 0.1sin (277 (x — g))),

which has two local minima, one of them being a global minimum. The solution computed with the
first algorithm is presented in Figure

Test case 2: Next, we add a mean field interaction term in the cost

(42 b d) =6 Sl) = |6P + F@) + [u@),

with f given by . Here u(x) stands for the density of the measure p at x € [0,1]. The results are
presented in Figure Comparing with the first test case, one sees that due to the mean field term
|p(2)|? in the cost function, the distribution is less concentrated around the global minimum and part
of the mass is transferred to the second local minimum.

22 RENE CARMONA & MATHIEU LAURIERE

—— 10000 SGD iterations ~—— 300000 SGD iterations —— 10000 SGD iterations ~—— 300000 SGD iterations
50000 SGD iterations — = benchmark 50000 SGD iterations — = benchmark

2.54

0.0 7

—-0.2 2.01

-0.41

154
~0.6

-0.8 1.04
~1.01

0.5+
~1.24

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Adjoint state p Distribution v

FIGURE 2. Test case 2. Solution computed by Algorithm 1 and benchmark solution
from deterministic method (dashed red line).

Test case 3: The DGM method can be used to solve the previous examples, but can also be used to
solve other PDE systems, such as the one arising from mean field games. In the MFG setting, the PDE
system for the optimality condition takes the following form [27]:

{ 0 = LA + div(0,H* (-, v, Vp())v)

(43) 0=A + %Ap(l‘) - H*(l‘,l/, Vp(l')),

with normalization and boundary conditions, and where the minimized Hamiltonian H™* is defined
in . Notice that this PDE system is different from the PDE system for mean field control.

Taking b and f as in the previous test, namely , yields the solution displayed in Figure |3 (to
be compared with the corresponding curves for the MFC model of Test case 2, see Figure . Recall
that with the DGM method, both p and v are approximated using two separate neural networks. In
particular, we see on Figure |3| that after 20000 iterations of SGD, the neural network for p has already
roughly learnt the shape of the optimum, whereas the neural network for v is still almost flat.

5.2. Multivariate Examples with Explicit Solution. To assess the quality of the proposed al-
gorithms in higher dimension, we introduce simple toy models which can be solved explicitly. These
models are very much in the spirit of examples considered in [5]. Let us take:

(44) b(z,0) =bla) =, flz,p,0) = %IGIZ + f(@) + In(u(@)),
Then, the minimizer o* entering the definition of H*(x, u,y) is given by:
o' =a’(y) =y
So H*(x, p,y) = —%\y|2 + f(a:) + In(u(x)) and SDMH*(f,V, Vp(§))(z)v(d€) = 1. The PDE system
rewrites:
(45) { 0= 1Av(z) — div(Vpv)(z) i
0= X+ 3Ap(x) + 3|Vp(2)* — f(z) — (In(r(z)) + 1).

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL

—— 20000 SGD iterations ~—— 150000 SGD iterations —— 20000 SGD iterations ~—— 150000 SGD iterations
40000 SGD iterations — = benchmark 40000 SGD iterations — = benchmark

3.04

0.25

0.00 1
2.54
—0.254

~0.50 2:01

-0.75 1.5

-1.00 104

—1.254
0.5+

—1.501

0.0+
=175

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Adjoint state p Distribution v

FIGURE 3. Test case 3. Solution computed by Algorithm 2 (DGM) and benchmark
solution from deterministic method (dashed red line).

23

Assuming the existence of a smooth enough solution (v, p, A), the first equation allows us to express v
in terms of p as follows:

(46)

e2p(x)

B § e2p() dy!”

v(z)

The second equation in (45]) rewrites

03 (Ap(@)+|Vp(2)?)~f()

v(r) = Y

In this case, the PDE system is solved provided the above equation and the second equation in (45|
are satisfied, which means that (p, \) solves:

We consider two specific instances of f for which we are able to obtain closed-form expressions for p.

2p(0) = 5(Bp(a) + [Vp@)P) ~ Flo), A= 1= n([),

Test case 4: We consider again but now with f given by

d d d
f(z) = 27? [— Z sin(27z;) + Z | cos(27r:ci)|2] -2 Z sin(2mz;),
i=1 i=1

i=1

then the solution is given by p(z) = 2?21 sin(27a;) and A = 1 — In(§ e2Xi sin(27&:) g,

We have solved numerically this problem in dimension d = 4 using both methods. The convergence
of the approximation py learnt by our first algorithm towards the analytical solution p is presented in
Figure 4. This figure shows the relative L2-error, which is defined as

(W) " \/ ([,) = mtaeas) /([toeas).

24 RENE CARMONA & MATHIEU LAURIERE

1.04
1.04

0.8
0.8

0.6 9
0.6

0.4 0.4+

0.2 021

0.01 T T T T T T 0.01 T T T T T T
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
iteration iteration

Relative L?—error on adjoint state p Relative L?—error on adjoint state v

FIGURE 4. Test case 4. Relative L?-error by Algorithm 1.

In the implementation, this quantity is estimated with 10° Monte Carlo samples for each integral. The
figure corresponds to one run of SGD and illustrates the fact that the algorithm can be stuck in a
local minimum for a certain number of iterations (between roughly iterations 10° and 2 x 10° on this
example) before finding its way out to a better solution. The distribution v is deduced from p using the
formula , which explains why the two convergence curves have the same shape.

For the DGM method, numerical convergence is presented in Figure [5] As in the previous test case,
the convergence rate of p and v is quite different because they are approximated by distinct neural
networks. In particular, the error on v decreases at a lower rate and suffers from a larger noise, which
could be due to the form of the solution, see (46[). Moreover, since the logarithm of v appears in the
HJB equation, we were forced to choose a positive-valued function for the activation function of the
output layer (instead of the identity). We compared results obtained with the exponential function
and the softplus function: ¥ (x) = In(1 + e*). Since they gave similar results, we provide here the ones
obtained with the exponential function.

Here, for both methods, we used feed-forward neural networks with 3 hidden layers, each layer having
20 units.

Test case 5: We consider a variant of the previous test case where f is chosen such that

: 2 s 2
p(x) = Esm@ﬂxi) - qud Hsm(Qﬂ'xi) dzx.

i=1

We use this example to study the influence of the number of hidden units and the number of samples
in the population on the approximation pg found by the algorithm. For simplicity and to be consistent
with the theoretical bounds provided in the prequel, we consider here neural networks with a single
hidden layer. Figure[6]illustrates the dependence on the number of hidden units. As seen on Figure [6B],
the error decreases quickly as the number of units grows until 30. However, for a number of units
larger than 30, the error almost stagnates. This is due to the fact that the number of samples in the
population drawn at each iteration of SGD is kept fixed to 10°. The dependence on this number of

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL

1.04

0.8

0.6 4

0.4+

0.2+

W

0.0+

0 200000 400000

600b00 800‘000 1006000

iterations of SGD

Relative L?—error on adjoint state p

1.04

0.8

0.6 1

0.4

0.2+

0.0+

400‘000 600b00 800‘000

iterations of SGD

0 200000

Relative L?—error on distribution v

FIGURE 5. Test case 4. Relative L?>—error by Algorithm 2 (DGM).

nU=14 —— nU=60

nu =12 - nU=20|

relative L2 error

,_.
<

relative L2 error

,_.
2

T T T
0 200000 400000

T T T
600000 800000 1000000

iterations of SGD

(A) Relative error vs number of iterations of SGD

FIGURE 6. Test case 5. Dependence of the relative L? error on the number of hidden
units (Algorithm 1). The number of samples in the population is 10°. The number of
units is indicated by “nU” for the figure on the left. On the right, relative L? error after

106 iterations.

1006000

1004

T T T T
10 20 30 40 50 60
number of units

(B) Relative error vs number of units

25

samples is illustrated in Figure[7] while keeping the number of units fixed to 60. These numerical results
were obtained by averaging over 10 runs of SGD.

Test case 6: We consider the following variant of the PDE system , which corresponds to a MFG
with the same cost function and dynamics as the MFC problem described above:

(47)

0 = 3 Av(z) — div(Vpr)(z)

0= A+ 32p() + V(@) — f(z) — In(v(a)).

26

——- nS = 1x10°
—— nS =5x10%
----- ns = 10x10%

10° 4 \

RENE CARMONA & MATHIEU LAURIERE

nS = 50x10°
——. nS = 100x103
— nS = 1000x103

0.5 1

0.4+ \

o
w
s

10-14

relative L2 error
o
N
N

relative L2 error

0.14 .

TR ey m e «

1072 4 0.04

0 500000 1000000 1500000 2000000 107t 10° 10! 102 10°
iterations of SGD number of samples

Relative error vs number of iterations of SGD Relative error vs number of samples

FIGURE 7. Test case 5. Dependence of the relative L? error on the number of samples
in a population (Algorithm 1). The number of hidden units it 60 for all curves. The
number of samples is indicated by “nS” for the figure on the left. On the right, we plot
the relative L? error after 109 iterations.

This system does not have a variational interpretation so we approach it using Algorithm 2. Although
neural networks with simple structures are universal approximators [22] [26], in practice using deep
neural networks with a well-suited architecture is crucial to the success of many deep learning ap-
plications. Here, we tested two different architectures. The first one is a simple feedforward fully
connected architecture, as presented above. The second one is a recurrent neural network architecture,
and more specifically the one — referred to as DGM architecture in the sequel — proposed by Sirignano
and Spiliopoulos in [37] which is inspired by long short-term memory networks [25] and highway net-
works [38]. It has been shown empirically to be particularly well adapted to learn how to approximate
functions with complex structures as well as derivatives of functions. For the sake of brevity we do not
reproduce here the architecture and we refer to [37] for more details about this type of neural networks
and its success on some classes of PDEs. In high dimension, we did not obtain good results using the
fully connected architecture so we present only numerical results obtained using the second type of
architecture.

Figure |8 shows the L? errors on p and v and the residuals for both PDEs in dimension d = 10. Here,
we used a three layer neural network with 100 units per layer for p and three layer neural network
with 200 units per layer for v. As for the learning rate, instead of plain Adam optimizer as in the
previous case, we used Adam with a piecewise-constant schedule of learning rate decay defined by
m =1 x 107311 <m<20000 + 3 X 107 Logoo0<m<40000 + 1 x 1074 L10000<m<60000 + 3 x 107> Lgo000<m. We
used a minibatch of 4096 samples at each iteration. The curves in Figure [§ have been obtained with a
single run of the algorithm, by saving the values every 100 iterations and taking a moving average over
10 points to make the curves more readable.

Test case 7: We consider the following example with a quadratic dependence on the distribution,
inspired by [I, Section 6] for which there is no analytical solution to the best of our knowledge. Here

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 27

—.~ L2 erroronp —=- L2erroronv — -~ residual HJB —=~ residual Poisson

1
1
1
\ F10° i
'.l 4 L 10!
l \ ll
HOW \
li " u\.\»d\' '\/M\\ ll
. ! =4 s L 100
2] 1 \ -1 3 U Y e 0, 10
@ H AN 10 ° Y
3 i LUV o \
= R o, o e |
\,\ pA, A "™ ! IM
Naaay 4, l‘
Ny :,"W‘ "' oy i) k10!
1 { |
hed
e e] "
AL L10-2 Ay {0 '\ \
'\"' A U‘\l\'\ H 10 i'f‘ ARy
A il ’ - ' L10-2
Vivpad e 10
0 10000 20000 30000 40000 50000 60000 70000 0 10000 20000 30000 40000 50000 60000 70000
iterations of SGD iterations of SGD
L? errors on p and v Residuals for HJB and Poisson equations

FIGURE 8. Test case 6. L? error for each function (left) and residuals for each PDE
versus number of iterations using Algorithm 2 (right).

we take
H* (@, ,9) = — 5yl + F(@) + |u(a)
with
1 d
(48) = & Z sin(2mx;) + cos(2mx;)],

whose maximum and minimum values are ++/2C. We solved this example in dimensions up to d = 100
using Algorithm 2 and the DGM architecture, with ¢ = 1.5. Since the PDEs no longer involve the
logarithm of v, we use the identity function for the output layer’s activation function. The residuals of
the two PDEs are shown in Figure [9] which was obtained by averaging over three runs of the algorithm
for each dimension, saving the residuals every 100 iterations, and using a moving average over 10 points
to make the curves more readable. We used minibatches of 128 samples, and a DGM architecture with
3 layers and 200 units per layer. The learning rate was updated using Adam optimizer initialized with
the value 10~4. Although the residuals are much smaller in dimension d = 2 than in d = 50, there is
no deterioration between d = 50 and d = 100. These results show that the method provides a good
approximate solution without intensive tuning of the hyperparameters. Tuning these hyperparameters
(e.g., the architecture, the learning rate and the minibatch size) based on the investigation carried out
in the previous test cases should lead to even better results. But to be able to easily compare the
results in various dimensions, we decided to keep them fixed. Only for the sake of comparison between
dimensions, the average time per iteration is indicated in Table These results have been obtained
using a GPU with 2.4 GHz Xeon Broadwell E5-2680 v4 processor. Recall that here the architecture
and the minibatch size are fixed, so the increase in computational time is due to the optimization of the

neural network and these results show that for this aspect the computational cost scales almost linearly
with the dimension.

28 RENE CARMONA & MATHIEU LAURIERE

TABLE 1. Average time per iteration in seconds for test cases 7 and 8, with d €
{2,10, 50, 100}.

Dimension d Test case 6 Test case 7
2 5x1072s. 6x107%s.
10 21 x 107%2s. 22 x 1072 s.
50 109 x 1072 s. 108 x 1072 s.
100 225 x 1072 5. 229 x 1072 s.
— residual HB,d=2 - residual HJB, d = 50 —— residual Poisson,d =2 ----- residual Poisson, d = 50
——- residual HJB, d = 10 residual H)B, d = 100 ——- residual Poisson, d = 10 —-- residual Poisson, d = 100
E 101
L 10 !
!
{1 L 100
_ |
E10-1 H
|
A L0
... -2 \,
10 \
g\
\\\'."u.‘.._ E1072
k1073 N i e
x\ ‘~'~<~mw-ﬁv‘€:;;u%,~,;“
""‘\'J ‘\ N
et —=aL. F1073
SN vt pcny g E10-4 T e ?
....... ST e N i na
L 10—4
T T T T T T '1075 T T T T T T
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
iterations of SGD iterations of SGD
Residuals for HIB equation Residuals for Poisson equation

F1GURE 9. Test case 7. Residuals versus number of iterations using Algorithm 2, for
d = 2,10, 50, 100.

Test case 8: We consider the following variant which incorporates a non-local term:

* __Lype f(x z)[? 1 3 sin(z’ x
(19)) =~ Fo) +)P+ 0 g 33| [snanen |

with f given by . We solved this example in dimensions up to d = 100 using the DGM method,
with ¢ = 1.5. The residuals of the two PDEs are shown in Figure which was obtained using the same
architecture and the same procedure as for Test case 6. The average time per iteration is indicated in
Table [1] and is roughly the same as in Test case 6 because we used 128 samples too to approximate the

integral appearing in .

6. CONCLUSION

In this paper, we introduced two numerical algorithms for the solution of the optimal control of
ergodic McKean-Vlasov dynamics also known as ergodic mean field control problems. We approximated
the theoretical solutions by functions given by neural networks, the latter being determined by their
architectures and suitable sets of parameters. This allowed the use of modern machine learning tools,

and efficient implementations of stochastic gradient descent.

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 29

— residual HB,d=2 - residual HJB, d = 50 — residual Poisson,d =2 - residual Poisson, d = 50
——- residual HJB, d = 10 residual H)B, d = 100 ===~ residual Poisson, d = 10 —-~ residual Poisson, d = 100

10!

L 100

|
|
i
I L 100
!
!

A

e e, L1072

1072
10N Vi

‘J"‘{"‘ Y e Ao A R ~ -
Y L0 \“\'J" W B F1073

wh 103

6 10600 20600 30600 40600 50600 6 10600 20600 30600 40600 50600
iterations of SGD iterations of SGD
Residuals for HJB equation Residuals for Poisson equation

FIGURE 10. Test case 8. Residuals versus number of iterations (Algorithm 2), for d =
2,10, 50, 100.

The first algorithm is based on the specific structure of the ergodic optimal control problem. We
provided a mathematical proof of the convergence of the algorithm, and we analyzed rigorously the
numerical scheme by controlling both the approximation and the estimation error. The second method
is an adaptation of the deep Galerkin method to the system of partial differential equations issued from
the optimality conditions. We showed that it can also be applied to the PDE system arising in mean
field games, even when the latter do not have a variational structure.

Our numerical results support the idea that these methods can be used in large dimension. From here,
several directions can be contemplated. First, using the same algorithms and architectures, it should
be possible to obtain even better results with more time and better hardware (i.e. computational time
and power). We view this work as a first step, and we tried to frame it so that it could be accessible
to, and reproducible by a large community of researchers.

Finally, we believe that it should be possible to design efficient methods by using known properties
of the specific structure of the mean-field PDE system without assuming any knowledge of the form of
the solution. The adjoint structure between the HJB and the Poisson equation is a case in point.

REFERENCES

[1] Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. Mean field games: numerical methods for the planning problem.
SIAM J. Control Optim., 50(1):77-109, 2012.

[2] Y. Achdou and I. Capuzzo-Dolcetta. Mean field games: numerical methods. STAM J. Numer. Anal., 48(3):1136-1162,
2010.

[3] Y. Achdou and M. Laurieére. On the system of partial differential equations arising in mean field type control. Discrete
Contin. Dyn. Syst., 35(9):3879-3900, 2015.

[4] Y. Achdou and M. Lauriére. Mean Field Type Control with Congestion (II): An augmented Lagrangian method. Appl.
Math. Optim., 74(3):535-578, 2016.

[5] N. Almulla, R. Ferreira, and D. Gomes. Two numerical approaches to stationary mean-field games. Dyn. Games Appl.,
7(4):657-682, 2017.

[6] A.Balata, C. Huré, M. Lauriére, H. Pham, and I. Pimentel. A class of finite-dimensional numerically solvable mckean-
vlasov control problems. ESAIM: Proceedings and Surveys, 65:114—-144, 2019.

30

7]

8]
[9]

(10]

RENE CARMONA & MATHIEU LAURIERE

J.-D. Benamou, G. Carlier, and F. Santambrogio. Variational mean field games. In Active particles. Vol. 1. Advances
in theory, models, and applications, Model. Simul. Sci. Eng. Technol., pages 141-171. Birkhauser/Springer, Cham,
2017.

A. Bensoussan, J. Frehse, and S. C. P. Yam. Mean field games and mean field type control theory. Springer Briefs in
Mathematics. Springer, New York, 2013.

M. Bossy and D. Talay. A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp.,
66(217):157-192, 1997.

L. M. Bricenio Arias, D. Kalise, Z. Kobeissi, M. Lauriere, A. Mateos Gonzalez, and F. J. Silva. On the implementation
of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: ProcsS,
65:330-348, 2019.

L. M. Briceno Arias, D. Kalise, and F. J. Silva. Proximal methods for stationary mean field games with local couplings.
SIAM J. Control Optim., 56(2):801-836, 2018.

O. Butkovsky. On ergodic properties of nonlinear Markov chains and stochastic McKean - Vlasov equations. Theory
of Probability and Applications, Society for Industrial and Applied Mathematics, 58(4):661 — 674, 2014.

S. Cacace, F. Camilli, A. Cesaroni, and C. Marchi. An ergodic problem for mean field games: qualitative properties
and numerical simulations. Minimaz Theory Appl., 3(2):211-226, 2018.

P. Cardaliaguet. Notes on mean field games. 2013.

E. Carlini and F. J. Silva. A fully discrete semi-Lagrangian scheme for a first order mean field game problem. STAM
J. Numer. Anal., 52(1):45-67, 2014.

R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games I: Mean Field FBSDEs, Control, and Games.
Stochastic Analysis and Applications. Springer Verlag, 2017.

R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games II: Mean Field Games with Common Noise
and Master Equations. Stochastic Analysis and Applications. Springer Verlag, 2017.

R. Carmona and M. Lauriere. Convergence analysis of machine learning algorithms for the numerical solution of mean
field control and games: II - The finite horizon case. Preprint, arXiv:1908.01613.

R. Carmona, M. Lauriére, and Z. Tan. Linear-quadratic mean-field reinforcement learning: Convergence of policy
gradient methods. Preprint, arXiv:1910.04295,

J.-F. Chassagneux, D. Crisan, and F. Delarue. Numerical method for FBSDEs of McKean-Vlasov type. Ann. Appl.
Probab., 29(3):1640-1684, 2019.

Y. Chow, W. Li, S. Osher, and W. Yin. Algorithm for hamilton-jacobi equations in density space via a generalized
hopf formula. Technical report, 2018.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems,
2(4):303-314, 1989.

J. Dick, F. Kuo, and I. Sloan. High dimensional integration: The quasi-monte carlo way. Acta Numerica, pages 133 —
288, 2013.

W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial differ-
ential equations and backward stochastic differential equations. Commun. Math. Stat., 5(4):349-380, 2017.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780, 1997.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):251-257, 1991.
J.-M. Lasry and P.-L. Lions. Jeux & champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris, 343(9):619-625,
2006.

J.-M. Lasry and P.-L. Lions. Mean field games. Jpn. J. Math., 2(1):229-260, 2007.

M. Lauriere and O. Pironneau. Dynamic programming for mean-field type control. J. Optim. Theory Appl., 169(3):902—
924, 2016.

M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and
processes.

A. Maurer. A vector-contraction inequality for Rademacher complexities, 2016.

H. Mhaskar and C. Micchelli. Degree of approximation by neural and translation networks with a single hidden layer.
Advances in Applied Mathematics, 16:151-183, 1995.

Y. S. Mishura and A. Y. Veretennikov. Existence and uniqueness theorems for solutions of McKeanDVlasov stochastic
equations. Technical report, 2018.

http://arxiv.org/abs/1908.01613
http://arxiv.org/abs/1910.04295

MACHINE LEARNING FOR MEAN FIELD ERGODIC CONTROL 31

[34] L. Pfeiffer. Numerical methods for mean-field type optimal control problems. Pure Appl. Funct. Anal., 1(4):629-655,
2016.

[35] L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, and S. Fung. A machine learning framework for solving high-dimensional
mean field game and mean field control problems. Technical report, 2019.

[36] M. H. Schultz. L*-multivariate approximation theory. STAM J. Numer. Anal., 6:184-209, 1969.

[37] J. Sirignano and K. Spiliopoulos. DGM: a deep learning algorithm for solving partial differential equations. J. Comput.
Phys., 375:1339-1364, 2018.

[38] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In Advances in neural information
processing systems, pages 2377-2385, 2015.

[39] A. Y. Veretennikov. On strong solutions and explicit formulas for solutions of stochastic integral equations. Mathe-
matics of the USSR - Sbornik, 39:387D403, 1981.

[40] A.Y. Veretennikov. On ergodic measures for McKeanDVlasov stochastic equations. In Monte Carlo and Quasi- Monte
Carlo Methods 2004, pages 471-486. Springer Verlag, 2006.

[41] P. Yarykin. Stability of the nonlinear stochastic process that approximates the system of interacting Brownian. Theory
of Probability and Applications, Society for Industrial and Applied Mathematics, 51(2):387 — 396, 2007.

PROGRAM IN APPLIED AND COMPUTATIONAL MATHEMATICS & ORFE

	1. Introduction
	2. Ergodic Mean Field Control
	3. A First Machine Learning Algorithm
	4. Application of the Deep Galerkin Method
	5. Numerical Results
	6. Conclusion
	References

