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Mathematical analysis of electromagnetic plasmonic metasurfaces

Habib Ammari* Bowen Lif Jun Zout

Abstract

We study the anomalous electromagnetic scattering in the homogenization regime, by a subwave-
length thin layer of periodically distributed plasmonic nanoparticles on a perfect conducting plane.
By using layer potential techniques, we derive the asymptotic expansion of the electromagnetic field
away from the thin layer and quantitatively analyze the field enhancement due to the mixed collec-
tive plasmonic resonances, which can be characterized by the spectra of periodic Neumann-Poincaré
type operators. Based on the asymptotic behavior of the scattered field in the macroscopic scale, we
further demonstrate that the optical effect of this thin layer can be effectively approximated by a
Leontovich boundary condition, which is uniformly valid no matter whether the incident frequency
is near the resonant range but varies with the magnetic property of the plasmonic nanoparticles.
The quantitative approximation clearly shows the blow-up of the field energy and the conversion of
polarization when resonance occurs, resulting in a significant change of the reflection property of the
conducting plane. These results confirm essential physical changes of electromagnetic metasurface
at resonances mathematically, whose occurrence was verified earlier for the acoustic case [6] and the
transverse magnetic case [11].

1 Introduction

The study of electromagnetic scattering by a thin layer composed of periodic subwavelength resonators,
which can strongly interact with the incident wave, have received considerable attention recently for
their possibilities of realizing the full control of reflected and transmitted waves [19 45| 46, 27]. Such
thin layers of composite material, usually referred to as the ultrathin metasurfaces in the physical and
engineering community, have a macroscopic effect on the scattered wave although the layer thickness,
or the size of cell structure, is negligible with respect to the operating wavelength [24], 25| BTl [30, 16
[35, 36]. We refer the readers to [44] for a systematic review of the electromagnetic metasurfaces and
its applications. Great effort has been made recently by the mathematical community to develop a
universal theory for a better understanding of the mechanism underlying the metasurfaces. It turns
out that these anomalous scattering phenomena have a close relation with the multiscale nature of the
subwavelength cell structures and the excitation of various resonances. A systematic study was carried
out in [34] 35 B6l 37, [33] to understand the electromagnetic scattering by the perfect conducting slab
patterned with the subwavelength narrow slits under varying regimes and periodic patterns. And it was
shown in [39] that the scattering effect by a novel metasurface made of periodically corrugated cylindrical
waveguides can be approximated by smooth cylindrical waveguides with an effective metamaterial surface
impedance.

Plasmonic nanoparticles such as gold and silver are popular choices for the subwavelength resonators
in the electromagnetic setting due to their unique optical properties [40], and even a thin layer of these
particles can significantly influence the wave propagation pattern. In this work, we shall consider the
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scattering effect of a thin layer of periodical plasmonic nanoparticles of subwavelength mounted on a
perfectly conducting plane in the homogenization regime, i.e., the period of the structure is about the
same size as the nanoparticles but is much smaller than the incident wavelength. At the quasi-static limit,
a single nanoparticle can exhibit the plasmonic resonances at some specific frequencies that are related to
the spectra of the Neumann-Poincaré operators. We refer to [5, 12 [I0] for the mathematical analysis of
plasmonic resonances. However, when we consider the homogenization regime, the mixed and collective
plasmonic resonances may occur, which are very different from the single plasmonic nanoparticle case
in free space. It is interesting to note that if the thin layer is made of normal dielectric materials with
biperiodic conducting inclusions covering a cylindrical body, a Leontovich boundary condition can be
derived to approximate the effect of the layer [I]. Such grating problems or boundary layer effects have
been extensively studied by matched asymptotic expansion techniques, see, e.g., [15, Bl 21 [4 22 23].
However, as we shall characterize, the cell problem here is nearly singular at some frequencies if the
nanoparticles are plasmonic. And in this case, the standard homogenization is not applicable and the
reflection coefficients may blow up. Therefore, we should seek new analytical tools for deriving the
exact blow-up order and justifying the validity of the approximation of the Leontovich-type boundary
conditions. In the present work, we use layer potential techniques to study the reflection properties of
electromagnetic plasmonic metasurfaces, which is more general than the framework recently proposed
in [II]. The technique was used in [6] to illustrate the superabsorption of acoustic waves with bubble
metascreens observed in [32].

As we shall point out in Section [l our results and analyses in this work apply to several important
physical regimes and applications, in particular, to the general physical setting that involves several
physical scales, namely, the distance between every two thin layers of periodically distributed plasmonic
nanoparticles, the incident wavelength, sizes of nanoparticles, and the period of each layer of periodical
nanoparticles, can be of very different multiscale, such as

size of particle < period < distance ~ wave length, or

size of particle < period ~ distance < wave length.

The paper is organized as follows. In the next section, we describe our model mathematically and
introduce some notation and definitions. In Section Bl we first introduce the quasi-periodic layer poten-
tials and derive the corresponding asymptotic expansions, and then recall some basic results concerning
the Neumann-Poincaré operators and establish the resolvent estimates for the leading-order potentials.
The Section [ is the main contribution of this work, devoted to the calculation of the far-field asymp-
totic expansion of the scattered wave and a boundary condition approximation under the excitation of
plasmons. We shall end our work with some concluding and extension remarks.

2 Problem descriptions and preliminaries

This section is devoted to the basic setup and the mathematical formulation of the electromagnetic
scattering problem. We shall write R? > x = (21, 79, 73) = (2/,23) with 2’ = (21, 22) € R? and 23 € R,
I' := {z € R¥*z3 = 0} for the reflective plane and R} := {x € R?| £ 23 > 0} for the upper and lower
half spaces. We denote by (er, ez, e3) the usual Cartesian basis of R?. For a multi-index o € N3, we
write x* = {25225 and 9% = 971 05205 with 0; = %. We shall always use B € R? to denote a C?
smooth bounded domain with its size of order one, and use D := §B to describe a single nanoparticle
and D for the collection of plasmonic nanoparticles periodically distributed along a lattice A® given by

A = {R(S S R2;R5 = nyda; + ngdas, n; € Z},

in which a;,ay are linearly independent vectors lying in I' with |a;| ~ |ag| ~ 1. Then we can write
D = Ugseas (D +R?). For convenience, we shall write A' as A, and we can see D = [Jp, 6(B+R). We



now define the cell X, Q in I' and in R?. respectively by

Y= {aERQ;a: cia] + cga2,¢; € (—

)}
ﬁxmm)

We further assume that B is contained in € with the distance from the reflective plane I' of order one
and the dimensionless quantity ¢ is much less than one, since we are interested in the homogenization
regime. For any x € 0B, we have x = 6x € 0D. Then for a function ¢(x) defined on 9D, its pull
back $(X) := p(6X) = ¢(x) is defined on OB, and this convention is adopted throughout this work. In
particular, if we denote by v(x) the exterior normal vector of 9D, then its pull back 7(X) is the normal
vector of 9B. But we may also simply write v for a normal vector without specifying its definition domain
when no confusion is caused. For the sake of exposition, we often refer to X, B and €2 as the reference
variable, reference domain and reference cell, respectively.

We shall consider the electric permittivity e.(w) and magnetic permeability p.(w) of the nanoparticle
are described by the Drude model [5] [10, 40]. Although explicit formulas for u. and e, are available in
terms of the Drude model, it suffices for all our analysis and arguments to generally assume that both s,
and e, are complex numbers with Jmyu., Jme, > 0, and depend on the frequency w of the incident wave.
We write the permittivity and permeability of the background medium by ¢ and u, and further assume
them to be constant 1 after an appropriate scaling. Then the wave number k.(w) and k are given by

ke(w) = wvec(w)pe(w) and k =w\/ep =w.

We are now ready to formulate the scattering problem of our interest as follows:

3

N =N =
N — DN —

Q= {aERQ;a: cia] + cgaz,¢; € (—

3

V x E = ikupH in R3\OD,
V x H=—ikepE  in R3\dD,
[vxEl=[vxH]=0 on ID,
esx E=0 on T,

(2.1)

where E — E* and H — H' satisfy certain outgoing radiation conditions, ep = X(R3\D) + £.X(D),
pp = X(RI\D) + p.X (D), with X being the standard characteristic function. Throughout the work,
we use [-] := :|_ — |+ to denote the jump across the interface 9D, and the subscripts £ to denote the
limits taken from the outside and inside of D respectively. The incident plane wave (E?, H) is given by

E = pezkd-x _ p*ezkd -x7 H' = d x pezkd~x —d* x p*ezkd -x7

where d is a unit vector for the incident direction with ds < 0, and p is the polarization direction. Here
and in the sequel we often use the superscript * to denote the reflection of a vector with respect to I’ i.e.,
d* = (d’, —d3). But the notation * may have other meanings at different occasions, so we will illustrate
the actual meaning of * whenever it may cause confusion. Denote by k = kd, k* = kd* the wave vector
and its reflection respectively. We are interested in finding a quasi-periodic solution (E, H) to the system

1) such that
E(x+R%) = e*F' E(x), H(x+R%) =R H(x).

Hence we have the usual Rayleigh Bloch expansion for the scattered field in the domain above the layer
of nanoparticles. As in [0], we impose the outgoing radiation condition on the solutions to the system
@I) by assuming that all the modes in the Rayleigh-Bloch expansion are either decaying exponentially
or propagating along the xs-direction. Under the subwavelength assumption, the period of lattice is of
order §, and the scattered wave consists of only a single propagative mode in the far field, namely

. 1.7 ’ :
E':=FE—E' ~pref e ks 4544 00 (for some polarization direction p”).

The remaining part of this section is devoted to introduce more notation, definitions and recalling
some basic results concerning the surface differential operators and function spaces that are frequently



used in the sequel. For s € R, we denote by H*(0B) and H3(0B) the usual Sobolev space of order
s of scalar functions and tangential vector fields on dB, respectively, and denote by H§(0B) the zero

mean subspace of H*(9B). Also, the Sobolev spaces H*(B) and Hj .(Q\B) are needed, as well as the

trace operator vy : H*(B) — H*"%(dB) for s > 3. We introduce the surface gradient Vyp and the

- 1
surface vector curl (written as curlyg) in the standard way [42], which map Hz (9B) to H,?(0B). Their
corresponding adjoint operators are the surface divergence Vgyp- and the surface scalar curl, i.e., curlyp:

H3(9B) — H~%(9B). And it holds in H~#(9B) that
ker(Vap) = ker(curlpp) = R. (2.2)

The Laplace-Beltrami operator Agp := Vop-Vop = —curly Bct;rla 5 shall also be used. For a vector field

1
u € Hp?(0B), we will often need its tangential component r(u) := v x u. It is easy to check by using
definition and duality relation that each of the following identities holds for a suitable function ¢,

chlaBgo = —r(Vapy), curlygpp =—Vop - (ry), (2.3)
Vg -curlypp = 0, curlysVeorp = 0. (2.4)

Moreover, we introduce the spaces H (curl, B), Hj,.(curl, Q\B), H(div, B) and Hj,.(div, 2\ B) of (locally)
square integrable vector fields with (locally) square integrable curl and divergence, respectively. We will
frequently use the normal trace v, (u) := u-v|gp, the tangential trace v(u) := v X u|sp and the tangential
component trace m(u) := (v xu)xv|sp for appropriately smooth vector fields u. Indeed, v, v+ and 7 can

be extended to linear continuous mappings from H(div, B) to H~2(dB), H(curl, B) to HT_%(div, 0B),
1
and H (curl, B) to H; 2 (curl, 0B) respectively, where

=

(div,0B) = { € Hy*(9B); Vop-p € H *(9B)},
(curl, 0B) = {p € H,?(9B); cwlopp € H™#(0B)}.

Hyp

Hy

=

It is known that Hj %(curl, JB) can be identified with the dual space of H. %(div,BB) with duality
pairing (1, o) := [, 1 - pdo for smooth vector fields ¥, ¢ (cf.[41} I7]). And for f € H'(B), we have

Vopyo(f) =m(Vf). (2.5)
Similarly, it holds for u € H (curl, B),

curlppm(u) = 1 (V X w). (2.6)
For our subsequent analysis, the Helmholtz decomposition of H.. 5 (div, 0B) is frequently used (cf.[I7]):

HT_% (div,0B) = VBBHO% (0B) ® CJrlaBHO% (0B).

In this work, we denote by ® the tensor product operation of two vectors, i.e., given two vectors
acR”and b € R™, a®b is a n x m matrix given by (a ® b);; = a;b;, and let vector operators act
on matrices column by column. For any two Banach spaces X and Y, we write by £(X,Y) the set
of all linear continuous mappings from X to Y, or simply by £(X) if Y = X. We write ||-||y for the
norm defined on the space X and x-(-,-)x for the natural duality pairing between X and its dual space
X*. However, we may simply write ||-|| and (-, ) without specifying the subscripts when no confusion is
caused. We will not identify the dual spaces of Hilbert spaces with themselves, instead we always regard
them as the subspaces of distributions. Hence all the adjoint operators in this work are introduced by
their natural duality pairings. We end this section by introducing the expression z < y, which means
x < Cy for some generic constant C. If 2 y and x < y holds simultaneously, then we write x = y.



3 Layer potential techniques

Before considering the scattering problem, we present some preliminary knowledge on the quasi-
periodic layer potential techniques in this section for our subsequent analysis. We first introduce the quasi-
periodic Green’s tensors satisfying certain boundary conditions and compute their asymptotic expansions
with respect to 6. Then we study the associated layer potentials, as well as their asymptotics. After
that, we turn our attention to the properties of the leading-order potentials and the resolvent estimates
for Neumann-Poincaré-type operators. These results will be the foundation for the far-field asymptotics
and approximation error estimate conducted in the next section.

3.1 Quasi-periodic Green’s tensors and basic properties

Following the notation in [6], we start with the scalar quasi-periodic Green’s function G;& with complex
wavenumber k£ with Jmk > 0, which is the solution to

(A+E)GEx) =Y e opx) = > e* Fog(x (3.1)
ReA ReA

satisfying a certain outgoing condition. In the distribution sense, GI; is well-defined and given by

G;(x) = Z e RGR(x,R), (3.2)

ReA

etklx

where G*(x,y) :=
We further define GX 2(x,y) = G; (x —y). For our purpose, we are interested in the behavior of the

4ﬂx YI is the fundamental solution to the Helmholtz operator A + k2 in free space.

quasi-periodic Green’s function G:Eé (x) with respect to the lattice A°. With the reference variable X, we
easily observe that

G;H; (x) = Z eik/'RéGk(x, =5 Z K RGOM (X R). (3.3)
ROEAS ReEA

We thus have the following useful scaling property:

1 ~
GYs(x) = gcg;k(x). (3.4)
Let A* be the reciprocal lattice of A (cf.[38]), and 7 be the volume of the unit cell of A. Then the explicit
representation formula of G;E in the homogenization regime, i.e., |k| < 7 ~ 1, is available [6], as stated
in the next theorem.

Theorem 3.1. Let k € C be the complex wave number with Jmk > 0. Assume that |k| is small enough,
then the quasi-periodic Green’s function G;E can be expressed by

Gk( ) 1 eik/.ml—ik3|z3| _ i Z 1 i(E+k ) o’ /|£+k’|2 k2\13| (35)
27ks 27 ceAT (0} |§ + k|2 -

where \/Z is viewed as an analytic function defined by /z = |z|'/?e?8%/2 for » € C\{—it,t > 0}.
In particular, when k =0,

1 1 e
GOy = 173l 1 1 giea’ ~lellas| 3.6
b =5 5 D . (3.6)

£eA*\{0}



One can readily observe the symmetry property of G%E from its representation formula (3.6,
Gy (xa', £as) = Gy (2, x3) . (3.7)

Concerning the asymptotics of G‘;ﬁk with respect to §, a direct application of Taylor’s series gives us

G (x) = T];T + Gop(x) + > (5k)" G () - (3.8)
n=1

We remark that each term G,, 4 in (8.8) can be computed explicitly (cf.[6] for more details). In particular,
for the leading-order term, we have

k3|$3| k’-x’ 1 1 “E‘ ‘z3| - 0 k’~x’
§eA~\{0}

Recalling from the definition of G‘;ﬁk that

(A+2E)GH(x) = Y R (x),
ReA

we obtain, by substituting the expansion (3.8) into the above formula,

AGo 4 (x) + 0k(AGT #(x) +

_Zanknz “lnf” Or (%),

2d )+ Z k" (AG, 4 (x) + Gno 4(x))

ReA
which imply (with notation G_1 » = ﬁ)
(¢d" - R)™
AGoy(x) = > 0r(x), and AGn4(x)+Gnop(x) =) ——0R(x), n>1. 0 (3.10)
ReA ReA '

As the perfect conducting boundary condition is enforced only on the electric field, we have to dis-
tinguish between the electric and magnetic Green’s tensors in terms of the boundary conditions. Their
definitions rely on the quasi-periodic Green’s functions with Dirichlet and Neumann boundary conditions,
defined respectively by

GE(x,y) =Ghx—y) —Gax—y"), Gh(xy)=Ghix—-y)+Gux—-y"). (3.11)

The asymptotics below follows directly from (3.8,

Gc/m(x y) Z (6k)nGn,c/m(X7 Y) 5 (312)
n=—1
where G, o/m(X,y) are given by
Gre/m(X,¥) = Gng(x —y) FGpp(x—y") forn>-1. (3.13)

Especially, G_1 . = 0 and G_1 1, = ¢/(d37). For the sake of exposition, here and in the sequel, we use the
subscript e/m to include two cases, e.g., (B.12]) actually represents two equations, obtained by replacing
e/m by e and m, respectively, in ([BI2]). Similarly, we shall also use m/e frequently. Recalling B0, if
X,y € B, we have by noting that dr (2’ —y’) = 0 for all R # 0,

AGD,e/m = 607 and AGn,e/m + Gn—Z,e/m = Oa n>1. (314)



These recurrence relations shall be used in the calculation of asymptotic expansions of layer potential
operators. According to the reciprocity ([B.1) of the periodic Green’s function, we know

Gom(xY) = Gy X).

Combining this observation with (89) and BI3), we readily see the reciprocity is no longer suitable for
Gom(x,y) since
k/ . (:L,/ _ y/)

GO,m(xuy):Ggl(xuy)_ kgT

: (3.15)

while G e(x,y) still behaves well due to
Goe(x,y) = G(x,y)- (3.16)

It is also worth mentioning that there is a singularity for G°% as § goes to 0 (cf.(3) and BII).
This, together with non-symmetry of Gom(x,y), makes some of our subsequent analyses much more

involved. Finally, for our later use, we introduce the conjugate kernels GO,e /m Of Goe/m Dy setting
GO,e/m(Xay) = GO,e/m(va)a nam61Ya

GO,C(Xa y) = GO,C(Yv X) = Gg (X7 Y)v (317)

R k(2 — o
Gom(x,) = Gom(y:) = Gu(xy) + - E0) (318)

We are now ready to introduce the electromagnetic Green’s tensor

1
Geym (% ¥) = (14 15 Vs Vo I (x,7), (3.19)

e/m
where the matrix-valued functions H‘le(/m are given by
ch(/m(xa y) = [Glc(/mel’ Glc(/mez’ G;/ceg’} (Xa y) . (320)
It is easy to check that G‘l&‘/m solve the equations

Vx X Vx X Gé‘/m(x, y) — k2G§/m(x,y) = Z e* Rop(x — y)Is,
ReA

and satisfy the boundary conditions:
es x GX(x,y) =0 and e3-GX(x,y)=0 for xeT,yec Ri,
respectively. As a direct application of [B.I2), we have the asymptotics of Hgl/‘m:

o0

I, y) = Y (0k) T, c/m(x,y). (3.21)

n=—1
Then we readily see an expansion from the above formula and the definition of G¥, in I9):
1 oo
G (x,y) = 57 G te/m(x¥) + D (0k)" Gy e (%, ¥) (3.22)
n=0

where G,, o/m(X,y) is given by

Gn,e/m(xay> = Hn,e/m(xay> +ViVy - Hn+2,e/m(xay)'



We end this subsection with some basic but very useful observations:

0 0

0 0
—Gk=— GK(i=1,2 —Gk=—__— Gk 3.23
8:171 e 8yz e(l Y )7 8:173 e 8y3 m? ( )
_ G —1.92 —_ =@ 3.24

which lead us to the following reciprocity:

Vi X I (x,y) " = Vy x TIE, (%, y). (3.25)

3.2 Integral operators and their asymptotics

With the help of the Green’s tensors introduced in the last subsection, we define the following vector
potentials with density ¢ on 0B [26] 20]:

Al];e/m : H;%(div, OB) —» H(curl, B) or Hj,c(curl, Q\B)

o Al [o](x) = /6 T y)ely)ir

Mt Hyp ? (div,0B) — Hy? (div, dB)
s M nlelx) = [ vlx) x VX T (3o
L% ot Hy® (div, 0B) — Hy* (div, dB)
o L omlel(%) = v(x) x (kP AF ¢ [0](%) + VS o /[Vos - ¢](x))-
Further, we define the single layer potential
: H2(0B) — H?(0B)

o Sk el (x) = /8 Gyl

S¥.

e/m

the double layer potential

KY oyt H¥(0B) — H*(B)
0

—G%, (%, y)e(y)do,
[ Gt y)e(y)

Y Iclg,e/m[sp](x) =

and the Neumann-Poincaré operator
K&* . H 3(0B) — H™3(0B)

B,e/m
k,* 8
o K5 (%) =

—Gi‘mx,ytpyda
s O m (% ¥)e(y)

It follows directly from the definition that S]lg,_

o/m satisfy the Dirichlet and Neumann boundary conditions,

respectively, on the reflective plane I', while Aléyc and Al]f;;_’m satisfy the following conditions, respectively:

es x AX [p](x) =0, es- A, [¢l(x) =0 onl.

When k = 0, we omit the subscript B in all the potentials defined above, e.g., we write Sg/m for 8103 o/m"
We emphasize that all the definitions depend on the lattice A and the domain in the unit cell Q. For the

scaled lattice A° and domain D, all the operators above can be defined similarly. It can be shown that



VxAk «/m defines a bounded linear operator from H;% (div, dB) into H (curl, B) or H (curl, Q\ B)(cf.[20]).
Noting that Gle‘/m(x) —G*(x) is a smooth function defined in €2, thus the trace formulas related to Alf&,e/m
follow directly from the standard results [7, Lemma 2.96],

(V XV x AB e/m)|i - :F + MB ,e/m> (326)
(v xV xV x AB,c/m)|i = EBﬂc/m, (3.27)
while it holds for Sg o/m that,
0
(8 SB c/m)| :l: +ICB ,e/m* (328)

Recalling the asymptotic expansions (3.12)) and ([B.21), we may define the potentials A, ¢/m,Sn.e/m as-
sociated with Il,, ¢/, and G, ¢/, respectively, and K, o /r, and K7, as well. Then we can directly see
that the following expansions hold for any density ¢ on 0D,

n,e/m

A%,c/m[ ]( ) - 6AB c/m[@/](si) = Z 6n+1kn-’4n,e/m[¢](§)a (329)
n=—1
8B e/ml) (%) = 0B [BNF) = D 5 HE S, 0/ml[B)(X), (3.30)
n=—1
and
K:D e/m Z&nknlcn C/m[(Z]( ) K:lg)*e/m Zénknlcn e/m ( )

Moreover, by these asymptotic expansions, a similar proof to the one of [12, Lemmas 3.1-3.2] yields the
results in the next two lemmas.

Lemma 3.2. For ¢ € HT_% (div,0D), MD C/m[qS] has the following asymptotic expansion:

n=0
where M., C/m = [, V(X)X Vi XIL, o/ (X, ¥)0(Y)do, and has an uniform bound in L(H, (dlv 0B)).

Moreover, ./\/lD o/m IS analytic in 6.

Lemma 3.3. For ¢ € H (d1v oD), L% o/ml®] has the asymptotic expansion:

o0

LY oyl ®1(0%) = L35 [6](0%) = > 0" (k" = k) Lo o/ 6] (X)),

n=1

where

En,e/m[g] (i) =V X An—?,e/m[g] (i) +v X vSn,e/m[vaB ' 5] (i)
In particular, it holds that

£1[03) =~ v x [ GreaVon - 6@)do + V) XV [ G1(%5)Von - F)do
T@3 dB OB

L1 m[)(%) = __; v(x) x / (7, 0)'Vop - 6(F)do + v(X) x V | Gim(X,¥)Vos - 6(¥)do
Tas 0B 0B

Moreover, L, ¢/m has an uniform bound in L(H;%(div, 0B)), and LX is analytic in 0.

D,e/m



For the sake of simplicity, we write Me/m, Ke/m, K /m for the leading-order terms in the asymp-

%‘f o/m IC‘SB,lfe /m ICéBlf’ij, respectively. We emphasize that we only need the surface

divergence of density ¢ to evaluate Ly o/m[¢], which implies immediately that

totic expansions of M

citlyp HE (0B) € H C ker(Lyopm),

where H denotes the divergence free space, i.e.,
1
H := {¢ € H;?(div,0B); Vap - ¢ = 0}.

This observation shall be used repeatedly in Section @l To have a better understanding of the terms
involved in the expansions, we give the following lemma.

Lemma 3.4. For any ¢ € HT_% (div,dB), it holds that

(i) Vop - Enﬁc/m[gﬁ] =Vop - (v x An,zc/m)[(/];] for n > 1. In particular, Vop - El,c/m[a] =0.

(i) Vop - My e/mld] = —ic;;ﬁc/m[v@B @l —v - Ap_g.e/ml@] for n > 1, while for n =0,

Vop - Mem[o] = =K¢)[Vos - 9.

Proof. We first note that VS, c/m[Vap - ¢] € H(curl, B), then obtain the property (i) by using (23] and
28) to see that Vop - (v X VS, c/m[Vas - ¢]) = 0. For the second property, we obtain for n > 1 by

means of (Z3)) and (Z0]) that

Vop - Mn,e/m[(b] =Vop- (V X 7"'if(v X An,e/m))[g]
ZCUFIBBM(V X Anc/m)[(;] = _Vn(v XV x Anc/m)[&;]

- K:z,e/m[vaB : ¢] - V(ff) ’ An—2,e/m[¢]'

We should be more careful to deal with the case n = 0 due to the jump of the trace, i.e., (326), (325).
But a similar calculation as the one presented above gives Vap - Me/m[¢] = —K% /m[Va B 9] O

Before we move on to the next subsection on spectral analysis, we make more investigation into the
leading-order terms to prepare some tools for the later use. Recalling formulas [B10)-(BI5), we know
that K = K%* with the adjoint operator K, = KU. However, K can only be identified with X£%* on

HO_% (0B), and Ky, here is not the adjoint operator of K . Indeed, the adjoint operators of K and Ky
are defined by

Romle](x) = /a ) %éo,m@,y)w(y)da end K2 [p](x) = /a ) o Gon(V)p¥)dr (332

for smooth function ¢, respectively; see [B.IT)-BI8) for the definition of (A}'ch/m. To find the adjoint
operator of M/, we now introduce the conjugate matrix-valued function ﬂe /m Of Tl

ﬂc/m(xuy) = [GO,c/melu GO,c/me% éO,m/ce?)} (X7 y)7

and the associated layer potential MC Jm :

Mejmlil(x) = /6 ) Vi Tl (5. 9)¢ 3
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which is a bounded linear operator from Hﬁl 2 (div,0B) to H;% (div,9B). Then, the adjoint operator of
Me/m; e, MZ, (curl OB) — Hp (curl 0B), is given by

M2 = Mo jor (3.33)

e/m T

Actually, by a standard density argument, it suffices to verify this for smooth functions. Using (325
and Fubini’s theorem, we can write for smooth functions v, ¢:

Ml = [ [ 000 000) 5 T ([T, 9)60) () ()
— [ ] (T a3 (0(3) % v(x) - 6y (y)dr(x)
oB JOB

/6 9y el 30)(660) x #(00) - 9y)do (3o (y)
(Mo ], 6).

Similarly, we can get the adjoint operator Mz/m : H;% (curl,0B) — H:;% (curl, 9B) of Me/m:

M:/m - TMm/eT- (334)
Recall that we have proven in Lemma [3.4]

Vop - Mejmle] = =KipulVor - ¢ = =K [Vos - ¢ (3.35)

_1
The last equality above is due to the fact that Vop - ¢ € H, ?(9B), on which K¢y, and IC(C)’/;[1 can be
identical. By exactly the same arguments, we obtain

Voi - Mejmlel = =Ki/mlVon - ¢l = =K, [Vos - ¢]- (3.36)
Taking the adjoint on the both sides of (B36]) and using ([B:34]), we can see that

Mm/ccﬁrlag = chlaBICS/m. (3.37)

3.3 Spectral analysis of integral operators

In this subsection we are going to consider the spectral properties of Neumann-Poincaré type operators,
which is essential for the subsequent analysis of the blow-up order of the scattered field. We start with
some basic facts, and the interested reader are referred to [7, [0 [I1] for more details. Considering the
single layer potential Sg/m, it is easy to observe that Sg/m : H_%((?B) — H%(BB) is self-adjoint, i.e.,

(¥, Sg/ml@l) = (S)m[¥], 6), and the Calderdn identity:

SY

e/m

Sk, = K2

e e/m e/m

(3.38)

holds in H~2 (0B). However, since SY, is generally not invertible nor injective on H ~2 (0B), the standard
symmetrization technique via Calderén identity ([3.38) is no longer applicable. Indeed, S? is injective

on H~2(9B) while 8 is injective only on H, %(83). Moreover, the dimension of the kernel of 89, in
H 71(83) is at most 1 (under the assumption that OB is connected). To see this, we first observe the
far-field behavior of Sc/m[ ¢] from @H), i.e., it holds for ¢ € H~2(AB) and large enough z3 that

Sg/m[(b] (X) = CO,e/m(¢) =+ Z écg,e/m(gb)eig.x,eilg'xga (339)
gen=\{o}

11



where the coefficients cg (¢) and co m(¢) are given by

1 T3

o) = =7 [ io)aoy). con(@) = L.1) (3.40)

T

Then we have by using integration by parts,

o 9Ll
S 2d — _ SO d e/m SO d
| eshtex=— [ 6T lelio+ [ ST loldo

which, combined with (3339) and ([B40), implies that, by letting L tends to infinity,

VSLlolPdx = [ oSTloldo > 0 (3.41)
Q oB

holds for all ¢ € H~2(9B), while (341) holds only for ¢ € H(;% (0B) when S is replaced by S2.
There is a standard way to overcome this difficulty (cf. [8, Theorem 2.26], [29, [13]), whose main idea
is given below for convenience. Introduce the bounded operator Ay, : H™ 2 (0B)xC — Hz (0B) x C by

Ac/m(¢u a) = (Sg/m[¢] +a, <¢7 1>)7

which can be shown to have a bounded inverse. In fact, since the Fredholm index is unchanged under
compact perturbation, we can conclude that A/, is Fredholm with zero index. Hence it suffices to prove
the injectivity to establish the invertibility, which follows exactly from the same proof as in [8, Theorem

2.26]. Then we can prove that S°, is invertible if and only if C/m[ C/m] # 0 (cf.[13]), where gog/m is the

e/m
eigenfunction of ICO associated with the elgenvalue , satisfying (gog/ 1) = —1. We now define

Seyml¥] it (¥,1) =0,
e/m
Se/m[z/]] {1 it o= SDe/m.

Then gg/m is a bijection from H~2 (0B) to Hz (0B), and the generalized Calderén identity holds:

KN G o

e/m’e/m e/m

S0

e/m*

This allows us to define two new inner products on H —2 (0B), equivalent to the original one, such that
ICS’/:‘H is self-adjoint,

(@, )z, = — (o, Sepmlt]) -

We denote by 7—[* ., the space H —3 (0B) equipped with these two new inner products, respectively. Then

we can symmetrlze ICO as it is stated below.
Lemma 3.5. For a C? bounded domain B with a connected boundary, we have

(i) IC(C)’/:H is compact and self-adjoint on the Hilbert space H7

(ii) Suppose that ()\e/m, gpj/m) is the eigenvalue and normalized eigenfunction pair oflC with /\e/m =
1. then )\E/m (=%, 1] with /\j/ — 0 as j — oo.

(iii) {¢§/m} is an orthogonal basis in H;, . More precisely, Hy, = H ,/, ® {,Lupg/m,u € C}, where
Hg e jm i the zero mean subspace of HY,, spanned by {¢§/m}j¢0.

12



(iv) The following spectral decomposition holds,

0, e/m e/m e/m
Kohld] Z)\ (625 ™)z, 05 (3.42)

Similarly, we can define the inner products on H 2 (0B) by

<(Sc/m) [w]a¢>;
and denote by H/y, the Hilbert space H 3 (0B) equipped with these two inner products respectively, then

lJull 1 o . Note that SO is an unitary operator from H}

to He/m, hence { e/m [¢;]} is an orthogonal basis on ’Hc/m. We point out that SO

e/m

the norm equivalence holds, i.e., ||u||He/m o/m

[¢;] is actually the
eigenfunctions of ICO o/m" Now we are ready to consider the leading-order terms IC* /m and K¢/p, in the

expansions of Kok B.e /m and K%k Bue/m’ and they can be regarded as the corrections of IC ., and IC e/m due to
the incident angle. In fact, recalling the definitions of K¢/r, and K, |, and using (BEI) BI13), we obtain

Ko = K2, Kom[d] = KO + di<d' V1), (3.43)

d -
Kr=K2*, Kilp = Ko* —

m

(¢,1). (3.44)

Hence the spectral structure of K} can be completely characterized by Lemma We shall only pay
attention to KU below, and it turns out that its spectra has nothing to do with the incident angle although
there are remaining items in (343) and ([B44]) that are related. We now present several spectral results for
that we introduce some standard notation. For a compact operator K, we denote by o(K) its spectrum
set and by (A — K)~! its resolvent operator for regular points A € C\o(K). For point p and set F in
complex plane C, we define their distance d(p, F') := infsecr |p — ¢/ .

Theorem 3.6. The operators K, and K%* have the same spectra. Further, for \; € o(K:)\{0}, we
have dimker(\; — K%,) = dimker(\; — K%*).

dgT

Proof. It is known that K’ is a compact operator with adjoint operator Km and I@m[l] = % holds
by definition, which implies that % is also an eigenvalue of Kj,. Combining this with the fact that

K = K% on HJ%(BB), we have o(K%*) C o(K},). Suppose A € o(K;)\{0, 3} and that ¢ is the
associated eigenfunction, then we obtain by using K [1] = 3 that

I
0= [ or-Kilede == [ oo

OB
which further yields ¢ € H, 2 (0B). We thus have o(K%*) = o(K?), and the desired result follows. O

We next consider the spectral decomposition of K} and Cp,, and the corresponding resolvent estimates.
Suppose that ¢ € A% has the following decomposition with respect to the orthogonal basis {¢;} given
by the eigensystem {\;, ¢;} of K%*:

o0
é=> (6,0 mz 05 (3.45)
j=0
Here we have omitted the subscript or superscript m for simplicity. By writing its Fourier coefficients
(¢, ©j)#z, as #(j) and using Lemma [3.5] and Theorem 5.6} we can derive

oo

Kald) = G0 o Z Migs = B0 Gro+ 3 i) + 3 H)es

o0

Xo(G)e; + (0 Lis, (3.46)

j=1

qu

<.
Il
o
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where the constants {;}3% <<P0, 1), ie.,

d v d v >
g (po,1) = = E Lipj-
3 =

Proposition 3.7. For f € H=2(dB), the following resolvent estimate holds

11132,

IO = Kpm) Al S ((7162/*1“))'

Proof. The resolvent estimate of K} follows directly from the fact that K} is a compact self-adjoint
operator on H}. For K7, considering the equation (A — K}))[¢] = f, we obtain from (3.40) that

Z()\_)‘j)g’(j)%’j _QZ’ ZLJ% Zf

=0

For A ¢ o(K%*), ¢(j) can be uniquely determined by

; s o = {000y ) f(0); :
0 ; = = f >1
Using the above formulas, we then derive
1/ 1134 fi1 [1f 13

61, S B+ AU o B

A\ o(Kaw™))  dA o (Ka" )\ {3} - A= 3| 7 d(A, o(Kii"))
O

For convenience, we shall define ¢ (5) := (1, 8% [¢;])#,, for ¢ € Hpm. Then we can write
= 908 [ws)- (3.47)
§=0

Using this and similar arguments to the ones in the proof of Proposition[3.7] we can obtain the resolvent
estimate of g /p,-

Proposition 3.8. For any g € H%(BB), we have the resolvent estimate:

9l .

I = Keym) " alllge,,, S dist(\, o (K2 ,))’

Proof. Again, we prove the estimate only for ICy,. It is easy to see that

Konlt] = wnﬁw»ﬁ32@ww%mwm

D) Z
Considering the equation (A — KC\y)[¢)] = g, and using BAT) we write

(A= X)) +§:Ln i n)S[en-

j=1 n=1

MgWMg

i
<
H

J

oo

H
Q(

14



For A ¢ o(K%), ¥(n) can be uniquely determined by

Then we can obtain the desired estimate:

o, < ol 19054, o lglhe,
o A0 () T Ao RSN A~ 3]~ A\ o(KS)

O

The spectral results in this subsection suggest us that in most cases, there is no need to distinguish
between K/, and ICS /s @S well as between K7 /m and IC(C)"/TH, since they have the same spectrum and
enjoy the same resolvent estimate. Now, we are in a position to study the spectral structure of M, /y,.

_1
For each v € H?(div,0B), we may recall the Helmholtz decomposition to write
u = Vapu + CJrlaBu(Q) (3.48)

3 1
for two functions v € H§ (0B) and u® € HE (0B). This notation will be adopted from now on, and the
two subspaces corresponding to ©u* and ©® may not be always specified. By applying the invertibility of

3 _1
the Laplace-Beltrami operator Agp : H} (0B) — H, *>(0B) and the inverse mapping theorem, we know
1 3 1
the existence of an isomorphism between Hp 2 (div,0B) and Hj x HJ, which results in an equivalent
1
norm on H; 2 (div,0B):

~ [|[Aope™ || + e

H(b”H;%(div,BB) H™3(0B) H?(9B)'
Theorem 3.9. The spectra o(Me/m) and O'(Mg/m) of the operators Mg/m and Mgy, are given by
* " 11
o (Mopm) = o (M) = (~o (k%) oK% N 5 51 (3.49)

Proof. We show only the spectral property of M./, as the analysis for ./\/lg /m is similar and even simpler.
Denote by I/, the set in the right-hand side of ([3.49). Define

z/m = Fc/m\U(IC?I;;e).

Since M/, is a compact operator, it suffices to consider the equation for a given A € C\{0},

Fc/mﬁa(lco’* ), o©

1
4 m/e

e/m ‘T

(A = Me/m)l¢] =0, (3.50)

and prove that it has nontrivial solutions if and only if A € o} /m U o? /- Using B48), we can write
¢ = Vops" + curlopp®.
For nonzero X € o} /m> We first note from (B.37) that
— e/m ch OB = ClIl“ OB —CJY@B 5 .
M — M, lopo™®] = Acurlyp ™ lopKy, /o[6® 3.51

which directly implies that (A,ctfrlaB(b(z)) is an eigenpair of My, if ¢ is an eigenfunction of K2 Je
associated with A. If A € o2 /m> We readily obtain by using the surface divergence for B50) that

Von - (A = Meym)[¢] = (A + K0 ) [Vos - ¢] = (A + K )[Aopd™] = 0. (3.52)

e/m
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Since the eigenfunction of —IC(C)"/:H associated with A € O'S/m has mean value zero and Agp is an iso-

3 _1
morphism from Hj (0B) to H, 2 (0B), we know that there exists a non-constant function ¢ satisfying

equation ([B52)). We then reduce B50) via 5] to
Aeurlop® — curlopKY o [62] = —(A — Me/m)[Vaps™].

Taking the surface curl on both sides of the above equation, we can find it is solvable by the invertibility

of App and Al — KY Jo- Hence, there exists a nontrivial ¢ satisfying equation (B50) for A € o2 m- We

2
e/m

are now in a position to consider the last case: A € (C\(Ucl/m Uo?Z, ). It is easy to derive that ¢ must be

. 1
curlgpp® for some ¢ by the invertibility of A\I + ICS’/:D on Hy ?(0B). Then the reduced equation from
BXE1) reads as follows:

(AT = Ky o)) = C,
by using the invertibility of Agp, where C' is some constant. Without loss of generality, we assume that
C=1lor0. If A= %, we must have C' = 0 in order to guarantee the existence of ¢ due to the Fredholm

alternative. In this case, we have ¢ = CJYIBB¢(2) =0. If A\ # %, we can find a constant C” such that
(AT = K8,,)i6 +C') =0,

which yields ¢® is a constant. Hence, if A € (C\(aé/m U Uz/m), we can conclude ¢ = 0, hence completes
the proof. O

4 Approximation of the scattered wave

4.1 Integral formulation and asymptotic analysis

With the analytical tools and results established in the previous section, we shall first reformulate the
system (2.I)) into an boundary integral equation, then build up a norm estimate of the associated solution
operator, from which we can predict the occurrence of the resonance phenomenon. Taking advantage of
the vector potential Alf,yc /m given in the section B2l we assume the following ansatz for the electric field

solution of (ZI)):
CJE 4V AS 6]+ V xV x A [¥], xeR\D
eV % Alzf)m[(b] +V xVx A11§,07e[1/1] ) x e D.
It can be checked directly that the field E given above solves the Maxwell equations in both D and

R3\D, and satisfies the perfect conducting boundary condition on I'. Then by the jump formula (320),
the original scattering problem can be equivalently written as a boundary integral equation on 9D:

BB+ pe M — M5, L. —Lhe M _ [ vx B }
2 — . i
EIB:,m - ﬁl[(),m %(EC + 1)‘[ + k2(50MlBC,e - Ml[(),c) 1/) ikv x H
By setting x = 0X, we obtain an integral equation defined on dB:
¢ V(X) x E
)4% ~ = 20~ 4.1
o8 |"t/1 tkv(X) x H* (4.1)
where the block coefficient matrix is given by
[ s, M, i ok,
v sz,é — L5 k(ST + EcMéBk,é - M%)
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By Lemma and B3] we have the asymptotic expansion of Wj p:

Ws.B = Z 0" Wh,B,

n=0
where o
W, _ % + (.Uc - 1)Mm (kc - k)ﬁl,c
0.B (ke — k) L1 m K2 T + k2 (e — 1)M.|’

and for n > 1,
W — (ke — k™) Mapm (kZ:H_l - kn+l)£n+l,e
BT kO L KRk — KMo |

Before we turn to finding the approximate scattered wave, we investigate the property of the leading-order
term Wy p first. From now on, we introduce two contrast parameters A, (w) and \.(w):

T+ pe(w) 1 +ec(w)
M = s @y Y T e

Theorem 4.1. Suppose A\, (w), Ac(w) ¢ 0(Me)m), then Wy p is invertible with the estimate:

Wobl S 7 (42)
where the two constants d, and d} are defined by
dy = min{d(A,, 0(K2)),d(Ne, o (K))},  dy = min{d(\, —o(K5)), d(Ae, —o (K™))}-
Proof. Without loss of generality, we assume that u. # 1, €. # 1 and consider the system
s (] = (240
for given f,g € Hp 3 (div, 9B), which is equivalent to the following two equations:
(T = M0+ T Lacl] = [ g Lonldl + 0T = MOl =g (43

We shall reduce (@3] to some easily solved subproblems by using the Helmholtz decomposition. To do
so, we take the surface divergence on both sides of two equations in ([3]), then use formula ([33) to
obtain

A+ K0 Vos - ¢l =Vop - f, (A +K*)[Vop - ¥] =Vos - g,
which, along with the fact that Vg - u = Agpu™® for any u € H;% (div, 0B), yields
¢ = Dop (N + KR T BapfM), M = Agp(Ae +K2T)TH(Aong™). (4.4)
Then it follows directly from Proposition 3.7 that

1805 14 18089 13

A (1) i 5 — T A (1) . 5 _
|| aB(b ||’Hm d()\u,—o(/Cgi*)) H 831/1 H’He d()\a,_U(ICg*))

Next, we solve the second component ¢®. To this purpose, we use (B37) and write the first equation

in [@3) as

(A = M) [etitlogd®)] = ctitlop (Al — KO[6®] = f — 2"

1— pe

Liel] = (Al = Mw)[Vopo™].

17



Taking the surface scalar curl on both sides of the equation and then applying Proposition B.§ gives

lo® |, < 1F N, 18089 I3
He = A, 0(KD) T d(Ay0(KQ)) - d(Aey —a(KS7))
[Aop Ml

d(Au, o(K2)) - d(A, =0 (Ki"))

Similarly, we can compute 1® and derive the estimate

lv® |, < 19 (19, [AaBf g
e A0 (K8)) T (v, o (K0)) - dO, o (K3,)
18059,

T a0, —o(K)) -, o (K%)

Now the above arguments conclude the uniquely solvability of the system (&3], and the desired estimate

@. O

Remark 4.2. If we restrict the operator Wy, g on H x H, then Wy g has a diagonal form

W [EEE L (e = DM, 0
05 0 R2et ] + k2 (e, — )M

and it is an isomorphism on H x H, with the estimate ||WO_£,H <$1/d,.
By the recurrence relation ([8.I4) and the elliptic regularity, we conclude that W, g are uniformly

bounded with respect to n, hence leading to the uniform operator convergence:

lim W; = W, 5

61_% 5,B 0,B
Therefore, there exists a §p > 0 such that the following equivalence holds for § < dq:

—1 -1
HWzS,B” ~ ||W0,B||-

Combining this with Theorem[I] we observe directly that at some specified frequencies, the norm of the
solution operator || Wj; p|| may blow up with order (d,d%)~!, which indicates the existence of resonances.

4.2 Approximate scattered field

We are now in a position to discuss how to approximate the scattered field with a certain order. In
view of the complexities and technicalities of the detailed computations and relevant estimates, we split
this section into three parts to make it more readable. The main result of this section is given in Theorem
29}

Approximate kernel and density. Motivated by the well-known two-scale asymptotic expansion
method in the standard homogenization theory[4], we shall first separate the propagative component from
the scattered wave in the macroscopic scale. To this purpose, we observe from (3.0)) that the quasi-periodic
Green’s function Gi‘/m consists of a propagating mode:

¢ eik’-(zlfy’)fik3|x37y3| + ¢ eik’~(m’fy')7ik3\z3+y3|

G = 4.5
p,e/m(x7 y) 2Tk3 27’]€3 ’ ( )
and an exponentially decaying mode: G};C/m = Glc‘/m — Gl;,c/m' Replacing Glc‘/m with G;c/m and

Gk

e.e/m> W can define 11, o/, and Il o)y, Tespectively as what we did in (20). Therefore we can write

Alé,c/m[(b] = Alp(yc/mm + A% [¢], where

e,e/m

Al;,e/m[(b] = / Hl;,e/m(xv Y)¢(Y)dga Al;e/m[gb] = /&)B Hl;e/m(xay)(b(y)do"

OB
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We now define the propagative part and evanescent part of the scattered wave in the reference space
respectively by

Ej(®) =V x A, [3)(%) + %v x V x AP [](%), (4.6)
BI(3) =V x A + 5V x V x AX[]R), (4.7)

]

for densities (b and 1/1 satisfying the system ({I). We can see, from the definition of Ge o/m’ that the
structure of the evanescent wave is much more complicated than the one of the propagatwe part. For-
tunately, we only care about the wave in the far field, where the effect of the evanescent wave can be
ignored. Indeed, we have the following approximation estimate.

Lemma 4.3. Fir a constant L € R such that |z3] < L for all x € D. Then for small enough d, there
exists some positive constant c¢ independent of & such that

1

~. X cL
sup E'(x)—E(=)|=0(=e 7).
LS e - B =0Ge )
Proof. By the scaling property (3:29) of AIB o/m> W€ have
~ ~ ~ ~ 1 ~
E"(X) — E)(X) = EL(X) = V x A%, [0](X) + sV XV x A [)(X). (4.8)
We now estimate these two terms. For large enough Z'3, we can separate the variable of the kernel Hgk /m
involved in the definition of Ag o/m’
-~ 1 ~ ~
Hgi/m(xay) = _Z Z ng(x)ﬂg};/m(Y) ) (49)
geA~\{0}

where pgk(i) is given by
1 : A, ~
Sk=y JE+SK ) —/|ETOR P—(OR)2(F3—h) 410
X) = e e : .
Y = RO .
Here h is a constant satisfying |Z3] < h < £ for X € B, and then Wg,l:: /m(¥) can be introduced naturally

and determined uniquely by @3) and (@I0). We note that I1°K o/m
entries are all smooth functions. For the first term in (L8], we can write

is a diagonal matrix, and its diagonal

Vx AKHX) = | VxIIX (%5)6(F)dy, (4.11)
OB
where
VxIK X)) =—— > VoRE) x 7, ) (4.12)
561\*\{0}

For pgk(i), we can see the existence of a positive constant ¢ such that the following estimate holds for
all £ € A*\{0}, uniformly with respect to all small enough §:

03 (R)| 5 eeIE)

Using this together with the Cauchy’s inequality and the trace inequality, we derive

3
I/ V() x mgh, (9)0(F)do(¥)] < e E gy Zn(wgl;n)J

H™ 2 (0B) -||H%(BB)

Sem @D gy ZII )illin ) S € IIE g

H 2 (0B) H™ 2(6}3)
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where we have used the uniform boundedness of ||(7Tgﬁn)j|\Hl(B) with respect to & € A*\{0}. Now it
follows easily from the above estimate and (AI1)-(@I12) that

Sk [71(%)| < »—c(@F@z—h) 1
IV x AL [9l(%)| S e 191 ;-3 55y

Similarly, we can establish a desired pointwise estimate of the second term in (£8]). Then the application
of the above pointwise estimate of the two terms in (£8) and a direct computation leads to the desired
error estimate in Lemmald.3] O

To further derive a proper approximation of the propagative scattered wave EZ’;, it suffices to approxi-
mate the propagative kernel Hgf‘e /m and the two densities 7:/;, 5 We consider the approximation of the inte-

gral kernel first, for which we define two linear operators /lgf‘c /m [¢] and Agf‘c /mﬁo[QNS] for ¢ € H, 5 (div, OB):

A 0160 = [ [y ez, s §)35)o,

A;i%{c/m,o[g] (i) = eiék*.i /BB[ge/mela Je/m®€2; gm/eeS](y)d)(y)dav

- U3 1 d -y
9.(¥) = . Im(Y) = pr T +

d3T '

We can see that e?% *g, . (y) are good approximations of Ggf‘c /m (cf.(&A), by noting the fact that

ie—i5k*-§ i d- . y

= O 6 .
27’5l€3 27’5l€3 * 2d37’ * ( )

Then by a direct verification, we have the following estimate.

Lemma 4.4. It holds for small enough § and x3 > L (the constant giwen in Lemma[f.3), and all
~ ~ 1
¢, € Hy?(div,0B) that

-~ 1 -~ ~ -~
5k 5k < 5k 5k > 2
IV x (A7 = A o) B1IG) + 51V x ¥ x (A% = AL ) S {10, -3 o 1900 o
To proceed our approximation, we define the Green’s tensor GOX(X) associated with the propagative
mode ¢0¥(X) = ek %

1

S VR) = (1- 47 2 d7)g (). (4.13)

GY(X) = g2 ()T +
We remark that the matrix I — d* ® d* is the projection on the orthogonal complement of the linear
space spanned by d*. Using this, we can directly check that
Vox A old] = V x GRA[G], Y x V x Ak o[0] = (6k)* G AN 4],

p,m,0 p,e,0

which, together with (£0]) and Lemma [£4] results in the asymptotic expansion
oro_ Sk fk [ 2k f6k [ 2
E) =V x GyE AL 8] + 0k°GRE AL o] + O(67). (4.14)

Now we intend to work out the leading-order terms in the densities 5 and J Using the Taylor
expansion of the incident wave

V() x BiX) | 3 517! [ v(X) x XPOPE(0)
ikv(X) x Hi(X)| 4= Bl |ikv(x) x XP0°H'(0)] °

B
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we can write

5181 5181

—ZaZa

by setting that
ds| - [ v(X) x ZPOPE(0)
Ws.n LEZ]( ) [zku( x) x X797 H'(0 )]

We should note from ([I6) that ¢3 and g still depend on 4. Indeed, recalling the expansion

Wi = 60"Wap = Wop—W.s,

n=0

when §/(d,d}) is small enough, we can expand W, é in Neumann series

Wig = — Wy W)~ 1WOB—Z5" Wo s WrB)" Wy 5.

n=0

This shows that - -
dp=> g, and vg=Y §s,,

=0 =0

where 537j and Jﬂ,j are determined by

- o1 [ v(®) x POPE(0)
LZZ;] — (WO_V}BWT,B)JWO,E L’ky(i) X iﬂaﬂHi(O)]

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

For simplicity, we write 5&0 with |3] = 1 below as %—_Q for j = 1,2,3. Then it follows from expansions

(I5) and @IS) that

3 3
¢ =00+ 0001 +06Y dj0+0(6%), ¥ =doo+bo1+0Y wi0+0(8).
=1

Jj=1

(4.20)

_1
The error terms are measured in Hj 2 (div,dB). Substituting these expansions into the approximate

scattered field [@I4]), we can further write
i+ 0kd -y
T6k3

U3, ~ 1+ 0kd -7
—%(’lﬁ/, O)tdO' + ‘/BB TkjngeBdU) + 0(52)

Er(%) =V x GIX( /
OB
+ 0k2Gok( /

0B

(5/,0)%10 - /BB %gsesdg)

. d-v ~ ~
—VXG‘”‘(T; / ¢01+Z¢J07 d0+/6 p (¢007 0)'do) — /(r)By—:(fbo,o)sest)

B

1

_—3(156,070)75(104'/ —y(l/io 0)3esdo

o Td3

+ 0k2Gok( /

0B

+ — (wo 1)3€s3 + Z wj) 3e3d0 + 0(52)

Tk:
3 =

where the superscript ¢ denotes the transport of a vector.
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Computing the leading-order densities. We readily see from (£I6) that the zero order terms
¢p,0 and g0 in [@IF) satisfy the following equation:

Op0| o [ v(X) x XPOPE(0)
Wo. L/,Zj (%) = ka(i)xiﬁaﬁﬂi(m !

which has already been studied in ([3)), with the solutions given by
x XP9PE(0)

F50 = O — M) (LX)

+ f5), 4.22
T 5) (4.22)

~ _,,iv(x) x XP0PHY(0)

= (O — M, , 4.2

Vg0 = (Ae = Me)™ ( R =2 + 95) (4.23)

where fg and gg are defined by
k— k. ~  k—ke ~
I = 1 ucﬁl,cW)ﬁ,O], 9p = m&,ﬂ%,o]-

In particular, when $ = 0, we know that gbo o and 7,/)0 o are divergence-free usmg the facts that Vg - (v x
E'(0)) =0 and Vg - (v x H(0)) = 0. Further, the first-order terms gbo 1 and 1/)0 1 can be determined by

®0,1 50 0
Wo.B +Wis |~ | =0
L/Jo 1 Yo,0
More precisely, this can be written componentwise as
~ . —k ~ ke —k ~ k2 — k2 ~
Ay — My L1 m & Loe =0, 4.24
Au = Mu)lbo.1] + T [Y0,1] + 1_%/\/11, [bo.0] + 5 m— [0,0] (4.24)
ke —k ~ ~ k2 — k2 ~ sckc —

L1 m[¢0,1] + (Ae = Me)[o1] + Lo m[¢o,0] + M1 CWJO o] =0. (4.25)

k2(1 —e.) k2(1 —e.) 1-
We can see that 5011 and 7:/;071 can be completely determined by the above equations once 5070 and {/;0,0
are solved. But noting
0G)o =~ | §Von - 63)do, (4.26)
oB oB
we know that it suffices to find the surface divergence of go)l and Jo,l in order to compute ([@L2T]). We

thus take the surface divergence on both sides of equations (£24) and ([£27) to deduce that

k2 2

e+ Ki)IVon - d0.] = =9 (V X Acloo)), (4.27)
()\ + ICO *)[V{)B 1/)0 1] %’}%(V X .A [(25070]), (428)

by using Lemma B4l To facilitate our further computings, we follow [5 Lemma 5.5] and introduce two
harmonic systems with appropriate interface conditions to represent the quantities V x Ag[thg,0] and
V X Am[¢o.0] involved in (A27) and ([A2]) in terms of gradients:

Au =0, in €,

(v-Vu)|- = (v Vu)|4, on 0B,

pe(v x Vu)|— — (v x Vu)|L = v x E¥Y0), on JB, (4.29)
U — U 18 exponentially decaying, as x3 — 00

u =0, on X

u satisfies the periodic boundary condition on 9Q\X,
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and

Av =0, in €,
(v-Vo)|- = (v-Vv)|4, on 0B,
ec(v X Vo)|- — (v x V)| = v x H(0), on 0B, (4.30)
v is exponentially decaying, as T3 — 00, '
8 =0, on X,

3
v satisfies the periodic boundary condition ~— on 9Q\X,

where 1. is a complex constant, and the solutions to these two systems are denoted by u¢ and u”,
respectively. The solutions to these two systems may not necessarily be unique, but their gradients can
be uniquely determined, as shown in the following lemma.

Lemma 4.5. For V x Am[q~5070] and V x Ae[@zog], 1t holds that,

~ ——VSI(\, — K&~ - EV(0))]) in Q\B
Vu® =V x A° [poo] = { LHe e B , , ’ (4.31)
TR E0) + s VSN — KO T - EN0))) in B,
and
- VS (A — K%)= - Hi(0)] in Q\B
Vu' =V x A° = ’“<1a> , ’ 4.32
" X Acltool { A HY(0) + =5 VSA (A = KY) v HI(0)]  in B (4.32)

Proof. We consider only the system ([{.29) and show (L31]), since the proof of [@.32)) is similar. We first

prove that the right-hand side of 3] and V x AY [¢ 0] are both the gradients of some solutions to
([#239)), then demonstrate that all the solutions to ([{29) have an identical gradient. Recalling the far-field
behavior 3.39)-B.40) of S2[¢], we can verify that the function

u(®) = | TS O =) BODE) i O\B,
AP OR+ oSO - K - BODE) i B,

satisfies both the boundary and far-field conditions in ([{29]), and is actually a solution to ([429). Fur-
thermore, we can check that the right-hand side of (£.31]) is the gradient of this solution u.

Next, we show that V x A% [q~5070] can also be written as the gradient of a solution to ([@29). In fact,
by the continuity of its normal trace and the jump relation of its tangential trace, we find that

vV x ALlbool] =0, (v x V x A o)) = v x E'(0).
But noticing that Vg - 5070 =0, we get
V x V x A% [doo] = VS [Vos - doo] =0 in Q\IB,
which implies (cf. [41, Theorem 3.37])
V x A% [doo] = Vp for some p € H'(B) or H} (RI\B). (4.33)

Moreover, we can assume p = 0 on I' by noting the fact that e3 x V x A% [50,0] =e3xVp=0onT. To
see that p is indeed a solution to ([£.29), it remains to show that p, up to a constant, satisfies

(i) p is periodic with respect to A.

(ii) there exists a complex constant ¢, such that p — ¢, decays exponentially as x3 — co.
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For these two claims, we consider the translation operator 7; : L7, .(RY) — L7, (R}) defined by

loc
Tiu(z', x3) = u(z’ + a;, x3).

Note that 7; commutes with the gradient operator, namely 7;V = VT; in the distribution sense. Since
T:Vp = Vp by [@33), we have V(T;p — p) = 0, which implies that there exist two constants C; and Cs
such that 7;p=p+C; in Q\B . We now choose vectors b; such that a; - b; = §;;, and define an auxiliary
function p = p — (C1by + Cabsg) - 2’. Then we can directly check that p is periodic with respect to A, i.e.,

p(a’ + a;,x3) = p(z' +a;,x3) — (C1by + Cobs) - (2’ + a;) = p(a’, x3).

In the case of far-fields, noting that Ap = 0, we can expand p by Fourier series (cf.[18]),

D= Z pee’c® ~l€lzs pe € C. (4.34)
EEA™

It is easy to see from ([B39)-@40) that V x A% [50,0] decays exponentially as x3 — oo. Recalling ([{33)-
(£34) and the definition of p, we can show that C1 = 0 and Cy = 0, by matching the far-field modes of

Vp and V x A% [5010]. Hence we can conclude p = p, and our two claims follow.

Finally, we prove Vu and Vp defined above can be uniquely determined by the system (€29). For
doing so, it suffices to show that the gradient of any solution u® to [@29) is zero in Q\JB if we replace
the jump data v x E%(0) by 0. Noting that the jump condition p.(v x Vu®)|_ = (v x Vu®)|y, together
with the formula ([23), implies that

Vop[(pu®)|- = (pu®)|+] =0,

therefore we know (pu®)|— = (pu®)|+ + C for some constant C. Without loss of generality, we assume
C = 0, otherwise we may consider u® — #QX 5. By integration by parts and interface conditions, we get

/ p|Vuf)?(X)dx =0, (4.35)
Q
then taking the imaginary and real parts, we deduce Vu® = 0 in B, and Vu® = 0 in Q\ B, respectively. [

We can see from LemmalL and the formulas (£27)- (28] that

2= 1 o
1—pe Ov

ke — k? %)
k2(1—e.) Ov ™

Vos - doa1 = (A + K57 ). Vop o1 = (A + K27 (4.36)

In order to calculate EZ’; in @2Z2I), we still need to find quantities like [, gjﬁoda, Jon goﬁjda and

f on Ui goﬁoda, and the corresponding quantities for 7:/;, which are given in the following lemma.

Lemma 4.6. The following identities hold,

/ 55600(F)do = |Ble; x EH(0) + (1 — po)e; x / y%“e F)do | (4.37)
OB OB v
o ' | _ouh _
/BB Yivo,0(y)do = %|B|ej x H'(0) 4+ (1 —e.)e; x /BB ya—i(y)da, (4.38)
G10(F)do = e x OEO)|BI+ (1 - ) [ VS (Ton - 65013 (1.39)
OB ) B
Dro(F)da = o5 x DHO)B| + (1~ ) [ VSUTon - Dyal3)d5 (4.40)
OB B
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Proof. We demonstrate only how to compute the quantities involving J, as the same can be done for the
terms related to ¢. To do so, we first consider [, y*¥g0(¥)do for |a] < 1. Using formula [@23) and
the decomposition for any proper f,

1
f=0—-e)Ae = Me + 3 + Me)[f],
we can compute

| 5 00@ie = [ 520 )00 - Mot 5+ MIlGaal G)do
OB OB

_ [ za w(y) x y° 9 H' (0)
_/aBy (1~ (T =y +9a)ido

+/ Yl —eo)v x V x Ac[{/;gyo]da
oB

{ Sass 1 =~ S
:E/ V x (yy 0 H (0))dy+(1—sc)/ y*gpdo
B 0B

+1-2) [ VX F x Aldao)ds
B
In particular, we get for |o| =1, || = 0 that
/ gﬁl/)gyod()’ = Eej X H (0)|B| + (1 — EC)/ V x (yJV X Ae[¢070])dy,
oB B

where we have used the Stokes’s theorem and the fact that gg = 0 for 8 = 0. Then formula [@3]) follows
directly from the relation

V x (55V x Ae[ths0]) = €j x V x Ae[tho,0] + VS2[Vas - 0],

and by writing
[V x Addoolds = [ x AL (Goaldo
B oB

1 ~ - 1 ~
—/63(5 + Me)[vo,0)do = — /BB yVonB - (5 + M) [tho o]do

1 -
= —/ ¥(5 = K)Vop - ¥ooldo =0,
OB
where we have used (28] again. For |a| =0, || = 1, we note that
/ ggdo =0 for |B] =1,
OB

then a similar derivation leads to (A40)). O

Computation of the scattered wave. We are now well prepared to compute each term in (Z2T]).
Recalling our conventional writing R® > d = (d’,ds3) for a vector d, we identify d’ with (d’,0) below to
simplify our notation. We start with a direct application of Lemma to get

-7~ d x EN0)B] d / _Oue
do = ———F——+ — 1—pe)y——(y)do, 4.41
| @ = o S [y GG (1.41)
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and

1 o~ i ; g.— 1 _oul
——/ Yso,0(¥)do = —k—|B|e3 x H'(0) + e3 X / y—(¥)do, (4.42)
OB T T o~ Ov
d -y i , 1—¢ ouM
do = —|B|d' x H*(0 d / y—(y)do. 4.43
| ooy = 1B < 10 + = x| 55 @) (4.43)

We remark that it is unnecessary for us to consider |, 5B %5070@)&7 since only the third component is
needed in ([@21), which is known to be zero. It is easy to check that

3 3
> e x ¥E0) =ikH'(0) and > e; x &H'(0) = —ikE'(0), (4.44)
Jj=1 j=1
then we can derive
3 3
~ . \Y v(X) x ;07 EY(0
> Vop-dio=> (A +Kn) N o8 (1) ’ ())
- . — He
Jj=1 7j=1
3 - o
_ 0,0y—1, V(%) - (¢j x 7E*(0))
e e e .
ik 0, %
=— 1()\ + K2 v - HY(0)]. (4.45)
Using ([@.44]) and ([{45), we can obtain the summation of [@39) over j:
H'(0)|B] | / 0, 0,
do = ————— St (A + KT HY(0
Tkg ‘/aBZ(b]’O 7 ng ng v + ) [V ( )]
( )|B| / _l 0, 0,+%\—1 i
H(0)B] L
= * - H*(0)]do. 4.4
oy, TOw KR N O (1.6
A similar calculation gives
= sode =~ 1B - o= [ VS0 + K2 - EO)ae
Tkg ’ k
1 1
= Bl 4+ —M— e + KO - E(0)]do, 4.47
P OIB g [ FO k) PO, (44T
by using ([@Z4) and the fact that
ZvaB 1/130— T (A + K2*) v - EY(0)]. (4.48)
Moreover, recalling (£36), we get
i i 0.0y (R Ou" o
Tkg . (bO ldU - kg ()\# + ’Cm ) ( 1— Lhe 81/ )(Y)dgv (449)
i ~ i k2 — k? du’
— do=—— | y—o—— O do. 4.
= | oo Tks/wykg( S0 K GG (4.50)
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We have now computed all the terms involved in (Z2I]). It is worth mentioning that we shall only need

the first two components of (LA1)-([@42),[X40) and @A), as well as the third component of (£43),

(#417) and [50), to compute the approximate scattered wave. Before we apply all the expressions to
(£Z1), we make some further observations to simplify our representation. To proceed, we first consider

the non-integral terms in (£A41]), (@42) and [@Z0) to find that
H'(0)|B] | |Bld' x E'(0)

5k 2ok, b i
V X G (— - g ) TR G (| Bles x H'(0)
2|B| 2ok, b i
=V xG (——eg X p) + 0k°G;, (—k—|B|e3 x H*(0))
T
2|B ; )
— o2 |G5k( *)+5k2Gfk(_ki|B|e3 x H'(0))
T

= _idk | |G5k( d*)ZO,

where we have used the simple identity —H?(0) + d’ x E*(0) = 2d3(p2, —p1,0). In addition, we note that
d' x H'(0)+ E*(0) = 0. Therefore, the non-integral terms in (Z.43)) and ([Z7) can be cancelled. Moreover,
for any vector a € R3, we can check from ([@I3) that

V x G%*a = idkG’*d* x a, V x G®*d* x a = —idkG’¥a, (4.51)
and the vector identities
d* xa = —dzes xa+ (d xa)ze3, (d xa) =d" x (azes). (4.52)
Now recalling [42)) and ([@43]), and using ([@I5])) and [@52), we can deduce that

_ h h
5k2(Gfk17§°((d’></ aido)geg—d3e3></ a—do)

o ov
1-—¢ _oul
__ 1.2 0k C 1%
=0k"G; —ng d* x (/ By do)
R V x G, ( 8V da)

Similarly, we can derive by means of (IEII) and (£52) that

V x G e ge (/
Td3 OB

ou’

_ k2 ok i / ford c_l
)ses = 0k°G;. Tks(aBy(u >au

dO’)geg.

Combining these observations above and substituting the expressions to (£Z1]), we obtain the approximate
scattered wave E by adding up the electric dipole and magnetic dipole:

EN(X) =V x GX(X)IL, + 0k2G2X (%) (Je)zes + O(52), (4.53)
where J,,, and J. are defined by
D= [ g 000 - [ g0 kg0
- N /63 Y, + K% w- Hi(())]da (4.54)
bomme [ - v§5dr— - [ e s sk 2
+ m /BB y(\e +K2*) "y - EY(0)]do. (4.55)
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Next, we compute these two dipoles J,, and J,, respectively. For J.,, noting the relation

k2 —k2
kz(gc - 1)0‘# + ’C?ﬁ*) +———== k2(<€c - 1)0‘# + Icror;* +

1_50Mc )
1— pe

(e = 1)1 — pe)
= kz(sc —1)(=X + /C?I;*),

we add the first two terms in J,, to obtain

ik? ~ y o Oul
— [ (ee = DF(=Ae + KL + KL 71—

do.
Tkg OB 14

But by applying Lemma and the jump relation of the Neumann-Poincaré operator, we get

oul i HY(0) + ;(—1 +Ae = Ae F LA — K2 v - HY(0)]
ov kscy kec(1—e.)" 2 c c m c m v
- y.H —_— (e — 0,%\—1 . H? )
D) (0) + ETEAE (A =Ky~ v - HY(0)]
Then it follows from (L51) that
ik? o 0, 0, 716uh
T_]{jg aB(Ec — 1)y(_)\€ + Icm )()\N + Icm ) —VdO'
ik(ec — 1) > 0,% 0,%\—1 i '
= —Ag ’ ’ —_—V - H’L
s /(?By( Ae + KU (A +K55) k(ac—l)y (0)do
ik(ec — 1) ~ 0,% 0,%\—1 d 0,5y —1 i
+ B [ G+ KO+ K0 e e = K)o 0o
1 . 1 ,
=— [ A+ X) A+ K5y HY(0 7/ YAy + K3~y - HY(0)]do.
i | IO MO K B O+ e | 50 KR HO))do

Combining the above results, along with the relation

1 N Ly
l—e. 1—pe

— A=At

we arrive at the desired expression
1

Td3 8B

We now compute J.. Similarly to the results [@50]) and ([{58), we have

Jn = ?(/\#—I—IC&*)*l[V-Hi(O)]dU.

( —1)()\ —|—K:Ox*)+u — (_)\ +’CO’*)( _1)
He £ e kQ(EC_l) - 122 e He 3
and
Ou’ = i i ; _l 0, _ 10,%\—1 i
o = E((O)+uc(1—uc)( 5 HRE) A = K& v B (0)]
*; . # _ 170,x\—1 i n
=1 PO+ g e - K- O

Applying these two expressions and (£60) yields

Jo=— [ FOe+ K2y E(0)]do.
Tk3 JoB

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

Now, by substituting (£64) and (LEI) into (£5J), and using the relation (LEI]), we come to the main

result of this section.

28



Theorem 4.7. When 6/(dsd}) is sufficiently small, for x away from the thin layer D, the scattered
electric field E" has the asymptotic expression pointwisely as § — 0:

E"(x) = 0kGX(x)(id* x I, + k(Jo)3e3) + O(6?), (4.65)
where Jo and J, are given by [@64) and (L), respectively.

Remark 4.8. The geometry of the microstructure D of the thin layer can be quite complicated, e.g.,
a domain with a hole or a domain with multiple connected components, although we often assume it is
simple connected with a connected boundary for simplicity (e.g., Lemmal33). Therefore, our results are
very general, and are still true for the strongly coupled multi-layer case, i.e., there are multiple layers of
close-to-touching nanoparticles.

From Theorem[L7] we can clearly see the anomalous electromagnetic scattering is due to the occur-
rence of the mixed collective plasmonic resonances. To make it more precise, let us define the electric
and magnetic polarization tensors:

FOw + K0 pldo,  Mu(A, B) = /6 O+ ) e

M0 B) = [

0B

By the definition of GX(x) [@I3)), and with the help of projections e3 @ e3 and I—e3 ®e3 and the relations
E'(0) = —2e3®e3p*, H'(0) = —2(1—e3®e3)d* x p*,
we can reformulate (£.63]) in a more compact form:

210k

E"(x) = 6k(I — d* @ d*)e™ *(id* x I/, + k(J.)ses) + O(6?) = )

X X Zp* + 0(6?), (4.66)

where the reflection scattering matrix & is given by
KX = (H —-d"® d*)(d* X (1 —e3® e3)Mm()\M, B)(l —e3® e3)d* xI—e3® e3Me()\€, B)e3 ® 93).

We emphasize that #Z as a three by three matrix should be regarded as a linear mapping defined on the
two dimensional subspace of R? perpendicular to d*, which chacterizes the polarization conversion. In the
traditional optical systems, the scattering effect of such kind of subwavelength rough surface is basically
negligible so that & plays a limited role. However, due to the large negative permittivity and permeability
of the plasmonic nanoparticles [28, [43], A, (w) and A.(w) can approach the spectrum of —K%* and —K2*
such that the elements in Mc(A;, B) and My, (\,, B) may blow up with an enhancement order 1/d}.
Therefore, following [5l, 2] 0], we may define the collective plasmonic resonances by the frequencies w
satisfying
d(Ae(w), —K2*) < 1 or d(\,(w), —K%*) < 1.

It is worth emphasizing that these frequencies generally are very different from the single particle case.
Physically, these periodically distributed plasmonic nanoparticles can resonate as a whole so that a
nanoscale thin layer can significantly affect the wave propagation at the macroscale. We refer the read-
ers to [II] for some numerical evidences on collective plasmonic resonances. If the collective plasmonic
resonances are excited, the effect of the reflection scattering matrix & can overcome the size parameter
0 and become visible, giving the possibility of achieving a desired far field pattern. However, our elec-
tromagnetic plasmonic metasurface, as all the nano-optic devices, still faces many fundamental limits.
Actually, following [14], we may decompose E"(x) into two plane waves with orthogonal polarizations:
one with polarization p* and the other with a polarization orthogonal to p*. Moreover, we can intro-
duce the reflection coefficients and polarization conversion coefficients to measure the functionalities of
the metasurface, and then analyze their bounds and fundamental relations via holomorphic functional
calculus[I0].
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4.3 Equivalent impedance boundary condition

The final goal of this work is to present an impedance boundary condition approximation. First, we
recall the definition of the surface scalar curl and surface vector curl. In fact, they have the explicit

forms on the reflective plane I': curlpuy = 2%2 — g—;; for vector function u = (u1,us9,0) and curlpv =

611
(;—;’2, —86—;1, 0) for scalar function v. We first consider a simple case: the plasmonic nanoparticle is non-

magnetic, i.e., . = 1. In this case, Theorem 7] indicates that in the far field, the total electric field can
be approximated by E°: ‘
E° = E' 4 0k*GX(J.)3es.

Introduce )
Be = ——/ ys(Ae + /Cg’*)fl[vg]da.
OB

T

Then a simple calculation gives, with the help of [EI3) and e3 x E'|r =0,
e3 x EO|p = —6k%es x d*ds(Je )’

10k2pses x d*Beeikdl'I,
= 6™ (ikdy, —ikdy, 0)B.2ps.

Hence we can derive, by noting that curlp(H®)'|r = —ikes - E|r, when §/(d,d%) — 0:

es X E5|p = §B.curlres -E'|p = 5ﬁecﬁr1p%curlp(Hi)’|p = 5%CJI’1FCUFIF(H6)/|F +0(6%).

This yields the equivalent impedance boundary condition
Y- ife - 5y,
ez X E |1‘* = 5Tcur1pcur1p(H ) |1‘* (467)
to approximate the effect of the thin layer in the far field, up to the second order term. Moreover, this

is uniformly valid with respect to the resonance.
We now consider the magnetic plasmonic nanoparticle, i.e., u. # 1, and introduce the 2 x 2 matrix

T

Dy = 1/ ¥ Qe + K01 dor
oB
According to Theorem [£7] the electric field can be approximated by
E° = E' 4 0kGX(x)(id* x I, + k(J.)ze3).
In a similar way as in the non-magnetic case, we can find that
es x E|p = 6%cﬁrlrcurh~(H6)'|r — ik6 Dy (H®)' |1 4+ O(5?),
with the help of the following observation:
idkes x (GEd* x J!)|r = idkes x (d* x J')e* ¥ *' | = —iké Doy (H')' |1
This yields the following effective impedance boundary condition
es x E°|p = 5%cﬁrlrcuﬂr(m)’|r — iké Dy (H®Y' | (4.68)

to approximate the effect of the thin layer in the macroscopic scale, up to the second order term. And
this is again uniformly valid with respect to the resonance.
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5 Concluding remarks and extensions

In this work, we have studied the scattering effect of the periodically distributed plasmonic nanopar-
ticles in the homogenization regime. For the subwavelength structures of such patterns, a Leontovich
boundary condition (cf. ([GS)) has been derived for the approximation of the scattered field in both
magnetic and non-magnetic cases. A similar problem setting was considered in [23] 22| 21], where the
thin layer was made of dielectric particles, for which the standard variational approach applies. How-
ever, the variational framework breaks down in the resonant case, hence instead we have adopted the
layer potential theories in this work to analyze the singularity and prove the uniform validation of the
boundary condition approximations. Our results provide a relatively complete picture of the mechanism
for the electromagnetic plasmonic metasurfaces and can be easily modified to cope with other regimes
and boundary conditions. Therefore this work may be viewed as a generalization of the standard homog-
enization theory to resonant micro-structures. And our theoretical analysis and findings may help design
a metasurface that can resonate at some specific dense set of frequencies to further realize the broadband
wave modulation. In addition, it is also a very interesting and challenging topic to understand how to
reconstruct fine structures of thin layers in terms of the scattered field under resonance.

Although we only consider the homogenization regime in this work since it is the most interesting
and important case where the collective resonance can happen, our results and analysis in this work can
actually be extended to several important physical regimes and applications. First, our approach can be
directly applied to other important regimes, such as

size of particle < period ~ wave length, or size of particle < period < wave length.

However, we may not expect the collective plasmonic resonances in these configurations, since the particles
are well separated in some sense though they are distributed in a certain pattern. In fact, the scattering
field will be locally dominated by the resonance modes excited by a single nanoparticle. Therefore, the
thin layers under these regimes may not have the capability to realize the control of the electromagnetic
wave in the macroscopic scale. In this work, we have considered only the perfect conducting boundary
conditions on the bottom surface I', but our results and analysis can be extended to other boundary
conditions as well, by replacing the Green’s tensors defined in the Section Bl by the ones satisfying other
specified boundary conditions. As we have mentioned earlier, our results remain the same for the multiple
close-to-touching thin layers. In fact, the generalization to the well-separated multi-layer case, i.e.,

size of particle ~ period < distance between two layers ~ wavelength ~ 1,

is also direct since the scattering effect of each layer can be considered independently due to the weak
interaction. Formally, suppose we have n thin layers associated with the approximate scattered waves

T, -+, E} given by similar terms to ([@G3]), then for this multi-layer structure, the total approximate
scattered wave By, can be written as Eg,, = ET +---+ E}. With these design flexibilities and extension
remarks, our theoretical findings shed also light on the mathematical understanding of electromagnetic
plasmonic metasurfaces and their related optimal design problems.
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