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Abstract
We study the Lanczos algorithm where the initial vector is sampled uniformly from Sn−1.

Let A be an n × n Hermitian matrix. We show that when run for few iterations, the output of
Lanczos on A is almost deterministic. More precisely, we show that for any ε ∈ (0, 1) there exists
c > 0 depending only on ε and a certain global property of the spectrum of A (in particular, not
depending on n) such that when Lanczos is run for at most c log n iterations, the output Jacobi
coefficients deviate from their medians by t with probability at most exp(−nεt2) for t < ‖A‖.
We directly obtain a similar result for the Ritz values and vectors. Our techniques also yield
asymptotic results: Suppose one runs Lanczos on a sequence of Hermitian matrices An ∈Mn(C)
whose spectral distributions converge in Kolmogorov distance with rate O(n−ε) to a density µ for
some ε > 0. Then we show that for large enough n, and for k = O(

√
log n), the Jacobi coefficients

output after k iterations concentrate around those for µ. The asymptotic setting is relevant since
Lanczos is often used to approximate the spectral density of an infinite-dimensional operator by
way of the Jacobi coefficients; our result provides some theoretical justification for this approach.

In a different direction, we show that Lanczos fails with high probability to identify outliers
of the spectrum when run for at most c′ log n iterations, where again c′ depends only on the
same global property of the spectrum of A. Classical results imply that the bound c′ log n is tight
up to a constant factor.

1. Introduction

Eigenvalue problems are ubiquitous in science and engineering. However, most applications
require analyzing matrices whose large dimension makes it impractical to exactly compute any
important feature of their spectrum. It is for this reason that iterative randomized algorithms have
proliferated in numerical linear algebra [Saa11, TBI97].

In this context, iterative randomized algorithms provide an approximation of the spectrum
of the matrix in question, where the accuracy of the approximation improves as the number of
iterations increases. For any such algorithm, it is natural to ask the following questions:

(Q1) How much does the random output vary?

(Q2) How many iterations are necessary and sufficient to obtain a satisfactory approximation?

The present work, theoretical in nature, addresses the above questions for one of the most
widely used algorithms for eigenvalue approximation, namely, the Lanczos algorithm. Throughout
the paper we assume exact arithmetic.
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1.1. The Lanczos algorithm

Recall that when run for k iterations, the Lanczos algorithm outputs a k× k tridiagonal matrix called
the Jacobi matrix. The nontrivial entries of the the Jacobi matrix are the Jacobi coefficients, which we
denote by αk and βk, and its eigenvalues are the Ritz values, which we denote by rk. Oftentimes, the
Jacobi coefficients and the Ritz values provide important information about the spectrum of the
matrix. In particular, when k = n, the Ritz values are exactly the eigenvalues of A, and hence the full
spectrum is recovered. However, in practice it is usually too expensive to perform Θ(n) iterations.

Outlying eigenvalues and Ritz values. The success of the Lanczos algorithm resides to some
extent in its ability to find the outliers of the spectrum of the matrix A with very few iterations. By
outliers, we mean the eigenvalues distant from the region in which the majority of the spectrum
accumulates (the bulk). Hence, the algorithm is of particular interest in most applications in science
and engineering [Saa11].

Bulk spectrum and Jacobi coefficients. Lanczos-type methods can also be used to approximate
the global spectral density of large matrices, also known as density of states; for a survey of
techniques see [LSY16]. In applied mathematics, large matrices can arise as discretizations of
infinite-dimensional operators such as the Laplacian or as finite-dimensional representations of
an infinite-dimensional Hamiltonian. Computing the eigenvalues and Jacobi coefficients of the
finite-dimensional operator then yields information about the infinite-dimensional operator and
the underlying continuous system. For an example, see [SdJL+18], or Section 7 of [VDHVDV01] for
numerical experiments and bounds for the Lanczos algorithm applied to an explicit discretized
Laplace operator.

In the setting described above, the Jacobi coefficients contain all the information of the spectral
density of the infinite-dimensional operator in question and even the first few coefficients are of
use. To give an example, in [Hay80] the Haydock method (as it is termed today) was introduced.
This method exploits the fact the resolvent of an operator admits a continued fraction expansion
where the coefficients are precisely the Jacobi coefficients, and hence knowing these quantities is
fundamental to understanding the spectral density of the operator—see 3.2.2 [LSY16] for a summary
of the Haydock method.

Using a slightly different perspective, note that from the k × k Jacobi matrix of an operator one
can obtain the [k − 1, k] Padé approximation of its resolvent [VA06]. In particular, knowing the
k × k Jacobi matrix is enough to compute the first 2k − 1 moments of the spectral density of the
infinite-dimensional operator.

In applications, sophisticated modifications of the Lanczos algorithm are used [GU77, CRS94,
LXV+16]. Since the goal of the present paper is to introduce proof techniques and theoretical tools
that have not been exploited previously, we only deal with the simplest version of the Lanczos
algorithm and do not strive to obtain optimal constants in our bounds and theorems when providing
answers for questions (1) and (2).

1.2. Question (1): Our contributions

As far as we are aware, there is no previous work addressing this question for the Lanczos algorithm.
In this paper we show that there is a c > 0 such that for n large enough, the output of the Lanczos
procedure is almost deterministic when run for at most c log n iterations. More precisely, in Theorem
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2.4 we show that for k ≤ c log(n) and ε ∈ (0, 1/2), deviations of the order n−ε of the Jacobi coefficients
αk and βk computed by Lanczos occur with exponentially small probability. For an illustration,
see Figure 1. The strength of our probability bound deteriorates as k grows. The constants in
the theorem depend only on an easily computed global property of the spectrum which we call
equidistribution.

From the point of view of random matrix theory, the problem treated in the present paper is
atypical. In random matrix theory, most of the studied models have a rich probabilistic structure
that can be exploited to obtain results about the eigenvalue distribution of the matrix. By contrast, in
our case, the Jacobi matrix output by the Lanczos algorithm is a random matrix obtained by running
a complicated deterministic dynamic over a minimal source of randomness—a single uniform
random unit vector. Hence, in order to obtain results similar to the ones presented in this article,
the structure of the algorithm needs to be exploited in an involved way. We use the ubiquitous
concentration of measure phenomenon for Lipschitz functions in high dimension, together with a
careful control of the variables appearing in the Lanczos algorithm and their Lipschitz constants
as functions of the random input. Roughly speaking, the Lipschitz constant is exponential in the
number of iterations, which yields concentration in the regime of at most c log n iterations for
sufficiently small c. Throughout the analysis we use elementary results in the theory of orthogonal
polynomials.

In view of the fact that the output of the Lanczos algorithm is sharply concentrated under few
iterations, one may ask which values the output is concentrated around. Toward the end of this
introduction we give an overview of our results in this direction.
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Figure 1: Here A is a fixed n × n matrix drawn from the Gaussian orthogonal ensemble (GOE)
with n = 5000. Since the empirical spectral distribution of A will be close to the semicircular law
it is expected that the Jacobi coefficients βi of A will be approximately 1. The above histograms
show the values β0, β10, and β20 obtained by running the Lanczos algorithm 400 times on the input
A. Note that in each of these cases, βi appears to be concentrated.

1.3. Question (2): Previous work

Regarding the problem of detecting outliers of the spectrum via the Lanczos algorithm, theoretical
answers to the sufficiency part of Question (2) posed above appeared decades ago. Most of
them in essence give an upper bound on the number of iterations required to obtain an accurate
approximation when the input is an n-dimensional matrix A—see [Kan66, Pai71, Saa80]. Roughly
speaking, previous literature provides inequalities that state that k ≥ C log n iterations suffice for the
Lanczos algorithm to approximate the true extreme eigenvalues of A very well, making the use of
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O(log n) iterations common in practice—see [KW94] or [VDHVDV01] for examples of inequalities
that give this bound. The constant C in the results mentioned above is determined by features of the
spectrum of A; typically, these features are the diameter of the spectrum and the gaps between the
outliers and the bulk. In recent years, more refined arguments have yielded inequalities in which
other features of the spectrum are considered, see [YGL18] for an example or [BSS10] for a survey.

Regarding the necessity part of Question (2), to the best of our knowledge, the only existing
negative result regarding detection of outliers is the one given in the recent work [SEAR18]. There,
a query complexity bound was proven for any algorithm that is allowed to make queries of
matrix-vector products, which in particular applies to the Lanczos algorithm.

1.4. Question (2): Our contributions

In the present paper we study the Lanczos algorithm in the context of approximation of outliers
and answer the necessity part of Question (2). That is, we show that if run for at most k ≤ c log n
iterations, the Lanczos algorithm fails to approximate outliers with overwhelming probability.
Thus, in essence we provide a lower bound on the number of iterations required for accuracy. As
in our contribution for Question (1), the constant c depends only on the equidistribution of the
spectrum.

To give some rough context, the result in [SEAR18] discussed above shows that if the empirical
spectral distribution of a matrix is close to the semicircle distribution plus an outlying “spike,” any
algorithm in their class will fail to identify the spike with overwhelming probability, unless given at
least c log n queries. In contrast, our result applies exclusively to the Lanczos algorithm, but shows
that outliers are missed for a far more general class of measures than just the semicircle.

In order to analyze asymptotic behavior, we adopt a framework similar to that used in [Kui00]
and [Bec00], in which a sequence of Hermitian matrices An with convergent spectra was considered.
These papers studied the behavior of the Lanczos algorithm in the regime of Θ(n) iterations.

To show that the Lanczos algorithm misses outliers when run for at most c log n iterations, we
use the elementary theory of orthogonal polynomials and standard techniques in high-dimensional
probability. Roughly speaking, using a variational principle, we show that for small enough k, the
roots of the kth orthogonal polynomial with respect to a certain random measure are contained in a
small blow-up of the convex hull of the bulk of the true spectrum. See Theorem 2.8 or Proposition
2.10 for a precise statement and Figure 2 for an illustration.
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Figure 2: A is a 2000 × 2000 diagonal matrix with entries {0, 1/2000, 2/2000, . . . , 1999/2000, 1.1}.
This represents a discretization of Unif([0, 1]) plus an outlier at 1.1. Plotted is a histogram of the
Ritz values output by Lanczos after k = 5 iterations (above) and after k = 10 iterations (below).
To generate the histogram the procedure was run 200 times. Notice that to find the outlier with
a decent probability, 10 iterations suffice (but 5 do not). However, even in the regime of k = 5
iterations the output appears to be concentrated.

1.5. Our result on the locations of the output

One may ask if finer statements about the location of the Jacobi coefficients and Ritz values can be
made. Previously, tools from potential theory have been used to answer this question in the regime
of k = Θ(n) iterations [Bec00, Kui00, Kui06]. In the regime of k fixed as n → ∞, a deterministic
convergence result for orthogonal polynomials [Gau68, Theorem 4] can be used to show that the
Ritz values converge almost surely to the roots of the kth orthogonal polynomial of the limiting
eigenvalue distribution; see Remark 2.14 for details.

In the present work we use determinantal formulas for orthogonal polynomials and concentration
of measure results to locate the Jacobi coefficients and Ritz values in the regime of k = O(

√
log n)

iterations. In particular, we prove that the Ritz values concentrate around the roots of the kth
orthogonal polynomial for the limiting eigenvalue distribution. See Figure 3 for an illustration.
Moreover, also when k = O(

√
log n), we show that the Jacobi matrix obtained after k iterations is

concentrated around the kth Jacobi matrix of the limiting measure.
These results may be of particular relevance in applications where an infinite-dimensional

operator is discretized with the goal of computing its density. In essence, Theorem 2.12 below states
that in this situation the first iterations of the Lanczos algorithm are an accurate approximation of
the true Jacobi coefficients of the spectral measure of the infinite-dimensional operator, and hence
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the procedure is giving valuable information for recovering the limiting measure.
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Figure 3: A is a fixed n × n matrix drawn from the GOE with n = 2000. Plotted is the histogram of
the Ritz values after 200 repetitions of the Lanczos algorithm with k = 10 iterations. Also plotted
are the roots of the 10th orthogonal polynomial with respect to the (suitably rescaled) semicircle
law, which is the limit of the distribution of eigenvalues for GOE as n→∞.

1.6. Organization of the paper

The article is organized as follows. In Section 2, we review the classical background of the Lanczos
procedure and orthogonal polynomials and formally state our main theorems. In Section 3, we
develop machinery that in Section 4 will be used to prove concentration for the output of the
Lanczos algorithm. In Section 5, we prove our complementary results about the location of the Ritz
values and Jacobi coefficients. Finally, in Section 6 we discuss further research directions that may
be of interest.

2. Preliminaries and statements of theorems

Throughout this paper only elementary facts about orthogonal polynomials are used. For the
reader’s convenience in Section 2.1 we include a concise survey of the results that will be used in
what follows. Chapter 2 in [Sze39] and Chapters 2 and 3 in [Dei99] are introductory references
containing these results.

In order to establish context and notation, in Section 2.2 we describe the Lanczos algorithm and
its interpretation in terms of orthogonal polynomials. Some standard references for this matter are
Chapter 6 in [TBI97] and Chapter 6 in [Saa11].

In Section 2.3 we introduce the framework in which this paper is developed and formally state
the main contributions of our work.

In this paper we use the following notation. We use→P to denote convergence in probability.
For a sequence of events En, we say En occurs with overwhelming probability if P[En] ≥ 1−C exp{−nc

}

for some c,C > 0. For an n × n matrix A with eigenvalues λi, we say that the empirical spectral
distribution of A is the atomic probability measure 1

n
∑n

i=1 δλi , where δx denotes the Dirac mass at
x. We also let ‖A‖ denote the spectral norm of A (i.e. the `2

→ `2 operator norm). The notation
‖ · ‖ applied to a vector will refer to the standard Euclidean norm. We will let Sn−1 denote the unit
sphere in Rn and denote the uniform probability measure on Sn−1 by Unif(Sn−1). Finally, we will let
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Kol(·, ·) denote the Kolmogorov distance between two measures, namely,

Kol(µ, ν) := sup
t∈R

∣∣∣µ((−∞, t]) − ν((−∞, t])
∣∣∣ .

2.1. Orthogonal polynomials

For now, let µ be a finite Borel measure on R and assume that its support, which we denote as
supp(µ), is compact and has infinitely many points. The set of square integrable functions L2(R, dµ)
becomes a Hilbert space when endowed with the inner product

〈 f , 1〉 =

∫
R

f (x)1(x)dµ(x).

The hypothesis that |supp(µ)| = ∞ implies that the monomials {1, x, x2, . . . } are linearly independent
in L2(R, dµ). Hence, we can use the Gram-Schmidt procedure to obtain an infinite sequence of
polynomials pk(x) with deg(pk(x)) = k and∫

pk(x)pl(x)dµ(x) = δkl.

The leading coefficient of pk(x) is a quantity of interest in this paper and will be denoted by γk.
We will denote the monic orthogonal polynomials by πk(x). That is, πk(x) = γ−1

k pk(x) and clearly

γk =

(∫
R
π2

k(x)dµ(x)
)− 1

2

. (2.1)

Since πk(x) is orthogonal to all polynomials with degree less than k, the polynomial xk
− πk(x) is

the orthogonal projection of xk onto the span of {1, . . . , xk−1
}. Hence,∫

R
π2

k(x)dµ(x) = min
q∈Γk

∫
R

q2(x)dµ(x),

where Γk denotes the space of monic polynomials of degree k.
Favard’s theorem ensures that there is a sequence of real numbers αk and a sequence of positive

real numbers βk such that the following three-term recurrence holds:

xpk(x) = βk−1pk−1(x) + αkpk(x) + βkpk+1(x), k ≥ 1,
and xp0(x) = α0p0(x) + β0p1(x), k = 0.

It is clear from the three-term recurrence that the following identity holds:

γk =

 k−1∏
i=0

βi


−1

. (2.2)

These so-called Jacobi coefficients αk and βk encode all the information of the measure µ. In fact, since
the Stieltjes transform of µ has a continued fraction expansion in terms of its Jacobi coefficients,
knowing the few first elements in these sequences allows one to approximate the measure. See
Chapter 4.3 in [Dei99] for an example.
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We denote by Jk the k × k Jacobi matrix of µ; that is, Jk is the tridiagonal symmetric matrix with
(Jk)ii = αi−1 and (Jk)i+1,i = (Jk)i,i+1 = βi−1. It is a standard fact that πk(x) = det(xI − Jk) and that in
particular, the roots of pk(x) are exactly the eigenvalues of Jk, which are real since Jk is symmetric.

Another object of importance in this theory is the Hankel matrix of a measure. We will denote
Mk the (k + 1) × (k + 1) Hankel matrix of µ; in other words, if mi denotes the ith moment of µ, then
(Mk)i j = mi+ j−2 for every 1 ≤ i, j ≤ k + 1. From the elementary theory it is known (see [Dei99],
Section 3.1) that if we define Dk = det Mk, then

βk =

√
Dk−1Dk+1

Dk
and γk =

√
Dk−1

Dk
, k ≥ 0, (2.3)

where we define D−1 = 1. Note that the second identity in (2.3) implies

Dk =

k∏
i=0

γ−2
i . (2.4)

Moreover, if M̃k(x) denotes the matrix obtained by replacing the last row of Mk by the row
(1 x x2

· · · xk), we have the following useful identity:

pk(x) =
det M̃k(x)
√

Dk−1Dk
. (2.5)

Note that in the case in which supp(µ) has n points, for n a positive integer, the set of monomials
{1, x, x2, . . . } is not linearly independent in L2(R, dµ). Moreover, the Gram-Schmidt procedure stops
after n iterations, and hence it only makes sense to talk about the orthogonal polynomials pk(x) for
k ≤ n − 1. However, sometimes it is convenient to define the nth monic orthogonal polynomial as
the unique monic polynomial of degree n whose roots are the elements of supp(µ). In this case, the
facts mentioned previously still hold for k ≤ n.

2.2. The Lanczos algorithm

We understand the Lanczos algorithm as a randomized procedure that takes three inputs: an n × n
Hermitian matrix A, a random vector u distributed uniformly in Sn−1, and an integer 1 ≤ k ≤ n.
Then, the procedure outputs a k × k symmetric tridiagonal matrix Jk whose diagonal entries will be
denoted by αi for i = 0, . . . , k − 1 and whose subdiagonal and superdiagonal entries will be denoted
by βi, for i = 0, . . . , k − 2. The eigenvalues of Jk are called the Ritz values and we will usually denote
them as r1 ≥ · · · ≥ rk. On the other hand, the eigenvectors of Jk give rise (after an orthonormal
change of basis determined by the v j below) to the Ritz vectors, that is, the approximations for
the eigenvectors of A. Algorithm 2.1 below describes how the procedure generates the Jacobi
coefficients αi and βi.

This algorithm has a natural interpretation in terms of orthogonal polynomials. To every
u ∈ Sn−1 we can associate a measure supported on the spectrum of A as follows. Let λ1 ≥ · · · ≥ λn
be the eigenvalues of A and u1, . . . ,un be the coordinates of u when writen in the eigenbasis of A.
We define the probability measure

µu =

n∑
i=1

u2
i δλi . (2.6)
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Algorithm 2.1: The Lanczos algorithm
input: A, k, u
initialize: v0 = u
for j = 0, . . . , k − 1 do

W j = span{v0, . . . , v j}

α j = 〈Av j, v j〉

β j = ‖ProjW⊥j
(Av j)‖2

if β j = 0 then
stop

else

v j+1 =
ProjW⊥j

(Av j)

‖ProjW⊥j
(Av j)‖2

end if
end for
return Jk

In the language of functional analysis, µu is the spectral measure of the operator A induced
by the vector state u; that is, 〈 f (A)u,u〉 =

∫
f (x) dµu(x) for all (say) polynomials f . Note that the

expectation of the random measure µu is just the empirical spectral distribution of A, namely,

1
n

n∑
i=1

δλi .

It is not hard to see that if p j(x) are the orthogonal polynomials with respect to µu, then
v j = p j(A)u. Hence, the coefficients α j and β j outputed by the Lanczos algorithm are the Jacobi
coefficients of the measure µu, and the Ritz values after k iterations are the roots of pk(x).

As a last remark, observe that the output of Algorithm 2.1 scales linearly with A. Hence, to
simplify notation, in some of the proofs below we will start by assuming that ‖A‖ = 1.

2.3. Statement of results

In the remainder of the paper the input matrix, which is assumed to be Hermitian, will be fixed and
denoted by A. We will use n to denote the dimension of A and usually the number of iterations of
the procedure will be denoted by k. Note that the Jacobi coefficients αi and βi are assigned during
the ith iteration of the algorithm and are unchanged during future iterations.

Since for our analysis it is necessary to compare outputs of the algorithm resulting from different
input vectors u ∈ Sn−1, we will stress this dependence by viewing the respective quantities as a
function of u and denoting them by αi(u), βi(u), ri(u), γi(u), pu

k (x), vi(u), and Jk(u). Depending on the
context, these quantities will also be thought of as random variables, random polynomials, random
vectors, and random matrices, respectively.

Most of our results make a technical assumption, which we have named equidistribution, about
the geometry of the spectrum of A. We define and motivate this concept below.

Equidistribution. The behaviour of the Lanczos algorithm depends on the spectrum of the input
matrix A, and what might be true for typical matrices can fail for particular choices of A. It is hence
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challenging, when trying to obtain general theoretical statements, to identify a quantifiable feature
of the spectrum that can serve as an assumption but is not too restrictive. This has been done in
different ways in previous work, most notably in the seminal work of Saad [Saa80]—see [Saa11,
Section 6.6] for a succinct exposition. For example, many of the results in [Saa80] are stated in terms
of the quantities

t(k)
i = min

p∈P(i)
k−1

max
j: j,i
|p(λ j)|,

where λ1 ≥ · · · ≥ λn are the eigenvalues of A and P(i)
k−1 denotes the set of all polynomials of degree

not exceeding k − 1 and satisfying p(λi) = 1. In the present work we use a more geometric notion to
state our results.

Definition 2.1 (Equidistribution). Let Λ be any finite set of n real numbers. Let δ and ω be positive real
numbers and let j be a natural number. We say that Λ is (δ, ω, j)-equidistributed if for any finite set T of at
most j real numbers it holds that∣∣∣∣∣∣∣

λ ∈ Λ :
1
|T|

∑
t∈T

log |λ − t| ≥ logω


∣∣∣∣∣∣∣ ≥ δn.

Intuitively, the spectrum is equidistributed if it is not grouped in a small number of tight clusters
(see Examples 2.2 and 2.3 below). As we will show in Section 4, the family of well equidistributed
point sets includes, but is not limited to, those sets obtained by discretizing an absolutely continuous
distribution.

Example 2.2. Let Λ be the set of n equally spaced points from 1/n to 1, inclusive. This represents a
discretization of the uniform measure µ = Unif([0, 1]). In Section 4.1 we will show that for j ≤ n

16 , the set Λ
is (δ, ω, j)-equidistributed for δ = 1/4 and ω = 4e−2.

Example 2.3. Now consider a set (or multiset) Λ of n > 0 points grouped in m equally spaced small clusters.
To make this precise, fix two parameters ε, 1 > 0 and consider −1 = a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm = 1
such that for every i = 1, . . . ,m we have bi − ai = ε and ai+1 − bi = 1. We think of ε as small with respect to
1 and of m as small with respect to n. If Λ ⊂

⋃m
i=1[ai, bi] with |Λ ∩ [ai, bi]| ≥ b n

mc for every i = 1, . . . ,m,
then Λ is ( m− j

m , 1, j)-equidistributed and 1 ≈ 2/m.
Note that in this case we have good equidistribution parameters unless j ≈ m. In Section 4 we give a

generalization of this assertion in Observation 4.10.

Concentration of the output. We state our main result about concentration of the first few Jacobi
coefficients in terms of the equidistribution parameters δ, ω.

Theorem 2.4 (Concentration of Jacobi coefficients after i iterations). Suppose the spectrum of A is
(δ, ω, i)-equidistributed for some δ, ω > 0 and i ∈ N. Let α̃i and β̃i denote the medians of the Jacobi
coefficients αi(u) and βi(u), respectively. Then for all t > 0, the probabilities P[|αi(u) − α̃i| > t‖A‖] and
P[|βi(u) − β̃i| > t‖A‖] are both bounded above by

2 exp
{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−

1
64

(
ω

4‖A‖

)2i
δ2t2n

}
. (2.7)

To clarify the advantages and limitations of the above result we include some remarks.
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Remark 2.5. The equidistribution parameters δ, ω appearing in the above theorem are typically quite
moderate in magnitude and are easy to compute if one can obtain explicit bounds for certain integrals with
respect to the spectral distribution of A. Note that ω ≤ ‖A‖ (by taking T = {0} in Definition 2.1) and that ω
scales linearly with A. As a result, ω/‖A‖ is typically of constant size independent of n in applications. Since
ω/‖A‖ < 1, Theorem 2.4 yields concentration for i at most logarithmic in n. Besides Examples 2.2 and 2.3
above, in Section 4.1 we give more examples and a detailed discussion on how to compute these parameters.

Remark 2.6. Ultimately because the Jacobi coefficients αi(u), βi(u) turn out to be Lipschitz only on a proper
subset of the sphere, we only obtain concentration of the coefficients about their medians, not their means.

Remark 2.7. Using the same techniques one can prove a result analogous to Theorem 2.4 in the case where
A is not Hermitian, and even not normal. In the non-Hermitian case, the Lanczos algorithm is called the
Arnoldi algorithm and has similar applications to those of the Lanczos algorithm.

In Section 4 we show how Theorem 2.4 can be used to obtain concentration, in the same regime
of number of iterations, of the Ritz values and Ritz vectors. See Propositions 4.16 and 4.18 for
precise statements.

The rest of the paper focuses on studying the location of the outputs of the Lanczos algorithm.

Undetected outliers of the spectrum. In Section 5.1, we show that if k is a certain fraction of log n,
the Ritz values obtained after k iterations are contained in a small blow-up of the convex hull of
the bulk of the spectrum of A. This complements classical guarantees which show that for some
multiple of log n, say, K, the Lanczos algorithm approximates with high accuracy the outliers of the
spectrum of A when K iterations are performed. Our results are quantitative and use our notion of
equidistribution.

Theorem 2.8. Suppose the spectrum of A is (δ, ω, j)-equidistributed for some δ, ω > 0 and j ∈ N. Let
M be the diameter of the spectrum of A. Let R be a real number and let 0 < c < 1/2, and suppose there
are at most m ≤ min{0.02n, 2nα} “outliers,” eigenvalues of A lying above R, for some α < 1 − c. Let
1 = max1≤i≤n{λi − R} and let κ > 0. Then for up to

k = min

 j,
1

2 log M
ω

(
c log n + log

κδ
2m1

)
iterations, the probability that the top Ritz value exceeds R + κ is at most

2 exp
{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−

1
16

n1−2c
}

for n > e
1

1−c−α .

The strength of the above result might be obscured by the appearance of several unintuitive
parameters. For the reader’s benefit we include an example below, and to provide a slightly
different perspective, we include an asymptotic version of the above result, namely, Proposition
2.10.

Example 2.9. Let n > 0 and let A be a matrix whose spectrum consists of n − 1 equally spaced points from
2/n to 1 inclusive, together with an outlier of value 1.1 (compare with Figure 2). In Section 4.1 we will show
that for j ≤ n/16 the spectrum of A is (1/4, 4e−2, j)-equidistributed.
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In order to apply Theorem 2.8, we also note that in this case M = 1.08, m = 1, and 1 = 10−1. Take
κ = 10−4. Then, for any 0 < c < 1/2, the Ritz values of the Lanczos algorithm on A after b 7c

10 log n − 7/2c
iterations will be contained in the interval [2/n, 1 + 10−4] with overwhelming probability.

Proposition 2.10. Let (An)∞n=1 be a sequence of n × n Hermitian matrices with uniformly bounded norm.
Assume their empirical spectral distributions µn converge in distribution to a measure µ with nontrivial
absolutely continuous part, and further assume Kol(µn, µ) = O(1/ log n). Suppose there exists m ∈N such
that each An has at most m eigenvalues (“outliers”) greater than R, where R denotes the right edge of the
support of µ.

Then there exists c > 0 such that for every κ > 0, the Ritz values of Lanczos applied to An after c log n
iterations are bounded above by R + κ with overwhelming probability for n sufficiently large (depending on
how small the gap κ is chosen.)

Remark 2.11. Suppose all eigenvalues of A lie in [−1, 1] except for one outlier λ1 = 1 + ε. Suppose we
wish for a Ritz vector p(A)u =

∑n
i=1 p(λi)ui to approximate u1, the top eigenvector. Then p(λ1) must be

polynomially larger than p(λ2), . . . , p(λn), since |ui| ∼ 1/
√

n for all 1 ≤ i ≤ n with high probability. If one
further imposes that p(λ1) exceeds p by a polynomial factor on the entire interval [−1, 1], then the degree of p
(and hence the number of iterations k) must be at least O(log n/

√
ε), by the Markov brothers’ inequality and

properties of Chebyshev polynomials. However, if the λi are in j tight clusters for j small, one could certainly
have p(λ2), . . . , p(λn) small and p(λ1) large for some p of degree j. Thus, an assumption like equidistribution
is natural for Theorem 2.8.

Location of Jacobi coefficients and Ritz values We will now work on the setting of Proposition
2.10, that is, we consider a probability measure µ and a sequence of matrices An whose empirical
spectral distributions µn converge to µ. We give a result about the locations of the Ritz values and
Jacobi coefficients when at most d

√
log n iterations are performed, with d depending only on µ and

the speed of convergence of the sequence µn. Essentially, we show that in this regime the Jacobi
matrix after k iterations is sharply concentrated around the kth Jacobi matrix of the measure µ.

Theorem 2.12 (Location of Jacobi coefficients). Let (An)∞n=1 be a sequence of n×n Hermitian matrices with
uniformly bounded operator norm. Assume their empirical spectral distributions µn converge in distribution
to a measure µ with nontrivial absolutely continuous part, and further assume Kol(µn, µ) = O(n−c) for some
c > 0.

Then there is a constant d > 0 dependent on µ and c, such that for any sequence of integers 1 ≤ kn ≤

d
√

log n we have
‖Jkn(u) − Jkn(µ)‖ −→P 0,

where Jkn(u) denotes the Jacobi matrix output by the Lanczos algorithm applied to An under the input
u ∼ Unif(Sn−1) after kn iterations, and where Jkn(µ) is the kn-th Jacobi matrix of the measure µ.

Note that Theorem 2.12 may be of particular relevance in applications where an infinite-
dimensional operator is discretized with the goal of computing its density. In essence, Theorem
2.12 states that, in this situation, the first iterations of the Lanczos algorithm are an accurate
approximation of the true Jacobi coefficients of the measure µ, and hence the procedure gives
valuable information to recover the limiting measure.

From the above proposition, a standard application of the Weyl eigenvalue perturbation
inequality yields the following proposition.
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Proposition 2.13 (Location of the Ritz values). Using the same notation as in Theorem 2.12, let
~rkn(u) = (r1(u), . . . , rkn(u)), where r1(u) ≥ · · · ≥ rkn(u) are the random Ritz values of the Lanczos algorithm
after kn iterations are performed. Then under the assumptions in Theorem 2.12, we have that

‖~rkn(u) − ~rkn(µ)‖L∞(Rkn ) −→P 0,

where ~rkn(µ) is the vector whose entries are the roots of the kn-th orthogonal polynomial with respect to µ in
decreasing order.

It remains an open question if similar results can be obtained when O(log n) iterations are
performed. See Section 6 for open questions and further research.

Remark 2.14. For fixed k, [Gau68, Theorem 4] states that in the deterministic setting of a weakly convergent
sequence of measures µn → µ with each µn supported on n points, the Jacobi coefficients αi, βi of µn for i ≤ k
converge to those for µ (and therefore, the same holds for the ith orthogonal polynomial and its roots.) To apply
this to the Lanczos algorithm, one must use the fact that for independent initial vectors un ∈ Sn−1, almost
surely the measures µun

n (defined in 2.6) converge weakly to µ. One therefore obtains the same convergence as
in the deterministic setting, almost surely, for the random αi, βi output by Lanczos. To make the convergence
quantitative, one must assume something about the rate of convergence of the µn in the hypothesis; this is
what is done in Theorem 2.12. Our result holds in the wider range k = O(

√
log n). We also trade almost-sure

convergence for a polynomial rate of convergence holding with overwhelming probability; this rate appears in
the proof.

3. Applying the local Lévy lemma

3.1. Strategy

The well known Lévy lemma states, in a quantitative way, that if f : Sn−1
→ R is a Lipschitz

function, then f (u) is a random variable concentrated around its median. See Chapter 5.1 in [Ver18]
for a detailed discussion. In this direction, the main obstacle for showing concentration of the
random variables αi(u) and βi(u) is that the functions αi, βi : Sn−1

→ R are not Lipschitz on the entire
sphere. However, we will be able to show that these functions are Lipschitz in a large region of the
sphere, which is a common idea in geometric functional analysis. We will use a local version of
Lévy’s lemma, which is recorded as Corollary 5.35 in [AS17], and which we restate below with
explicit universal constants.

Lemma 3.1 (Local Lévy lemma). Let Ω ⊂ Sn−1 be a subset of measure larger than 3/4. Let f : Sn−1
→ R

be a function such that the restriction of f to Ω is Lipschitz with constant L (with respect to the geodesic
metric on the sphere). Then, for every ε > 0,

P[| f (u) − f̃ | > ε] ≤ P[u ∈ Sn−1
\Ω] + 2 exp{−4nε2/L2

},

where f̃ is the median of f (u) and where u ∼ Sn−1.

As the function f is allowed to blow up on the small subset Sn−1
\Ω, one cannot expect a similar

result to hold for concentration around the mean.
In order to identify the correct region of the sphere in which the functions αi and βi are Lipschitz,

we need a local version of the notion of Lipschitz constant. In what might be a slight departure
from standard definitions, we will define local Lipschitz continuity as follows.
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Definition 3.2. Let (X1, d1) and (X2, d2) be metric spaces. A function f : X1 → X2 is said to be locally
Lipschitz continuous with constant c at x0 ∈ X1 if for every c′ > c there is a neighborhood U ⊂ X1 of x0 such
that

d2( f (x), f (y)) ≤ c′d1(x, y) ∀x, y ∈ U.

Remark 3.3. For f defined on an open subset of Sn−1, we have that f is locally Lipschitz continuous with
constant c with respect to the geodesic metric if and only if it is locally Lipschitz continuous with the same
constant with respect to the Euclidean (“chordal”) metric.

It is obvious that if a function is locally Lipschitz with constant c on every point of a convex
set, then the function is globally Lipschitz on the set with the same constant c. However, if the
convexity assumption is dropped, a similar conclusion is not guaranteed in general and in order to
obtain a global Lipschitz constant the geometry of the set should be analyzed.

Definition 3.4. Let K > 0 and (X, d) be a metric space. We say that S1 ⊂ X is K-connected in S2 with
S1 ⊂ S2 ⊂ X if for every x, y ∈ S1 there is a rectifiable Jordan arc α : [0, 1]→ S2 with α(0) = x and α(1) = y,
such that the length of the trace of α is less than or equal to Kd(x, y).

Now that we have introduced the notion of K-connected set we can generalize what we observed
for convex sets.

Lemma 3.5. Let (X1, d1) and (X2, d2) be metric spaces. Assume that S1 ⊂ X1 is K-connected in S2 ⊂ X1
and let f : X1 → X2 satisfy that for every x0 ∈ S2, f is locally Lipschitz at x0 with constant c. Then f is
globally Lipschitz on S1 with constant cK.

Proof. Fix x, y ∈ S1 and ε > 0. We will show that d2( f (x), f (y)) ≤ (c + ε)Kd1(x, y). Consider a
rectifiable Jordan arc α : [0, 1]→ X1, such that α(0) = x, α(1) = y, α([0, 1]) ⊂ S2 and the length of α is
at most Kd1(x, y).

Since the trace of α is contained in S2, for every w ∈ α([0, 1]) we can take an open ball Uw
containing w such that f is (c + ε)-Lipschitz on Uw. Moreover, observe that since α is continuous
and injective, for every w ∈ α([0, 1]) we can take Uw small enough such that α−1(Uw) is connected
and hence an open interval in [0, 1].

By compactness of α([0, 1]) we may take w1, . . . ,wn ∈ α([0, 1]) such that {Uwi}
n
i=1 is a minimal

cover for α([0, 1]). Now, since each α−1(Uwi) is connected, and the cover is minimal, we have that
α−1(Uwi) ∩ α

−1(Uwi+1) , ∅ for every 1 . . . ,n − 1.
Furthermore, we will now see that we can modify the sequence of wi such that wi+1 ∈ Uwi for

every i = 1, . . . ,n − 1. Assume that this does not hold and let i be the smallest index for which
wi+1 < Uwi . Now take some t ∈ α−1(Uwi) ∩ α

−1(Uwi+1) and define w′ = α(t). We construct a new
sequence w̃1, . . . , w̃n+1 ∈ α([0, 1]) by taking w̃ j = w j for j < i, w̃i = w′, w̃ j+1 = w j for j ≥ i, and Uw̃i to
be equal to Uwi+1 . Observe that for the new sequence of points (w̃i)n+1

i=1 in α([0, 1]) and sequence of
open balls Uw̃i it holds that w̃ j+1 ∈ Uw̃ j for all j ≤ i. By iterating this process we will obtain a finite
sequence with the desired property. So, in what follows we can assume without loss of generality
that wi+1 ∈ Uwi for every i = 1, . . . ,n − 1. We then will have

d2( f (wi), f (wi+1)) ≤ (c + ε)d1(wi,wi + 1).

Using the triangle inequality and the fact that
∑

i d1(wi,wi+1) is bounded by the length of the trace
of α the result follows. �

In the following section the local Lipschitz constants of the functions αi(u) and βi(u) are shown
to be related to the orthogonal polynomials of the measure µu.
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3.2. Local Lipschitz constants for Jacobi coefficients

As can be seen from Algorithm 2.1, the dependence of the quantities αi(u), βi(u), and v j(u) on u
is highly nonlinear, which makes it complicated to show that such quantities are stable under
perturbations of the input vector u. Here we exploit the fact that during every iteration of the
Lanczos algorithm only locally Lipschitz operations are performed. The analysis of the compound
effect of iterating the procedure yields a bound on the local Lipschitz constant of the quantities
of interests. This bound is exponential in the number of iterations, which is enough to obtain
concentration results when O(log(n)) iterations are performed. In what follows, recall that γi(u)
denotes the leading coefficient of the ith orthonormal polynomial with respect to the measure µu

defined in (2.6).

Proposition 3.6. Fix ũ ∈ Sn−1 and let v j(u) be as in Algorithm 2.1. Then, for any 0 ≤ j ≤ n − 1, the
functions v j(u) are locally Lipschitz at ũ with constant (4‖A‖) jγ j(ũ).

Proof. We proceed by induction. For j = 0, recall v0(u) = u and γ0(ũ) = 1; the statement
follows. Now assume the proposition is true for some j ≥ 0. For every x ∈ Sn−1 denote
Wx = span{v0(x) = x, v1(x), . . . , v j(x)} and for any subspace W ≤ Rn by ProjW we mean the
orthogonal projection onto W.

Take x, y ∈ Sn−1 in a neighborhoodU of ũ to be determined and note that

‖ProjW⊥x (Av j(x)) − ProjW⊥y (Av j(y))‖

≤ ‖ProjW⊥x (A(v j(x) − v j(y)))‖ + ‖(ProjW⊥x − ProjWy⊥)(Av j(y))‖

= ‖ProjW⊥x (A(v j(x) − v j(y)))‖ + ‖(ProjWx
− ProjWy

)(Av j(y))‖. (3.1)

From the induction hypothesis we have that, for any ε > 0, we can chooseU small enough so
that

‖ProjW⊥x (A(v j(x) − v j(y)))‖ ≤ ‖A‖‖v j(x) − v j(y)‖ ≤ ‖A‖((4‖A‖) jγ j(ũ) + ε)‖x − y‖. (3.2)

On the other hand, from Algorithm 2.1 it follows that βi(ũ) ≤ ‖A‖ for every i = 0, . . . ,n − 1, so in
view of (2.2), the ‖A‖iγi(ũ) form an increasing sequence. It then follows that

j∑
i=0

(4‖A‖)iγi(ũ) ≤
j∑

i=0

4i
‖A‖ jγ j(ũ) ≤

4 j+1
‖A‖ jγ j(ũ)

3
.

For any unit vector w, by the triangle inequality, we have that

‖ProjWx
(w) − ProjWy

(w)‖ ≤
j∑

i=0

‖〈vi(x),w〉vi(x) − 〈vi(y),w〉vi(y)‖ (3.3)

and we can bound each term on the right-hand side of (3.3) as follows:

‖〈vi(x),w〉vi(x) − 〈vi(y),w〉vi(y)‖ ≤ |〈vi(x) − vi(y),w〉| + ‖vi(x) − vi(y)‖|〈vi(y),w〉|
≤ ‖vi(x) − vi(y)‖‖w‖ + ‖vi(x) − vi(y)‖‖vi(y)‖‖w‖

≤ 2(4‖A‖)iγi(ũ)‖x − y‖.
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Hence, adding over i we obtain

‖ProjWx
(w) − ProjWy

(w)‖ ≤
2
3
· 4 j+1

‖A‖ jγ j(ũ)‖x − y‖,

which implies that ‖ProjWx
− ProjWy

‖ ≤
2
3 · 4

j+1
‖A‖ jγ j(ũ)‖x − y‖ and hence

‖(ProjWx
− ProjWy

)(Av j(y))‖ ≤
2
3
· (4‖A‖) j+1γ j(ũ)‖x − y‖. (3.4)

Putting together inequalities (3.1), (3.2), and (3.4), we get for any x, y ∈ U that

‖ProjW⊥x (Av j(x)) − ProjW⊥y (Av j(y))‖ ≤ (4‖A‖) j+1γ j(ũ)‖x − y‖.

With this we have established that the function u 7→ ProjW⊥u (Av j(u)) is locally Lipschitz at ũ with
constant (4‖A‖) j+1γ j(ũ). Now consider the function f : Rn

→ Rn defined by f (x) = x/‖x‖. It is
easy to show that for any x0 , 0, f is locally Lipschitz at x0 with constant 1/‖x0‖. Now recall
that by definition β j(ũ) = ‖ProjW⊥ũ (Av j(ũ))‖. Since the composition of locally Lipschitz functions is
locally Lipschitz with the constant being the product of the constants of each of the functions in the
composition, we have that the function

u 7→ v j+1(u) = f (ProjW⊥u (Av j(u)))

is locally Lipschitz at ũ with constant
(4‖A‖) j+1γ j(ũ)

β j(ũ) = (4‖A‖) j+1γ j+1(ũ), where this equality follows
from (2.2). �

Proposition 3.7. For any 0 ≤ j ≤ n − 1 and any ũ ∈ Sn−1, the function α j(u) is locally Lipschitz at ũ with
constant 1

2 · (4‖A‖)
j+1γ j(ũ), while β j(u) is locally Lipschitz at ũ with constant (4‖A‖) j+1γ j(ũ).

Proof. We will use the same notation as in Proposition 3.6. Recall from Algorithm 2.1 that
α j(u) = 〈Av j(u), v j(u)〉. Note that the local Lipschitz constant of the function u 7→ Av j(u) is obtained
by multiplying the local Lipschitz constant of v j(u) by ‖A‖ . Then, for any ε we can pickU to be a
small enough neighborhood of ũ such that for any x, y ∈ U we have

|α j(x) − α j(y)| = |〈Av j(x), v j(x)〉 − 〈Av j(y), v j(y)〉|
≤ |〈A(v j(x) − v j(y)), v j(x)〉| + |〈Av j(y), v j(x) − v j(y)〉|

≤ 2 · (4 j
‖A‖ j+1γi(ũ) + ε)‖x − y‖.

On the other hand, since β j(u) = ‖ProjW⊥u (Av j(u)))‖ and we established in the proof of Proposition
3.6 that this function is locally Lipschitz with constant (4‖A‖) j+1γ j(ũ), the proof is concluded. �

Remark 3.8. The local Lipschitz constants presented in the above statements can be improved; the term
4 j next to ‖A‖ jγ j(ũ) was chosen for the sake of exposition. Nevertheless, it seems complicated to show that
the quantities v j(u) are locally Lipschitz at ũ with a constant of the form C j‖A‖ jγ j and C j subexponential.
In any case, the term ‖A‖ jγ j is typically exponential in j, so an improvement on C j would not yield an
asymptotic improvement to the final result if the same level of generality is considered. However, as we point
out in Section 6, sharpening our constants is of relevance for applications.
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3.3. Incompressibility

In Section 4, we will see that our upper bounds for the local Lipschitz constants of the Jacobi
coefficients go to infinity if u becomes too close to a sparse vector, roughly speaking. So we only
have a good local Lipschitz constant in a certain region of the unit sphere that avoids sparse vectors.
In order to upgrade our local Lipschitz constant to a global Lipschitz constant, we must prove

(1) that this region is large enough to apply the local Lévy lemma (Lemma 3.1) and

(2) that this region is K-connected for a small enough K.

First we give this region a name. Loosely inspired by the compressed sensing literature (see,
for example, [Ver09]), we say that a vector u in Sn−1 is (δ, ε)-incompressible if each set of at least δn
coordinates carries at least ε of its “`2 mass.” Otherwise, we say that u is (δ, ε)-compressible. We
denote the set of (δ, ε)-incompressible vectors in Sn−1 by In(δ, ε) and record the formal definition
below.

Definition 3.9.

In(δ, ε) =

u ∈ Sn−1 :
∑
i∈S

u2
i > ε for all S ⊆ {1, 2, . . . ,n}, |S| ≥ δn

 .
For incompressible u we prove an adequate bound on the local Lipschitz constant in Proposition

4.2. Fortunately, a uniform random unit vector u is incompressible with high probability, as we will
now show.

Proposition 3.10. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < ε < δ. Then

P[u < In(δ, ε)] ≤ exp
{

2δ(1 + log 1/δ)n −
(
ε
δ
− 1

)2
n
}

+ exp{−ε2n/8}.

Corollary 3.11. Let u ∈ Sn−1 be a uniform random unit vector, and let 0 < δ ≤ 1/50. Then

P[u < In(δ, δ/2)] ≤ 2 exp{−δ2n/32}.

Proof. Set ε = δ/2 in Proposition 3.10. Note that ε2/8 = δ2/32 and 2δ(1 + log 1/δ) − (1/2)2 < −1/32
for 0 < δ ≤ 1/50. �

The proof of the Proposition 3.10 consists of two parts. First, we prove a similar proposition
where instead of the ui we have independent Gaussian random variables with the same variance
1/n. We then use a coupling argument to conclude the desired bound for u drawn uniformly from
the unit sphere.

We will need upper and lower tail bounds on the χ2 distribution. One can get good enough
bounds using the Chernoff method, but rather than develop these from scratch we will cite the
following corollary of Lemma 1 from Section 4.1 of [LM00].

Lemma 3.12. Let Y be distributed as χ2(k) for a positive integer k. Then the following upper and lower tail
bounds hold for any t ≥ 0:

P
[
Y ≤ k − 2

√

kt
]
≤ e−t,

P
[
Y ≥ k + 2

√

kt + 2t
]
≤ e−t.
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Proof of Proposition 3.10. Let X1, . . . ,Xn denote independent Gaussian random variables each with
variance 1/n, and let X = (X1, . . . ,Xn). If we set u = X/‖X‖, then u is uniformly distributed on the
unit sphere; see e.g. [Mul59].

We seek to upper bound the probability of compressibility {u < In(δ, ε)}, which is the event that∑
i∈S u2

i < ε for some subset S of coordinates with |S| ≥ δn. This event is contained in the union of
the following two events:

1. E, the event that
∑

i∈S X2
i ≤ 2ε for some |S| ≥ δn, and

2. F, the event that
∑

i∈S X2
i ≥ ε +

∑
i∈S u2

i for some |S| ≥ δn.

Indeed, if neither of these events hold, then for all |S| ≥ δn we have

2ε <
∑
i∈S

X2
i < ε +

∑
i∈S

u2
i ,

so u is incompressible.
To upper bound the probability of E, we use the union bound over all sets of size k = dnδe:

P[E] ≤
(
n
k

)
P

 k∑
i=1

X2
i ≤ 2ε


≤ (en/k)k exp

{
−

(k − 2nε)2

4k

}
,

where in the last step we apply the lower tail bound in Lemma 3.12 with t being the solution to
k− 2

√
kt = 2nε. To avoid the bookkeeping of ceiling and floor functions we use the extremely crude

inequality nδ ≤ k ≤ 2nδ (valid as long as δn ≥ 1), which will suffice for our purposes:

P[E] ≤ exp
{

2δ(1 + log δ−1)n −
(
ε
δ
− 1

)2
n
}
.

We now upper bound the probability of F:

P[F] = P

∑
i∈S

X2
i −

X2
i

‖X‖2

 ≥ ε for some |S| > δn


= P

(1 − 1
‖X‖2

)∑
i∈S

X2
i ≥ ε for some |S| > δn


≤ P

[(
1 −

1
‖X‖2

)
‖X‖2 ≥ ε

]
= P

[
‖X‖2 ≥ 1 + ε

]
.

Since Y = n‖X‖2 is distributed as χ2(n), we may apply the upper tail bound in Lemma 3.12 with
t = nε2/8 to obtain

P[F] ≤ exp{−nε2/8}.

To conclude, we have P[u < In(δ, ε)] ≤ P[E] + P[F], and substituting the bounds we just derived, we
obtain the desired inequality. �
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3.4. K-connectedness of the incompressible region

Having proven that the incompressible region In(δ, ε), where we have a good local Lipschitz
constant, is almost the entire sphere, we now turn to proving that the region is K-connected for a
small enough K.

One could try to show that any two points in In(δ, ε) can be connected by a short path contained
in In(δ, ε), but for our purposes it is okay to let the path venture out into the larger region In(4δ, ε/

√
2).

When upgrading to a global Lipschitz constant, we will have to use the slightly worse upper bound
for the local Lipschitz constant in this larger region, but this will still be good enough.

Proposition 3.13. In(δ, ε) is
√

2/ε-connected in In(4δ, ε/
√

2).

Proof. Let x and y be any two endpoints in In(δ, ε). The construction will proceed in two steps. First,
we will construct a path from x to y in Rn consisting of dδ−1

e pairwise orthogonal line segments.
Then we will project this path radially onto the unit sphere and show that the result indeed lies in
In(4δ, ε/2) and has length at most (2/

√
ε)‖x− y‖, which is at most (2/

√
ε)d(x, y), where d denotes the

geodesic distance on Sn−1.
Roughly speaking, we will partition the coordinates of x into 1/δ blocks of δn coordinates and

move the entries of each block linearly from x to y in parallel, one block at a time.
Because basic quantities such as 1/δ and δn may not be integers, we will be content to split up

Rn as the direct sum
⊕m

i=1R
ni , where δn ≤ ni ≤ 2δn for all i.1 Note also that this implies m ≥ 1

δ .
Similarly, for any vector z ∈ Rn, we will write z =

⊕m
i=1 z(i), where z(i)

∈ Rni .
Now we may formally define the path Pi to be the line segment

Pi(t) = x(1)
⊕ · · · ⊕ x(i−1)

⊕

(
tx(i) + (1 − t)y(i)

)
⊕ y(i+1)

⊕ · · · ⊕ y(m)

and define P to be the concatenation of the segments P1, . . . ,Pm. The length of P is

m∑
i=1

‖x(i)
− y(i)

‖ ≤
√

m‖x − y‖ ≤
√

1/δ‖x − y‖,

by the Cauchy-Schwarz inequality. Also, ‖P(t)‖ ≥
√
ε/2δ, because

‖Pi(t)‖2 ≥
i−1∑
j=1

‖x( j)
‖

2 +

m∑
j=i+1

‖y( j)
‖

2
≥ (m − 1)ε ≥

ε
2δ
,

where we use that x and y are (δ, ε)-incompressible.
Furthermore, note that P lies inside the closed ball of radius

√
2, because for any i and t,

‖Pi(t)‖2 ≤
m∑

j=1

max{‖x( j)
‖, ‖y( j)

‖}
2
≤

m∑
j=1

(
‖x( j)
‖

2 + ‖y( j)
‖

2
)

= 2.

The path P currently does not lie in the unit sphere, so we project it onto the unit sphere along
radii to get our final path P′. We now show that P′ indeed lies in In(4δ, ε/

√
2).

1This is possible as long as n/2 ≥ δn ≥ 1, which will be true in our regime.
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At this stage, we will dispense with the direct sum decomposition and use ordinary coordinates
z = (z1, . . . , zn).

Consider any set S of at least 4δn coordinates, and consider any point Pi(t) in our path P (before
projection). The ith block of coordinates is in motion, and all of the other coordinates are either
frozen at their initial value (from x) or their final value (from y).

The ith block consists of at most 2δn coordinates. Besides these, there are at least 4δn−2δn = 2δn
remaining coordinates in our set S. At least δn of them are from x or at least δn of them are from y.
By incompressibility of x and y, the sum of the squares of these δn coordinates is at least ε.

After projecting onto the unit sphere, the sum of the same coordinates is still at least ε/
√

2,
because as we saw, the original path had norm at most

√
2 at every point.

Finally, when projecting onto the unit sphere, the length of the path increases by at most a factor
of 1/

√
ε/2δ, because as we saw earlier, originally each segment lay outside the smaller sphere of

radius
√
ε/2δ. The verification is an exercise in plane geometry (using the fact that tanθ > θ for

0 < θ < π/2) and also follows from the arc length formula ds =
√

r2 + (dr/dθ)2 dθ ≥ r dθ.
Thus, finally, we have shown that the path P′ is contained in In(4δ, ε/

√
2) and has length at most√

1/δ‖x − y‖(1/
√
ε/2δ) =

√
2/ε‖x − y‖.

�

4. Concentration of the output

We now analyze the local Lipschitz constant for the entries αi and βi of the Jacobi matrix. To simplify
notation, in what follows we assume that ‖A‖ = 1 by rescaling A. Recall that this will also rescale
the Ritz values and Jacobi coefficients by a factor 1/‖A‖.

By Corollary 3.7, the function αi(u) has local Lipschitz constant 2 · 4iγi(u), and βi(u) has local
Lipschitz constant 4i+1γi(u). Thus we are naturally led to the question of finding upper bounds for
γk(u). Recall that γk(u) is defined as the leading coefficient of the kth orthogonal polynomial with
respect to the measure µu =

∑n
i=1 u2

i δλi and that πu
k is the monic orthogonal polynomial with respect

to the same measure.
The Equations (2.1) and (2.6) imply

γk(u) =

 n∑
i=1

u2
i π

u
k (λi)2


−

1
2

.

We seek to upper bound γk(u) in terms of u, so we need to lower bound the quantity

n∑
i=1

u2
i π

u
k (λi)2 =

n∑
i=1

u2
i

k∏
j=1

|λi − r j(u)|2,

where r1(u), . . . , rk(u) are the roots of πu
k (z), i.e. the Ritz values.

Now, if it happens to be the case that the n eigenvalues λi are all clustered very close to the k Ritz
values r j, then we won’t get a good lower bound. However, if k� n and if the λi are reasonably
spread out, we expect to get a good lower bound for most i. To make this precise, we are led to the
notion of equidistribution, which was stated in Section 2.3 and which we restate below.
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Definition 4.1. (Restatement of Definition 2.1). Let Λ be any finite set of n real numbers. Let δ and ω be
positive real numbers and let j be a natural number. We say that Λ is (δ, ω, j)-equidistributed if for any
finite set T of at most j real numbers,∣∣∣∣∣∣∣

λ ∈ Λ :
1
|T|

∑
t∈T

log |λ − t| ≥ logω


∣∣∣∣∣∣∣ ≥ δn.

We will show in Section 4.1 that a wide range of spectra are equidistributed.
Now we apply the definition. Returning to our effort to upper bound γ j(u), we see that if we

assume the spectrum of A is (δ, ω, k)-equidistributed, then

n∑
i=1

u2
i

k∏
j=1

|λi − r j(u)|2 ≥
∑
i∈S

u2
iω

2k,

where S is some subset of {1, . . . ,n} of size at least δn. However, for an arbitrary unit vector u and an
arbitrary subset S, we have no lower bound on the sum

∑
i∈S u2

i —it could even be zero. This leads
to our definition of incompressibility in Section 3, which is satisfied by u with high probability.

Indeed, if we assume that the unit vector u is (δ, ε)-incompressible, then the right hand
side expression above is greater than εω2k. Putting together the last few equations, we have
γk(u) ≤ (εω2k)−1/2. We summarize the result in the following proposition.

Proposition 4.2. Suppose the spectrum of A is (δ, ω, k)-equidistributed and suppose that u is (δ, ε)-
incompressible for some δ, ω, ε > 0 and k ∈N. Then

γk(u) ≤
1

ωk
√
ε
.

4.1. Equidistribution

In this section we establish sufficient conditions for equidistribution that apply to a wide range
of spectra. First, we present an immediate generalization of the notion of equidistribution which
applies to measures µ instead of finite sets Λ. The definitions coincide for finite sets if one identifies
Λ with the uniform probability distribution on Λ.

Definition 4.3 (Equidistribution for measures). Let µ be a probability measure on R. Let δ, ω > 0 and
j be a natural number. We say that µ is (δ, ω, j)-equidistributed if for any finite set T of at most j real
numbers,

µ


x ∈ R :

1
|T|

∑
t∈T

log |x − t| ≥ logω


 ≥ δ.

If a measure is (δ, ω, j)-equidistributed for every j ∈N, we will just say that it is (δ, ω)-equidistributed.

For absolutely continuous measures, we have the following general equidistribution result.

Proposition 4.4 (Absolutely continuous measures are equidistributed). Let ν be a compactly supported
probability measure on R with a nontrivial absolutely continuous part. Then there exist constants δ, ω > 0
such that ν is (δ, ω)-equidistributed.
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Proof. By the assumption, we may write ν = ν1 + ν2, where ν1 is absolutely continuous with respect
to Lebesgue measure. By cutting off the portion where the density of ν1 is greater than some large
M > 0 and assigning that mass to ν2 instead, we may assume without loss of generality that the
density function of ν1 is bounded.

We now utilize a Markov inequality type argument. Let T be any set of j real numbers. Define
the logarithmic potential

V(x) = −
1
j

∑
t∈T

log |x − t|.

Since ν1 has a bounded density function, log |x− t| is integrable against ν1 for all t, so the integral∫
∞

−∞
Vt(x) dν1(x) is finite for each t ∈ T. Averaging over all t ∈ T, we find that

1
ν1(R)

∫
∞

−∞

V(x)dν1(x) ≤ a

for some constant a < ∞. Then

a ≥
1

ν1(R)

∫
∞

−∞

V(x)dν1(x) ≥
2aν1({x ∈ R : V(x) ≥ 2a})

ν1(R)
.

Relating this back to the definition of equidistribution, we have

ν1


x ∈ R :

1
|T|

∑
t∈T

log |x − t| ≥ −2a


 = ν1({x ∈ R : V(x) ≤ 2a}) ≥

1
2
ν1(R).

Hence we may take δ = 1
2ν1(R) and ω = e−2a. �

Given our framework, it will be useful to have a statement relating the equidistribution of an
absolutely continuous measure to a discretization of that measure. If the two measures are close in
Kolmogorov distance, then we can prove such a statement.

Proposition 4.5. Let µ and ν be probability measures. If µ is (δ, ω, j)-equidistributed for some δ, ω > 0 and
j ∈N, then ν is (δ − ε, ω, j)-equidistributed, where ε = 4 jKol(µ, ν).

Proof. Let T be any set of at most j real numbers. Since p(x) =
∏

t∈T |x − t| is the absolute value of a
polynomial of degree j, each of its level sets is a union of at most 2 j intervals. Hence,

|µ({x ∈ R : p(x) ≥ ω|T|}) − ν({x ∈ R : p(x) ≥ ω|T|})| ≤ 4 jKol(µ, ν).

�

Thus, to prove equidistribution for an atomic measure, it suffices to prove equidistribution for a
nearby absolutely continuous measure.

The above propositions immediately yield a useful corollary for analyzing the Lanczos procedure
in the regime of O(log n) iterations.

Corollary 4.6. Let µ be a compactly supported probability measure with nontrivial absolutely continuous
part. Let {µn} be a sequence of probability measures such that Kol(µn, µ) ≤ C

log n for some C > 0. Then for all
n, for all j ≤ 1

2C log n we have that µn is (δ, ω, j)-equidistributed for some δ, ω > 0.
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Remark 4.7. If µ is (δ, ω, j)-equidistributed and ν is the pushforward of µ under the affine map x 7→ ax + b,
then ν is (δ, aω, j)-equidistributed.

We now compute the equidistribution for a few example measures, following the proof of
Proposition 4.4.

Example 4.8. Let µ denote the uniform measure on [0, 1]. Then∫
V(x) dµ(x) ≤

∫
− log

∣∣∣∣∣x − 1
2

∣∣∣∣∣ dµ(x) = 1 + log 2.

Thus, µ is (1/2, 4e−2)-equidistributed.

Example 4.9. Let ν denote the semicircle law dν = 1
2π

√
(4 − x2)+ dx. Then∫

V(x) dν(x) ≤
∫
− log |x| dν(x) = 1/2.

Thus, ν is (1/2, e−1)-equidistributed.

With the above the claims made in the examples of Section 2.3 are now trivial.

Proof of Example 2.2 and Example 2.9. It is enough to put together Proposition 4.5 and Example
4.8. �

Note that for a given set of points that does not resemble a discretization of an absolutely
continuous distribution, it will still be likely that the equidistribution parameters are well behaved
(relative to their scale) provided that the points are somewhat spread out. On the other hand, if the
points are clustered in a few small clusters the analysis becomes trivial.

Observation 4.10. Let Λ be a set (or multiset) of n points. Let a1 ≤ b1 < a2 ≤ b2 < · · · < am ≤ bm be
such that Λ ⊂

⋃m
i=1[ai, bi]. Define ni = |Λ ∩ [ai, bi]| and let 1 the minimal gap between clusters, namely,

1 = min1≤i≤m−1 ai+1 − bi. Then Λ is (
k j

n ,
1

2 , j)-distributed, where k j = minS
∑

i∈Sc ni and S runs over all
subsets of {1, . . . ,m} of size j.

Proof. The proof follows directly from the definition of equidistribution. �

Remark 4.11. A particular case of Observation 4.10 is when ni ≥ b
n
mc and 1 = ai+1−bi for every i = 1, . . . ,m,

which yields Example 2.3 above. More generally, if each ni is roughly n/m, then k j will be roughly m− j, and
hence the δ parameter for the equidistribution of Λ will only degrade when j ≈ m. In other words, Theorem
2.4 is still strong for matrices whose spectrum consists of small clusters if the number of such clusters exceeds
the number of iterations of the Lanczos procedure. On the other hand, if the number of iterations exceeds
the number of clusters it is not hard to show that the Lanczos procedure will output (with overwhelming
probability) at least one Ritz value per cluster.
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4.2. Jacobi coefficients

We now have the necessary tools to prove concentration for the entries of the Jacobi matrix.

Proposition 4.12 (Jacobi coefficients are globally Lipschitz). Suppose the spectrum of A is (4δ, ω, i)-
equidistributed for some δ, ω > 0 and i ∈N. Then for any 0 < ε < δ, functions αi(u) and βi(u) are globally

Lipschitz on In(δ, ε) with constant Li,ε ≤
4i+2
‖A‖i+1

ωiε
.

Proof. Proposition 3.7 says thatαi(u) andβi(u) both have local Lipschitz constant at most 4i+1
‖A‖i+1γi(u)

for all u ∈ Sn−1. Proposition 4.2 says that because the spectrum of A is (4δ, ω, i)-equidistributed,
γi(u) ≤ 1

ωi
√
ε/
√

2
for all u ∈ In(4δ, ε/

√
2). Combining these, we have that αi(u) and βi(u) are locally

Lipschitz with constant
4i+1
‖A‖i+1

ωi
√
ε/
√

2

for all u ∈ In(4δ, ε/
√

2). Proposition 3.13 says that In(δ, ε) is
√

2/ε-connected in the larger set
In(4δ, ε/

√
2), so Lemma 3.5 implies that αi(u) and βi(u) are globally Lipschitz on In(δ, ε) with constant

Li,ε =

√
2
√
ε

 4i+1
‖A‖i+1

ωi
√
ε/
√

2

 ≤ 4i+2
‖A‖i+1

ωiε
.

�

We now have the tools to prove our first main theorem, which quantifies the concentration of
the Jacobi coefficients around their medians.

Theorem 4.13 (Restatement of Theorem 2.4). Suppose the spectrum of A is (δ, ω, i)-equidistributed
for some δ, ω > 0 and i ∈ N. Let α̃i and β̃i denote the medians of the Jacobi coefficients αi(u) and βi(u),
respectively. Then for all t > 0, the quantities P[|αi(u) − α̃i| > t‖A‖] and P[|βi(u) − β̃i| > t‖A‖]] are both
bounded above by

2 exp
{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−

1
64

(
ω

4‖A‖

)2i
δ2t2n

}
. (4.1)

Proof. The local Lévy lemma (Lemma 3.1) yields that P[|αi(u) − α̃i| > t‖A‖] and P[|βi(u) − β̃i| > t‖A‖]
are both at most

P[u < In(δ, ε)] + 2 exp{−4nt2
‖A‖2/L2

i,ε},

where Li,ε is the global Lipschitz constant on In(δ, ε) obtained in Proposition 4.12. Note that if
δ > 1/50, then A is still (1/50, ω, i)-equidistributed, so we may set ε = δ/7 and apply Corollary 3.11
to bound P[u < In(δ, ε)]. We obtain the upper bound

2 exp
{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−4nt2

‖A‖2ω2i(δ/2)2

42i+4‖A‖2i+2

}

≤ 2 exp
{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−

1
64

(
ω

4‖A‖

)2i
δ2t2n

}
as desired. �
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Combining the previous theorem with Corollary 4.6 we get convergence in probability of the
Jacobi matrices in the regime k = O(log n).

Proposition 4.14. Let the spectra µn of An converge to the spectrum µ of A in Kolmogorov distance with
rate O(1/ log n). Suppose µ has a nontrivial absolutely continuous part. Then there exists c2 > 0 and a
sequence kn ≥ c2 log n such that the Jacobi matrices Jkn output by the Lanczos algorithm after kn iterations
converge to entrywise in probability to deterministic constants.

Proof. By Corollary 4.6, we have that µn is (δ, ω, k)-equidistributed for all k ≤ c1 log n. Picking c2 < c1
and applying Theorem 2.4, for i ≤ c2 log n this yields the bound

P[|αi − α̃i| > t] ≤ exp{−δ2n/32} + 2 exp
{
−

4
43 (ω/4)2c2 log nnt2

}
= exp{−δ2n/32} + 2 exp

{
−

4
43 n2c2 log(ω/4)+1t2

}
so as long as 2c2 log(ω/4) + 1 > 0, we have convergence in probability of the Jacobi coefficients as
n→∞. But this is certainly true for small enough c1. The βi have the same bound as the αi, so we
are done. �

As mentioned in the introduction, convergence for fixed k to the infinite Jacobi matrix J of µ
for deterministic µn (with no hypothesis on the rate of convergence of µn) is proven in [Gau68,
Theorem 4]. In Proposition 4.14 we leave it open to prove that the limit is actually J (see Section 6),
but if we reduce the number of iterations from k = O(log n) to k = O(

√
log n), we can indeed prove

that the limit is J. This is the content of Theorem 2.12, proven in Section 5.

4.3. Ritz values

Theorem 2.4 yields concentration of the entries of the random matrix Jk(u). In general, controlling
the entries of a random matrix does not yield control over its random eigenvalues, but, since Jk(u)
is Hermitian we know that its spectrum is stable with respect to small perturbations of the entries.
More precisely, we will use the well known Weyl’s inequality—see [HJ12, Theorem 4.3.1] for a
reference.

Lemma 4.15 (Weyl). For every matrix X, let λ1(X) ≥ · · · ≥ λn(X) denote the eigenvalues of X. If A and B
are n × n Hermitian matrices, then for all 1 ≤ i ≤ n we have

|λi(A + B) − λi(A)| ≤ ‖B‖.

Following the notation in Theorem 2.4, let J̃k be the k × k Jacobi matrix with entries α̃i and β̃i,
and denote the eigenvalues of J̃k by r̃1 ≥ · · · ≥ r̃k.

Proposition 4.16 (Concentration of the Ritz values). Assume that the spectrum of A is (δ, ω, k)-
equidistributed for some δ, ω > 0 and k ∈ N. With the notation described above, let ~r = (r̃1, . . . , r̃k)
and let ~r(u) = (r1(u), . . . , rk(u)) be the vector of Ritz values after k iterations. Then the probability
P[‖~r(u) − ~r‖∞ ≥ t‖A‖] is bounded above by

4k

exp
{
−

min{δ, 1/50}2

32
n
}

+ exp

− 1
192

(
ω

4‖A‖

)2k

δ2t2n


 .
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Proof. Since J̃k and Jk(u) are tridiagonal matrices, we may split Jk − J̃k into the sum of three matrices
consisting of the diagonal, the subdiagonal, and the superdiagonal and then use the triangle
inequality to obtain

‖Jk(u) − J̃k‖ ≤ max
0≤i≤k−1

{|αi(u) − α̃i|} + 2 max
0≤i≤k−2

{|βi(u) − β̃i|}. (4.2)

Hence, we deduce that

P[‖~r(u) − ~r‖∞ ≥ t] ≤ P[‖Jk(u) − J̃k‖ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u) − α̃i|} + 2 max
0≤i≤k−2

{|βi(u) − β̃i|} ≥ t
]
,

where the first inequality follows from Lemma 4.15 and the second inequality from (4.2). Now
observe that the event {max0≤i≤k−1{|αi(u) − α̃i|} + 2 max0≤i≤k−2{|βi(u) − β̃i|} ≥ t} is contained in the
event {

max
0≤i≤k−1

{|αi(u) − α̃i|} ≥
t
3

}
∪

{
max

0≤i≤k−2
{|βi(u) − β̃i|} ≥

t
3

}
,

which in turn is contained in the event
k⋃

i=1

{
|αi(u) − α̃i| ≥

t
3

}⋃{
|βi(u) − β̃i| ≥

t
3

}
.

Using a union bound and applying Theorem 2.4, we obtain the desired result. �

4.4. Ritz Vectors

Here we will use the same notation as in Section 4.3. Let w̃i be the eigenvector of J̃k corresponding
to r̃i and let wi(u) be the eigenvector of Jk(u) corresponding to ri(u). We will use the fact that
Jk(u) concentrates around J̃k, together with the Davis-Kahan theorem [DK69] to establish the
concentration of the vectors wi(u).

Theorem 4.17 (Davis-Kahan). Here we use the notation of Lemma 4.15. Fix i ∈ {1, . . . ,n} and assume
that λi(A) has multiplicity 1. Define

ε = min
j: j,i
|λi(A) − λ j(A)|,

and let θ ∈ [0, π/2] denote the angle between the i-th eigenvectors of A and A + B. Then

sinθ ≤
2‖B‖
ε
.

Under the assumption that r̃i(u) is not close to the other Ritz values, we get the following result.

Proposition 4.18 (Concentration of the Ritz vectors). Assume that the spectrum of A is (δ, ω, k)-
equidistributed for some δ, ω > 0 and k ∈ N and fix some i ∈ N with 1 ≤ i ≤ k. With the notation
described above, let θ ∈ [0, π/2] be the angle between wi(u) and w̃i and let ε = min j: j,i |r̃i − r̃ j|. Then for
any 0 ≤ c < 1/2, the probability P [sinθ ≥ 2‖A‖/εnc] is bounded above by

4k

exp
{
−

min{δ, 1/50}2

32
n
}

+ exp

− 1
192

(
ω

4‖A‖

)2k

δ2n1−2c


 .
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Note. The same result holds for the Ritz vectors, since these are obtained by applying an isometry
to the wi(u).

Proof. From Theorem 4.17 we have that

sinθ ≤
2‖ J̃k(u) − J̃k(u)‖

ε

and hence

P[sinθ ≥ t] ≤ P[‖Jk(u) − J̃k‖ ≥ t]

≤ P
[

max
0≤i≤k−1

{|αi(u) − α̃i|} + 2 max
0≤i≤k−2

{|βi(u) − β̃i|} ≥ t
]
,

where the latter inequality was established in the proof of Proposition 4.16. Using the bound
obtained in the aforementioned proof and substituting t = 2

εnc we obtain the desired result. �

5. Proofs of Proposition 2.10 and Theorem 2.12

5.1. Proof of Proposition 2.10

We now prove our theorem about the Lanczos algorithm missing outliers in the spectrum.

Proof of Proposition 2.10. By Proposition 4.5, we have that µn is (δ, ω, j)-equidistributed for some
δ, ω > 0 and all j < c log n. Suppose u ∈ In(δ, ε), which happens with overwhelming probability by
Proposition 3.10. Then by Proposition 4.2, we have an upper bound on the leading coefficient of the
jth orthogonal polynomial: γ j(u) ≤ 1

ω j √ε
. Equivalently, this is a lower bound on the L2 norm of the

jth monic orthogonal polynomial: ‖πu
j ‖L2(µu) ≥ ω

j√ε. As mentioned in the preliminaries in Section

2, it is a classical fact that the monic orthogonal polynomial of any given degree has minimal L2

norm over all monic polynomials of that degree. Thus, we in fact have∫
q(x)2 dµu(x) ≥ εω2 j (5.1)

for all monic polynomials q of degree j, with equality when q(x) is the kth orthogonal polynomial
pu

k (x).
For all unit vectors u, let ρ(u) denote the top Ritz value, i.e. the maximum root of pu

k (x). We
wish to show that ρ(u) < R + κ with high probability.

Take pu
k (x) and replace its top root by t to form the monic polynomial Pt. By the first-order

condition for the variational characterization of pu
k mentioned above, to show ρ(u) ≤ R +κ it suffices

to show that ‖Pt‖L2(µu) is strictly increasing in t for t > R + κ. We have

‖Pt‖
2
L2(µu) =

∫ (
πu

k (x)

x − ρ(u)
(x − t)

)2

dµu(x) =

k∑
i=1

u2
i (λi − t)2

k∏
j=2

(λi − r j)2,

where we let r2, . . . , rk denote the roots of pu
k (x) besides the maximum root ρ(u), and we omit the

argument u for brevity. We calculate the derivative
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d
dt
‖Pt‖

2
L2(µu) = −2

m∑
i=1

u2
i (λi − t)

k−1∏
j=1

(λi − r j)2
− 2

n∑
i=m+1

u2
i (λi − t)

k∏
j=2

(λi − r j)2.

We wish to show that this quantity is positive whenever t ≥ R + κ. We have assumed that there
are only m outliers, so assume λi ≤ R for all i > m. Then t − λi ≥ κ for every m < i ≤ n.

Thus,

d
dt
‖Pt‖

2
L2(µu) ≥ −2

m∑
i=1

u2
i (λi − t)

k−1∏
j=1

(λi − r j)2 + 2
n∑

i=m+1

u2
i κ

k∏
j=2

(λi − r j)2

= −2
m∑

i=1

u2
i (λi − t)

k∏
j=2

(λi − r j)2

+

2κ
∫ ( pu

k (x)

x − ρ(u)

)2

dµu(x) − 2
m∑

i=1

u2
i κ

k∏
j=2

(λi − r j)2


≥ −2

m∑
i=1

u2
i (λi − t)

k∏
j=2

(λi − r j)2 + 2κεω2(k−1)
− 2

m∑
i=1

u2
i κ

k∏
j=2

(λi − r j)2,

where in the last step we used the inequality (5.1) on the degree k − 1 polynomial pu
k (x)/(x − ρ(u)).

Simplifying, we have

d
dt
‖Pt‖

2
L2(µu) ≥ 2κεω2(k−1)

− 2
m∑

i=1

u2
i (λi + κ − t)

k∏
j=2

(λi − r j)2.

By uniform boundedness of the spectra, there exists M large such that λi − r j ≤M for all 1 ≤ i ≤ m.
Let 1 be the maximum of the outlier gaps λi − R over all 1 ≤ i ≤ m. Recall that t ≥ R + κ, so
λi +κ− t ≤ λi−R ≤ 1 for all 1 ≤ i ≤ m. Finally, we have with overwhelming probability

∑m
i=1 u2

i < n−c

for any positive c < 1/2; we will defer the proof to Lemma 5.3 below. Putting this all together, we
have

d
dt
‖Pt‖

2
L2(µu) ≥ 2κεω2k−2

− 2n−cM2k−2m1.

This quantity is strictly positive when

logκε + (2k − 2) logω > −c log n + (2k − 2) log M + log m1.

Rearranging, we get
(2k − 2) log(ω/M) > −c log n + log m1 − logκε

for n large. Note that ω < M, because ω is a lower bound on geometric means of distances that are
all less than M. In conclusion, with high probability, d

dt‖Pt‖
2
L2(µu)

> 0 for all t > R + κ when

2k − 2 <
1

log M
ω

(
c log n + log

κε
m1

)
. (5.2)

For n large, we may absorb the constants m, 1, κ, ε, ω (which do not depend on n) into a single
constant c′ > 0, and we get the desired k ≤ c′ log n.

�
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Remark 5.1. We have focused on the right side of the spectrum for ease of exposition. Similar results hold
for outliers on both sides.

Remark 5.2. There are several parameters that can be tuned in the above proof. For example, one could
envision a situation in which κ converges to zero as n→∞, at the expense of some other parameter.

Lemma 5.3. Let 0 < c < 1/2 and suppose m ≤ nα, where α < 1−c. Then
∑m

i=1 u2
i < n−c with overwhelming

probability. To be precise,

P

 m∑
i=1

u2
i ≥ n−c

 ≤ exp
{
−

1
16

(
4nα − 4

√

2n
1
2−

c
2 + α

2 + 2n1−c
)}

+ exp
{
−

1
16

n1−2c
}
.

Proof. We proceed just as in the proof of Proposition 3.10. Define Xi as in that proof. Then

P

 m∑
i=1

u2
i > n−c

 ≤ P

 m∑
i=1

X2
i >

1
2

n−c

 + P

 m∑
i=1

X2
i < −

1
2

n−c +

m∑
i=1

u2
i

 .
Using Lemma 3.12, we solve for the parameter

√
t =

−2
√

m+
√

2n
1
2−

c
2

4 (which requires α < 1 − c) and
then we get

P

 m∑
i=1

X2
i >

1
2

n−c

 ≤ exp

−
−2
√

m +
√

2n
1
2−

c
2

4

2
= exp

{
−

1
16

(
4nα − 4

√

2n
1
2−

c
2 + α

2 + 2n1−c
)}
,

which is an overwhelmingly small probability because 1
2 −

c
2 + α

2 < 1 − c when α < 1 − c.
Now following the same coupling argument in the proof of Proposition 3.10 and using Lemma

3.12 again, we get

P

 m∑
i=1

X2
i < −

1
2

n−c +

m∑
i=1

u2
i

 ≤ exp
{
−

1
16

n1−2c
}
.

�

Proof of Theorem 2.8. From the proof of Proposition 2.10, setting ε = δ/2 we have that the Ritz values
are contained in the desired interval for

k ≤
1

2 log M
ω

(
c log n + log

κδ
2m1

)
as long as k ≤ j, u ∈ In(δ, δ/2) and

∑m
i=1 u2

i > n−c. Applying Corollary 3.11, the probability that u
violates either condition is at most

P[u < In(δ, δ/2)] + P

 m∑
i=1

u2
i > n−c


29



≤ 2 exp
{
−

min{δ, 1/50}2

32
n
}

+ P

 m∑
i=1

u2
i > n−c


≤ 2 exp

{
−

min{δ, 1/50}2

32
n
}

+ 2 exp
{
−

1
16

n1−2c
}
,

where in the last step, we apply Lemma 5.3 and note that for n ≥ e
1

1−c−α we have 4
√

2n
1−c+α

2 ≤ n1−c.
�

5.2. Proof of Theorem 2.12

For C > 0 let PC denote the space of Borel probability measures supported on [−C,C]. In order to
prove Theorem 2.12 we will show that the Jacobi coefficients of a measure are locally Lipschitz
quantities on the space PC equipped with the Kolmogorov metric. Note that in Section 3 similar
results were obtained in the case in which the space of measures in consideration is restricted
to atomic measures supported on n fixed points, namely, the eigenvalues of An. Since PC is a
much larger and complicated space we are not able to obtain results as strong as in Proposition
3.7. It remains an open question if a better rate can be achieved at this level of generality; see the
concluding remarks for some natural directions to pursue.

We will use the following well known result which, for convenience of the reader, we restate as
it appears in Lemma 1.1 in [God17].

Lemma 5.4. Let A and B be two k × k matrices. Then det(A + B) is equal to the sum of the determinants
of the 2k matrices obtained by replacing each subset of the columns of A by the corresponding subset of the
columns of B.

Proof. The result follows directly from the fact that the determinant is multilinear in the columns of
the matrix. �

Lemma 5.5. Let A and B be two k × k matrices. For 1 ≤ i ≤ k, let A(i) and B(i) be the ith columns of A and
B, respectively. Let C, ε > 0 and assume that

‖A(i)
− B(i)

‖2 ≤ ε and max{‖A(i)
‖2, ‖B(i)

‖2} ≤ C. (5.3)

Then
|det(A) − det(B)| ≤ εk(C + ε)k−1.

Proof. By the assumption in (5.3) we can write B = A + E, where E is a matrix with columns of
norm less than or equal to ε. Then, using Lemma 5.4, the inequalities in (5.3), and the fact that the
determinant of a matrix is bounded by the product of the Euclidean norms of its columns, we obtain

|det(A + E) − det(A)| ≤
n∑

k=1

(
n
k

)
Cn−kεk = (C + ε)k

− Ck
≤ εk(C + ε)k−1,

where the last inequality follows from the mean value theorem. �
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We now argue that the moments of a measure are Lipschitz quantities in PC, where the constant
is exponential in the order of the moment. With this end fix a Borel measure µ on R and denote

mk(µ) =

∫
R

xkdµ(x).

A standard application of Fubini’s theorem yields that if µ is a finite positive Borel measure
supported in [0,∞), then

mk(µ) = k
∫
∞

0
xk−1µ(x,∞)dx. (5.4)

This identity is enough to obtain the following bound.

Lemma 5.6. Let µ, ν ∈ PC and k > 0, then |mk(µ) −mk(ν)| ≤ 2CkKol(µ, ν).

Proof. Start by decomposing µ into µ+ and µ− as follows:

µ+(A) = µ(A ∩ [0,∞)), µ−(A) = µ(−A ∩ (−∞, 0)) ∀A ∈ B(R).

Hence µ(A) = µ+(A) + µ−(−A). Define ν+ and ν− analogously. Note that these new measures are
supported on [0,∞).

Observe that mk(µ) = mk(µ+) + (−1)kmk(µ−) and that the analogous formula holds for mk(ν).
Hence

|mk(µ) −mk(ν)| ≤ |mk(µ+) −mk(ν+)| + |mk(µ−) −mk(ν−)|.

Now, for t ≥ 0 define Fµ+(t) = µ+(t,∞) and Fν+(t) = ν+(t,∞). By definition of Kolmogorov
distance we have that

|Fµ+(t) − Fν+(t)| ≤ Kol(µ, ν).

On the other hand, by (5.4) we have that

|mk(µ+) −mk(ν+)| ≤ k
∫
∞

0
xk−1
|Fµ+(x) − Fν+(x)|dx

≤ kKol(µ, ν)
∫ C

0
xk−1dx

= CkKol(µ, ν).

In the exact same way we can bound |mk(µ−) −mk(ν−)| to conclude the proof. �

Given µ ∈ PC we denote the (k + 1) × (k + 1) Hankel matrix of µ by Mk(µ) and define
Dk(µ) = det Mk(µ). We will denote the Jacobi coefficients of µ by αµi and βµi . For the proof of the
following results, many of the facts stated in Section 2.1 will be used.

Proposition 5.7. Let µ, ν ∈ PC and let sk > 0 be constants satisfying

min{D j(µ),D j(ν)} ≥ sk

for j = 1, . . . , k. Then

|β
µ
k − β

ν
k | ≤

exp{1k2
}Kol(µ, ν)

s2
k

for some 1 > 0 dependent of µ and ν but independent of k.
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Proof. To shorten notation let x j = D j(µ) and y j = D j(ν). Without loss of generality C > 1. A direct
application of Lemma 5.6 yields a rough bound between the distance in the Euclidean norm of
the corresponding columns of the matrices M j(µ) and M j(ν). Namely, the columns are at distance
less than

√
j + 1C2 j−1Kol(µ, ν). The same reasoning yields that the norm of any column in M j(µ) or

M j(ν) is bounded by
√

j + 1C2 j−1. Hence, using Lemma 5.5 we get

|x j − y j| ≤ (
√

j + 1) j+1 j(C(2 j−1) + ε) j+1Kol(µ, ν) ≤ exp{1 j2}Kol(µ, ν)

for some 1 > 0 independent of k.
In what follows we will bound two other terms whose logarithm is also O(k2). The implied

constants depend only on µ and ν, so we can modify 1 to be big enough for the following inequalities
to hold as well. By the first expression in (2.3) we have that

|β
µ
k − β

ν
k | =

∣∣∣∣∣∣
√

xk−1xk+1

xk
−

√
yk−1yk+1

yk

∣∣∣∣∣∣
≤

1
xk
|
√

xk−1xk+1 −
√

yk−1yk+1| +
√

yk−1yk+1

∣∣∣∣∣ 1
xk
−

1
yk

∣∣∣∣∣ . (5.5)

To bound the first term on the right-hand side of the above inequality we see that

|
√

xk−1xk+1 −
√

yk−1yk+1| =
|xk−1xk+1 − yk−1yk+1|
√

xk−1xk+1 +
√

yk−1yk+1
and

|xk−1xk+1 − yk−1yk+1| ≤ xk−1|xk+1 − yk+1| + yk+1|xk−1 − yk−1|

≤ exp{ak2
}Kol(µ, ν),

which yields
1
xk
|
√

xk−1xk+1 −
√

yk−1yk+1| ≤
exp{1k2

}Kol(µ, ν)

2s2
k

. (5.6)

On the other hand,

√
yk−1yk+1

∣∣∣∣∣ 1
xk
−

1
yk

∣∣∣∣∣ =
√

yk−1yk+1
|xk − yk|

xkyk
≤

exp{1k2
}Kol(µ, ν)

2s2
k

. (5.7)

The result then follows from combining the previous inequalities (5.5), (5.6), and (5.7). �

Remark 5.8. The constants sk have already been studied with sophisticated techniques for some families of
measures; see [Sze77] for an example. However, using results only from Section 4 it will be easy to show
that for measures with an absolutely continuous part we have | log(sk)| = O(k2), where the implied constant
depends only on µ, which is enough for the proof of Theorem 2.12.

In a similar fashion we can show that the coefficients of pµk (x) are locally Lipschitz.

Proposition 5.9. Fix a positive integer k. Let µ, ν and sk be as in Proposition 5.7. Denote the coefficients of
xi in pµk (x) and pνk(x) by aµi and aνi respectively. Then

|aµi − aνi | ≤

 2
sk

+
1
s2

k

 Kol(µ, ν) exp{1k2
}

for some 1 > 0 dependent on µ and ν but independent of k.
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Proof. For 1 ≤ i ≤ k let M(i)
k (µ) be the matrix obtained by removing the kth row and ith column of

Mk(µ) and let di(µ) = det(M(i)
k (µ)). From identity (2.5) we have

aµi =
di(µ)√

Dk−1(µ)Dk(µ)
.

Using the same notation as in the proof of Proposition 5.7 we have that

|ai(µ) − ai(ν)| ≤

∣∣∣∣∣∣ di(µ)
√

xk−1xk
−

di(ν)
√

yk−1yk

∣∣∣∣∣∣
≤

1
√

xk−1xk
|di(µ) − di(ν)| + di(ν)

∣∣∣∣∣∣ 1
√

xk−1xk
−

1
√

yk−1yk

∣∣∣∣∣∣ .
As before 1

√
xk−1xk

≤
1
sk

, while |di(µ) − di(ν)| ≤ 2Kol(µ, ν) exp{1k2
} for some 1 > 0 dependent on µ

and ν only. To bound the second term on the right-hand side of the above inequality note that
di(ν) ≤ exp{1k2

} and that

1
√

xk−1xk
−

1
√

yk−1yk
= (xk−1xkyk−1yk)−

1
2 |
√

xk−1xk −
√

yk−1yk|

≤
1
s3

k

exp{1k2
}Kol(µ, ν),

where the last inequality is a consequence of (5.6). The result follows. �

Corollary 5.10. Let µ, ν, sk be as in Proposition 5.7. Then

|α
µ
k − α

ν
k | ≤

Kol(µ, ν) exp{1k2
}

s3
k

.

Proof. Recall that

α
µ
k =

∫
xp2

k(x)dµ(x) =

k∑
i, j=1

aµi aµj mi+ j+1(µ).

As mentioned above, the quantities aµi , a
ν
i , and mi(µ),ni(ν) are of size O(exp{1k2

}). Putting this
together with Proposition 5.9 and Lemma 5.6 we get that

|aµi aµj mi+ j−1(µ) − aνi aνj mi+ j−1(ν)| ≤
exp{1k2

}

s3
k

.

By adding over i, j and modifying 1 the result follows. �

In order to prove Theorem 2.12 and Proposition 2.13 we need one final lemma, which states that
with overwhelming probability, the random measure µu

n is close in Kolmogorov distance to µn.

Lemma 5.11. For n large enough we have that

P[Kol(µu
n, µn) ≥ n−

1
4 ] ≤ exp{−n

1
4 /8}.
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Proof. We must show that ∣∣∣∣∣∣∣
k∑

i=1

u2
i −

k
n

∣∣∣∣∣∣∣ ≤ n−
1
4

for all 1 ≤ k ≤ n with probability at least 1 − exp{−n1/4/8}.
Fix 1 ≤ k ≤ n. As in Section 3.3 start by considering X1, . . . ,Xk independent centered Gaussian

random variables of variance 1
n and let Zk =

∑k
i=1 X2

i . Then by Lemma 3.12 we have that

P
[
Zk ≥

k
n

+ n−
1
4

]
≤ e−t1 and P

[
Zk ≤

k
n
− n−

1
4

]
≤ e−t2 ,

where t1 and t2 are the solutions to

n−
1
4 =

2
√

kt1

n
and n−

1
4 =

2
√

kt2 + 2t2

n
, (5.8)

respectively. Since k ≤ n it is clear from (5.8) that min{t1, t2} ≥
n

1
4

4 . This implies that

P
[∣∣∣∣∣Zk −

k
n

∣∣∣∣∣ ≥ n−
1
4

]
≤ exp{−n

1
4 /4}.

Now, letting k run from 1 to n, a union bound yields that

P
[
max
1≤k≤n

∣∣∣∣∣Zk −
k
n

∣∣∣∣∣ > n−
1
4

]
≤ n exp{−n

1
4 /4} ≤

1
2

exp{−n
1
4 /8},

where the last equality holds for n large enough. Now, as in the proof of Proposition (3.10) we can
show by a standard coupling argument that if we take ui = Xi/

√
Zn, we will have that

P

max
1≤k≤n

∣∣∣∣∣∣∣Zk −

k∑
i=1

u2
i

∣∣∣∣∣∣∣
 ≤ 1

2
exp{−n

1
4 /8}

and the result follows. �

Proof of Theorem 2.12. From Lemma 5.11, for n large enough, we have that Kol(µu, µn) ≤ n−
1
4 with

overwhelming probability. By the assumption Kol(µn, µ) = n−c we then have that Kol(µu, µ) ≤ n−c′

also with overwhelming probability for c′ = min{1/4, c}. Hence, under the event {Kol(µu, µ) ≤ n−c′
}

we can apply Proposition 5.7 and Corollary 5.10 and use the fact that the Jacobi matrices are
tridiagonal to obtain that

‖Jkn(u) − Jkn(µ)‖ ≤
6C exp{d′k2

}

nc′ min{s2
k , s

3
k}
.

Since µ has an absolutely continuous part we know from Proposition 4.4 and Corollary 4.6 that
| log(γµk )| = O(k). Hence, from (2.4) we get | log sk| = O(k2), which makes it clear that there exists
d > 0 and a sequence kn ≤ d

√
log n satisfying the theorem statement. �

Proof of Proposition 2.13. As mentioned in Section 2, this proposition is a direct consequence of
Theorem 2.12 and Lemma 4.15. �
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Remark 5.12. Observe that the above proofs repeatedly use the fact that moments are Lipschitz quantities on
PC and that the Jacobi coefficients are an explicit function of the moments. However, going from moments to
Jacobi coefficients is an expensive process that we pay for by getting a rate of O(

√
log n) instead of Θ(log n).

At first glance, it may seem that the results in Section 3.2 may be used in a similar fashion to obtain a better
rate; however, even if we have strong concentration results for the Jacobi coefficients of the random measures
µu

n, it is a difficult task to control the location of the medians (or means) of α j(u) and β j(u) and hence it is
hard to show that these quantities converge at a good enough rate to the Jacobi coefficients of µ.

6. Concluding remarks

Several directions can be pursued to expand the results presented throughout this paper. Currently,
we have only analyzed the Lanczos algorithm in its prototypical form, but have not analyzed the
more sophisticated variants that are used in practice. Obtaining similar concentration results and
negative results for these modifications, and more generally for Krylov subspace methods, would
be of great interest.

The Lanczos algorithm is used in practice for non-Hermitian matrices and even nonnormal
matrices, despite these cases being far less understood. In this incarnation, the algorithm is referred
to as the Arnoldi algorithm. Extending the results of this paper to the Arnoldi algorithm is a
natural direction to pursue. As mentioned in Remark 2.7, it is easy to extend Theorem 2.4 to the
non-Hermitian setting, but no longer so easy to prove concentration of the Ritz values or to say
anything about their location.

The concentration guarantees of the output of the Lanczos algorithm in the present work hold
only for up to C log(n) iterations, where C is a function of the equidistribution parameters of the
spectrum of the input matrix. However, we do not know what is the optimal function of n for
which a result of this sort holds. Proving a general concentration statement that holds for Ω(log(n))
iterations would be interesting and require essentially different ideas. A particular case, which
might have a simpler solution but is of great interest in applications, is to show concentration of the
eigenvectors that correspond to outlying eigenvalues. A possible approach to the latter problem
is to take classical guarantees for approximation of outlying eigenvectors, such as [Saa80], and
convert them into probabilistic statements like the one given in Theorem 2.4.

In the same direction, another interesting task is to extend Theorem 2.12 to hold in the regime
k = Ω(log n) instead of the current setting of O(

√
log n). Some key difficulties are discussed in

Remark 5.12.
Another direction is to translate the concentration of the Jacobi coefficients (Theorem 2.4) into

some quantitative statement about the quality of the approximate spectral density obtained from
the first few Jacobi coefficients. This would require analyzing the conditioning of the Haydock
method or Padé approximation mentioned in the introduction. The Jacobi coefficients are also
used for estimating matrix functionals via quadrature; see [Gau04] for a comprehensive account. It
would be interesting to understand the implications of concentration in this setting as well.

Finally, we pose a question that is of independent mathematical interest, but which would also
allow us to remove the square root on the log n in the statement of Theorem 2.12 and Proposition
2.13.

Question 6.1. For C > 0 let PC be the set of probability measures with support contained in the interval
[−C,C]. Is there a natural metric on PC inducing a topology for which the set of atomic measures is a dense
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subset of PC, and the Jacobi coefficients

α j : PC → R and β j : PC → R

have local Lipschitz constant at most exponential in j?
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[Sze39] Gabor Szegő. Orthogonal polynomials, volume 23. American Mathematical Society,
1939.
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