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Mathematical analysis of electromagnetic plasmonic metasurfaces

Habib Ammari∗ Bowen Li† Jun Zou‡

Abstract

We study the anomalous electromagnetic scattering in the homogenization regime, by a subwave-
length thin layer of periodically distributed plasmonic nanoparticles on a perfect conducting plane.
By using layer potential techniques, we derive the asymptotic expansion of the electromagnetic field
away from the thin layer and quantitatively analyze the field enhancement due to the mixed collec-
tive plasmonic resonances, which can be characterized by the spectra of periodic Neumann-Poincaré
type operators. Based on the asymptotic behavior of the scattered field in the macroscopic scale, we
further demonstrate that the optical effect of this thin layer can be effectively approximated by a
Leontovich boundary condition, which is uniformly valid no matter whether the incident frequency
is near the resonant range but varies with the magnetic property of the plasmonic nanoparticles.
The quantitative approximation clearly shows the blow-up of the field energy and the conversion of
polarization when resonance occurs, resulting in a significant change of the reflection property of the
conducting plane. These results confirm essential physical changes of electromagnetic metasurface
at resonances mathematically, whose occurrence was verified earlier for the acoustic case [6] and the
transverse magnetic case [11].

1 Introduction

The study of electromagnetic scattering by a thin layer composed of periodic subwavelength resonators,
which can strongly interact with the incident wave, have received considerable attention recently for
their possibilities of realizing the full control of reflected and transmitted waves [19, 45, 46, 27]. Such
thin layers of composite material, usually referred to as the ultrathin metasurfaces in the physical and
engineering community, have a macroscopic effect on the scattered wave although the layer thickness,
or the size of cell structure, is negligible with respect to the operating wavelength [24, 25, 31, 30, 16,
35, 36]. We refer the readers to [44] for a systematic review of the electromagnetic metasurfaces and
its applications. Great effort has been made recently by the mathematical community to develop a
universal theory for a better understanding of the mechanism underlying the metasurfaces. It turns
out that these anomalous scattering phenomena have a close relation with the multiscale nature of the
subwavelength cell structures and the excitation of various resonances. A systematic study was carried
out in [34, 35, 36, 37, 33] to understand the electromagnetic scattering by the perfect conducting slab
patterned with the subwavelength narrow slits under varying regimes and periodic patterns. And it was
shown in [39] that the scattering effect by a novel metasurface made of periodically corrugated cylindrical
waveguides can be approximated by smooth cylindrical waveguides with an effective metamaterial surface
impedance.

Plasmonic nanoparticles such as gold and silver are popular choices for the subwavelength resonators
in the electromagnetic setting due to their unique optical properties [40], and even a thin layer of these
particles can significantly influence the wave propagation pattern. In this work, we shall consider the
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scattering effect of a thin layer of periodical plasmonic nanoparticles of subwavelength mounted on a
perfectly conducting plane in the homogenization regime, i.e., the period of the structure is about the
same size as the nanoparticles but is much smaller than the incident wavelength. At the quasi-static limit,
a single nanoparticle can exhibit the plasmonic resonances at some specific frequencies that are related to
the spectra of the Neumann-Poincaré operators. We refer to [5, 12, 10] for the mathematical analysis of
plasmonic resonances. However, when we consider the homogenization regime, the mixed and collective
plasmonic resonances may occur, which are very different from the single plasmonic nanoparticle case
in free space. It is interesting to note that if the thin layer is made of normal dielectric materials with
biperiodic conducting inclusions covering a cylindrical body, a Leontovich boundary condition can be
derived to approximate the effect of the layer [1]. Such grating problems or boundary layer effects have
been extensively studied by matched asymptotic expansion techniques, see, e.g., [15, 3, 2, 4, 22, 23].
However, as we shall characterize, the cell problem here is nearly singular at some frequencies if the
nanoparticles are plasmonic. And in this case, the standard homogenization is not applicable and the
reflection coefficients may blow up. Therefore, we should seek new analytical tools for deriving the
exact blow-up order and justifying the validity of the approximation of the Leontovich-type boundary
conditions. In the present work, we use layer potential techniques to study the reflection properties of
electromagnetic plasmonic metasurfaces, which is more general than the framework recently proposed
in [11]. The technique was used in [6] to illustrate the superabsorption of acoustic waves with bubble
metascreens observed in [32].

As we shall point out in Section 5, our results and analyses in this work apply to several important
physical regimes and applications, in particular, to the general physical setting that involves several
physical scales, namely, the distance between every two thin layers of periodically distributed plasmonic
nanoparticles, the incident wavelength, sizes of nanoparticles, and the period of each layer of periodical
nanoparticles, can be of very different multiscale, such as

size of particle ≪ period ≪ distance ∼ wave length, or

size of particle ≪ period ∼ distance ≪ wave length.

The paper is organized as follows. In the next section, we describe our model mathematically and
introduce some notation and definitions. In Section 3, we first introduce the quasi-periodic layer poten-
tials and derive the corresponding asymptotic expansions, and then recall some basic results concerning
the Neumann-Poincaré operators and establish the resolvent estimates for the leading-order potentials.
The Section 4 is the main contribution of this work, devoted to the calculation of the far-field asymp-
totic expansion of the scattered wave and a boundary condition approximation under the excitation of
plasmons. We shall end our work with some concluding and extension remarks.

2 Problem descriptions and preliminaries

This section is devoted to the basic setup and the mathematical formulation of the electromagnetic
scattering problem. We shall write R3 ∋ x = (x1, x2, x3) = (x′, x3) with x

′ = (x1, x2) ∈ R2 and x3 ∈ R,
Γ := {x ∈ R

3|x3 = 0} for the reflective plane and R
3
± := {x ∈ R

3| ± x3 > 0} for the upper and lower
half spaces. We denote by (e1, e2, e3) the usual Cartesian basis of R3. For a multi-index α ∈ N3, we
write xα = xα1

1 xα2
2 xα3

3 and ∂α = ∂α1
1 ∂α2

2 ∂α3
3 with ∂j =

∂
∂xj

. We shall always use B ∈ R3
+ to denote a C2

smooth bounded domain with its size of order one, and use D := δB to describe a single nanoparticle
and D for the collection of plasmonic nanoparticles periodically distributed along a lattice Λδ given by

Λδ = {Rδ ∈ R
2; Rδ = n1δa1 + n2δa2, ni ∈ Z},

in which a1, a2 are linearly independent vectors lying in Γ with |a1| ∼ |a2| ∼ 1. Then we can write
D =

⋃
Rδ∈Λδ (D+Rδ). For convenience, we shall write Λ1 as Λ, and we can see D =

⋃
R∈Λ δ(B+R). We
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now define the cell Σ, Ω in Γ and in R3
+ respectively by

Σ =
{
a ∈ R

2; a = c1a1 + c2a2, ci ∈ (−1

2
,
1

2
)
}
,

Ω =
{
a ∈ R

2; a = c1a1 + c2a2, ci ∈ (−1

2
,
1

2
)
}
× (0,∞).

We further assume that B is contained in Ω with the distance from the reflective plane Γ of order one
and the dimensionless quantity δ is much less than one, since we are interested in the homogenization
regime. For any x̃ ∈ ∂B, we have x = δx̃ ∈ ∂D. Then for a function ϕ(x) defined on ∂D, its pull
back ϕ̃(x̃) := ϕ(δx̃) = ϕ(x) is defined on ∂B, and this convention is adopted throughout this work. In
particular, if we denote by ν(x) the exterior normal vector of ∂D, then its pull back ν̃(x̃) is the normal
vector of ∂B. But we may also simply write ν for a normal vector without specifying its definition domain
when no confusion is caused. For the sake of exposition, we often refer to x̃, B and Ω as the reference
variable, reference domain and reference cell, respectively.

We shall consider the electric permittivity εc(ω) and magnetic permeability µc(ω) of the nanoparticle
are described by the Drude model [5, 10, 40]. Although explicit formulas for µc and εc are available in
terms of the Drude model, it suffices for all our analysis and arguments to generally assume that both µc

and εc are complex numbers with Imµc, Imεc ≥ 0, and depend on the frequency ω of the incident wave.
We write the permittivity and permeability of the background medium by ε and µ, and further assume
them to be constant 1 after an appropriate scaling. Then the wave number kc(ω) and k are given by

kc(ω) = ω
√
εc(ω)µc(ω) and k = ω

√
εµ = ω.

We are now ready to formulate the scattering problem of our interest as follows:




∇× E = ikµDH in R3
+\∂D,

∇×H = −ikεDE in R3
+\∂D,

[ν × E] = [ν ×H ] = 0 on ∂D,
e3 × E = 0 on Γ,

(2.1)

where E − Ei and H − Hi satisfy certain outgoing radiation conditions, εD := X (R3
+\D) + εcX (D),

µD := X (R3
+\D) + µcX (D), with X being the standard characteristic function. Throughout the work,

we use [·] := ·|− − ·|+ to denote the jump across the interface ∂D, and the subscripts ± to denote the
limits taken from the outside and inside of D respectively. The incident plane wave (Ei, Hi) is given by

Ei = peikd·x − p∗eikd
∗·x , Hi = d× peikd·x − d∗ × p∗eikd

∗·x,

where d is a unit vector for the incident direction with d3 < 0, and p is the polarization direction. Here
and in the sequel we often use the superscript ∗ to denote the reflection of a vector with respect to Γ, i.e.,
d∗ = (d′,−d3). But the notation ∗ may have other meanings at different occasions, so we will illustrate
the actual meaning of ∗ whenever it may cause confusion. Denote by k = kd, k∗ = kd∗ the wave vector
and its reflection respectively. We are interested in finding a quasi-periodic solution (E,H) to the system
(2.1) such that

E(x+Rδ) = eik·R
δ

E(x), H(x+Rδ) = eik·R
δ

H(x).

Hence we have the usual Rayleigh Bloch expansion for the scattered field in the domain above the layer
of nanoparticles. As in [6], we impose the outgoing radiation condition on the solutions to the system
(2.1) by assuming that all the modes in the Rayleigh-Bloch expansion are either decaying exponentially
or propagating along the x3-direction. Under the subwavelength assumption, the period of lattice is of
order δ, and the scattered wave consists of only a single propagative mode in the far field, namely

Er := E − Ei ∼ preik
′·x′

e−ik3x3 as x3 → ∞ (for some polarization direction pr).

The remaining part of this section is devoted to introduce more notation, definitions and recalling
some basic results concerning the surface differential operators and function spaces that are frequently
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used in the sequel. For s ∈ R, we denote by Hs(∂B) and Hs
T (∂B) the usual Sobolev space of order

s of scalar functions and tangential vector fields on ∂B, respectively, and denote by Hs
0(∂B) the zero

mean subspace of Hs(∂B). Also, the Sobolev spaces Hs(B) and Hs
loc(Ω\B) are needed, as well as the

trace operator γ0 : Hs(B) → Hs− 1
2 (∂B) for s > 1

2 . We introduce the surface gradient ∇∂B and the

surface vector curl (written as ~curl∂B) in the standard way [42], which map H
1
2 (∂B) to H

− 1
2

T (∂B). Their
corresponding adjoint operators are the surface divergence ∇∂B· and the surface scalar curl, i.e., curl∂B:

H
1
2

T (∂B) → H− 1
2 (∂B). And it holds in H− 1

2 (∂B) that

ker(∇∂B) = ker( ~curl∂B) = R. (2.2)

The Laplace-Beltrami operator ∆∂B := ∇∂B ·∇∂B = −curl∂B ~curl∂B shall also be used. For a vector field

u ∈ H
− 1

2

T (∂B), we will often need its tangential component r(u) := ν × u. It is easy to check by using
definition and duality relation that each of the following identities holds for a suitable function ϕ,

~curl∂Bϕ = −r(∇∂Bϕ), curl∂Bϕ = −∇∂B · (rϕ), (2.3)

∇∂B · ~curl∂Bϕ = 0, curl∂B∇∂Bϕ = 0. (2.4)

Moreover, we introduce the spaces H(curl, B), Hloc(curl,Ω\B̄), H(div, B) and Hloc(div,Ω\B̄) of (locally)
square integrable vector fields with (locally) square integrable curl and divergence, respectively. We will
frequently use the normal trace γn(u) := u ·ν|∂B, the tangential trace γt(u) := ν×u|∂B and the tangential
component trace πt(u) := (ν×u)×ν|∂B for appropriately smooth vector fields u. Indeed, γn, γt and πt can

be extended to linear continuous mappings from H(div, B) to H− 1
2 (∂B), H(curl, B) to H

− 1
2

T (div, ∂B),

and H(curl, B) to H
− 1

2

T (curl, ∂B) respectively, where

H
− 1

2

T (div, ∂B) = {ϕ ∈ H
− 1

2

T (∂B); ∇∂B · ϕ ∈ H− 1
2 (∂B)},

H
− 1

2

T (curl, ∂B) = {ϕ ∈ H
− 1

2

T (∂B); curl∂Bϕ ∈ H− 1
2 (∂B)}.

It is known that H
− 1

2

T (curl, ∂B) can be identified with the dual space of H
− 1

2

T (div, ∂B) with duality
pairing 〈ψ, ϕ〉 :=

∫
∂B ψ · ϕdσ for smooth vector fields ψ, ϕ (cf.[41, 17]). And for f ∈ H1(B), we have

∇∂Bγ0(f) = πt(∇f). (2.5)

Similarly, it holds for u ∈ H(curl, B),

curl∂Bπt(u) = γn(∇× u). (2.6)

For our subsequent analysis, the Helmholtz decomposition of H
− 1

2

T (div, ∂B) is frequently used (cf.[17]):

H
− 1

2

T (div, ∂B) = ∇∂BH
3
2
0 (∂B)⊕ ~curl∂BH

1
2
0 (∂B) .

In this work, we denote by ⊗ the tensor product operation of two vectors, i.e., given two vectors
a ∈ Rn and b ∈ Rm, a ⊗ b is a n × m matrix given by (a ⊗ b)ij = aibj, and let vector operators act
on matrices column by column. For any two Banach spaces X and Y , we write by L(X,Y ) the set
of all linear continuous mappings from X to Y , or simply by L(X) if Y = X . We write ‖·‖X for the
norm defined on the space X and X∗〈·, ·〉X for the natural duality pairing between X and its dual space
X∗. However, we may simply write ‖·‖ and 〈·, ·〉 without specifying the subscripts when no confusion is
caused. We will not identify the dual spaces of Hilbert spaces with themselves, instead we always regard
them as the subspaces of distributions. Hence all the adjoint operators in this work are introduced by
their natural duality pairings. We end this section by introducing the expression x . y, which means
x ≤ Cy for some generic constant C. If x & y and x . y holds simultaneously, then we write x ≈ y.
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3 Layer potential techniques

Before considering the scattering problem, we present some preliminary knowledge on the quasi-
periodic layer potential techniques in this section for our subsequent analysis. We first introduce the quasi-
periodic Green’s tensors satisfying certain boundary conditions and compute their asymptotic expansions
with respect to δ. Then we study the associated layer potentials, as well as their asymptotics. After
that, we turn our attention to the properties of the leading-order potentials and the resolvent estimates
for Neumann-Poincaré-type operators. These results will be the foundation for the far-field asymptotics
and approximation error estimate conducted in the next section.

3.1 Quasi-periodic Green’s tensors and basic properties

Following the notation in [6], we start with the scalar quasi-periodic Green’s function Gk
# with complex

wavenumber k with Imk ≥ 0, which is the solution to

(∆ + k2)Gk
#(x) =

∑

R∈Λ

eik
′·x′

δR(x) =
∑

R∈Λ

eik
′·RδR(x) , (3.1)

satisfying a certain outgoing condition. In the distribution sense, Gk
# is well-defined and given by

Gk
#(x) =

∑

R∈Λ

eik
′·RGk(x,R) , (3.2)

where Gk(x,y) := − eik|x−y|

4π|x−y| is the fundamental solution to the Helmholtz operator ∆+ k2 in free space.

We further define Gk
#(x,y) := Gk

#(x − y). For our purpose, we are interested in the behavior of the

quasi-periodic Green’s function Gk
#δ(x) with respect to the lattice Λδ. With the reference variable x̃, we

easily observe that

Gk
#δ (x) =

∑

Rδ∈Λδ

eik
′·Rδ

Gk(x,Rδ) =
1

δ

∑

R∈Λ

eiδk
′·RGδk(x̃,R) . (3.3)

We thus have the following useful scaling property:

Gk
#δ (x) =

1

δ
Gδk

# (x̃) . (3.4)

Let Λ∗ be the reciprocal lattice of Λ (cf.[38]), and τ be the volume of the unit cell of Λ. Then the explicit
representation formula of Gk

# in the homogenization regime, i.e., |k| ≪ τ ∼ 1, is available [6], as stated
in the next theorem.

Theorem 3.1. Let k ∈ C be the complex wave number with Imk ≥ 0. Assume that |k| is small enough,
then the quasi-periodic Green’s function Gk

# can be expressed by

Gk
#(x) =

i

2τk3
eik

′·x′−ik3|x3| − 1

2τ

∑

ξ∈Λ∗\{0}

1√
|ξ + k′|2 − k2

ei(ξ+k′)·x′

e−
√

|ξ+k′|2−k2|x3| , (3.5)

where
√
z is viewed as an analytic function defined by

√
z = |z|1/2ei arg z/2 for z ∈ C\{−it, t ≥ 0}.

In particular, when k = 0,

G0
#(x) =

|x3|
2τ

− 1

2τ

∑

ξ∈Λ∗\{0}

1

|ξ|e
iξ·x′

e−|ξ|·|x3|. (3.6)
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One can readily observe the symmetry property of G0
# from its representation formula (3.6),

G0
#(±x′,±x3) = G0

#(x
′, x3) . (3.7)

Concerning the asymptotics of Gδk
# with respect to δ, a direct application of Taylor’s series gives us

Gδk
# (x) =

i

2δk3τ
+G0,#(x) +

∞∑

n=1

(δk)nGn,#(x) . (3.8)

We remark that each term Gn,# in (3.8) can be computed explicitly (cf.[6] for more details). In particular,
for the leading-order term, we have

G0,#(x) =
k3|x3| − k′ · x′

2k3τ
− 1

2τ

∑

ξ∈Λ∗\{0}

1

|ξ|e
iξ·x′

e−|ξ|·|x3| = G0
#(x) −

k′ · x′
2k3τ

. (3.9)

Recalling from the definition of Gδk
# that

(∆ + δ2k2)Gδk
# (x) =

∑

R∈Λ

eiδk
′·x′

δR(x) ,

we obtain, by substituting the expansion (3.8) into the above formula,

∆G0,#(x) + δk(∆G1,#(x) +
i

2d3τ
) +

∞∑

n=2

δnkn(∆Gn,#(x) +Gn−2,#(x))

=

∞∑

n=0

δnkn
∑

R∈Λ

(id′ · x′)n
n!

δR(x) ,

which imply (with notation G−1,# = i
2d3τ

)

∆G0,#(x) =
∑

R∈Λ

δR(x), and ∆Gn,#(x) +Gn−2,#(x) =
∑

R∈Λ

(id′ · R)n
n!

δR(x) , n ≥ 1 . (3.10)

As the perfect conducting boundary condition is enforced only on the electric field, we have to dis-
tinguish between the electric and magnetic Green’s tensors in terms of the boundary conditions. Their
definitions rely on the quasi-periodic Green’s functions with Dirichlet and Neumann boundary conditions,
defined respectively by

Gk
e (x,y) := Gk

#(x− y) −Gk
#(x− y∗) , Gk

m(x,y) := Gk
#(x− y) +Gk

#(x− y∗) . (3.11)

The asymptotics below follows directly from (3.8),

Gδk
e/m(x,y) =

∞∑

n=−1

(δk)nGn,e/m(x,y) , (3.12)

where Gn,e/m(x,y) are given by

Gn,e/m(x,y) := Gn,#(x− y)∓Gn,#(x− y∗) for n ≥ −1 . (3.13)

Especially, G−1,e = 0 and G−1,m = i/(d3τ). For the sake of exposition, here and in the sequel, we use the
subscript e/m to include two cases, e.g., (3.12) actually represents two equations, obtained by replacing
e/m by e and m, respectively, in (3.12). Similarly, we shall also use m/e frequently. Recalling (3.10), if
x,y ∈ B̄, we have by noting that δR(x

′ − y′) = 0 for all R 6= 0,

∆G0,e/m = δ0, and ∆Gn,e/m +Gn−2,e/m = 0 , n ≥ 1. (3.14)
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These recurrence relations shall be used in the calculation of asymptotic expansions of layer potential
operators. According to the reciprocity (3.7) of the periodic Green’s function, we know

G0
e/m(x,y) = G0

e/m(y,x).

Combining this observation with (3.9) and (3.13), we readily see the reciprocity is no longer suitable for
G0,m(x,y) since

G0,m(x,y) = G0
m(x,y) −

k′ · (x′ − y′)

k3τ
, (3.15)

while G0,e(x,y) still behaves well due to

G0,e(x,y) = G0
e(x,y) . (3.16)

It is also worth mentioning that there is a singularity for Gδk
m as δ goes to 0 (cf.(3.8) and (3.11)).

This, together with non-symmetry of G0,m(x,y), makes some of our subsequent analyses much more

involved. Finally, for our later use, we introduce the conjugate kernels Ĝ0,e/m of G0,e/m by setting

Ĝ0,e/m(x,y) := G0,e/m(y,x), namely,

Ĝ0,e(x,y) = G0,e(y,x) = G0
e(x,y), (3.17)

Ĝ0,m(x,y) = G0,m(y,x) = G0
m(x,y) +

k′ · (x′ − y′)

k3τ
. (3.18)

We are now ready to introduce the electromagnetic Green’s tensor

G
k
e/m(x,y) = (1 +

1

k2
∇x∇x·)Πk

e/m(x,y), (3.19)

where the matrix-valued functions Πk
e/m are given by

Πk
e/m(x,y) =

[
Gk

e/me1, Gk
e/me2, Gk

m/ee3

]
(x,y) . (3.20)

It is easy to check that Gk
e/m solve the equations

∇x ×∇x ×G
k
e/m(x,y) − k2Gk

e/m(x,y) =
∑

R∈Λ

eik
′·RδR(x− y)I3,

and satisfy the boundary conditions:

e3 ×G
k
e (x,y) = 0 and e3 ·Gk

m(x,y) = 0 for x ∈ Γ,y ∈ R
3
+,

respectively. As a direct application of (3.12), we have the asymptotics of Πδk
e/m:

Πδk
e/m(x,y) =

∞∑

n=−1

(δk)nΠn,e/m(x,y). (3.21)

Then we readily see an expansion from the above formula and the definition of Gk
e/m in (3.19):

G
δk
e/m(x,y) =

1

δk
G−1,e/m(x,y) +

∞∑

n=0

(δk)nGn,e/m(x,y) , (3.22)

where Gn,e/m(x,y) is given by

Gn,e/m(x,y) = Πn,e/m(x,y) +∇x∇x · Πn+2,e/m(x,y).

7



We end this subsection with some basic but very useful observations:

∂

∂xi
Gk

e = − ∂

∂yi
Gk

e (i = 1, 2),
∂

∂x3
Gk

e = − ∂

∂y3
Gk

m, (3.23)

∂

∂xi
Gk

m = − ∂

∂yi
Gk

m(i = 1, 2),
∂

∂x3
Gk

m = − ∂

∂y3
Gk

e , (3.24)

which lead us to the following reciprocity:

∇x ×Πk
e/m(x,y)

T = ∇y ×Πk
m/e(x,y). (3.25)

3.2 Integral operators and their asymptotics

With the help of the Green’s tensors introduced in the last subsection, we define the following vector
potentials with density ϕ on ∂B [26, 20]:

Ak
B,e/m : H

− 1
2

T (div, ∂B) −→ H(curl, B) or Hloc(curl,Ω\B̄)

ϕ 7−→ Ak
B,e/m[ϕ](x) =

∫

∂B

Πk
e/m(x,y)ϕ(y)dσ;

Mk
B,e/m : H

− 1
2

T (div, ∂B) −→ H
− 1

2

T (div, ∂B)

ϕ 7−→ Mk
B,e/m[ϕ](x) =

∫

∂B

ν(x)×∇x ×Πk
e/m(x,y)ϕ(y)dσ;

Lk
B,e/m : H

− 1
2

T (div, ∂B) −→ H
− 1

2

T (div, ∂B)

ϕ 7−→ Lk
B,e/m[ϕ](x) = ν(x) × (k2Ak

B,e/m[ϕ](x) +∇Sk
B,e/m[∇∂B · ϕ](x)).

Further, we define the single layer potential

Sk
B,e/m : H− 1

2 (∂B) −→ H
1
2 (∂B)

ϕ 7−→ Sk
B,e/m[ϕ](x) =

∫

∂B

Gk
e/m(x,y)ϕ(y)dσ,

the double layer potential

Kk
B,e/m : H

1
2 (∂B) −→ H

1
2 (∂B)

ϕ 7−→ Kk
B,e/m[ϕ](x) =

∫

∂B

∂

∂νy
Gk

e/m(x,y)ϕ(y)dσ,

and the Neumann-Poincaré operator

Kk,∗
B,e/m : H− 1

2 (∂B) −→ H− 1
2 (∂B)

ϕ 7−→ Kk,∗
B,e/m[ϕ](x) =

∫

∂B

∂

∂νx
Gk

e/m(x,y)ϕ(y)dσ.

It follows directly from the definition that Sk
B,e/m satisfy the Dirichlet and Neumann boundary conditions,

respectively, on the reflective plane Γ, while Ak
B,e and Ak

B,m satisfy the following conditions, respectively:

e3 ×Ak
B,e[ϕ](x) = 0, e3 · Ak

B,m[ϕ](x) = 0 on Γ .

When k = 0, we omit the subscript B in all the potentials defined above, e.g., we write S0
e/m for S0

B,e/m.
We emphasize that all the definitions depend on the lattice Λ and the domain in the unit cell Ω. For the
scaled lattice Λδ and domain D, all the operators above can be defined similarly. It can be shown that
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∇×Ak
B,e/m defines a bounded linear operator fromH

− 1
2

T (div, ∂B) intoH(curl, B) orH(curl,Ω\B̄)(cf.[20]).

Noting that Gk
e/m(x)−Gk(x) is a smooth function defined in Ω, thus the trace formulas related to Ak

B,e/m

follow directly from the standard results [7, Lemma 2.96],

(ν ×∇×Ak
B,e/m)|± = ∓1

2
+Mk

B,e/m, (3.26)

(ν ×∇×∇×Ak
B,e/m)|± = Lk

B,e/m, (3.27)

while it holds for Sk
B,e/m that,

(
∂

∂νx
Sk
B,e/m)|± = ±1

2
+Kk

B,e/m. (3.28)

Recalling the asymptotic expansions (3.12) and (3.21), we may define the potentials An,e/m,Sn,e/m as-
sociated with Πn,e/m and Gn,e/m respectively, and Kn,e/m and K∗

n,e/m as well. Then we can directly see
that the following expansions hold for any density ϕ on ∂D,

Ak
D,e/m[ϕ](x) = δAδk

B,e/m[ϕ̃](x̃) =

∞∑

n=−1

δn+1knAn,e/m[ϕ̃](x̃) , (3.29)

Sk
D,e/m[ϕ](x) = δSδk

B,e/m[ϕ̃](x̃) =

∞∑

n=−1

δn+1knSn,e/m[ϕ̃](x̃) , (3.30)

and

Kk
D,e/m[ϕ](x) =

∞∑

n=0

δnknKn,e/m[ϕ̃](x̃), Kk,∗
D,e/m[ϕ](x) =

∞∑

n=0

δnknK∗
n,e/m[ϕ̃](x̃).

Moreover, by these asymptotic expansions, a similar proof to the one of [12, Lemmas 3.1-3.2] yields the
results in the next two lemmas.

Lemma 3.2. For φ ∈ H
− 1

2

T (div, ∂D), Mk
D,e/m[φ] has the following asymptotic expansion:

Mk
D,e/m[φ](δx̃) = Mδk

B,e/m[φ̃](x̃) =

∞∑

n=0

(δk)nMn,e/m[φ̃](x̃), (3.31)

where Mn,e/m[φ̃](x̃) =
∫
∂B

ν(x̃)×∇x̃×Πn,e/m(x̃, ỹ)φ(ỹ)dσ, and has an uniform bound in L(H− 1
2

T (div, ∂B)).

Moreover, Mk
D,e/m is analytic in δ.

Lemma 3.3. For φ ∈ H
− 1

2

T (div, ∂D), Lk
D,e/m[φ] has the asymptotic expansion:

Lk
D,e/m[φ](δx̃)− Lkc

D,e/m[φ](δx̃) =
∞∑

n=1

δn−1(kn − knc )Ln,e/m[φ̃](x̃),

where

Ln,e/m[φ̃](x̃) = ν ×An−2,e/m[φ̃](x̃) + ν ×∇Sn,e/m[∇∂B · φ̃](x̃).

In particular, it holds that

L1,e[φ̃](x̃) = − i

τd3
ν(x̃)×

∫

∂B

ỹ3e3∇∂B · φ̃(ỹ)dσ + ν(x̃)×∇
∫

∂B

G1,e(x̃, ỹ)∇∂B · φ̃(ỹ)dσ ,

L1,m[φ̃](x̃) = − i

τd3
ν(x̃)×

∫

∂B

(ỹ′, 0)t∇∂B · φ̃(ỹ)dσ + ν(x̃)×∇
∫

∂B

G1,m(x̃, ỹ)∇∂B · φ̃(ỹ)dσ .

Moreover, Ln,e/m has an uniform bound in L(H− 1
2

T (div, ∂B)), and Lk
D,e/m is analytic in δ.
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For the sake of simplicity, we write Me/m,Ke/m,K∗
e/m for the leading-order terms in the asymp-

totic expansions of Mδk
B,e/m,Kδk

B,e/m,K
δk,∗
B,e/m, respectively. We emphasize that we only need the surface

divergence of density φ̃ to evaluate L1,e/m[φ̃], which implies immediately that

~curl∂BH
1
2
0 (∂B) ⊂ H ⊂ ker(L1,e/m),

where H denotes the divergence free space, i.e.,

H := {ϕ ∈ H
− 1

2

T (div, ∂B); ∇∂B · ϕ = 0}.

This observation shall be used repeatedly in Section 4. To have a better understanding of the terms
involved in the expansions, we give the following lemma.

Lemma 3.4. For any φ̃ ∈ H
− 1

2

T (div, ∂B), it holds that

(i) ∇∂B · Ln,e/m[φ̃] = ∇∂B · (ν ×An−2,e/m)[φ̃] for n ≥ 1. In particular, ∇∂B · L1,e/m[φ̃] = 0.

(ii) ∇∂B · Mn,e/m[φ̃] = −K∗
n,e/m[∇∂B · φ̃]− ν · An−2,e/m[φ̃] for n ≥ 1, while for n = 0,

∇∂B ·Me/m[φ̃] = −K∗
e/m[∇∂B · φ̃].

Proof. We first note that ∇Sn,e/m[∇∂B · φ̃] ∈ H(curl, B), then obtain the property (i) by using (2.3) and

(2.6) to see that ∇∂B · (ν × ∇Sn,e/m[∇∂B · φ̃]) = 0. For the second property, we obtain for n ≥ 1 by
means of (2.3) and (2.6) that

∇∂B · Mn,e/m[φ̃] = ∇∂B · (ν × πt(∇×An,e/m))[φ̃]

=curl∂Bπt(∇×An,e/m)[φ̃] = −γn(∇×∇×An,e/m)[φ̃]

=−K∗
n,e/m[∇∂B · φ̃]− ν(x̃) · An−2,e/m[φ̃].

We should be more careful to deal with the case n = 0 due to the jump of the trace, i.e., (3.26), (3.28).

But a similar calculation as the one presented above gives ∇∂B · Me/m[φ̃] = −K∗
e/m[∇∂B · φ̃].

Before we move on to the next subsection on spectral analysis, we make more investigation into the
leading-order terms to prepare some tools for the later use. Recalling formulas (3.16)-(3.15), we know
that K∗

e = K0,∗
e with the adjoint operator Ke = K0

e . However, K∗
m can only be identified with K0,∗

m on

H
− 1

2
0 (∂B), and Km here is not the adjoint operator of K∗

m. Indeed, the adjoint operators of K∗
m and Km

are defined by

K̂m[ϕ](x) =

∫

∂B

∂

∂νy
Ĝ0,m(x,y)ϕ(y)dσ and K̂∗

m[ϕ](x) =

∫

∂B

∂

∂νx
Ĝ0,m(x,y)ϕ(y)dσ (3.32)

for smooth function ϕ, respectively; see (3.17)-(3.18) for the definition of Ĝ0,e/m. To find the adjoint

operator of Me/m, we now introduce the conjugate matrix-valued function Π̂e/m of Πe/m:

Π̂e/m(x,y) =
[
Ĝ0,e/me1, Ĝ0,e/me2, Ĝ0,m/ee3

]
(x,y),

and the associated layer potential M̂e/m :

M̂e/m[ϕ](x) =

∫

∂B

ν(x) ×∇x × Π̂e/m(x,y)ϕ(y)dσ,
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which is a bounded linear operator from H
− 1

2

T (div, ∂B) to H
− 1

2

T (div, ∂B). Then, the adjoint operator of

Me/m, i.e., M∗
e/m : H

− 1
2

T (curl, ∂B) → H
− 1

2

T (curl, ∂B), is given by

M∗
e/m = rM̂m/er . (3.33)

Actually, by a standard density argument, it suffices to verify this for smooth functions. Using (3.25)
and Fubini’s theorem, we can write for smooth functions ψ, φ:

〈ψ,Me/m[φ]〉 =
∫

∂B

∫

∂B

ψ(x) · ν(x) ×∇x × (Πe/m(x,y)φ(y))dσ(y)dσ(x)

=

∫

∂B

∫

∂B

(∇x ×Πe/m(x,y))
T(ψ(x) × ν(x)) · φ(y)dσ(y)dσ(x)

=

∫

∂B

∫

∂B

(∇y × Π̂m/e(y,x))(ψ(x) × ν(x)) · φ(y)dσ(x)dσ(y)

=〈rM̂m/er[ψ], φ〉.

Similarly, we can get the adjoint operator M̂∗
e/m : H

− 1
2

T (curl, ∂B) → H
− 1

2

T (curl, ∂B) of M̂e/m:

M̂∗
e/m = rMm/er. (3.34)

Recall that we have proven in Lemma 3.4

∇∂B ·Me/m[ϕ] = −K∗
e/m[∇∂B · ϕ] = −K0,∗

e/m[∇∂B · ϕ]. (3.35)

The last equality above is due to the fact that ∇∂B · ϕ ∈ H
− 1

2
0 (∂B), on which Ke/m and K0,∗

e/m can be

identical. By exactly the same arguments, we obtain

∇∂B · M̂e/m[ϕ] = −K̂∗
e/m[∇∂B · ϕ] = −K0,∗

e/m[∇∂B · ϕ]. (3.36)

Taking the adjoint on the both sides of (3.36) and using (3.34), we can see that

Mm/e
~curl∂B = ~curl∂BK0

e/m. (3.37)

3.3 Spectral analysis of integral operators

In this subsection we are going to consider the spectral properties of Neumann-Poincaré type operators,
which is essential for the subsequent analysis of the blow-up order of the scattered field. We start with
some basic facts, and the interested reader are referred to [7, 9, 11] for more details. Considering the

single layer potential S0
e/m, it is easy to observe that S0

e/m : H− 1
2 (∂B) → H

1
2 (∂B) is self-adjoint, i.e.,

〈ψ,S0
e/m[φ]〉 = 〈S0

e/m[ψ], φ〉, and the Calderón identity:

S0
e/mK0,∗

e/m = K0
e/mS0

e/m (3.38)

holds in H− 1
2 (∂B). However, since S0

m is generally not invertible nor injective on H− 1
2 (∂B), the standard

symmetrization technique via Calderón identity (3.38) is no longer applicable. Indeed, S0
e is injective

on H− 1
2 (∂B) while S0

m is injective only on H
− 1

2
0 (∂B). Moreover, the dimension of the kernel of S0

m in

H− 1
2 (∂B) is at most 1 (under the assumption that ∂B is connected). To see this, we first observe the

far-field behavior of S0
e/m[φ] from (3.6), i.e., it holds for φ ∈ H− 1

2 (∂B) and large enough x3 that

S0
e/m[φ](x) = c0,e/m(φ) +

∑

ξ∈Λ∗\{0}

1

|ξ|cξ,e/m(φ)e
iξ·x′

e−|ξ|x3 , (3.39)

11



where the coefficients c0,e(φ) and c0,m(φ) are given by

c0,e(φ) = − 1

τ

∫

∂B

y3φ(y)dσ(y), c0,m(φ) =
x3
τ
〈φ, 1〉. (3.40)

Then we have by using integration by parts,

∫

Σ×(0,L)

|∇S0
e/m[φ]|2dx = −

∫

∂B

φS0
e/m[φ]dσ +

∫

Σ×{L}

∂S0
e/m[φ]

∂ν
S0
e/m[φ]dσ,

which, combined with (3.39) and (3.40), implies that, by letting L tends to infinity,

∫

Ω

|∇S0
e [φ]|2dx = −

∫

∂B

φS0
e [φ]dσ ≥ 0 (3.41)

holds for all φ ∈ H− 1
2 (∂B), while (3.41) holds only for φ ∈ H

− 1
2

0 (∂B) when S0
e is replaced by S0

m.
There is a standard way to overcome this difficulty (cf. [8, Theorem 2.26], [29, 13]), whose main idea

is given below for convenience. Introduce the bounded operator Ae/m : H− 1
2 (∂B)×C → H

1
2 (∂B)×C by

Ae/m(φ, a) := (S0
e/m[φ] + a, 〈φ, 1〉),

which can be shown to have a bounded inverse. In fact, since the Fredholm index is unchanged under
compact perturbation, we can conclude that Ae/m is Fredholm with zero index. Hence it suffices to prove
the injectivity to establish the invertibility, which follows exactly from the same proof as in [8, Theorem

2.26]. Then we can prove that S0
e/m is invertible if and only if S0

e/m[ϕ
e/m
0 ] 6= 0 (cf.[13]), where ϕ

e/m
0 is the

eigenfunction of K0,∗
e/m associated with the eigenvalue 1

2 , satisfying 〈ϕe/m
0 , 1〉 = −1. We now define

S̃0
e/m[ψ] =

{
S0
e/m[ψ] if 〈ψ, 1〉 = 0,

1 if ψ = ϕ
e/m
0 .

Then S̃0
e/m is a bijection from H− 1

2 (∂B) to H
1
2 (∂B), and the generalized Calderón identity holds:

S̃0
e/mK

0,∗
e/m = K0

e/mS̃0
e/m.

This allows us to define two new inner products on H− 1
2 (∂B), equivalent to the original one, such that

K0,∗
e/m is self-adjoint,

(φ, ψ)H∗
e/m

= −〈φ, S̃0
e/m[ψ]〉 .

We denote by H∗
e/m the space H− 1

2 (∂B) equipped with these two new inner products, respectively. Then

we can symmetrize K0,∗
e/m as it is stated below.

Lemma 3.5. For a C2 bounded domain B with a connected boundary, we have

(i) K0,∗
e/m is compact and self-adjoint on the Hilbert space H∗

e/m.

(ii) Suppose that (λ
e/m
j , ϕ

e/m
j ) is the eigenvalue and normalized eigenfunction pair of K0,∗

e/m with λ
e/m
0 =

1
2 , then λ

e/m
j ∈ (− 1

2 ,
1
2 ] with λ

e/m
j → 0 as j → ∞.

(iii) {ϕe/m
j } is an orthogonal basis in H∗

e/m. More precisely, H∗
e/m = H∗

0,e/m ⊕ {µϕe/m
0 , µ ∈ C}, where

H∗
0,e/m is the zero mean subspace of H∗

e/m spanned by {ϕe/m
j }j 6=0.
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(iv) The following spectral decomposition holds,

K0,∗
e/m[φ] =

∞∑

j=0

λ
e/m
j (φ, ϕ

e/m
j )H∗

e/m
ϕ
e/m
j . (3.42)

Similarly, we can define the inner products on H
1
2 (∂B) by

−〈(S̃0
e/m)

−1[ψ], φ〉,

and denote by He/m the Hilbert space H
1
2 (∂B) equipped with these two inner products respectively, then

the norm equivalence holds, i.e., ‖u‖He/m
≈ ‖u‖

H
1
2 (∂B)

. Note that S̃0
e/m is an unitary operator from H∗

e/m

to He/m, hence {S̃0
e/m[ϕj ]} is an orthogonal basis on He/m. We point out that S̃0

e/m[ϕj ] is actually the

eigenfunctions of K0
e/m. Now we are ready to consider the leading-order terms K∗

e/m and Ke/m in the

expansions of Kδk,∗
B,e/m and Kδk

B,e/m, and they can be regarded as the corrections of K0,∗
e/m and K0

e/m due to

the incident angle. In fact, recalling the definitions of Ke/m and K∗
e/m, and using (3.16)-(3.15), we obtain

Ke = K0
e , Km[φ] = K0

m +
1

d3τ
〈d′ · ν′φ, 1〉, (3.43)

K∗
e = K0,∗

e , K∗
m[φ] = K0,∗

m − d′ · ν′
d3τ

〈φ, 1〉. (3.44)

Hence the spectral structure of K∗
e can be completely characterized by Lemma 3.5. We shall only pay

attention to K∗
m below, and it turns out that its spectra has nothing to do with the incident angle although

there are remaining items in (3.43) and (3.44) that are related. We now present several spectral results for
that we introduce some standard notation. For a compact operator K, we denote by σ(K) its spectrum
set and by (λI −K)−1 its resolvent operator for regular points λ ∈ C\σ(K). For point p and set F in
complex plane C, we define their distance d(p, F ) := infq∈F |p− q| .
Theorem 3.6. The operators K∗

m and K0,∗
m have the same spectra. Further, for λj ∈ σ(K∗

m)\{0}, we
have dimker(λj −K∗

m) = dimker(λj −K0,∗
m ).

Proof. It is known that K∗
m is a compact operator with adjoint operator K̂m and K̂m[1] = 1

2 holds
by definition, which implies that 1

2 is also an eigenvalue of K∗
m. Combining this with the fact that

K∗
m = K0,∗

m on H
− 1

2
0 (∂B), we have σ(K0,∗

m ) ⊂ σ(K∗
m). Suppose λ ∈ σ(K∗

m)\{0, 12} and that φ is the

associated eigenfunction, then we obtain by using K̂m[1] =
1
2 that

0 =

∫

∂B

(λI −K∗
m)[φ]dσ = (λ− 1

2
)

∫

∂B

φdσ ,

which further yields φ ∈ H
− 1

2
0 (∂B). We thus have σ(K0,∗

m ) = σ(K∗
m), and the desired result follows.

We next consider the spectral decomposition of K∗
m and Km and the corresponding resolvent estimates.

Suppose that φ ∈ H∗
m has the following decomposition with respect to the orthogonal basis {ϕj} given

by the eigensystem {λj , ϕj} of K0,∗
m :

φ =

∞∑

j=0

(φ, ϕj)H∗
m
ϕj . (3.45)

Here we have omitted the subscript or superscript m for simplicity. By writing its Fourier coefficients
(φ, ϕj)H∗

m
as φ̂(j) and using Lemma 3.5 and Theorem 3.6, we can derive

K∗
m[φ] = φ̂(0)K∗

m[ϕ0] +
∞∑

n=1

φ̂(j)λjϕj = φ̂(0)(
1

2
ϕ0 +

∞∑

j=1

ιjϕj) +
∞∑

j=1

φ̂(j)λjϕj

=

∞∑

j=0

λj φ̂(j)ϕj + φ̂(0)

∞∑

j=1

ιjϕj , (3.46)
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where the constants {ιj}∞j=1 are obtained by applying (3.45) to − d′·ν′

d3τ
〈ϕ0, 1〉, i.e.,

−d
′ · ν′
d3τ

〈ϕ0, 1〉 =
d′ · ν′
d3τ

=

∞∑

j=1

ιjϕj .

Proposition 3.7. For f ∈ H− 1
2 (∂B), the following resolvent estimate holds

‖(λI −K∗
e/m)

−1[f ]‖H∗
e/m

.
‖f‖H∗

e/m

d(λ, σ(K0,∗
e/m))

.

Proof. The resolvent estimate of K∗
e follows directly from the fact that K∗

e is a compact self-adjoint
operator on H∗

e . For K∗
m, considering the equation (λI −K∗

m)[φ] = f , we obtain from (3.46) that

∞∑

j=0

(λ− λj)φ̂(j)ϕj − φ̂(0)
∞∑

j=1

ιjϕj =
∞∑

j=0

f̂(j)ϕj .

For λ /∈ σ(K0,∗
m ), φ̂(j) can be uniquely determined by

φ̂(0) =
1

λ− 1
2

f̂(0) ; φ̂(j) =
f̂(j) + φ̂(0)ιj

λ− λj
=

f̂(j)

λ− λj
+

f̂(0)ιj

(λ− λj)(λ− 1
2 )

for j ≥ 1.

Using the above formulas, we then derive

‖φ‖H∗
m
.

‖f‖H∗
m

d(λ, σ(K0,∗
m ))

+
|〈f, 1〉|

d(λ, σ(K0,∗
m )\{ 1

2}) · |λ− 1
2 |

.
‖f‖H∗

m

d(λ, σ(K0,∗
m ))

.

For convenience, we shall define ψ̌(j) := (ψ, S̃0
m[ϕj ])Hm for ψ ∈ Hm. Then we can write

ψ =
∞∑

j=0

ψ̌(j)S̃0
m[ϕj ]. (3.47)

Using this and similar arguments to the ones in the proof of Proposition3.7, we can obtain the resolvent
estimate of Ke/m.

Proposition 3.8. For any g ∈ H
1
2 (∂B), we have the resolvent estimate:

‖(λI −Ke/m)
−1[g]‖He/m

.
‖g‖He/m

dist(λ, σ(K0
e/m))

.

Proof. Again, we prove the estimate only for Km. It is easy to see that

Km[ψ] =

∞∑

j=0

ψ̌(j)λj S̃0
m[ϕj ] +

1

d3τ

∞∑

j=0

(−d′ · ν′, ϕj)H∗
m
ψ̌(j)

=

∞∑

j=0

ψ̌(j)λj S̃0
m[ϕj ]−

∞∑

j=1

ιj ψ̌(j).

Considering the equation (λI − Km)[ψ] = g, and using (3.47) we write

∞∑

j=1

(λ− λj)ψ̌(j)S̃0
m[ϕj ] +

∞∑

n=1

ιnψ̌(n) = ǧ(0) +

∞∑

n=1

ǧ(n)S̃0
m[ϕn].
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For λ /∈ σ(K0
m), ψ̌(n) can be uniquely determined by

ψ̌(n) =
ǧ(n)

λ− λn
, n ≥ 1 ; ψ̌(0) =

1

λ− 1
2

(ǧ(0)−
∞∑

n=1

ιnψ̌(n)) =
1

λ− 1
2

(ǧ(0)−
∞∑

n=1

ιn
ǧ(n)

λ− λn
).

Then we can obtain the desired estimate:

‖ψ‖Hm
.

‖g‖Hm

d(λ, σ(K0
m))

+
‖g‖Hm

d(λ, σ(K0
m)\{ 1

2}) · |λ− 1
2 |

.
‖g‖Hm

d(λ, σ(K0
m))

.

The spectral results in this subsection suggest us that in most cases, there is no need to distinguish
between Ke/m and K0

e/m, as well as between K∗
e/m and K0,∗

e/m, since they have the same spectrum and

enjoy the same resolvent estimate. Now, we are in a position to study the spectral structure of Me/m.

For each u ∈ H
− 1

2

T (div, ∂B), we may recall the Helmholtz decomposition to write

u = ∇∂Bu
(1) + ~curl∂Bu

(2) (3.48)

for two functions u(1) ∈ H
3
2
0 (∂B) and u(2) ∈ H

1
2
0 (∂B). This notation will be adopted from now on, and the

two subspaces corresponding to u(1) and u(2) may not be always specified. By applying the invertibility of

the Laplace-Beltrami operator ∆∂B : H
3
2
0 (∂B) → H

− 1
2

0 (∂B) and the inverse mapping theorem, we know

the existence of an isomorphism between H
− 1

2

T (div, ∂B) and H
3
2
0 × H

1
2
0 , which results in an equivalent

norm on H
− 1

2

T (div, ∂B):

‖φ‖
H

− 1
2

T (div,∂B)
≈ ‖∆∂Bφ

(1)‖
H− 1

2 (∂B)
+ ‖φ(2)‖

H
1
2 (∂B)

.

Theorem 3.9. The spectra σ(Me/m) and σ(M0
e/m) of the operators M0

e/m and Me/m are given by

σ(Me/m) = σ(M0
e/m) = (−σ(K0,∗

e/m)
⋃
σ(K0,∗

m/e))\{−
1

2
,
1

2
}. (3.49)

Proof. We show only the spectral property ofMe/m, as the analysis for M0
e/m is similar and even simpler.

Denote by Fe/m the set in the right-hand side of (3.49). Define

σ1
e/m := Fe/m ∩ σ(K0,∗

m/e), σ2
e/m := Fe/m\σ(K0,∗

m/e).

Since Me/m is a compact operator, it suffices to consider the equation for a given λ ∈ C\{0},

(λI −Me/m)[φ] = 0, (3.50)

and prove that it has nontrivial solutions if and only if λ ∈ σ1
e/m ∪ σ2

e/m. Using (3.48), we can write

φ = ∇∂Bφ
(1) + ~curl∂Bφ

(2).

For nonzero λ ∈ σ1
e/m, we first note from (3.37) that

(λI −Me/m)[ ~curl∂Bφ
(2)] = λ ~curl∂Bφ

(2) − ~curl∂BK0
m/e[φ

(2)], (3.51)

which directly implies that (λ, ~curl∂Bφ
(2)) is an eigenpair of Me/m if φ(2) is an eigenfunction of K0

m/e

associated with λ. If λ ∈ σ2
e/m, we readily obtain by using the surface divergence for (3.50) that

∇∂B · (λI −Me/m)[φ] = (λI +K0,∗
e/m)[∇∂B · φ] = (λI +K0,∗

e/m)[∆∂Bφ
(1)] = 0. (3.52)
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Since the eigenfunction of −K0,∗
e/m associated with λ ∈ σ2

e/m has mean value zero and ∆∂B is an iso-

morphism from H
3
2
0 (∂B) to H

− 1
2

0 (∂B), we know that there exists a non-constant function φ(1) satisfying
equation (3.52). We then reduce (3.50) via (3.51) to

λ ~curl∂Bφ
(2) − ~curl∂BK0

m/e[φ
(2)] = −(λI −Me/m)[∇∂Bφ

(1)].

Taking the surface curl on both sides of the above equation, we can find it is solvable by the invertibility
of ∆∂B and λI − K0

m/e. Hence, there exists a nontrivial φ satisfying equation (3.50) for λ ∈ σ2
e/m. We

are now in a position to consider the last case: λ ∈ C\(σ1
e/m ∪ σ2

e/m). It is easy to derive that φ must be

~curl∂Bφ
(2) for some φ(2) by the invertibility of λI +K0,∗

e/m on H
− 1

2
0 (∂B). Then the reduced equation from

(3.51) reads as follows:
(λI −K0

m/e)[φ
(2)] = C,

by using the invertibility of ∆∂B , where C is some constant. Without loss of generality, we assume that
C = 1 or 0. If λ = 1

2 , we must have C = 0 in order to guarantee the existence of φ(2) due to the Fredholm

alternative. In this case, we have φ = ~curl∂Bφ
(2) = 0. If λ 6= 1

2 , we can find a constant C′ such that

(λI −K0
m/e)[φ

(2) + C′] = 0,

which yields φ(2) is a constant. Hence, if λ ∈ C\(σ1
e/m ∪ σ2

e/m), we can conclude φ = 0, hence completes
the proof.

4 Approximation of the scattered wave

4.1 Integral formulation and asymptotic analysis

With the analytical tools and results established in the previous section, we shall first reformulate the
system (2.1) into an boundary integral equation, then build up a norm estimate of the associated solution
operator, from which we can predict the occurrence of the resonance phenomenon. Taking advantage of
the vector potential Ak

D,e/m given in the section 3.2, we assume the following ansatz for the electric field

solution of (2.1):

E =

{
Ei +∇×Ak

D,m[φ] +∇×∇×Ak
D,e[ψ] , x ∈ R

3\D
µc∇×Akc

D,m[φ] +∇×∇×Akc

D,e[ψ] , x ∈ D.

It can be checked directly that the field E given above solves the Maxwell equations in both D and
R3

+\D, and satisfies the perfect conducting boundary condition on Γ. Then by the jump formula (3.26),
the original scattering problem can be equivalently written as a boundary integral equation on ∂D:

[
µc+1

2 + µcMkc

D,m −Mk
D,m Lkc

D,e − Lk
D,e

Lkc

D,m − Lk
D,m

k2

2 (εc + 1)I + k2(εcMkc

D,e −Mk
D,e)

][
φ
ψ

]
=

[
ν × Ei

ikν ×Hi

]
.

By setting x = δx̃, we obtain an integral equation defined on ∂B:

Wδ,B

[
φ̃

ψ̃

]
=

[
ν(x̃)× Ẽi

ikν(x̃)× H̃i

]
, (4.1)

where the block coefficient matrix is given by

Wδ,B =

[
µc+1

2 + µcMδkc

B,m −Mδk
B,m Lkc

e,δ − Lk
e,δ

Lkc

m,δ − Lk
m,δ k2( εc+1

2 I + εcMδkc

B,e −Mδk
B,e)

]
.
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By Lemma 3.2 and 3.3, we have the asymptotic expansion of Wδ,B:

Wδ,B =
∞∑

n=0

δnWn,B,

where

W0,B =

[
µc+1

2 + (µc − 1)Mm (kc − k)L1,e

(kc − k)L1,m k2 εc+1
2 I + k2(εc − 1)Me

]
,

and for n ≥ 1,

Wn,B =

[
(knc − kn)Mn,m (kn+1

c − kn+1)Ln+1,e

(kn+1
c − kn+1)Ln+1,m k2(εck

n
c − kn)Mn,e

]
.

Before we turn to finding the approximate scattered wave, we investigate the property of the leading-order
term W0,B first. From now on, we introduce two contrast parameters λµ(ω) and λε(ω):

λµ(ω) =
1 + µc(ω)

2(1− µc(ω))
, λε(ω) =

1 + εc(ω)

2(1− εc(ω))
.

Theorem 4.1. Suppose λµ(ω), λε(ω) /∈ σ(Me/m), then W0,B is invertible with the estimate:

‖W−1
0,B‖ .

1

dσd∗σ
, (4.2)

where the two constants dσ and d∗σ are defined by

dσ = min{d(λµ, σ(K0
e )), d(λε, σ(K0

m))}, d∗σ = min{d(λµ,−σ(K0,∗
m )), d(λε,−σ(K0,∗

e ))}.

Proof. Without loss of generality, we assume that µc 6= 1, εc 6= 1 and consider the system

W0,B

[
φ
ψ

]
=

[
(1− µc)f
(1− εc)g

]

for given f, g ∈ H
− 1

2

T (div, ∂B), which is equivalent to the following two equations:

(λµI −Mm)[φ] +
kc − k

1− µc
L1,e[ψ] = f ,

kc − k

k2(1− εc)
L1,m[φ] + (λεI −Me)[ψ] = g. (4.3)

We shall reduce (4.3) to some easily solved subproblems by using the Helmholtz decomposition. To do
so, we take the surface divergence on both sides of two equations in (4.3), then use formula (3.35) to
obtain

(λµ +K0,∗
m )[∇∂B · φ] = ∇∂B · f, (λε +K0,∗

e )[∇∂B · ψ] = ∇∂B · g ,

which, along with the fact that ∇∂B · u = ∆∂Bu
(1) for any u ∈ H

− 1
2

T (div, ∂B), yields

φ(1) = ∆−1
∂B(λµ +K0,∗

m )−1(∆∂Bf
(1)), ψ(1) = ∆−1

∂B(λε +K0,∗
e )−1(∆∂Bg

(1)). (4.4)

Then it follows directly from Proposition 3.7 that

‖∆∂Bφ
(1)‖H∗

m
.

‖∆∂Bf
(1)‖H∗

m

d(λµ,−σ(K0,∗
m ))

, ‖∆∂Bψ
(1)‖H∗

e
.

‖∆∂Bg
(1)‖H∗

e

d(λε,−σ(K0,∗
e ))

.

Next, we solve the second component φ(2). To this purpose, we use (3.37) and write the first equation
in (4.3) as

(λµI −Mm)[ ~curl∂Bφ
(2)] = ~curl∂B(λµI −K0

e)[φ
(2)] = f − kc − k

1− µc
L1,e[ψ]− (λµI −Mm)[∇∂Bφ

(1)].
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Taking the surface scalar curl on both sides of the equation and then applying Proposition 3.8 gives

‖φ(2)‖He
.

‖f (2)‖He

d(λµ, σ(K0
e))

+
‖∆∂Bg

(1)‖H∗
e

d(λµ, σ(K0
e)) · d(λε,−σ(K0,∗

e ))

+
‖∆∂Bf

(1)‖H∗
m

d(λµ, σ(K0
e)) · d(λµ,−σ(K0,∗

m ))
.

Similarly, we can compute ψ(2) and derive the estimate

‖ψ(2)‖Hm
.

‖g(2)‖Hm

d(λε, σ(K0
m))

+
‖∆∂Bf

(1)‖H∗
m

d(λµ,−σ(K0,∗
m )) · d(λε, σ(K0

m))

+
‖∆∂Bg

(1)‖H∗
e

d(λε,−σ(K0,∗
e )) · d(λε, σ(K0

m))
.

Now the above arguments conclude the uniquely solvability of the system (4.3), and the desired estimate
(4.2).

Remark 4.2. If we restrict the operator W0,B on H×H, then W0,B has a diagonal form

W0,B =

[
µc+1

2 I + (µc − 1)M0
m 0

0 k2 εc+1
2 I + k2(εc − 1)M0

e

]
,

and it is an isomorphism on H×H, with the estimate ‖W−1
0,B‖ . 1/dσ.

By the recurrence relation (3.14) and the elliptic regularity, we conclude that Wn,B are uniformly
bounded with respect to n, hence leading to the uniform operator convergence:

lim
δ→0

W−1
δ,B = W−1

0,B.

Therefore, there exists a δ0 > 0 such that the following equivalence holds for δ ≤ δ0:

‖W−1
δ,B‖ ≈ ‖W−1

0,B‖.

Combining this with Theorem4.1, we observe directly that at some specified frequencies, the norm of the
solution operator ‖W−1

δ,B‖ may blow up with order (dσd
∗
σ)

−1, which indicates the existence of resonances.

4.2 Approximate scattered field

We are now in a position to discuss how to approximate the scattered field with a certain order. In
view of the complexities and technicalities of the detailed computations and relevant estimates, we split
this section into three parts to make it more readable. The main result of this section is given in Theorem
4.7.

Approximate kernel and density. Motivated by the well-known two-scale asymptotic expansion
method in the standard homogenization theory[4], we shall first separate the propagative component from
the scattered wave in the macroscopic scale. To this purpose, we observe from (3.5) that the quasi-periodic
Green’s function Gk

e/m consists of a propagating mode:

Gk
p,e/m(x,y) =

i

2τk3
eik

′·(x′−y′)−ik3|x3−y3| ± i

2τk3
eik

′·(x′−y′)−ik3|x3+y3|, (4.5)

and an exponentially decaying mode: Gk
e,e/m := Gk

e/m − Gk
p,e/m. Replacing Gk

e/m with Gk
p,e/m and

Gk
e,e/m, we can define Πp,e/m and Πe,e/m respectively as what we did in (3.20). Therefore we can write

Ak
B,e/m[φ] = Ak

p,e/m[φ] +Ak
e,e/m[φ], where

Ak
p,e/m[φ] =

∫

∂B

Πk
p,e/m(x,y)φ(y)dσ , Ak

e,e/m[φ] =

∫

∂B

Πk
e,e/m(x,y)φ(y)dσ.
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We now define the propagative part and evanescent part of the scattered wave in the reference space
respectively by

Ẽr
p(x̃) = ∇×Aδk

p,m[φ̃](x̃) +
1

δ
∇×∇×Aδk

p,e[ψ̃](x̃), (4.6)

Ẽr
e (x̃) = ∇×Aδk

e,m[φ̃](x̃) +
1

δ
∇×∇×Aδk

e,e[ψ̃](x̃), (4.7)

for densities φ̃ and ψ̃ satisfying the system (4.1). We can see, from the definition of Gk
e,e/m, that the

structure of the evanescent wave is much more complicated than the one of the propagative part. For-
tunately, we only care about the wave in the far field, where the effect of the evanescent wave can be
ignored. Indeed, we have the following approximation estimate.

Lemma 4.3. Fix a constant L ∈ R+ such that |x3| < L for all x ∈ D. Then for small enough δ, there
exists some positive constant c independent of δ such that

sup
x∈R2×(L,+∞)

|Er(x) − Ẽr
p(
x

δ
)| = O(

1

δ
e−

cL
δ ).

Proof. By the scaling property (3.29) of Ak
D,e/m, we have

Ẽr(x̃)− Ẽr
p(x̃) = Ẽr

e (x̃) = ∇×Aδk
e,m[φ̃](x̃) +

1

δ
∇×∇×Aδk

e,e[ψ̃](x̃). (4.8)

We now estimate these two terms. For large enough x̃3, we can separate the variable of the kernel Πδk
e,e/m

involved in the definition of Aδk
e,e/m:

Πδk
e,e/m(x̃, ỹ) = − 1

2τ

∑

ξ∈Λ∗\{0}

ρδkξ (x̃)πδk
ξ,e/m(ỹ) , (4.9)

where ρδkξ (x̃) is given by

ρδkξ (x̃) :=
1√

|ξ + δk′|2 − (δk)2
ei(ξ+δk′)·x̃′

e−
√

|ξ+δk′|2−(δk)2(x̃3−h). (4.10)

Here h is a constant satisfying |x̃3| < h < L
δ for x̃ ∈ B, and then πδk

ξ,e/m(ỹ) can be introduced naturally

and determined uniquely by (4.9) and (4.10). We note that Πδk
e,e/m is a diagonal matrix, and its diagonal

entries are all smooth functions. For the first term in (4.8), we can write

∇×Aδk
e,m[φ̃](x̃) =

∫

∂B

∇×Πδk
e,m(x̃, ỹ)φ̃(ỹ)dỹ, (4.11)

where

∇×Πδk
e,m(x̃, ỹ) = − 1

2τ

∑

ξ∈Λ∗\{0}

∇ρδkξ (x̃)× πδk
ξ,m(ỹ). (4.12)

For ρδkξ (x̃), we can see the existence of a positive constant c such that the following estimate holds for
all ξ ∈ Λ∗\{0}, uniformly with respect to all small enough δ:

|∂jρδkξ (x̃)| . e−c|ξ|(x̃3−h) .

Using this together with the Cauchy’s inequality and the trace inequality, we derive

|
∫

∂B

∇ρδkξ (x̃)× πδk
ξ,m(ỹ)φ(ỹ)dσ(ỹ)| . e−c|ξ|(x̃3−h)‖φ‖

H
− 1

2 (∂B)

3∑

j=1

‖(πδk
ξ,m)j‖

H
1
2 (∂B)

.e−c|ξ|(x̃3−h)‖φ‖
H

− 1
2 (∂B)

3∑

j=1

‖(πδk
ξ,m)j‖H1(B)

. e−c|ξ|(x̃3−h)‖φ‖
H

− 1
2 (∂B)

,
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where we have used the uniform boundedness of ‖(πδk
ξ,m)j‖H1(B) with respect to ξ ∈ Λ∗\{0}. Now it

follows easily from the above estimate and (4.11)-(4.12) that

|∇ × Aδk
e,m[φ̃](x̃)| . e−c(x̃3−h)‖φ‖

H− 1
2 (∂B)

.

Similarly, we can establish a desired pointwise estimate of the second term in (4.8). Then the application
of the above pointwise estimate of the two terms in (4.8) and a direct computation leads to the desired
error estimate in Lemma 4.3.

To further derive a proper approximation of the propagative scattered wave Ẽr
p , it suffices to approxi-

mate the propagative kernel Πδk
p,e/m and the two densities ψ̃, φ̃. We consider the approximation of the inte-

gral kernel first, for which we define two linear operators Âδk
p,e/m[φ̃] and Aδk

p,e/m,0[φ̃] for φ̃ ∈ H
− 1

2

T (div, ∂B):

Âδk
p,e/m[φ̃](x̃) :=

∫

∂B

[ge/me1, ge/me2, gm/ee3](ỹ)φ̃(ỹ)dσ,

Aδk
p,e/m,0[φ̃](x̃) := eiδk

∗·x̃

∫

∂B

[ge/me1, ge/me2, gm/ee3](ỹ)φ̃(ỹ)dσ,

where ge/m(ỹ) is given by

ge(ỹ) = − ỹ3
τ
, gm(ỹ) =

i

τδk3
+
d′ · ỹ′
d3τ

.

We can see that eiδk
∗·x̃ge/m(ỹ) are good approximations of Gδk

p,e/m (cf.(4.5)), by noting the fact that

ie−iδk∗·ỹ

2τδk3
=

i

2τδk3
+

d∗ · ỹ
2d3τ

+O(δ).

Then by a direct verification, we have the following estimate.

Lemma 4.4. It holds for small enough δ and x3 ≥ L (the constant given in Lemma4.3), and all

φ̃, ψ̃ ∈ H
− 1

2

T (div, ∂B) that

|∇ × (Aδk
p,m −Aδk

p,m,0)[φ̃]|(x̃) +
1

δ
|∇ ×∇× (Aδk

p,e −Aδk
p,e,0)[ψ̃]|(x̃) . δ2

{
‖φ̃‖

H
− 1

2
T (div,∂B)

+ ‖ψ̃‖
H

− 1
2

T (div,∂B)

}
.

To proceed our approximation, we define the Green’s tensor Gδk
r (x̃) associated with the propagative

mode gδkr (x̃) = eiδk
∗·x̃:

G
δk
r (x̃) = gδkr (x̃)I+

1

δ2k2
∇2gδkr (x̃) = (I− d∗ ⊗ d∗)gδkr (x̃). (4.13)

We remark that the matrix I − d∗ ⊗ d∗ is the projection on the orthogonal complement of the linear
space spanned by d∗. Using this, we can directly check that

∇×Aδk
p,m,0[φ̃] = ∇×G

δk
r Âδk

p,m[φ̃], ∇×∇×Aδk
p,e,0[ψ̃] = (δk)2Gδk

r Âδk
p,e[φ̃],

which, together with (4.6) and Lemma 4.4, results in the asymptotic expansion

Ẽr
p = ∇×G

δk
r Âδk

p,m[φ̃] + δk2Gδk
r Âδk

p,e[φ̃] +O(δ2). (4.14)

Now we intend to work out the leading-order terms in the densities φ̃ and ψ̃. Using the Taylor
expansion of the incident wave

[
ν(x̃)× Ẽi(x̃)

ikν(x̃)× H̃i(x̃)

]
=

∑

β

δ|β|

β!

[
ν(x̃)× x̃β∂βEi(0)
ikν(x̃)× x̃β∂βHi(0)

]
,
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we can write

φ̃ =
∑

β

δ|β|

β!
φ̃β , ψ̃ =

∑

β

δ|β|

β!
φ̃β , (4.15)

by setting that

Wδ,B

[
φ̃β
ψ̃β

]
(x̃) =

[
ν(x̃)× x̃β∂βEi(0)
ikν(x̃)× x̃β∂βHi(0)

]
. (4.16)

We should note from (4.16) that φβ and ψβ still depend on δ. Indeed, recalling the expansion

Wδ,B =

∞∑

n=0

δnWn,B =: W0,B − δWr,B,

when δ/(dσd
∗
σ) is small enough, we can expand W−1

δ,B in Neumann series

W−1
δ,B = (I − δW−1

0,BWr,B)
−1W−1

0,B =

∞∑

n=0

δn(W−1
0,BWr,B)

nW−1
0,B. (4.17)

This shows that

φ̃β =

∞∑

j=0

δj φ̃β,j and ψ̃β =

∞∑

j=0

δjψ̃β,j , (4.18)

where φ̃β,j and ψ̃β,j are determined by

[
φ̃β,j
ψ̃β,j

]
= (W−1

0,BWr,B)
jW−1

0,B

[
ν(x̃)× x̃β∂βEi(0)
ikν(x̃)× x̃β∂βHi(0)

]
. (4.19)

For simplicity, we write φ̃β,0 with |β| = 1 below as φ̃j,0 for j = 1, 2, 3. Then it follows from expansions
(4.15) and (4.18) that

φ̃ = φ̃0,0 + δφ̃0,1 + δ
3∑

j=1

φ̃j,0 +O(δ2) , ψ̃ = ψ̃0,0 + δψ̃0,1 + δ
3∑

j=1

ψ̃j,0 +O(δ2). (4.20)

The error terms are measured in H
− 1

2

T (div, ∂B). Substituting these expansions into the approximate
scattered field (4.14), we can further write

Ẽr
p(x̃) =∇×G

δk
r (

∫

∂B

i+ δkd′ · ỹ′
τδk3

(φ̃′, 0)tdσ −
∫

∂B

ỹ3
τ
φ̃3e3dσ)

+ δk2Gδk
r (

∫

∂B

− ỹ3
τ
(ψ̃′, 0)tdσ +

∫

∂B

i+ δkd′ · ỹ′
τδk3

ψ̃3e3dσ) +O(δ2)

=∇×G
δk
r (

i

τk3

∫

∂B

(φ̃′0,1 +

3∑

j=1

φ̃′j,0, 0)
tdσ +

∫

∂B

d′ · ỹ′
τd3

(φ̃′0,0, 0)
tdσ)−

∫

∂B

ỹ3
τ
(φ̃0,0)3e3dσ)

+ δk2Gδk
r (

∫

∂B

− ỹ3
τ
(ψ̃′

0,0, 0)
tdσ +

∫

∂B

d′ · ỹ′
τd3

(ψ̃0,0)3e3dσ

+
i

τk3

∫

∂B

(ψ̃0,1)3e3 +
3∑

j=1

(ψ̃j,0)3e3dσ +O(δ2) , (4.21)

where the superscript t denotes the transport of a vector.
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Computing the leading-order densities. We readily see from (4.16) that the zero order terms

φ̃β,0 and ψ̃β,0 in (4.18) satisfy the following equation:

W0,B

[
φ̃β,0
ψ̃β,0

]
(x̃) =

[
ν(x̃)× x̃β∂βEi(0)
ikν(x̃)× x̃β∂βHi(0)

]
,

which has already been studied in (4.3), with the solutions given by

φ̃β,0 = (λµ −Mm)
−1(

ν(x̃)× x̃β∂βEi(0)

1− µc
+ fβ), (4.22)

ψ̃β,0 = (λε −Me)
−1(

iν(x̃)× x̃β∂βHi(0)

k(1− εc)
+ gβ), (4.23)

where fβ and gβ are defined by

fβ :=
k − kc
1− µc

L1,e[ψ̃β,0], gβ :=
k − kc

k2(1− εc)
L1,m[φ̃β,0].

In particular, when β = 0, we know that φ̃0,0 and ψ̃0,0 are divergence-free using the facts that ∇∂B · (ν ×
Ei(0)) = 0 and ∇∂B · (ν ×Hi(0)) = 0. Further, the first-order terms φ̃0,1 and ψ̃0,1 can be determined by

W0,B

[
φ̃0,1
ψ̃0,1

]
+W1,B

[
φ̃0,0
ψ̃0,0

]
= 0.

More precisely, this can be written componentwise as

(λµ −Mm)[φ̃0,1] +
kc − k

1− µc
L1,e[ψ̃0,1] +

kc − k

1− µc
M1,m[φ̃0,0] +

k2c − k2

1− µc
L2,e[ψ̃0,0] = 0, (4.24)

kc − k

k2(1− εc)
L1,m[φ̃0,1] + (λε −Me)[ψ̃0,1] +

k2c − k2

k2(1− εc)
L2,m[φ̃0,0] +

εckc − k

1− εc
M1,e[ψ̃0,0] = 0. (4.25)

We can see that φ̃0,1 and ψ̃0,1 can be completely determined by the above equations once φ̃0,0 and ψ̃0,0

are solved. But noting ∫

∂B

φ̃(ỹ)dσ = −
∫

∂B

ỹ∇∂B · φ(ỹ)dσ, (4.26)

we know that it suffices to find the surface divergence of φ̃0,1 and ψ̃0,1 in order to compute (4.21). We
thus take the surface divergence on both sides of equations (4.24) and (4.25) to deduce that

(λµ +K0,∗
m )[∇∂B · φ̃0,1] =

k2c − k2

1− µc
γn(∇×Ae[ψ̃0,0]), (4.27)

(λε +K0,∗
e )[∇∂B · ψ̃0,1] =

k2c − k2

k2(1− εc)
γn(∇×Am[φ0,0]), (4.28)

by using Lemma 3.4. To facilitate our further computings, we follow [5, Lemma 5.5] and introduce two

harmonic systems with appropriate interface conditions to represent the quantities ∇ × Ae[ψ̃0,0] and

∇×Am[φ̃0,0] involved in (4.27) and (4.28) in terms of gradients:




∆u = 0, in Ω,

(ν · ∇u)|− = (ν · ∇u)|+, on ∂B,

µc(ν ×∇u)|− − (ν ×∇u)|+ = ν × Ei(0), on ∂B,

u− u∞ is exponentially decaying, as x3 → ∞
u = 0, on Σ

u satisfies the periodic boundary condition on ∂Ω\Σ,

(4.29)
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and 



∆v = 0, in Ω,

(ν · ∇v)|− = (ν · ∇v)|+, on ∂B,

εc(ν ×∇v)|− − (ν ×∇v)|+ = i
kν ×Hi(0), on ∂B,

v is exponentially decaying, as x3 → ∞,
∂v
∂x3

= 0, on Σ,

v satisfies the periodic boundary condition on ∂Ω\Σ,

(4.30)

where u∞ is a complex constant, and the solutions to these two systems are denoted by ue and uh,
respectively. The solutions to these two systems may not necessarily be unique, but their gradients can
be uniquely determined, as shown in the following lemma.

Lemma 4.5. For ∇×Am[φ̃0,0] and ∇×Ae[ψ̃0,0], it holds that,

∇ue = ∇×A0
m[φ̃0,0] =

{
1

1−µc
∇S0

e (λµ −K0,∗
e )−1[ν · Ei(0)]) in Ω\B,

1
µc
Ei(0) + 1

µc(1−µc)
∇S0

e (λµ −K0,∗
e )−1[ν · Ei(0)]) in B,

(4.31)

and

∇uh = ∇×A0
e [ψ̃0,0] =

{
i

k(1−εc)
∇S0

m(λε −K0,∗
m )−1[ν ·Hi(0)] in Ω\B,

i
kεc

Hi(0) + i
kεc(1−εc)

∇S0
m(λε −K0,∗

m )−1[ν ·Hi(0)] in B.
(4.32)

Proof. We consider only the system (4.29) and show (4.31), since the proof of (4.32) is similar. We first

prove that the right-hand side of (4.31) and ∇ × A0
m[φ̃0,0] are both the gradients of some solutions to

(4.29), then demonstrate that all the solutions to (4.29) have an identical gradient. Recalling the far-field
behavior (3.39)-(3.40) of S0

e [φ], we can verify that the function

u(x̃) :=

{
1

1−µc
S0
e (λµ −K0,∗

e )−1[ν · Ei(0)])(x̃) in Ω\B,
1
µc
Ei(0)x̃+ 1

µc(1−µc)
S0
e (λµ −K0,∗

e )−1[ν ·Ei(0)])(x̃) in B,

satisfies both the boundary and far-field conditions in (4.29), and is actually a solution to (4.29). Fur-
thermore, we can check that the right-hand side of (4.31) is the gradient of this solution u.

Next, we show that ∇×A0
m[φ̃0,0] can also be written as the gradient of a solution to (4.29). In fact,

by the continuity of its normal trace and the jump relation of its tangential trace, we find that

[ν · ∇ × A0
m[φ̃0,0]] = 0 , [µ(ν ×∇×A0

m[φ̃0,0])] = ν × Ei(0).

But noticing that ∇∂B · φ̃0,0 = 0, we get

∇×∇×A0
m[φ̃0,0] = ∇S0

m[∇∂B · φ̃0,0] = 0 in Ω\∂B,

which implies (cf. [41, Theorem 3.37])

∇×A0
m[φ̃0,0] = ∇p for some p ∈ H1(B) or H1

loc(R
3
+\B̄). (4.33)

Moreover, we can assume p = 0 on Γ by noting the fact that e3 ×∇×A0
m[φ̃0,0] = e3 ×∇p = 0 on Γ. To

see that p is indeed a solution to (4.29), it remains to show that p, up to a constant, satisfies

(i) p is periodic with respect to Λ.

(ii) there exists a complex constant cp such that p− cp decays exponentially as x3 → ∞.
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For these two claims, we consider the translation operator Ti : L2
loc(R

3
+) 7−→ L2

loc(R
3
+) defined by

Tiu(x′, x3) = u(x′ + ai, x3).

Note that Ti commutes with the gradient operator, namely Ti∇ = ∇Ti in the distribution sense. Since
Ti∇p = ∇p by (4.33), we have ∇(Tip− p) = 0, which implies that there exist two constants C1 and C2

such that Tip = p+Ci in Ω\B̄. We now choose vectors bi such that ai ·bj = δij , and define an auxiliary
function p̃ = p− (C1b1 +C2b2) ·x′. Then we can directly check that p̃ is periodic with respect to Λ, i.e.,

p̃(x′ + ai, x3) = p(x′ + ai, x3)− (C1b1 + C2b2) · (x′ + ai) = p̃(x′, x3).

In the case of far-fields, noting that ∆p̃ = 0, we can expand p̃ by Fourier series (cf.[18]),

p̃ =
∑

ξ∈Λ∗

pξe
iξ·x′−|ξ|x3 , pξ ∈ C. (4.34)

It is easy to see from (3.39)-(3.40) that ∇×A0
m[φ̃0,0] decays exponentially as x3 → ∞. Recalling (4.33)-

(4.34) and the definition of p̃, we can show that C1 = 0 and C2 = 0, by matching the far-field modes of

∇p and ∇×A0
m[φ̃0,0]. Hence we can conclude p̃ = p, and our two claims follow.

Finally, we prove ∇u and ∇p defined above can be uniquely determined by the system (4.29). For
doing so, it suffices to show that the gradient of any solution ue to (4.29) is zero in Ω\∂B if we replace
the jump data ν × Ei(0) by 0. Noting that the jump condition µc(ν ×∇ue)|− = (ν ×∇ue)|+, together
with the formula (2.5), implies that

∇∂B [(µu
e)|− − (µue)|+] = 0,

therefore we know (µue)|− = (µue)|+ + C for some constant C. Without loss of generality, we assume
C = 0, otherwise we may consider ue − C

µc
XB. By integration by parts and interface conditions, we get

∫

Ω

µ|∇ue|2(x̃)dx̃ = 0 , (4.35)

then taking the imaginary and real parts, we deduce ∇ue = 0 in B, and ∇ue = 0 in Ω\B̄, respectively.

We can see from Lemma 4.5 and the formulas (4.27)-(4.28) that

∇∂B · φ̃0,1 = (λµ +K0,∗
m )−1(

k2c − k2

1− µc

∂uh

∂ν
) , ∇∂B · ψ̃0,1 = (λε +K0,∗

e )−1(
k2c − k2

k2(1− εc)

∂ue

∂ν
). (4.36)

In order to calculate Ẽr
p in (4.21), we still need to find quantities like

∫
∂B

φ̃j,0dσ,
∫
∂B

φ̃0,jdσ and∫
∂B

ỹj φ̃0,0dσ, and the corresponding quantities for ψ̃, which are given in the following lemma.

Lemma 4.6. The following identities hold,

∫

∂B

ỹj φ̃0,0(ỹ)dσ = |B|ej × Ei(0) + (1− µc)ej ×
∫

∂B

ỹ
∂ue

∂ν
(ỹ)dσ , (4.37)

∫

∂B

ỹjψ̃0,0(ỹ)dσ =
i

k
|B|ej ×Hi(0) + (1− εc)ej ×

∫

∂B

ỹ
∂uh

∂ν
(ỹ)dσ , (4.38)

∫

∂B

φ̃j,0(ỹ)dσ = ej × ∂jEi(0)|B|+ (1− µc)

∫

B

∇S0
m[∇∂B · φ̃j,0](ỹ)dỹ , (4.39)

∫

∂B

ψ̃j,0(ỹ)dσ =
i

k
ej × ∂jHi(0)|B|+ (1− εc)

∫

B

∇S0
e [∇∂B · ψ̃j,0](ỹ)dỹ . (4.40)
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Proof. We demonstrate only how to compute the quantities involving ψ̃, as the same can be done for the
terms related to φ̃. To do so, we first consider

∫
∂B ỹαψ̃β,0(ỹ)dσ for |α| ≤ 1. Using formula (4.23) and

the decomposition for any proper f ,

f = (1− εc)(λε −Me +
1

2
+Me)[f ] ,

we can compute

∫

∂B

ỹαψ̃β,0(ỹ)dσ =

∫

∂B

ỹα(1− εc)(λε −Me +
1

2
+Me)[ψ̃β,0](ỹ)dσ

=

∫

∂B

ỹα(1− εc)(
iν(ỹ)× ỹβ∂βHi(0)

k(1 − εc)
+ gβ)dσ

+

∫

∂B

ỹα(1− εc)ν ×∇×Ae[ψ̃β,0]dσ

=
i

k

∫

B

∇× (ỹαỹβ∂βHi(0))dỹ + (1− εc)

∫

∂B

ỹαgβdσ

+ (1 − εc)

∫

B

∇× (ỹα∇×Ae[ψ̃β,0])dỹ.

In particular, we get for |α| = 1 , |β| = 0 that

∫

∂B

ỹjψ̃0,0dσ =
i

k
ej ×Hi(0)|B|+ (1− εc)

∫

B

∇× (ỹj∇×Ae[ψ̃0,0])dỹ,

where we have used the Stokes’s theorem and the fact that gβ = 0 for β = 0. Then formula (4.38) follows
directly from the relation

∇× (ỹj∇×Ae[ψ̃β,0]) = ej ×∇×Ae[ψ̃0,0] +∇S0
e [∇∂B · ψ̃j,0],

and by writing

∫

B

∇×Ae[ψ̃0,0]dỹ =

∫

∂B

(ν ×Ae)|−[ψ̃0,0]dσ

=

∫

∂B

(
1

2
+Me)[ψ̃0,0]dσ = −

∫

∂B

ỹ∇∂B · (1
2
+Me)[ψ̃0,0]dσ

=−
∫

∂B

ỹ(
1

2
−K∗

e)[∇∂B · ψ̃0,0]dσ = 0 ,

where we have used (4.26) again. For |α| = 0, |β| = 1, we note that

∫

∂B

gβdσ = 0 for |β| = 1,

then a similar derivation leads to (4.40).

Computation of the scattered wave. We are now well prepared to compute each term in (4.21).
Recalling our conventional writing R3 ∋ d = (d′, d3) for a vector d, we identify d′ with (d′, 0) below to
simplify our notation. We start with a direct application of Lemma 4.6 to get

∫

∂B

d′ · ỹ′
τd3

φ̃0,0(ỹ)dσ =
d′ × Ei(0)|B|

τd3
+

d′

τd3
×
∫

∂B

(1− µc)ỹ
∂ue

∂ν
(ỹ)dσ, (4.41)
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and

− 1

τ

∫

∂B

ỹ3ψ̃0,0(ỹ)dσ = − i

kτ
|B|e3 ×Hi(0) +

εc − 1

τ
e3 ×

∫

∂B

ỹ
∂uh

∂ν
(ỹ)dσ, (4.42)

∫

∂B

d′ · ỹ′
τd3

ψ̃0,0(ỹ)dσ =
i

τk3
|B|d′ ×Hi(0) +

1− εc
τd3

d′ ×
∫

∂B

ỹ
∂uh

∂ν
(ỹ)dσ. (4.43)

We remark that it is unnecessary for us to consider
∫
∂B

ỹ3

τ φ̃0,0(ỹ)dσ since only the third component is
needed in (4.21), which is known to be zero. It is easy to check that

3∑

j=1

ej × ∂jEi(0) = ikHi(0) and

3∑

j=1

ej × ∂jHi(0) = −ikEi(0), (4.44)

then we can derive

3∑

j=1

∇∂B · φ̃j,0 =
3∑

j=1

(λµ +K0,∗
m )−1(

∇∂B · ν(x̃)× x̃j∂
jEi(0)

1− µc
)

=

3∑

j=1

(λµ +K0,∗
m )−1(

ν(x̃) · (ej × ∂jEi(0))

µc − 1
)

=
ik

µc − 1
(λµ +K0,∗

m )−1[ν ·Hi(0)]. (4.45)

Using (4.44) and (4.45), we can obtain the summation of (4.39) over j:

i

τk3

∫

∂B

3∑

j=1

φ̃j,0dσ = −H
i(0)|B|
τd3

+
1

τd3

∫

B

∇S0,∗
m (λµ +K0,∗

m )−1[ν ·Hi(0)]

= −H
i(0)|B|
τd3

+
1

τd3

∫

∂B

ỹ(−1

2
+K0,∗

m )(λµ +K0,∗
m )−1[ν ·Hi(0)]dσ

= −H
i(0)|B|
τd3

+
1

τd3(µc − 1)

∫

∂B

ỹ(λµ +K0,∗
m )−1[ν ·Hi(0)]dσ. (4.46)

A similar calculation gives

i

τk3

∫

∂B

ψ̃j,0dσ =
i

τk3
Ei(0)|B| − i

τk3

∫

B

∇S0
e (λε +K0,∗

e )−1[ν · Ei(0)]dσ

=
i

τk3
Ei(0)|B|+ i

τk3(1− εc)

∫

B

ỹ(λε +K0,∗
e )−1[ν · Ei(0)]dσ, (4.47)

by using (4.44) and the fact that

3∑

j=1

∇∂B · ψ̃j,0 =
1

εc − 1
(λε +K0,∗

e )−1[ν ·Ei(0)]. (4.48)

Moreover, recalling (4.36), we get

i

τk3

∫

∂B

φ̃0,1dσ =
i

τk3

∫

∂B

ỹ(λµ + K0,∗
m )−1(

k2 − k2c
1− µc

∂uh

∂ν
)(ỹ)dσ, (4.49)

i

τk3

∫

∂B

ψ̃0,1dσ = − i

τk3

∫

∂B

ỹ
k2c − k2

k2(1− εc)
(λε +K0,∗

e )−1(
∂ue

∂ν
)(ỹ)dσ. (4.50)
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We have now computed all the terms involved in (4.21). It is worth mentioning that we shall only need
the first two components of (4.41)-(4.42),(4.46) and (4.49), as well as the third component of (4.43),
(4.47) and (4.50), to compute the approximate scattered wave. Before we apply all the expressions to
(4.21), we make some further observations to simplify our representation. To proceed, we first consider
the non-integral terms in (4.41), (4.42) and (4.46) to find that

∇×G
δk
r (

−Hi(0)|B|
τd3

+
|B|d′ × Ei(0)

τd3
) + δk2Gδk

r (− i

kτ
|B|e3 ×Hi(0))

=∇×Gr(−
2|B|
τ

e3 × p) + δk2Gδk
r (− i

kτ
|B|e3 ×Hi(0))

=− iδk
2|B|
τ

G
δk
r (−d3p∗) + δk2Gδk

r (− i

kτ
|B|e3 ×Hi(0))

=− iδk
2|B|
τ

G
δk
r (−p3d∗) = 0,

where we have used the simple identity −Hi(0) + d′ ×Ei(0) = 2d3(p2,−p1, 0). In addition, we note that
d′×Hi(0)+Ei(0) = 0. Therefore, the non-integral terms in (4.43) and (4.47) can be cancelled. Moreover,
for any vector a ∈ R3, we can check from (4.13) that

∇×G
δk
r a = iδkGδk

r d∗ × a, ∇×G
δk
r d∗ × a = −iδkGδk

r a, (4.51)

and the vector identities

d∗ × a′ = −d3e3 × a+ (d′ × a)3e3, (d′ × a)′ = d∗ × (a3e3). (4.52)

Now recalling (4.42) and (4.43), and using (4.51) and (4.52), we can deduce that

δk2Gδk
r

1− εc
τd3

((d′ ×
∫

∂B

ỹ
∂uh

∂ν
dσ)3e3 − d3e3 ×

∫

∂B

ỹ
∂uh

∂ν
dσ)

=δk2Gδk
r

1− εc
τd3

d∗ × (

∫

∂B

ỹ
∂uh

∂ν
dσ)′

=
ik(εc − 1)

τd3
∇×G

δk
r (

∫

∂B

ỹ
∂uh

∂ν
dσ)′.

Similarly, we can derive by means of (4.51) and (4.52) that

∇×G
δk
r

1− µc

τd3
d∗ × (

∫

∂B

ỹ
∂ue

∂ν
dσ)3e3 = δk2Gδk

r

i

τk3
(

∫

∂B

ỹ(µc − 1)
∂ue

∂ν
dσ)3e3.

Combining these observations above and substituting the expressions to (4.21), we obtain the approximate

scattered wave Ẽr
p by adding up the electric dipole and magnetic dipole:

Ẽr
p(x̃) =∇×G

δk
r (x̃)J′

m + δk2Gδk
r (x̃)(Je)3e3 +O(δ2), (4.53)

where Jm and Je are defined by

Jm :=
i

τk3

∫

∂B

ỹk2(εc − 1)
∂uh

∂ν
dσ − i

τk3

∫

∂B

ỹ(λµ +K0,∗
m )−1 k

2
c − k2

1− µc

∂uh

∂ν
dσ

+
1

τd3(µc − 1)

∫

∂B

ỹ(λµ +K0,∗
m )−1[ν ·Hi(0)]dσ (4.54)

Je :=
i

τk3

∫

∂B

(µc − 1)ỹ
∂ue

∂ν
dσ − i

τk3

∫

∂B

k2c − k2

k2(1− εc)
ỹ(λε +K0,∗

e )−1 ∂u
e

∂ν
dσ

+
i

τk3(1 − εc)

∫

∂B

ỹ(λε +K0,∗
e )−1[ν · Ei(0)]dσ. (4.55)
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Next, we compute these two dipoles Jm and Je, respectively. For Jm, noting the relation

k2(εc − 1)(λµ +K0,∗
m ) +

k2 − k2c
1− µc

= k2(εc − 1)(λµ +K0,∗
m +

1− εcµc

(εc − 1)(1− µc)
)

= k2(εc − 1)(−λε +K0,∗
m ), (4.56)

we add the first two terms in Jm to obtain

ik2

τk3

∫

∂B

(εc − 1)ỹ(−λε +K0,∗
m )(λµ +K0,∗

m )−1 ∂u
h

∂ν
dσ. (4.57)

But by applying Lemma 4.5 and the jump relation of the Neumann-Poincaré operator, we get

∂uh

∂ν
=

i

kεc
ν ·Hi(0) +

i

kεc(1 − εc)
(−1

2
+ λε − λε +K0,∗

m )(λε −K0,∗
m )−1[ν ·Hi(0)]

=
i

k(εc − 1)
ν ·Hi(0) +

i

k(1− εc)2
(λε −K0,∗

m )−1[ν ·Hi(0)]. (4.58)

Then it follows from (4.57) that

ik2

τk3

∫

∂B

(εc − 1)ỹ(−λε +K0,∗
m )(λµ +K0,∗

m )−1 ∂u
h

∂ν
dσ

=
ik(εc − 1)

τd3

∫

∂B

ỹ(−λε +K0,∗
m )(λµ +K0,∗

m )−1 i

k(εc − 1)
ν ·Hi(0)dσ

+
ik(εc − 1)

τd3

∫

∂B

ỹ(−λε +K0,∗
m )(λµ +K0,∗

m )−1 i

k(1− εc)2
(λε −K0,∗

m )−1[ν ·Hi(0)]dσ

=
1

τd3

∫

∂B

ỹ(λε + λµ)(λµ +K0,∗
m )−1[ν ·Hi(0)] +

1

τd3(εc − 1)

∫

∂B

ỹ(λµ +K0,∗
m )−1[ν ·Hi(0)]dσ. (4.59)

Combining the above results, along with the relation

− λµ − λε +
1

1− εc
+

1

1− µc
= 1, (4.60)

we arrive at the desired expression

Jm = − 1

τd3

∫

∂B

ỹ(λµ +K0,∗
m )−1[ν ·Hi(0)]dσ . (4.61)

We now compute Je. Similarly to the results (4.56) and (4.58), we have

(µc − 1)(λε +K0,∗
e ) +

k2c − k2

k2(εc − 1)
= (−λµ +K0,∗

e )(µc − 1), (4.62)

and

∂ue

∂ν
=

1

µc
ν ·Ei((0) +

1

µc(1− µc)
(−1

2
+K0,∗

e )(λµ −K0,∗
e )−1[ν ·Ei(0)]

=
1

µc − 1
ν · Ei(0) +

1

(1− µc)2
(λµ −K0,∗

e )−1[ν · Ei(0)]. (4.63)

Applying these two expressions and (4.60) yields

Je =
i

τk3

∫

∂B

ỹ(λε +K0,∗
e )−1[ν · Ei(0)]dσ. (4.64)

Now, by substituting (4.64) and (4.61) into (4.53), and using the relation (4.51), we come to the main
result of this section.
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Theorem 4.7. When δ/(dσd
∗
σ) is sufficiently small, for x away from the thin layer D, the scattered

electric field Er has the asymptotic expression pointwisely as δ → 0:

Er(x) = δkGk
r (x)(id

∗ × J′
m + k(Je)3e3) +O(δ2), (4.65)

where Je and Jm are given by (4.64) and (4.61), respectively.

Remark 4.8. The geometry of the microstructure D of the thin layer can be quite complicated, e.g.,
a domain with a hole or a domain with multiple connected components, although we often assume it is
simple connected with a connected boundary for simplicity (e.g., Lemma3.5). Therefore, our results are
very general, and are still true for the strongly coupled multi-layer case, i.e., there are multiple layers of
close-to-touching nanoparticles.

From Theorem4.7, we can clearly see the anomalous electromagnetic scattering is due to the occur-
rence of the mixed collective plasmonic resonances. To make it more precise, let us define the electric
and magnetic polarization tensors:

Me(λε, B) =

∫

∂B

ỹ(λε +K0,∗
e )−1[ν]dσ, Mm(λµ, B) =

∫

∂B

ỹ(λµ +K0,∗
m )−1[ν]dσ.

By the definition of Gk
r (x) (4.13), and with the help of projections e3⊗e3 and I−e3⊗e3 and the relations

Ei(0) = −2e3 ⊗ e3p
∗ , Hi(0) = −2(I− e3 ⊗ e3)d

∗ × p∗,

we can reformulate (4.65) in a more compact form:

Er(x) = δk(I− d∗ ⊗ d∗)eik
∗·x(id∗ × J′

m + k(Je)3e3) +O(δ2) =
2iδk

τd3
eik

∗·x
Rp∗ +O(δ2), (4.66)

where the reflection scattering matrix R is given by

R = (I− d∗ ⊗ d∗)(d∗ × (1 − e3 ⊗ e3)Mm(λµ, B)(1− e3 ⊗ e3)d
∗ × I− e3 ⊗ e3Me(λε, B)e3 ⊗ e3).

We emphasize that R as a three by three matrix should be regarded as a linear mapping defined on the
two dimensional subspace of R3 perpendicular to d∗, which chacterizes the polarization conversion. In the
traditional optical systems, the scattering effect of such kind of subwavelength rough surface is basically
negligible so that R plays a limited role. However, due to the large negative permittivity and permeability
of the plasmonic nanoparticles [28, 43], λµ(ω) and λε(ω) can approach the spectrum of −K0,∗

m and −K0,∗
e

such that the elements in Me(λε, B) and Mm(λµ, B) may blow up with an enhancement order 1/d∗σ.
Therefore, following [5, 12, 10], we may define the collective plasmonic resonances by the frequencies ω
satisfying

d(λε(ω),−K0,∗
e ) ≪ 1 or d(λµ(ω),−K0,∗

m ) ≪ 1.

It is worth emphasizing that these frequencies generally are very different from the single particle case.
Physically, these periodically distributed plasmonic nanoparticles can resonate as a whole so that a
nanoscale thin layer can significantly affect the wave propagation at the macroscale. We refer the read-
ers to [11] for some numerical evidences on collective plasmonic resonances. If the collective plasmonic
resonances are excited, the effect of the reflection scattering matrix R can overcome the size parameter
δ and become visible, giving the possibility of achieving a desired far field pattern. However, our elec-
tromagnetic plasmonic metasurface, as all the nano-optic devices, still faces many fundamental limits.
Actually, following [14], we may decompose Er(x) into two plane waves with orthogonal polarizations:
one with polarization p∗ and the other with a polarization orthogonal to p∗. Moreover, we can intro-
duce the reflection coefficients and polarization conversion coefficients to measure the functionalities of
the metasurface, and then analyze their bounds and fundamental relations via holomorphic functional
calculus[10].
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4.3 Equivalent impedance boundary condition

The final goal of this work is to present an impedance boundary condition approximation. First, we
recall the definition of the surface scalar curl and surface vector curl. In fact, they have the explicit
forms on the reflective plane Γ: curlΓu = ∂u2

∂x1
− ∂u1

∂x2
for vector function u = (u1, u2, 0) and ~curlΓv =

( ∂v
∂x2

,− ∂v
∂x1

, 0) for scalar function v. We first consider a simple case: the plasmonic nanoparticle is non-
magnetic, i.e., µc = 1. In this case, Theorem 4.7 indicates that in the far field, the total electric field can
be approximated by Eδ:

Eδ := Ei + δk2Gk
r (Je)3e3.

Introduce

βe := − 1

τ

∫

∂B

y3(λε +K0,∗
e )−1[v3]dσ.

Then a simple calculation gives, with the help of (4.13) and e3 × Ei|Γ = 0,

e3 × Eδ|Γ = −δk2e3 × d∗d3(Je)3e
ikd′·x′

= iδk2p3e3 × d∗βee
ikd′·x′

= δeikd
′·x′

(ikd2,−ikd1, 0)βe2p3.

Hence we can derive, by noting that curlΓ(H
i)′|Γ = −ike3 ·Ei|Γ, when δ/(dσd∗σ) → 0:

e3 × Eδ|Γ = δβe ~curlΓe3 ·Ei|Γ = δβe ~curlΓ
i

k
curlΓ(H

i)′|Γ = δ
iβe
k

~curlΓcurlΓ(H
δ)′|Γ +O(δ2).

This yields the equivalent impedance boundary condition

e3 × Eδ|Γ = δ
iβe
k

~curlΓcurlΓ(H
δ)′|Γ (4.67)

to approximate the effect of the thin layer in the far field, up to the second order term. Moreover, this
is uniformly valid with respect to the resonance.

We now consider the magnetic plasmonic nanoparticle, i.e., µc 6= 1, and introduce the 2× 2 matrix

Dm =
1

τ

∫

∂B

y′(λµ +K0,∗
m )−1[ν′]dσ.

According to Theorem 4.7, the electric field can be approximated by

Eδ = Ei + δkGk
r (x)(id

∗ × J′
m + k(Je)3e3).

In a similar way as in the non-magnetic case, we can find that

e3 × Eδ|Γ = δ
iβe
k

~curlΓcurlΓ(H
δ)′|Γ − ikδDm(H

δ)′|Γ +O(δ2),

with the help of the following observation:

iδke3 × (Gk
rd

∗ × J′
m)|Γ = iδke3 × (d∗ × J′

m)e
ikd′·x′ |Γ = −ikδDm(H

i)′|Γ.

This yields the following effective impedance boundary condition

e3 × Eδ|Γ = δ
iβe
k

~curlΓcurlΓ(H
δ)′|Γ − ikδDm(H

δ)′|Γ (4.68)

to approximate the effect of the thin layer in the macroscopic scale, up to the second order term. And
this is again uniformly valid with respect to the resonance.
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5 Concluding remarks and extensions

In this work, we have studied the scattering effect of the periodically distributed plasmonic nanopar-
ticles in the homogenization regime. For the subwavelength structures of such patterns, a Leontovich
boundary condition (cf. (4.68)) has been derived for the approximation of the scattered field in both
magnetic and non-magnetic cases. A similar problem setting was considered in [23, 22, 21], where the
thin layer was made of dielectric particles, for which the standard variational approach applies. How-
ever, the variational framework breaks down in the resonant case, hence instead we have adopted the
layer potential theories in this work to analyze the singularity and prove the uniform validation of the
boundary condition approximations. Our results provide a relatively complete picture of the mechanism
for the electromagnetic plasmonic metasurfaces and can be easily modified to cope with other regimes
and boundary conditions. Therefore this work may be viewed as a generalization of the standard homog-
enization theory to resonant micro-structures. And our theoretical analysis and findings may help design
a metasurface that can resonate at some specific dense set of frequencies to further realize the broadband
wave modulation. In addition, it is also a very interesting and challenging topic to understand how to
reconstruct fine structures of thin layers in terms of the scattered field under resonance.

Although we only consider the homogenization regime in this work since it is the most interesting
and important case where the collective resonance can happen, our results and analysis in this work can
actually be extended to several important physical regimes and applications. First, our approach can be
directly applied to other important regimes, such as

size of particle ≪ period ∼ wave length, or size of particle ≪ period ≪ wave length.

However, we may not expect the collective plasmonic resonances in these configurations, since the particles
are well separated in some sense though they are distributed in a certain pattern. In fact, the scattering
field will be locally dominated by the resonance modes excited by a single nanoparticle. Therefore, the
thin layers under these regimes may not have the capability to realize the control of the electromagnetic
wave in the macroscopic scale. In this work, we have considered only the perfect conducting boundary
conditions on the bottom surface Γ, but our results and analysis can be extended to other boundary
conditions as well, by replacing the Green’s tensors defined in the Section 3 by the ones satisfying other
specified boundary conditions. As we have mentioned earlier, our results remain the same for the multiple
close-to-touching thin layers. In fact, the generalization to the well-separated multi-layer case, i.e.,

size of particle ∼ period ≪ distance between two layers ∼ wavelength ∼ 1,

is also direct since the scattering effect of each layer can be considered independently due to the weak
interaction. Formally, suppose we have n thin layers associated with the approximate scattered waves
Er

1 , · · · , Er
n given by similar terms to (4.65), then for this multi-layer structure, the total approximate

scattered wave Er
app can be written as Er

app = Er
1 + · · ·+Er

n. With these design flexibilities and extension
remarks, our theoretical findings shed also light on the mathematical understanding of electromagnetic
plasmonic metasurfaces and their related optimal design problems.
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