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ON OPTIMAL TRANSPORT OF MATRIX-VALUED MEASURES

YANN BRENIER AND DMITRY VOROTNIKOV

Abstract. We suggest a new way of defining optimal transport of positive-semidefinite
matrix-valued measures. It is inspired by a recent rendering of the incompressible Eu-
ler equations and related conservative systems as concave maximization problems. The
main object of our attention is the Kantorovich-Bures metric space, which is a matricial
analogue of the Wasserstein and Hellinger-Kantorovich metric spaces. We establish some
topological, metric and geometric properties of this space, which includes the existence of
the optimal transportation path.

. Introduction

Positive-definite-matrix-valueddensities arise in signal processing, geometry (Riemann-

ianmetrics) and other applications. Due to the success of theMonge-Kantorovich optimal

transport theory, there have been recent attempts to introduce the matrix-valued optimal

transport in a relevant way [, , , , , , , , ]. It is reasonable to try to

achieve this goal via a dynamical formulation in line with []. This requires a kind of

transport equation for matricial densities. The listed references either employ the Lind-

blad equaton [] and related ideas, or have a static Monge-Kantorovich outlook. Our

approach is totally different, and we believe that it is promising for the applications be-

cause of its relative simplicity from the numerical perspective.

The first author has recently observed in [] that the incompressible Euler equation can

be recast as concave maximization problem. The method is actually applicable to various

conservative PDEs, cf. [, ]. The procedure of [, ] naturally produces variational

problems involvingmatricial densities. These problems are very similar to the dynamical

optimal transport and to the mean-field games, andmay serve a heuristic for constructing

matricial optimal transport problems. The problem that we introduce in this paper is

based on the transport-like operator

− (∇q)Sym (.)

that is related to the concave maximization rendering [] of the incompressible Euler

equation. Here q is a suitable momentum-like field. One can generate (.) even more

straigtforwardly by considering the Burgers-like problem

∂tv +div(v ⊗ v) = 0. (.)
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This is perhaps the most elementary vectorial PDE that fits into the framework of “ab-

stract Euler” equations introduced in []. The corresponding concave maximization

problem, cf. [], may be formally written as

sup
q,B

∫

[0,T ]×Rd

v0 · q −
1

4
G−1q · q (.)

where the vector fields q and the positive-definite matrix fields G are subject to the con-

straints

∂tGt = − (∇qt)Sym , (.)


GT ≡
1

2
I . (.)

However, the operator (.) that appears in (.) has a nontrivial cokernel, whichmeans

that we cannot join any two matrix-valued densities with a path directed by the tangents

of the form (.). This is somewhat similar to the impossibility of joining two measures

of different mass in the classical Monge-Kantorovich transport. The latter issue can be

fixed in the framework of the unbalanced optimal transport [, , , , , ] by

interpolating between the classical optimal transport and the Hellinger (also known as

Fisher-Rao) metric related to the information geometry [, , ]. The matricial coun-

terpart of the Hellinger metric is the Bures metric [, ]. Notably, the corresponding

Riemannian distance coincides with theWasserstein distance between Gaussianmeasures

[]. The Bures metric is usually defined for constant densities but can be naturally gener-

alized to non-constant densities, cf. []. Then we can interpolate between this quantum

information metric and the matricial transport driven by (.). This procedure generates

an additional reactive term in the transport equation, and we can join any two positive-

definite-matrix-valuedmeasures by a suitable continuous path. The same correction term

was recently used in [] for the Lindblad equation. The resulting dynamical transporta-

tion problem generates a distance on the space of positive-definite-matrix-valued mea-

sures, which we call the Kantorovich-Bures distance. This distance is a matricial cognate

of the Wasserstein distance [, ] and of the recently introduced Hellinger-Kantorovich

distance [, , , , ]. The Kantorovich-Bures distance is frame-indifferent in the

spirit of rational mechanics []. The Kantorovich-Bures space is a geodesic metric space.

It has a conic structure comparable to the one that was recently discovered [] for the

Hellinger-Kantorovich space. The Bures space of constant positive-definite matrices may

be viewed as a totally geodesic submanifold in the Kantorovich-Bures space.

To finish the introduction, we would like to mention the recent works [, , , ,

] aiming to launch a theory of optimal transport of differential forms.

The paper is organized as follows. In the remaining part of the Introduction, we present

basic notation and preliminary facts. In Section , we define the Bures-Kantorovich dis-

tance using a dynamical variational construction. In Section , we explore some topolog-

ical, metric and geometric properties of the Bures-Kantorovich metric space. In Section

, we study the metric cone structure of the Bures-Kantorovich space. In the Appendices,

we discuss the frame-indifference of the distance and formal Riemannian geometry of the

Bures-Kantorovich space, and prove several technical lemmas.
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Notation and preliminaries.

• We will use the following basic notation:

– Rd×d is the space of d × d matrices, equipped with the Frobenius product

Φ :Ψ = T r(ΦΨ⊤) and the norm |Φ| =
√
Φ : Φ,

– ASym := 1
2 (A+A⊤) will denote the symmetric part of A ∈Rd×d ,

– I ∈ Rd×d is the identity matrix,

– S is the subspace of symmetric d × d matrices,

– P + is the subspace of symmetric positive-semidefinite d × d matrices,

– P ++ is the subspace of symmetric positive-definite d × d matrices,

– P 1 is the subspace of symmetric positive-definite d × d matrices of unit trace,

– P+ is the set of P +-valued Radon measures P on Rd with finite T r(dP(Rd)),

– P++ is the set of absolutely continuous (w.r.t. the Lebesgue measure Ld ) P ++-

valued Radon measures P on Rd with finite T r(dP(Rd )),

– P1 is the set of P +-valued Radon measures P on Rd with T r(dP(Rd))=,

– Q := [0,1]×Rd .

• We will use the following simple inequalities

PA : A ≤ T rP |A|2, Pq · q ≤ T rP |q|2, P ∈ P +,A ∈ Rd×d ,q ∈ Rd . (.)



A : B ≥ 0, A,B ∈ P +. (.)

• Weuse the following notation for sets of functions (either scalar or matrix-valued):

Cb : bounded continuous with ‖φ‖∞ = sup |φ|
(in the matrix-valued case the norm on the right is the Frobenius one);

C1b : bounded C1 with bounded first derivatives;
C∞c : smooth compactly supported;
C0: continuous and decaying at infinity;
Lip : bounded and Lipschitz continuous with ‖φ‖Lip = ‖∇φ‖∞ + ‖φ‖∞

(here ‖∇φ‖∞ = sup |∇φ|, where | · | is the operator norm in L(Rd ,Rd×d )
for matrix-valued φ).



• Given a sequence {Gk}k∈N ⊂ P+ and G ∈ P+ we say that:

(i) Gk converges narrowly to G if there holds

∀φ ∈ Cb(Rd ) : lim
k→∞

∫

Rd

φ(x)dGk(x) =

∫

Rd

φ(x)dG(x).

(ii) Gk converges weakly-∗ to G if there holds

∀φ ∈ C0(Rd ) : lim
k→∞

∫

Rd

φ(x)dGk(x) =

∫

Rd

φ(x)dG(x).

• For curves t ∈ [0,1] 7→ Gt ∈ P+ we write G ∈ Cw([0,1];P+) for the continuity with

respect to the narrow topology.
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• Clearly, P+ ⊂ (C0(Rd ;S ))∗. By approximating the constant matrix function identi-

cally equal to the unit matrix I with compactly supported test functions, it is not

difficult to prove that

cT r dG(Rd) ≤ ‖G‖(C0(Rd ;S))∗ ≤ CTr dG(Rd) (.)

for any G ∈P+, where the constants c,C merely depend on d.

• Given a non-identically-zero measure G ∈ P+ we will denote by

L2(dG;S ×Rd)

the Hilbert space obtained by completion of the quotient by the seminorm kernel
of the space C1b (Rd ;S ×Rd) equipped with the Hilbert seminorm

‖U‖2L2(dG) =
∫

Rd

dG(x)u ·u +

∫

Rd

dG(x)U(x) :U(x).

Here U := (U,u) stands for a generic element in C1b (Rd ;S ×Rd).

For brevity, we will simply write L2(dG) instead of L2(dG;S × Rd). It is not

difficult to see that the elements of L2(dG) can be rendered as pairs U = (U,u) ∈

L2(dG;S )×L2(dG;Rd), where the latter two spaces are defined in the conventional

way (as, for instance, in []).

• In a similar fashion, given a narrowly continuous curve G ∈ Cw([0,1];P+), we can

define the space L2(0,1;L2(dGt)). The Hilbert norm in L2(0,1;L2(dGt)) is

‖U‖2L2(0,1;L2(dGt ))
=

∫ 1

0

(∫

Rd

dGt(x)ut(x) ·ut(x) +
∫

Rd

dGt(x)Ut(x) :Ut(x)

)

dt. (.)

• The bounded-Lipschitz distance (BL) between two matrix measures G0,G1 ∈P+ is

dBL(G0,G1) = sup
‖Φ‖Lip≤1

∣

∣

∣

∣

∣

∫

Rd

Φ : (dG1 −dG0)

∣

∣

∣

∣

∣

.

The distance dBL metrizes the narrow convergence on P+. A sketch of the proof

in the case of matrix measures on an interval can be found in []. In our situa-

tion the claim can still be shown by mimicking the proof strategy for the scalar-

valued Radonmeasures [, ]. The key observation [] is that S-valued bounded

continuous functions can be approximated by monotone (in the sense of positive

semi-definiteness) sequences of bounded Lipschitz ones. We also point out is that

the supremum can be restricted to smooth compactly supported functions. This

follows from the tightness of a set consisting of two matricial measures of finite

mass.

• By geodesics we always mean constant-speed, minimizing metric geodesics.

• C is a generic positive constant.
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. The Kantorovich-Bures distance

The starting point for our considerations is

Definition . (Kantorovich-Bures distance). Given two matrix measures G0,G1 ∈ P+, we

define

d2KB(G0,G1) := inf
A(G0,G1)

‖U‖2L2(0,1;L2(dGt ))
, (.)

where the admissible set A(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1], Ut = (Ut ,ut), such that



























G ∈ Cw([0,1];P+),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),

∂tGt = {−∇(Gtut) +GtUt}Sym in the weak sense, i.e.,

∫

Rd

Φt : dGt −
∫

Rd

Φs : dGs −
∫ t

s

∫

Rd

(dGτ : ∂τΦτ)dτ

=

∫ t

s

∫

Rd

(dGτuτ ·divΦτ +dGτUτ :Φτ)dτ (.)

for all test functions Φ ∈ C1b (Q;S ) and t, s ∈ [0,1].

We could have formally started from minimizing a more general Lagrangian, namely,

d2KB(G0,G1) := inf
B(G0,G1)

∫ 1

0

(∫

Rd

G−1t (x)qt(x) · qt(x) +G−1t (x)Rt(x) : Rt(x)dx

)

dt, (.)

where the admissible set B(G0,G1) consists of tuples (Gt ,qt ,Rt), where Gt(x) ∈ P ++, qt(x) ∈
Rd and Rt(x) ∈Rd×d , such that

{

G|t=0 = G0; G|t=1 = G1,

∂tGt = {−∇qt +Rt}Sym .

This complies with (.), (.) and the discussion in the Introduction. The reactive part

is a generalization of the Bures metric, as will be evident in Remark ., see also Remark

..

Remark .. In contrast with (.), we opted for dropping the factor 1/4 in the right-

hand sides of (.) and (.), for a purely aesthetic reason, although this factor seems

to be rather fundamental. Indeed, keeping it would halve the distance dKB, which is in

good agreement with Theorem  (ii). It would also eliminate the factor 4 in Theorem ,

Proposition ., Corollary ., etc.

Perturbing an alleged minimizer of (.) by adding (δq,δR) for which

L(δq,δR) := {−∇(δqt) + δRt}Sym = 0, (δq,δR)|t=0,1 = 0,



 Y. BRENIER AND D. VOROTNIKOV

we see that the minimizer formally satisfies

∫ 1

0

(∫

Rd

G−1t (x)qt(x) · δqt(x) +G−1t (x)Rt(x) : δRt(x)dx

)

dt = 0,

for all pertubations (δq,δR) from Ker L. This implies that such a minimizer can be written

in the form q = GdivU , R = GU , for some Ut(x) ∈ S , hence (.) yields (.) via setting

u := divU .

Remark . (Transport of Hermitian matrices). It seems that our results can be easily ex-

tended onto the case of matrix functions with complex entries; we opted for describing

the real-valued case just for maintaining a more transparent connection with the classical

Monge-Kantorovich transport.

Remark . (Torus). All the considerations of the paper are valid, mutatis mutandis, if the

measures in question are defined on the flat torus Td instead of Rd .

We shall prove shortly that

Theorem . dKB is a distance on P+.

We first need a preliminary technical bound:

Lemma .. Let G ∈ Cw([0,1];P+) be a narrowly continuous curve, assume that the constraint
(.) is satisfied for some potential U ∈ L2(0,T ;L2(dGt)) with finite energy

E = E[G;U] = ‖U‖2L2(0,T ;L2(dGt ))

and let M := 2(max{m0,m1} + E) with mi := T r dGi(R
d). Then the masses are bounded uni-

formly in time,

mt := T r dGt(R
d) ≤M,

and

∀Φ ∈ C1b (R
d ;S ) :

∣

∣

∣

∣

∣

∫

Rd

Φ : (dGt −dGs)

∣

∣

∣

∣

∣

≤ (‖divΦ‖∞ + ‖Φ‖∞)
√
ME|t − s|1/2 (.)

for all 0 ≤ s ≤ t ≤ 1.
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Proof. Since Gt is a narrowly continuous matrix function, the masses mt =
∫

Rd dGt : I are
uniformly bounded, and m := max

t∈[0,t]
mt is finite. Applying a Cauchy-Schwarz-like argu-

ment to the weak constraint (.), and employing (.), we deduce

∣

∣

∣

∣

∣

∫

Rd

Φ : (dGt −dGs)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫ t

s

(∫

Rd

dGτuτ ·divΦ +

∫

Rd

dGτUτ : Φ

)

dτ

∣

∣

∣

∣

∣

∣

≤
(∫ t

s

(∫

Rd

dGτ divΦ ·divΦ +

∫

Rd

dGτΦ : Φ

)

dτ

)1/2

×
(∫ t

s

(∫

Rd

dGτuτ ·uτ +
∫

Rd

dGτUτ :Uτ

)

dτ

)1/2

≤ (‖divΦ‖∞ + ‖Φ‖∞)
√
m · |t − s|1/2E1/2,

and it is enough to estimate m ≤ M = 2(max{m0,m1} + E) as in our statement. Choosing

Φ ≡ I , the previous estimate yields |mt−ms | ≤
√
mE|t−s|1/2. Let t0 ∈ [0,1] be any time when

mt0 =m: choosing t = t0 and s = 0, we immediately getm ≤m0+
√
mE|t0−0|1/2 ≤m0+

√
mE,

and some elementary algebra bounds m ≤ 2(m0 + E). Exchanging the roles of G0,G1, we

obtain m ≤ 2(m1 +E), and finally m ≤M . �

Proof of Theorem . Let us first show that dKB(G0,G1) is always finite for any G0,G1 ∈ P+.

Indeed for any P0 ∈ P+ it is easy to see that Pt = (1 − t)2P0 and Ut =
(

− 2
1−t I ,0

)

give a

narrowly continuous curve t 7→ Pt ∈ P+ connecting P0 to zero, and an easy computation

shows that this path has finite energy E = 4m0 < ∞ (this curve is actually the geodesic

between P0 and 0, see Corollary . below). Rescaling time, it is then easy to connect any

two measures G0,G1 ∈ P+ in time t ∈ [0,1] by first connecting G0 to 0 in time t ∈ [0,1/2]

and then connecting 0 to G1 in time t ∈ [1/2,1] with cost exactly E = 8(m0 +m1) <∞.

In order to show that dKB is really a distance, observe first that the symmetry dKB(G0,G1) =

dKB(G1,G0) is obvious by definition.

For the indiscernability, assume that G0,G1 ∈ P+ are such that dKB(G0,G1) = 0. Let
(

Gk
t ,U

k
t

)

t∈[0,1] be any minimizing sequence in (.), i.e., lim
k→∞

E[Gk;Uk] = d2KB(G0,G1) = 0.

By Lemma . we see that the massesmk
t = T r dGk

t (R
d) are uniformly bounded:

sup
t∈[0,1], k∈N

mk
t ≤M.

For any fixed Φ ∈ C∞c (Rd ;S ) the fundamental estimate (.) gives
∣

∣

∣

∣

∣

∫

Rd

Φ : (dG1 −dG0)

∣

∣

∣

∣

∣

≤ (‖divΦ‖∞ + ‖Φ‖∞)
√

ME[Gk;Uk].

Since lim
k→∞

E[Gk;Uk] = 0 we conclude that
∫

Rd Φ : (dG1 − dG0) for all Φ ∈ C∞c (Rd ;S ), thus

G1 = G0 as desired.
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As for the triangular inequality, fix anyG0,G1,P ∈P+ and let us prove that dKB(G0,G1) ≤
dKB(G0,P)+dKB(P,G1). We can assume that all three distances are nonzero, otherwise the

triangular inequality trivially holds by the previous point. Let now (Gk
t ,U

k
t )t∈[0,1] be a

minimizing sequence in the definition of d2KB(G0,P) = lim
k→∞

E[Gk ;Uk], and let similarly

(G
k
t ,U

k
t )t∈[0,1] be such that d2KB(P,G1) = lim

k→∞
E[G

k
;U

k
]. For fixed τ ∈ (0,1) let (Gt ,Ut) be

the continuous path obtained by first following
(

Gk , 1τU
k
)

from G0 to P in time τ, and

then following
(

G
k
, 1
1−τU

k
)

from P to G1 in time 1−τ. Then
(

Gk
t ,U

k
t

)

t∈[0,1] is an admissible

path connectingG0 toG1, hence by definition of our distance and the explicit time scaling
(cf. []) we get that

d2KB(G0,G1) ≤ E[Gk;Uk] =
1

τ
E[G

k
;U

k
] +

1

1− τE[G
k ;Uk].

Letting k→∞ we obtain for any fixed τ ∈ (0,1)

d2KB(G0,G1) ≤
1

τ
d2KB(G0,P) +

1

1− τd
2
KB(P,G1).

Finally choosing τ =
dKB(G0,P)

dKB(G0,P)+dKB(P,G1)
∈ (0,1) yields

d2KB(G0,G1) ≤
1

τ
d2KB(G0,P) +

1

1− τd
2
KB(P,G1) = (dKB(G0,P) + dKB(P,G1))

2

and the proof is complete. �

Corollary .. The elements of a bounded set in (P+,dKB) have uniformly bounded mass.

Conversely, subsets of P+ with uniformly bounded mass are bounded in (P+,dKB).

Proof. The first statement is an easy consequence of Lemma .. The converse one fol-

lows from the observation that the squared distance from any element P0 ∈ P+ to zero is

controlled by 4m(P0), see the proof of Theorem . �

Another simple property is

Lemma .. If (Gt ,Ut)t∈[0,1] is a narrowly continuous curve with total energy E, then t 7→ Gt

is 1/2-Hölder continuous w.r.t. dKB, and more precisely

∀ t0, t1 ∈ [0,1] : dKB(Gt0 ,Gt1) ≤
√
E|t0 − t1|1/2.

Proof. Rescaling in time and connecting Gt0 to Gt1 by the path

(Gs;Us) := (Gt(s), (t1 − t0)Ut(s)), s ∈ [0,1],
with t(s) = t0 + (t1 − t0)s, it is easy to see that the resulting energy scales as

E|t0 − t1| ≥ E[G;U] ≥ d2KB(Gt0 ,Gt1).

�
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Remark .. In Definition . it is possible to restrict ourselves to the admissible paths that

satisfy the additional constraint u ≡ 0. This leads to another distance dH on P+, which is

a matricial analogue of the Hellinger distance. All the results of this paper remain true

for dH , and the proofs are literally the same. However, this distance is expected to be

topologically stronger than dKB (see, however, Remark .), which might be less relevant

in applications.

. Properties of the distance and existence of geodesics

We begin with some topological properties of the Kantorovich-Bures space.

Theorem  (Comparison with narrow convergence). The convergence of matrix measures

w.r.t. the distance dKB implies narrow convergence, and any Cauchy sequence in (P+,dKB) is

Cauchy in (P+,dBL). Moreover, for any pair G0,G1 ∈ P+ with masses m0,m1 there holds

dBL(G0,G1) ≤ Cd

√

(m0 +m1)dKB(G0,G1) (.)

with some uniform Cd depending only on the dimension.

Proof. Fix G0,G1, and let (Gt ,Ut) be any admissible path from G0 to G1 with finite energy

E. Taking the supremum over Φ with ‖Φ‖Lip ≤ 1 in (.), and observing that

‖Φ‖∞ + ‖divΦ‖∞ ≤ C‖Φ‖Lip, (.)

where C may merely depend on d, we deduce that

dBL(G0,G1) ≤ C
√
ME,

with M = 2(max{m0,m1} + E) as in Lemma .. Choosing now a minimizing sequence
instead of an arbitrary path, and taking the limit we essentially obtain the same estimate
with E = limE[Gk;Uk] = d2KB(G0,G1). More precisely,

dBL(G0,G1) ≤ C
√

2(max{m0,m1}+ d2KB(G0,G1))dKB(G0,G1).

Remembering the upper bound for dKB(G0,G1) in terms of the masses m0,m1 (cf. Corol-

lary . or, explicitly, inequality (.)), we end up with (.).

Let Gk be a Cauchy sequence in (P+,dKB) with mass mk = T r dGk(Rd). Since Cauchy
sequences are bounded, we control the masses mk uniformly in k, thus from (.) we see
that

dBL(G
p,Gq) ≤ CdKB(G

p,Gq).

Therefore, Gk is dBL-Cauchy. Similarly, if a sequence is dKB-converging, it is dBL- and

hence narrowly converging (to the same limit). �

Remark .. The exact characterization of the topology of the Kantorovich-Bures space is

an open problem. We also do not know whether this space is a complete metric space.
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Definition .. Let (X,̺) be a metric space, σ be a Hausdorff topology on X. We say that
the distance ̺ is sequentially lower semicontinuous with respect to σ if for all σ-converging

sequences xk
σ→ x, yk

σ→ y one has

̺(x,y) ≤ liminf
k→∞

̺(xk ,yk).

Theorem  (Lower-semicontinuity). The distance dKB is sequentially lower semicontinuous

with respect to the weak-∗ topology on P+.

Proof. Consider any two converging sequences

Gk
0 →
k→∞

G0, Gk
1 →
k→∞

G1 weakly-∗

of finite Radon measures from P+(Rd ). For each k, the endpoints Gk
0 and Gk

1 can be joined

by an admissible narrowly continuous path (Gk
t ,U

k
t )t∈[0,1] with energy

E[Gk;Uk] ≤ d2KB(G
k
0,G

k
1) + k−1.

Due to weak-∗ compactness and (.), the masses mk
0 = T r dGk

0(R
d) and mk

1 = T r dGk
1(R

d)

are bounded uniformly in k ∈ N. By Corollary ., the set ∪k∈N{Gk
0,G

k
1} is bounded in

(P+,dKB), thus the energies E[Gk;Uk] and the masses mk
t = T r dGk

t (R
d ) are bounded uni-

formly in k ∈N and t ∈ [0,1]:
mk

t ≤M and E[Gk;Uk] ≤ E.

Evoking (.) and the (classical) Banach-Alaoglu theorem with P+ ⊂ (C0(Rd ;S ))∗, we de-

duce that all the curves (Gk
t )t∈[0,1] lie in a fixed weak-∗ sequentially relatively compact set

KM = {G ∈ P+ : T r dG(Rd) ≤M} uniformly in k, t. By the fundamental estimate (.) and
(.) we get

∣

∣

∣

∣

∣

∫

Rd

Φ : (dGk
t −dGk

s )

∣

∣

∣

∣

∣

≤
√

ME|t − s|1/2(‖divΦ‖∞ + ‖Φ‖∞) ≤ C|t − s|1/2(‖∇Φ‖∞ + ‖Φ‖∞)

for all φ ∈ C1b , which implies

∀ t, s ∈ [0,1], ∀k ∈N : dBL(G
k
s ,G

k
t ) ≤ C|t − s|1/2.

This uniform 1/2-Hölder continuity w.r.t. dBL, the sequential lower semicontinuity of dBL

with respect to the weak-∗ convergence (Lemma B. in Appendix B), and the fact that

Gk
t ∈ KM allow us to apply the refined version of Arzelà-Ascoli theorem (Lemma B. in

the Appendix B) to conclude that there exists a dBL (thus narrowly) continuous curve

(Gt)t∈[0,1] connecting G0 and G1 such that

∀t ∈ [0,1] : Gk
t → Gt weakly-∗ (.)

along some subsequence k →∞ (not relabeled here). Let µk be the matricial measure on
Q defined by duality as

∀φ ∈ Cc(Q) :

∫

Q
φ(t,x)dµk(t,x) =

∫ 1

0

(∫

Rd

φ(t, .)dGk
t

)

dt.
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Exploiting the pointwise convergence (.) and the uniform bound on the massesmk
t ≤M ,

a simple application of Lebesgue’s dominated convergence guarantees that

µk → µ0 weakly- ∗ in P+(Q),

where the finite measure µ0 ∈ P+(Q) is defined by duality in terms of the weak-∗ limit

Gt = limGk
t (as was µk in terms of Gk

t ), and, moreover,

µk [s,τ]×Rd → µ0 [s,τ]×Rd weakly- ∗ in P+([s,τ]×Rd), s,τ ∈ [0,1].
Let

X ⊂ L∞(Q;S ×Rd)

be the linear span of the functions of the form

Ψ(t,x) = (Φ,φ)(t,x)1[p,q]×Rd (t,x), (Φ,φ) ∈ C1c (Q;S ×Rd), p,q ∈Q∩ [0,1].
We are going to apply Proposition B. from Appendix B with this X and the norm

‖(Φ,φ)‖ = ‖φ‖L∞(Q) + ‖Φ‖L∞(Q).

It is easy to see that (X,‖ · ‖) is separable (indeed, one can easily construct a dense set in X
equinumerous with the set of all tuples of natural numbers of discretionary finite length,
which is countable). Consider the following norms on X

‖(Φ,φ)‖k =
(∫

Q
dµkφ ·φ +dµkΦ : Φ

)1/2

, k = 0,1, . . . ,

and the linear forms

ϕk(Φ,φ) =

∫

Q
dµkuk ·φ +dµkUk :Φ , k = 1,2, . . . .

The weak-∗ convergence of µk , uniform boundedness of the masses of T r µk(Q) ≤M , and
the Cauchy-Schwarz inequality imply that the hypotheses of Proposition B. are met with

ck := ‖ϕk‖(X,‖.‖k )∗ ≤ ‖U
k‖L2(0,1;L2(dGk )) =

√

E[Gk;Uk] ≤
√

d2KB(G
k
0,G

k
1) + k−1.

Hence, there exists a continuous functional ϕ0 on the space (X,‖ · ‖0) such that up to a
subsequence

∀(Φ,φ) ∈ C1c (Q;S ×Rd) :

∫ 1

0

(∫

Rd

dGk
t u

k
t ·φt +dGk

tU
k
t : Φt

)

dt →
k→∞

ϕ0(Φ,φ)

with moreover

‖ϕ0‖(X,‖·‖0)∗ ≤ liminf
k→∞

dKB(G
k
0,G

k
1). (.)

Let N0 ⊂ X be the kernel of the seminorm ‖ · ‖0. By the Riesz representation theorem,

the dual (X,‖·‖0)∗ = (X/N0,‖·‖0)∗ can be isometrically identifiedwith the completion X/N0

of X/N0 with respect to ‖ · ‖0. As one can see, this completion is exactly L2(0,1;L2(dGt)).
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Consequently, there exists U = (U,u) ∈ L2(0,T ;L2(dGt)) such that

ϕ0(Φ,φ) =

∫

Q
dµ0u ·φ +dµ0U : Φ =

∫ 1

0

(∫

Rd

dGtut ·φt +dGtUt : Φt

)

dt

and

‖U‖L2(0,1;L2(dGt )) = ‖ϕ0‖(X,‖·‖0)∗ .

Moreover, (G,U) is an admissible curve joining G0,G1. Indeed, the established conver-

gences are enough to pass to the limit in the constraint (.) with t, s ∈ Q ∩ [0,1] and

Φ ∈ C2c (Q;S ). Since Gt is a narrowly continuous matrix function, an easy approximation

argument shows that (.) actually holds for any t, s ∈ [0,1] and Φ ∈ C1b (Q;S ).

Recalling (.), it remains to take into account that by the definition of our distance

d2KB(G0,G1) ≤ E[G;U] = ‖U‖2L2(0,1;L2(dGt ))
= ‖ϕ0‖2(X,‖·‖0)∗ ≤ liminf

k→∞
d2KB(G

k
0,G

k
1).

�

During the proof of Theorem  we observed the upper bound

d2KB(G0,G1) ≤ 8(m0 +m1). (.)

Let us show that it can improved.

Proposition . (Upper bound of the distance). For every pair G0,G1 ∈ P+ with masses

m0,m1 one has

d2KB(G0,G1) ≤ 4(m0 +m1). (.)

Proof. Since P++ is dense in P+ in the weak-∗ topology (one can simply use the standard
mollifiers), in view of Theorem  we can assume that G0,G1 ∈P++. Consider the curve

dGt =
(

t
√

G1 + (1− t)
√

G0

)2
dLd .

The corresponding potential Ut ∈ L2(0,1;L2(dG)) can be defined by Riesz duality as

〈U, (Φ,φ)〉L2(0,1;L2(dG)) = 2

∫ 1

0

∫

Rd

(
√

G1 −
√

G0) :
(

t
√

G1 + (1− t)
√

G0

)

Φt dLd dt (.)

for all (Φ,φ) ∈ L2(0,1;L2(dG)). It is not difficult to see that the constraint (.) is satisfied.

By definition, the energy of this path is ‖U‖2
L2(0,1;L2(dG))

. By the Cauchy-Schwarz inequality
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and (.),

〈U, (Φ,φ)〉2L2(0,1;L2(dG))

≤ 4

∫ 1

0

∫

Rd

(
√

G1 −
√

G0) : (
√

G1 −
√

G0)dLddt

×
∫

Rd

(

t
√

G1 + (1− t)
√

G0

)

Φt :
(

t
√

G1 + (1− t)
√

G0

)

Φt dLd dt

= 4‖(Φ,0)‖2L2(0,1;L2(dG))
∫ 1

0

∫

Rd

(
√

G1 −
√

G0) : (
√

G1 −
√

G0)dLd dt

≤ 4‖(Φ,φ)‖2L2(0,1;L2(dG))
∫ 1

0

∫

Rd

(T r G1 +T rG0)dLd dt.

Thus, the energy E[Gt ,Ut] is less than or equal to the right-hand side of (.). �

Remark .. Corollary . indicates that the constant in (.) is optimal.

We are now going to prove that (P+,dKB) is a geodesic space.

Definition . (cf. []). We say that two points x,y in a metric space (X,̺) almost admit a
midpoint if there exists a sequence {zk} ⊂ X such that

|̺(x,y)− 2̺(x,zk)| ≤ k−1, |̺(x,y)− 2̺(y,zk)| ≤ k−1.

Theorem  (Existence of geodesics). (P+,dKB) is a geodesic space, and for all G0,G1 ∈P+ the

infimum in (.) is always a minimum. Moreover this minimum is attained for a dKB-Lipschitz

curve G such that dKB(Gt ,Gs) = |t − s|dKB(G0,G1) and a potential U ∈ L2(0,1;L2(dGt)) such

that ‖Ut‖L2(dGt ) = cst = dKB(G0,G1) for a.e. t ∈ [0,1].

Proof. We first observe from the definition of our distance that any two points in P+ al-

most admit a midpoint. By Corollary . and the (classical) Banach-Alaoglu theorem,

dKB-bounded sequences contain weakly-∗ converging subsequences. Now Lemma B.

(analogue of the Hopf-Rinow theorem for non-completemetric spaces) together with The-

orem  imply that (P+,dKB) is a geodesic space. The existence and claimed properties of

a minimizing admissible path in (.) follow by mimicking the argument from the proof

of Theorem  for the sequence of almost minimizing paths, and by evoking the general

properties of metric geodesics [, ]. �

Remark .. It is possible to prove that the minimizing potential has the structure

Ut = (Ut ,divUt)

in a certain generalized sense, in the spirit of [], but this lies beyond the scope of this

article.

The next theorem gives some insight into the geometry of the Kantorovich-Bures space.
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Theorem  (Explicit geodesics). Fix any element G∗ ∈ P+ and define the map g : P +→ P+ by

g(A) = AG∗A.

Then for any pair of commuting matrices A0,A1 ∈ P + one has

d2KB(g(A0), g(A1)) = 4

∫

Rd

dG∗(A1 −A0) : (A1 −A0), (.)

and a geodesic between g(A0) and g(A1) is explicitly given by

Ḡt := g(tA1 + (1− t)A0). (.)

Proof. Step . Define a potential Ūt ∈ L2(0,1;L2(dḠ)) by Riesz duality as

〈Ū, (Φ,φ)〉L2(0,1;L2(dḠ)) = 2

∫ 1

0

∫

Rd

dG∗(A1 −A0) : (tA1 + (1− t)A0)Φt dt (.)

for all (Φ,φ) ∈ L2(0,1;L2(dḠ)). A straightforward computation shows that (Ḡt ,Ūt) satisfies
the constraint (.). The energy of this path coincides with ‖Ū‖2

L2(0,1;L2(dḠ))
. By the Cauchy-

Schwarz inequality,

〈Ū, (Φ,φ)〉2
L2(0,1;L2(dḠ))

≤ 4

∫ 1

0

∫

Rd

dG∗(A1 −A0) : (A1 −A0)

∫

Rd

dG∗(tA1 + (1− t)A0)Φt : (tA1 + (1− t)A0)Φt dt

≤ 4‖(Φ,φ)‖2
L2(0,1;L2(dḠ))

∫ 1

0

∫

Rd

dG∗(A1 −A0) : (A1 −A0)dt.

Thus, the energy E[Ḡt ,Ūt] is less than or equal to the right-hand side of (.).

Step . In view of the previous step, it suffices to prove that the square of the distance
is bounded from below by the right-hand side of (.). We first observe that without loss
of generality we may assume that A0 ∈ P ++. Indeed, the general case A0 ∈ P + would
immediately follow by letting ǫ→ 0+ in the triangle inequality

dKB(g(A0), g(A1)) ≥ dKB(g(A0 + ǫI ), g(A1))− dKB(g(A0 + ǫI ), g(A0)).

Step . Consider any admissible path (Gt ,Ut)t∈[0,1] connecting G0 := g(A0) to G1 :=

g(A1). Let λ be any scalar probability measure on Rd . Set G̃t := λ
∫

Rd dGt , and define

Ũt ∈ L2(0,1;L2(dG̃)) by duality as

〈Ũ, (Φ,φ)〉L2(0,1;L2(dG̃)) =

∫ 1

0

∫

Rd

dGtUt :

∫

Rd

Φtdλdt (.)

for all (Φ,φ) ∈ L2(0,1;L2(dG̃)). Then(G̃,Ũ) is an admissible path (joining A0λ
∫

Rd dG∗A0

and A1λ
∫

Rd dG∗A1). We claim that it has lesser energy than (G,U). To prove the claim, we
approximate this path with the sequence

G̃k
t := λ

(

k−1I +
∫

Rd

dGt

)

.
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The corresponding potentials are

〈Ũk , (Φ,φ)〉L2(0,1;L2(dG̃k )) =

∫ 1

0

∫

Rd

dGtUt :

∫

Rd

Φtdλdt. (.)

Let us equip the linear space Rd×d with the scalar product

(B,B)k,t = k−1B : B+

∫

Rd

dGtB : B,

and let Πk,t be the allied orthogonal projection onto the subspace S . Then we can explic-

itly compute the components of the potentials Ũk :

Ũk
t :=Πk,t













(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













, ũk
t ≡ 0.

Performing some algebraic manipulations, we estimate

E[G̃k;Ũk] =

∫ 1

0

∫

Rd

dλ

(

k−1I +
∫

Rd

dGt

)

Ũk
t : Ũk

t dt =

∫ 1

0
(Ũk

t , Ũ
k
t )k,t dt

≤
∫ 1

0













(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt ,

(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













k,t

dt

≤
∫ 1

0

(

k−1I +
∫

Rd

dGt

)












(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













:













(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













dt

+

∫ 1

0

∫

Rd

dGt













Ut −
(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













:













Ut −
(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













dt

=

∫ 1

0

∫

Rd

dGtUt :Ut dt

− k−1
∫ 1

0













(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













:













(

k−1I +
∫

Rd

dGt

)−1∫

Rd

dGtUt













dt

≤ E[G;U].

Arguing as in the proof of Theorem  we can pass to the limit inferior as k→∞ to show

that E[G̃t ,Ũt] ≤ E[G;U] as claimed.

Step . Obviously, the right-hand side of (.) does not change if we replace G∗ by λD,

where D :=
∫

Rd dG∗ ∈ P +, and λ is as above. Thus, by the previous steps it is enough to

check that the energies of the admissible paths of the form Gt = λFt with Ft ∈ P +, Fi =
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AiDAi , i = 0,1, A0 ∈ P ++, with constant-in-space potentials Ut = (Ut ,0) ∈ L2(0,1;L2(dG))

are bounded from below by the right-hand side of (.). Some finite-dimensional calculus

of variations shows that the minimum of those energies is achieved for Ft = (tA1 + (1 −

t)A0)D(tA1 + (1 − t)A0) with Ut = 2(tA1 + (1− t)A0))
−1(A1 −A0), t , 1. The corresponding

energy is exactly 4D(A1 −A0) : (A1 −A0). �

Corollary . (Geodesic to zero). For any G∗ ∈P+, d2KB(G∗,0) = 4T r dG∗(R
d), and (1− t)2G∗

is a geodesic between G∗ and 0.

Remark . (Bures manifolds). The set P ++ ⊂ S has a natural structure of a smooth man-
ifold, and the tangent space TPP ++ at every point P ∈ P ++ can be identified with S . For
each Ξ ∈ TPP ++, let UΞ ∈ S be the unique solution to the Lyapunov equation []

2Ξ = PUΞ +UΞP.

Then

〈Ξ1,Ξ2〉P := PUΞ1
:UΞ2

(.)

is a Riemannian metric on P ++ that is known as the Bures metric [, ]. The induced
Riemannian metric on the submanifold P 1 ⊂ P ++ is also called the Bures metric [].
Actually, P ++ is a metric cone over P 1. In the next section we will see that P+ has a
similar cone structure. The geodesics between P0,P1 ∈ P ++ can be constructed as follows.
Let X ∈ P ++ be the unique solution to the Riccati equation []

XP0X = P1.

Then the geodesic is

((1− t)I + tX)P0((1− t)I + tX).

Let dB denote the corresponding Riemannian distance on P ++. Fix any probability mea-
sure λ on Rd . Since I and X commute, by Theorem  the embedding

P 7→ Pλ

from P ++ into P+ is a totally geodesic map (in the sense of []). Moreover, in view of
Remark .,

dB(P0,P1) = dKB(P0λ,P1λ) = dH(P0λ,P1λ).

. The spherical distance and the conic structure

In this section we are going to explore the conic structure of (P+,dKB). We start by

defining a similar distance on P1 (analogue of probability measures) by simply normaliz-

ing the masses of the evolving densities:

Definition . (Spherical Kantorovich-Bures distance). Given twomatrix measuresG0,G1 ∈

P1 we define

d2SKB(G0,G1) := inf
A1(G0,G1)

∫ 1

0

(∫

Rd

dGtut ·ut +
∫

Rd

dGtUt :Ut

)

dt. (.)
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where the admissible set A1(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1] such that


























G ∈ Cw([0,1];P1),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),

∂tGt = {−∇(Gtut) +GtUt}Sym in the weak sense.

Proposition .. dSKB is a distance on P1.

The proof is similar to the one of Theorem . Note that the indiscernability is obvious

since by construction dSKB ≥ dKB on P1.

Remark . (Equivalent definition). It is easy to see that Definition . can be equivalently
written in the following way: given two matrix measures G0,G1 ∈P1 we define

d2SKB(G0,G1) := inf
A2(G0,G1)

∫ 1

0













∫

Rd

dGtut ·ut +
∫

Rd

dGtUt :Ut −
(∫

Rd

dGt :Ut

)2












dt. (.)

where the admissible set A2(G0,G1) consists of all couples (Gt ,Ut)t∈[0,1] such that


























G ∈ Cw([0,1];P1),
G|t=0 = G0; G|t=1 = G1,
U ∈ L2(0,T ;L2(dGt)),

∂tGt +Gt

∫

Rd dGt :Ut = {−∇(Gtut) +GtUt}Sym in the weak sense.

Indeed, A1(G0,G1) =A2(G0,G1)∩
[∫

Rd dGt :Ut ≡ 0
]

, hence the distance (.) is larger than

or equal to (.). On the other hand, the inverse inequality is also true since for any path
(Gt ,Ut ,ut) ∈ A2(G0,G1) we can find a path inA1(G0,G1) of the same energy: one just takes
(Gt ,Vt), where Vt ∈ L2(0,T ;L2(dGt)) is defined by duality via

〈V, (Φ,φ)〉L2(0,1;L2(dG))

=

∫ 1

0

(∫

Rd

dGt(x)ut(x) ·φt(x) +

∫

Rd

dGt(x)

[

Ut(x)− I
∫

Rd

dGt(y) :Ut(y)

]

: Φt(x)

)

dt. (.)

We recall [, ] that, given a metric space (X,dX ) of diameter ≤ π, one can define

anothermetric space (C(X),dC(X)), called a cone overX, in the followingmanner. Consider

the quotient C(X) := X × [0,∞)/X × {0}, that is, all points of the fiber X × {0} constitute a

single point of the cone that is called the apex. Now set

d2
C(X)([x0, r0], [x1, r1]) := r20 + r21 − 2r0r1 cos(dX(x0,x1)). (.)

Very few metric spaces are actually cones, and this property provides neat scaling and

other nice geometric features []. A particularly regular situation appears when the

diameter of X is strictly less than π, since in this case there is a one-to-one correspondence

between the geodesics in X and C(X). Given a cone Y = C(X), X may be referred to as the

sphere in Y .
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Lemma . (Characterization of spherical distances). If X is a length space, and Y = C(X),

then the distance dX(x0,x1) coincides with the infimum of Y -lengths of continuous curves [xt ,1]

that join [x0,1] and [x1,1] and lie within X × {1}.

Proof. Denote by J(x0,x1) the infimum of Y -lengths of curves [xt ,1] as in the statement

of the lemma. Observe from (.) that dX(x+,x−) ≥ dC(X)([x+,1], [x−,1]) for any x+,x− ∈ X.

Hence, the Y -length of any curve [xt ,1] is less than or equal to the X-length of xt . We

claim that they are actually equal. It suffices to prove

LY ([xt ,1]) ≥ qLX(xt) (.)

for any q < 1. By linearity of (.), it is enough to prove it for curves of sufficiently small
length. From [, Ex. ..] we infer that

LY ([xt ,1]) ≥ 2sin(LX(xt)/2) ,

which yields (.) for short curves. Since X is a length space, we immediately conclude

that J(x0,x1) = dX (x0,x1). �

We are going to show that the cone over the metric space (P1,dSKB/2) coincides with
(P+,dKB/2). In other words, (P1,dSKB/2) is a sphere in the cone (P+,dKB/2), hence the
name “spherical distance”. Firstly, for any element G ∈P+, we set

r = r(G) :=
√

m(G) =

√

T r dG(Rd).

Then we can identify G with a pair [G/r2, r] ∈ C(P1).

Theorem  (Conic structure). The space (P1,dSKB) is a geodesic space of diameter ≤ π, while

(P+,dKB/2) is a metric cone over (P1,dSKB/2), where P+ is identified with C(P1) via G ≃

[G/r2, r].

Proof. Step . We first observe that it suffices to show the weaker claim that (P+,dKB/2) is

a metric cone over some metric space (which, due to the identification above, is nothing

but P1 equipped with some distance d). Indeed, by Proposition ., for any two matrix

measures G0,G1 ∈ P1 one has

dKB(G0,G1)/2 ≤
√
2. (.)

If (P+,dKB/2) is a cone over (P1,d), (.) and (.) imply that cos(d(G0,G1)) ≥ 0, whence

the diameter of (P1,d) is controlled from above by π/2 < π. By Theorem  and [, Corol-

lary .], (P1,d) is a geodesic space. Evoking Lemma . and Definition ., we see that

d actually coincides with dSKB/2.

Step . In view of (.) and [, Theorem .], in order to prove the weaker claim

discussed above it suffices to establish the following scaling property that characterizes

the cones:

d2KB(r
2
0G0, r

2
1G1) = r0r1d

2
KB(G0,G1) + 4(r0 − r1)2, (.)

for all G0,G1 ∈ P1, r0, r1 ≥ 0. Note that we have already proved it in the case r0r1 = 0
(see Corollary .), so we can assume that r0r1 > 0. Consider the scalar function a(t) =
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r1t
r0+(r1−r0)t . Then

a(0) = 0, a(1) = 1, a′(t)(r0 + (r1 − r0)t)2 = r0r1.

We will also need its inverse function t(a).

Let (Gt ,Ut ,ut) be any admissible path from A1 joining G0,G1 ∈ P1. Then the path
(G̃t , Ũt , ũt), where

G̃t = (r0 + (r1 − r0)t)2Ga(t),

Ũt = a′(t)Ua(t) +
2(r1 − r0)

r0 + (r1 − r0)t
I ,

ũt = a′(t)ua(t),

connects r20G0 and r21G1. A straightforward computation shows that (G̃t , Ũt , ũt) satisfies
the constraint (.). Testing (.) with Φa = (r0 + (r1 − r0)t(a))I , we infer

(r0 + (r1 − r0)t(1))
∫

Rd

dG1 : I − (r0 + (r1 − r0)t(0))
∫

Rd

dG0 : I

− (r1 − r0)
∫ 1

0
t′(a)

∫

Rd

dGa : I da

=

∫ 1

0
(r0 + (r1 − r0)t(a))

∫

Rd

dGa :Uada. (.)
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Let us compute the energy of the path G̃t, employing (.):

E[G̃t;Ũt , ũt] =

∫ 1

0

(∫

Rd

dG̃t ũt · ũt +
∫

Rd

dG̃tŨt : Ũt

)

dt

= r0r1

∫ 1

0
a′(t)

(∫

Rd

dGa(t)ua(t) ·ua(t) +
∫

Rd

dGa(t)Ua(t) :Ua(t)

)

dt

+4(r1 − r0)
∫ 1

0
a′(t)(r0 + (r1 − r0)t)

∫

Rd

dGa(t) :Ua(t)dt

+4(r1 − r0)2
∫ 1

0

∫

Rd

dGa(t) : I dt

= r0r1

∫ 1

0

(∫

Rd

dGaua ·ua +
∫

Rd

dGaUa :Ua

)

da

+4(r1 − r0)
∫ 1

0
(r0 + (r1 − r0)t(a))

∫

Rd

dGa :Uada

+4(r1 − r0)2
∫ 1

0
t′(a)

∫

Rd

dGa : I da

= r0r1E[Gt;Ut ,ut]

+ 4(r1 − r0)(r0 + (r1 − r0)t(1))
∫

Rd

dG1 : I

− 4(r1 − r0)(r0 + (r1 − r0)t(0))
∫

Rd

dG0 : I

= r0r1E[Gt;Ut ,ut] + 4(r0 − r1)2. (.)

Consequently, d2KB(r
2
0G0, r

2
1G1) ≤ r0r1d

2
KB(G0,G1)+4(r0− r1)2. The opposite inequality is

proved in a similar fashion. �

Appendix A. Frame-indifference

The principle of material frame-indifference [] is one of the main principles of ratio-
nal mechanics, which expresses the fact that the properties of a material do not depend
on the choice of an observer. An observer in rational mechanics is identified with a frame,
which is a correspondence between the spatial points and the elements x of the space
Rd , as well as between the moments of time and the elements t of the scalar axis R. The
metrics in Rd and in the scalar axis, as well as the time direction, are assumed to be
frame-invariant. Then the most general change of coordinates is

t
∗ = t− t0,

x∗ = c∗(t) +Qtx,

where t0 ∈R, c∗ : R→Rd , Qt is a time-dependent orthogonal matrix.



A NEW MATRIX DISTANCE 

Consider any vector that exists in the physical space irrespectively of the observer. In
the initial frame, it is represented by some w ∈ Rd . Then in the new frame it is w∗ =Qtw.
A frame-indifferent tensor is a linear automorphism of such vectors. The representations
of a frame-indifferent tensor function in the two frames are related as

T ∗(t∗,x∗) =QtT (t,x)Q
⊤
t .

We claim that our distance dKB complies with the frame indifference:

dKB (T
∗
0 (t
∗,x∗),T ∗1 (t

∗,x∗)) = dKB (T0(t,x),T1(t,x)) . (A.)

In other words, dKB may be considered as a distance on positive-semidefinite-frame-

indifferent-tensor-valued measures.

To prove the claim it suffices to note that for any admissible path (Tt ,Ut ,ut)(t,x) in the
old frame, the path

(T ∗t ,U
∗
t ,u
∗
t )(t
∗,x∗) :=

(

QtTt(t,x)Q
⊤
t ,QtUt(t,x)Q

⊤
t ,Qtut(t,x)

)

is admissible in the new frame, and has the same energy (.). These assertions can be
verified by a straightforward computation: the only non-obvious issue for the validity of
(.) in the new frame is that the spatial gradient is frame-indifferent:

∇x∗w∗ =Qt(∇xw)Q⊤t
provided w∗ =Qtw, which is just a manifestation of the chain rule, cf., e.g., [, ].

Appendix B. Some technical facts

Proposition B. (Refined Banach-Alaoglu []). Let (X,‖ · ‖) be a separable normed vector
space. Assume that there exists a sequence of seminorms {‖ · ‖k} (k = 0,1,2, . . . ) on X such that
for every x ∈ X one has

‖x‖k ≤ C‖x‖
with a constant C independent of k,x, and

‖x‖k →
k→∞

‖x‖0.

Let ϕk (k = 1,2, . . . ) be a uniformly bounded sequence of linear continuous functionals on (X,‖ ·
‖k), resp., in the sense that

ck := ‖ϕk‖(X,‖·‖k )∗ ≤ C.

Then the sequence {ϕk} admits a converging subsequence ϕkn → ϕ0 in the weak-∗ topology of

X∗, and

‖ϕ0‖(X,‖·‖0)∗ ≤ c0 := liminf
k

ck . (B.)

Lemma B.. The matricial bounded-Lipschitz distance dBL is sequentially lower semicontinu-

ous with respect to the weak-∗ topology.

The proof is obvious since the supremum in the definition of dBL can be restricted to

smooth compactly supported functions, which are dense in C0.
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Lemma B. (Refined Hopf-Rinow). Let (X,̺) be a metric space where every two points almost

admit a midpoint. Assume that there exists a Hausdorff topology σ on X such that ̺-bounded

sequences contain σ-converging subsequences, and ̺ is sequentially lower semicontinuous with

respect to σ . Then (X,̺) is a geodesic space.

Proof. Fix any two points x0,x1 ∈ X. It suffices to join them by a curve xt such that

̺(xt ,xt̄) ≤ |t − t̄|̺(x0,x1). (B.)

for all t, t̄ ∈ [0,1] (which is a posteriori continuous).

Let us first observe that every two points x,y ∈ X admit a midpoint, that is,

̺(x,y) = 2̺(x,z) = 2̺(z,y).

for some z ∈ X. Indeed, take any sequence zk of almost midpoints, i.e.,

|̺(x,y)− 2̺(x,zk)| ≤ k−1, |̺(x,y)− 2̺(y,zk)| ≤ k−1.

The sequence {zk} is ̺-bounded, thus without loss of generality it σ-converges to some
z ∈ X. Then

2̺(x,z) ≤ lim
k→∞

2̺(x,zk) = ̺(x,y),

2̺(y,z) ≤ lim
k→∞

2̺(y,zk) = ̺(x,y).

But its is clear from the triangle inequality that the latter inequalities must be equalities.

Let Q = {s ∈ [0,1]|∃p ∈ N : 2ps ∈ N}. With the existence of midpoints at hand, by a

standard procedure [, p. ] one constructs points xs (s ∈ Q) satisfying (B.), that is,

the function s 7→ xs is ̺(x0,x1)-Lipschitz. Given any t ∈ [0,1], we can approximate it by a

sequence {sn} ∈ Q. Since s 7→ xs is Lipschitz on Q, xsn is a ̺-Cauchy sequence. Therefore

it is ̺-bounded, and admits a subsequence that σ-converges to some xt ∈ X. Due to the

sequential lower semicontinuity of the distance ̺, we can pass to the limit in (B.) for all

t, t̄ ∈ [0,1]. �

Lemma B. (Refined Arzelà-Ascoli). Let (X,̺) be a metric space. Assume that there exists

a Hausdorff topology σ on X such that ̺ is sequentially lower semicontinuous with respect to

σ . Let (xk)t, t ∈ [0,1], be a sequence of curves lying in a common σ-sequentially compact set

K ⊂ X. Let it be equicontinuous in the sense that there exists a symmetric continuous function

ω : [0,1]× [0,1]→R+, ω(t, t) = 0, such that

̺((xk)t , (x
k)t̄) ≤ ω(t, t̄). (B.)

for all t, t̄ ∈ [0,1]. Then there exists a ̺-continuous curve xt such that

̺(xt ,xt̄) ≤ ω(t, t̄), (B.)

and (up to a not relabelled subsequence)

(xk)t→ xt (B.)

for all t ∈ [0,1] in the topology σ .
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Proof. A standard Arzelà-Ascoli argument allows us to construct, for each rational num-

ber t ∈ [0,1], some points xt so that (B.) holds up to a not relabelled subsequence. Due to

the sequential lower semicontinuity of ̺, estimate (B.) is true for all rational t, t̄ ∈ [0,1].

Approximating any point t ∈ [0,1] by a sequence of rational numbers, by mimicking the

reasoning from the proof of Lemma B. we can construct a ̺-continuous curve xt satisfy-

ing (B.) for every t ∈ [0,1]. To show that the convergence (B.) takes place for all t ∈ [0,1],

one just repeats the argument from [, last part of the proof of Proposition ..]. �

Remark B.. Lemma B. has been proved in [] assuming that X is a complete length

space, which is redundant. Similarly, Lemma B. has been proved in [] assuming that X

is a complete metric space.

Appendix C. Matricial Otto calculus and beyond

We have seen in Remark . that some pieces of (P+,dKB) are isometric to Riemannian
manifolds. One can (at least formally) extend this geometry onto the whole P+ such
that the corresponding geodesic distance coincides with dKB. Namely, we can develop
some kind of Otto calculus, cf. [, , ], on (P+,dKB). Starting from this point, we
are completely formal. As we observed in Section  and in Remark ., the minimizing
potentials in (.) can be chosen to be of the form U = (U,divU ). This suggests to define
the tangent spaces as

TGP
+ :=

{

Ξ = (−∇(GdivU ) +GU )Sym , U(x) ∈ S
}

and

‖Ξ‖TGP+ = ‖U‖H1
div(dG;S) :=

(∫

Rd

dGdivU ·divU +

∫

Rd

dGU :U

)1/2

.

Ignoring all smoothness issues, the operator

Ξ(U ) = (−∇(GdivU ) +GU )Sym (C.)

is H1
div(dG;S )-coercive, so the one-to-one correspondence between the tangent vectors Ξ

and potentials U = (U,divU ) is well defined. By polarization this defines a Riemannian
metric on TP+, and

d2KB(G0,G1) = inf











∫ 1

0

∥

∥

∥

∥

∥

dGt

dt

∥

∥

∥

∥

∥

2

TGtP
+
dt











.

The gradients of functionals F : P+→ R are given by

gradKBF (G) =
[

−∇
(

Gdiv
δF
δG

)

+G
δF
δG

]Sym

, (C.)

where δF
δG denotes the first variation with respect to the Euclidean structure of L2(Rd ,S )

with the standard scalar product 〈U,U〉 =
∫

Rd U : U . The gradient flows are matricial
PDEs of the form

∂tG =
[

∇
(

Gdiv
δF
δG

)

−GδF
δG

]Sym

.
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The interesting driving functionals include the von Neumann entropy

FN (G) =

∫

Rd

G logG −G

and the “volume”

FV (G) =

∫

Rd

√
detG.

The gradient flow of FN is a sort of matricial “heat flow” with logarithmic reaction. In-

deed, for d = 1 it simply becomes ∂tG = ∂xxG −G logG. The gradient flow of FV has some

similarities with the mean curvature flow (if we view Gt as an evolving Riemannian met-

ric on Rd ). Unfortunately, it is not a genuinely geometric flow since the latter ones are

expected to be invariant with respect to diffeomorphisms of Rd (for instance, the Ricci

flow has this property), and our flow, in spite of the frame-indifference of the distance,

does not behave in such a nice way.

A similar Otto calculus can be developed for the spherical space (P1,dSKB). Remark .
guides us to define

TGP
1 :=

{

∃U(x) ∈ S : Ξ = [−∇(GdivU ) +GU ]Sym −G
∫

Rd

G :U

}

and

‖Ξ‖TGP1 =













∫

Rd

dGdivU ·divU +

∫

Rd

dGU :U −
(∫

Rd

dG :U

)2












1/2

.

The gradients of functionals F : P1→R are

gradSKBF (G) =
[

−∇
(

Gdiv
δF
δG

)

+G
δF
δG

]Sym

−G
∫

Rd

G :
δF
δG

. (C.)

The second order calculus for both the cone and the sphere can be established by for-

mally computing the geodesic equations, which leads to the definitions of Hessians and

λ-convexity.

Remark C.. The original Otto calculus [] is related to the principal bundle structure of
the space of diffeomeorphisms [, , ] for which the projection is Otto’s Riemannian
submersion. The base (horizontal space) of this bundle is the Otto-Wasserstein space (at
least if we neglect the regularity issue), whereas the incompressible Euler equations (both
homogeneous and inhomogeneous) determine the geodesics on the fibers (vertical spaces)
in the spirit of []. An analogous bundle construction recently discovered in [, ]
involves the Hellinger-Kantorovich space as the base and the multidimensional Camassa-
Holm equations as the vertical geodesics. We do not claim that there is a similar neat
structure for which the (conic) Kantorovich-Bures space is the horizontal space. However,
some weaker construction might exist since there is a natural candidate for the geodesic
in the vertical space. The following reasoning is very sloppy. Assume for simplicity that
we work on the flat torus (cf. Remark .), and consider the “vertical tangent vectors” at
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G ≃ I dx, where dx stands for the canonical volume form on Td . These vertical vectors
should satisfy

[−∇(Gu) +GU ]Sym = 0,

that is,

U = (∇u)Sym .

The geodesic Lagrangian (.) on this fiber becomes
∫

(0,1)×Td

(

u ·u + (∇u)Sym : (∇u)Sym
)

dxdt

=

∫

(0,1)×Td

(

|u |2 + 1

2
|∇u |2 + 1

2
|divu |2

)

dxdt. (C.)

This is very similar to the Lagrangians of the EPDiff equations [, , , , , , ]

and of the geodesics for the a-b-c metric [] on the space of diffeomorphisms.
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