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Abstract

In this paper, we study the problem of computing the effective diffusivity for particles

moving in chaotic flows. Instead of solving a convection-diffusion type cell problem in the

Eulerian formulation (arising from homogenization theory for parabolic equations), we com-

pute the motion of particles in the Lagrangian formulation, which is modeled by stochastic

differential equations (SDEs). A robust numerical integrator based on a splitting method was

proposed to solve the SDEs and a rigorous error analysis for the numerical integrator was

provided using the backward error analysis (BEA) technique [35]. However, the upper bound

in the error estimate is not sharp. To improve our result, we propose a new and uniform in

time error analysis for the numerical integrator that allows us to get rid of the exponential

growth factor in our previous error estimate. Our new error analysis is based on a probabilis-

tic approach, which interprets the solution process generated by our numerical integrator as

a Markov process. By exploring the ergodicity of the solution process, we prove the conver-

gence analysis of our method in computing effective diffusivity over infinite time. We present

numerical results to verify the accuracy and efficiency of the proposed method in computing

effective diffusivity for several chaotic flows, especially the Arnold-Beltrami-Childress (ABC)

flow and Kolmogorov flow in three-dimensional space.
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Keywords: Convection-enhanced diffusion; chaotic flows; effective diffusivity;

structure-preserving scheme; ergodic theory; Markov process.

1. Introduction

Diffusion enhancement in fluid advection is a fundamental problem to characterize and quan-

tify the large-scale effective diffusion in fluid flows containing complex and turbulent stream-

lines, which is of great theoretical and practical importance; see e.g. [8, 9, 7, 24, 20, 23, 29,

3, 30, 31, 21, 37] and references therein. Its applications can be found in many physical and

engineering sciences, including atmosphere science, ocean science, chemical engineering, and
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combustion. To study the diffusion enhancement phenomenon, one can consider a passive

tracer model, which describes particle motion with zero inertia

dX(t) = v(X, t) + σdW(t), X ∈ Rd, (1)

where X is the position of the particle, σ > 0 is the molecular diffusion coefficient, and W(t)

is a d-dimensional Brownian motion. The velocity v(X, t) satisfies either the Euler or the

Navier-Stokes equation. In practice, v(X, t) can be modeled by a random field that mimics

the energy spectra of the turbulent flow [23].

For spatial-temporal periodic velocity fields and random velocity fields with short-range

correlations, the homogenization theory [4, 13, 17, 32] states that the long-time large-scale

behavior of the particles is governed by a Brownian motion. More precisely, let DE ∈ Rd×d

denote the effective diffusivity matrix and Xǫ(t) ≡ ǫX(t/ǫ2). Then, Xǫ(t) converges in dis-

tribution to a Brownian motion W(t) with covariance matrix DE, i.e., Xǫ(t)
d−→

√
2DEW(t),

as ǫ → 0. The effective diffusivity matrix DE can be expressed in terms of particle ensem-

ble average (Lagrangian framework) or integration of solutions to cell problems (Eulerian

framework). The dependence of DE on the velocity field of the problem is highly nontrivial.

For time-independent Taylor-Green velocity field, the authors of [33] proposed a stochastic

splitting method and calculated the effective diffusivity in the limit of vanishing molecular

diffusion. For random velocity fields with long-range correlations, various forms of anomalous

diffusion, such as super-diffusion and sub-diffusion, can be obtained for exactly solvable mod-

els (see [23] for a review). However, the long-time large-scale behavior of the particle motion

is in general difficult to study analytically.

In recent work [35], we proposed a numerical integrator to compute the effective diffusivity

of chaotic and stochastic flows using structure-preserving schemes. We also investigated the

existence of residual diffusivity for several different velocity fields, including the time periodic

cellular flows. The residual diffusivity, a special yet remarkable convection-enhanced diffu-

sion phenomenon, refers to the non-zero and finite effective diffusivity in the limit of zero

molecular diffusivity as a result of a fully chaotic mixing of the streamlines. Mathematically,

we provided a rigorous error estimate for the numerical methods in computing the effective

diffusivity. Specifically, let DE denote the exact effective diffusivity matrix and DE,num denote

the numerical result obtained using our method (see the formula in Eq.(9)), respectively. We

obtained the error estimate, |DE,num−DE| ≤ C∆t+C(T )∆t2, where the T should be greater

than the mixing time. To the best of our knowledge, this result is the first one in the literature

to study the convergence on the numerical approximation of the effective diffusivity of chaotic

flows, which shows that the main source of error does not depend on time. However, the

prefactor C(T ) in the second term may grow exponentially fast, which makes the estimate

not sharp.

To get a sharp error estimate, we shall develop a new methodology in this paper, which

allows us to get rid of the exponential growth factor C(T ). Our analysis is based on a prob-

abilistic approach. We interpret the solution process generated by our numerical integrator

as a Markov process, where the transition kernel can be constructed explicitly due to the

2



additive noise in the passive tracer model (1). By exploring the ergodicity of the solution

process, we succeed in the convergence analysis of our method and give a sharp error estimate

for the numerical solution of the effective diffusivity. Most importantly, our convergence anal-

ysis reveals the ergodic structure of the solution process, so that we can compute long-time

integration of the passive tracer model in order to accurately compute the effective diffusivity.

As we will prove in Theorem 4.7 the error term of the effective diffusivity does not depend

on the computational time; see Fig.3a. Finally, we present numerical results to verify the

accuracy of the proposed method in computing effective diffusivity for several typical chaotic

flow problems of physical interests, including the Arnold-Beltrami-Childress (ABC) flow and

the Kolmogorov flow in three-dimensional space. The phenomenon of convection-enhanced

diffusion for those velocity fields will also be investigated.

Our computation of convection-enhanced diffusivity in three-dimensional chaotic flows

appears to be the first in the Lagrangian framework. Alternative computation in the Eulerian

framework involves singularly perturbed advection-diffusion equations whose solutions develop

sharp boundary layers with unknown locations a-priori. We are aware of only [5] on ABC flows,

which we recover and go beyond by two orders of magnitude of molecular diffusivity; see the

numerical results in Section 5.2 later.

The rest of the paper is organized as follows. In Section 2, we shall review the background of

the passive tracer model and the definition of the effective diffusivity matrix using the Eulerian

framework and the Lagrangian framework. In Section 3, we propose our numerical integrator

in computing the passive tracer model. Section 4 is the main part of this paper, where we

shall provide our new error estimate based on a probabilistic approach. In addition, we shall

show that our method can be used to solve high-dimensional flow problems and the error

estimate can be obtained in a straightforward way. In Section 5, we present numerical results

to demonstrate the accuracy and efficiency of our method. We also investigate the convection-

enhanced diffusivity for several chaotic velocity fields, especially the three-dimensional cases.

Concluding remarks are made in Section 6.

2. The definitions of effective diffusivity

We first introduce the definitions of effective diffusivity for chaotic flows. To be consistent

with the setting of the main results in this paper, we assume that the velocity v in Eq.(1) is

time-independent. Then the SDE (1) can be simplified to,

dX(t) = v(X) + σdW(t), X ∈ Rd, (2)

where σ > 0 is the molecular diffusion coefficient, X is the position of the particle, v(X) is

the Eulerian velocity field at position X, W(t) is a d-dimensional Brownian motion. The

interested reader is referred to [5, 23, 29, 35] and references therein for the results of passive

tracer models with time-dependent velocities.

There are two main frameworks to compute the effective diffusivity of the passive tracer

models. We first discuss the Eulerian framework. One natural way to study the expec-
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tation of the paths for the SDE given by the Eq.(2) is to consider its associated back-

ward Kolmogorov equation. Specifically, given a sufficiently smooth function φ(x) in Rd,

let u(x, t) = E[φ(Xt)|X0 = x] and Xt = (x1(t), ..., xd(t))
T is the solution to Eq.(2), then

u(x, t) satisfies the backward Kolmogorov equation as

ut = Lu, u(x, 0) = φ(x). (3)

In Eq.(3), the generator L is defined as

Lu = v · ∇u+D0∆u, (4)

where D0 = σ2/2 is the diffusion coefficient and v is the velocity field. When v(x) is in-

compressible (i.e. ∇x · v(x) = 0), deterministic and periodic in O(1) scale, where we assume

the period of v(x) is 1 in each dimension of the physical space, the formula for the effective

diffusivity matrix is [4, 32]

DE = D0I −
〈

v(x)⊗ χ(x)
〉

p
, (5)

where we have assumed that the fluid velocity v(x) is smooth and the (vector) corrector filed

χ(x) satisfies the cell problem,

−D0∆χ− v(x) · ∇χ = v(x), x ∈ Td, (6)

and 〈·〉p denotes spatial average over Td. Since v(x) is incompressible, the solution χ(x) to

the cell problem (6) is unique up to an additive constant by the Fredholm alternative. By

multiplying χ to Eq.(6) and integrating in Td with consideration of periodicity of χ and v, we

will get another equivalent formula for the effective diffusivity,

DE = D0I +D0

〈

∇χ(x)⊗∇χ(x)
〉

p
. (7)

The correction to D0 is nonnegative definite in Eq.(7). We can see that eTDEe ≥ D0 for

all unit column vectors e ∈ Rd, which is called convection-enhanced diffusion. By energy

estimate of χ, one can find an upper bound for the effective diffusivity, i.e., for any nonzero

unit column vector e ∈ Rd, we have,

eTDEe ≤ c

D0
, as D0 → 0, (8)

where the constant c depends on the flow but not on D0. More details of the derivation can

be found in [5, 26, 8]. We are interested in studying the different scaling laws (between D0

and 1
D0

) of the convection-enhanced diffusion phenomenon for different chaotic flows in this
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paper. The residual diffusivity phenomenon that we studied in [35] is one case. While the

upper bound given by Eq.(8) is another case, which is called convection-enhanced diffusion

with maximal enhancement [26]; see Fig.2 for the result of the ABC flow obtained using our

method.

In practice, the cell problem (6) can be solved using numerical methods, such as spectral

methods. In [22], a small set of adaptive basis functions were constructed from fully resolved

spectral solutions to reduce the computation cost. However, when D0 becomes extremely

small, the solutions of Eq.(6) develop sharp gradients and demand a large number of Fourier

modes to resolve, which makes the spectral method computationally expensive and unstable.

Remark 2.1. One can define the adjoint operator L∗ as L∗ρ = −∇ · (vρ) +D0∆ρ. Let ρ(x, t)

denote the density function of the particle X(t) of Eq.(2). Then, ρ(x, t) satisfies the Fokker-

Planck equation ρt = L∗ρ with the initial density ρ(x, 0) = ρ0(x), where ρ0(x) is the density

of the particle X(0).

Alternatively, one can use the Lagrangian framework to compute the effective diffusivity

matrix, which is defined by (equivalent to Eq.(5) via the homogenization theory)

DE
ij = lim

t→∞

〈

(

xi(t)− xi(0))(xj(t)− xj(0)
)

〉

2t
, 1 ≤ i, j ≤ d, (9)

where X(t) = (x1(t), ..., xd(t))
T is the position of a particle tracer at time t and the average 〈·〉

is taken over an ensemble of test particles. If the above limit exists, that means the transport

of the particle is a standard diffusion process, at least on a long-time scale. If the passive

tracer model has a deterministic divergence-free and periodic velocity field, this is the typical

situation, i.e., the spreading of the particle
〈

(

xi(t) − xi(0))(xj(t) − xj(0)
)

〉

grows linearly

with respect to the time t. For example when the velocity field is given by the Taylor-Green

velocity field [8, 33], the long-time and large-scale behavior of the passive tracer model is a

diffusion process. However, there are also cases showing that the spreading of particles does

not grow linearly with time but has a power law tγ, where γ > 1 and γ < 1 correspond to

super-diffusive and sub-diffusive behaviors, respectively; see e.g. [5, 23, 3].

We shall consider the Lagrangian approach in this paper. The Lagrangian framework has

the advantages that: (1) it is easy to implement; (2) its computational cost linearly depends

on the dimension of the passive tracer model; and (3) it does not directly suffer from a small

molecular diffusion coefficient σ during the computation. However, we should point out that

the major difficulty in solving Eq.(2) comes from the fact that the computational time should

be long enough to approach the diffusion (mixing) time scale. To address this challenge, we

shall develop robust numerical integrators, which are structure-preserving and accurate for

long-time integration. Moreover, we aim to develop the convergence analysis of the proposed

numerical integrators in long-time integration. Finally, we shall investigate the relationship

between several typical chaotic flows and the corresponding effective diffusivity.
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3. Symplectic stochastic integrators

3.1. Derivation of numerical integrators

To demonstrate the main idea, we first construct a symplectic stochastic integrator for a two-

dimensional passive tracer model with a separable Hamiltonian. High-dimensional models,

including the cases when the velocity field is given by ABC flow and Kolmogorov flow, will

be discussed in Section 4.5. Specifically, let X = (x1, x2)
T denote the position of the particle

and v = (−f(X), g(X))T = (−f(x1, x2), g(x1, x2))
T denote the velocity field, then the passive

tracer model can be written as

{

dx1 = −f(x1, x2)dt+ σdW1,t, x1(0) = x0
1,

dx2 = g(x1, x2)dt+ σdW2,t, x2(0) = x0
2,

(10)

where Wi,t, i = 1, 2, are independent Brownian motions.

Since the velocity v is generated from a separable Hamiltonian function, we assume that

there exists a separable function H(x1, x2) = F (x2)+G(x1) such that f(x1, x2) = Hx2(x1, x2),

g(x1, x2) = Hx1(x1, x2), and H(x1, x2) is a periodic function on R2 with period 1. We denote

with slightly abuse of notation by f(x2) and g(x1) for each component of the velocity v, i.e.,

f(x2) = f(x1, x2) and g(x1) = g(x1, x2). These notations simplify our derivation. Whenever

a statement corresponds to f(x2) (or g(x1)) is made, it is equivalent to that for f(x1, x2) or

g(x1, x2). Furthermore, we assume that H(x1, x2) is smooth so the first-order derivatives of

f(x2) and g(x1) are bounded, which guarantee the existence and uniqueness of the solution

(x1, x2) to the SDE (10). The Hamiltonian function is also referred to as the stream function

in the fluid mechanical literature.

In [35], we proposed a structure-preserving scheme based on a Lie-Trotter splitting idea to

solve the SDE (10). Specifically, we split the Eq.(10) into a deterministic subproblem,

{

dx1 = −f(x2)dt,

dx2 = g(x1)dt,
(11)

which is solved using a symplectic-preserving scheme (the symplectic Euler scheme for deter-

ministic equations) and a stochastic subproblem,
{

dx1 = σdW1,t,

dx2 = σdW2,t,
(12)

which is solved using the Euler-Maruyama scheme [28]. Eventually, the one step integrator of

Eq.(10) is given by,

{

xn
1 = xn−1

1 − f(xn−1
2 )∆t + σ

√
∆tξ1,

xn
2 = xn−1

2 + g
(

xn−1
1 − f(xn−1

2 )∆t
)

∆t + σ
√
∆tξ2,

(13)

where ξ1, ξ2 ∼ N (0, 1) are i.i.d. normal random variables. We denote the stochastic process

generated by (13) as Xn = (xn
1 , x

n
2 )

T , which is the numerical approximation to the exact

solution X(tn) to the SDE (10) at each lattice point of time tn = n∆t.
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When the Hamiltonian system contains additive temporal noise, the noise itself is consid-

ered to be symplectic pathwise [27]. We state that the scheme (13) is stochastic symplectic-

preserving since it preserves symplecticity as a composition of symplectic transforms and

it converges as time-step tends to zero. Though there are several prior works on develop-

ing symplectic-preserving scheme for solving ODEs and PDEs (see [15, 16, 2] and references

therein), the novelty of our work is the rigorous theory and sharp estimate on the numerical

error in computing the effective diffusivity.

Remark 3.1. In general, the second-order Strang splitting [34] is more frequently adopted to

solve ODEs and PDEs. The only difference between the Strang splitting method and the Lie-

Trotter splitting method is that the first and last steps are modified by half of the time-step

∆t. For the SDEs, however, the dominant source of error comes from the random subproblem

(12). Thus, it is not necessary to implement the Strang splitting scheme here.

Remark 3.2. The long-time integration for stochastic Langevin equation was studied in the

literature; see e.g. [6, 1]. However, passive tracer model (1) or (10) studied here has several

different features. First, our model problem does not have a damping term so its dynamic

behavior and invariant measure of the system are totally different. In addition, the quantity

of interests is different. One of the main focuses in [6, 1] is to investigate whether the average

energy remains bounded. Our aim here is to study whether the effective diffusivity exists; see

the definition in Eq.(9), and to investigate the convection-enhanced diffusion phenomenon;

see Section 5.2.

3.2. The backward Kolmogorov equation and related results

For the convenience of the reader, we first give a brief review of the theoretical results for the

scheme (13) obtained in [35] and references therein. We first define the backward Kolmogorov

equation associated with the Eq.(10) as

ut = Lu, u(x, 0) = u0(x), (14)

where the generator L (associated with the Markov process in Eq. (10)) is given by

L = −f∂x1 + g∂x2 +
1

2
σ2∂2

x1x1
+

1

2
σ2∂2

x2x2
. (15)

Recall that the solution u(x, t) to the Eq.(14) satisfies u(x, t) = E[φ(Xt)|X0 = x], where

Xt = (x1(t), x2(t))
T is the solution to Eq.(10) and φ is a smooth function in R2.

Similarly, we can study the flow generated by the symplectic splitting scheme (13). Re-

calling the splitting method during the derivation of the scheme in Section 3.1, we define

L1 = −f∂x1 , L2 = g∂x2 and L3 =
σ2

2
(∂2

x1x1
+ ∂2

x2x2
). Starting from u(·, 0), we compute















∂tu
1 = L1u

1, u1(·, 0) = u(·, 0),
∂tu

2 = L2u
2, u2(·, 0) = u1(·,∆t),

∂tu
3 = L3u

3, u3(·, 0) = u2(·,∆t).

(16)
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Then u3(·,∆t) will be the flow at time t = ∆t generated by our scheme and it approximates

the solution u(·,∆t) to the Eq.(14). It is also worth mentioning that, u2(·,∆t) is the exact

flow generated by deterministic symplectic Euler scheme in solving Eq.(11). And u3(·,∆t) is

the flow generated by Euler-Maruyama scheme starting from u2(·,∆t). The latter is due to

the fact that Euler-Maruyama schemes are exact when solving white noise SDE like Eq.(12).

Later on, we repeat this process to compute the flow equations of our scheme at other time

steps, which approximate u(·, n∆t), n = 2, 3, ....

To analyze the error between the flow operator in Eq.(14) and the composition of operators

in Eq.(16), we shall resort to the Baker-Campbell-Hausdorff (BCH) formula, which is widely

used in non-commutative algebra [14]. For example, in the matrix theory,

exp(tA) exp(tB) = exp

(

t(A+B) + t2
[A,B]

2
+

t3

12

(

[

A, [A,B]
]

+
[

B, [B,A]
]

)

+ · · ·
)

, (17)

where t is a scalar, A and B are two square matrices with the same size, [, ] is the Lie-Bracket,

and the remaining terms on the right hand side are all nested Lie-brackets. In our analysis,

we replace the matrices in Eq.(17) by differential operators and the BCH formula yields the

local structure of our splitting scheme. Let I∆t denote the composite flow operator associated

with Eq.(16), i.e.,

I∆tu(·, 0) := exp(∆tL3) exp(∆tL2) exp(∆tL1)u(·, 0). (18)

Recall that the exact solution to the Eq.(14) at time t = ∆t can be represented as

u(·,∆t) = exp(∆tL)u(·, 0) = exp(∆t(L1 + L2 + L3))u(·, 0), (19)

or equivalently, E[X1|X0 = x] = I∆tφ(x), where expectation are taken over randomness from

noise in the scheme (13). Now we can apply the BCH formula and see that,

I∆tu(·, 0)− u(·,∆t) =
1

2
∆t2
(

[L3,L2] + [L3,L1] + [L2,L1]
)

u(·, 0) +O(∆t3). (20)

Zeros in O(1) and O(∆t) term show that the splitting scheme is locally consistent, which can

be equivalently achieved by series expansion in terms of ∆t. Moreover, we find that computing

the k-th order modified equation associated with Eq.(10) in BEA is equivalent to computing

the terms of BCH formula up to order (∆t)k in the Eq.(18). We can see that the solution

generated by Eq.(13) follows a perturbed Hamiltonian system (with divergence-free velocity

and additive noise) at any order k, by considering the (k+1)-nested Lie bracket consisting of

{−f∂x1 , g∂x2 , ∂
2
x1x1

+∂2
x2x2

}. Moreover, we can easily derive that they generate divergence-free

fields.

In [35], we proved that for the SDE (10) with a time-dependent and separable Hamiltonian

H(x1, x2, t) = F (x2, t) + G(x1, t), the numerical solution obtained by using the symplectic-

preserving scheme (13) follows an asymptotic Hamiltonian H∆t(x1, x2, t), which is a first-

order approximation to H(x1, x2, t). Equivalently, the velocity field in the first-order modified

backward Kolmogorov equation is divergence-free and the invariant measure on the torus
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(defined by Rd/Zd, when period is 1) remains uniform, which is also known as the Haar

measure. However, the numerical solution obtained using the Euler-Maruyama scheme for

the SDE (10) does not have these properties.

Moreover, given any explicit splitting scheme for deterministic systems, by adding additive

noise we shall have a similar form of flow propagation. And we shall see in later proof that,

such operator formulation is very effective in analyzing the order of convergence and volume-

preserving property.

4. Convergence analysis

We shall prove the convergence rate of our symplectic stochastic integrators in computing

effective diffusivity based on a probabilistic approach, which allows us to get rid of the expo-

nential growth factor in our error estimate. As stated at the beginning of Section 3.1, we will

first limit our analysis to 2D separable Hamiltonian velocity fields. We will show in Section

4.5 that all the derivations can be generalized to high-dimensional cases.

4.1. Convergence to an invariant measure

The numerical method to compute effective diffusivity of a passive tracer model is closely

related to study the limit of a sequence generated by the stochastic integrators. Therefore,

we can apply the results from ergodic theory to study the convergence of the solution. The

following result is fundamental for the proof of our convergence analysis.

Proposition 4.1. On the torus space Ỹ = R2/Z2, let I∗∆t denote the transform of the density

function during ∆t using the numerical scheme (13). Let I∆t denote the adjoint operator

(i.e., the flow operator) of I∗∆t in the space of B(Ỹ), which is the set of bounded measurable

functions on Ỹ. Then, I∆t is a compact operator from B(Ỹ) to itself. And there exists one

and only one invariant probability measure on (Ỹ ,Σ), denoted as π, satisfying,

sup
x∈Ỹ

∣

∣

∣
(In∆tφ)(x)−

∫

φ(x′)π(dx′)
∣

∣

∣
≤ C||φ||L∞

e−ρn, ∀φ ∈ B(Ỹ), (21)

where ρ > 0, C > 0 are independent of φ(·).

Proof. We shall verify that the transition kernel associated with the numerical scheme (13)

satisfies the assumptions required by the Theorem 3.3.1 (see the page 199 in [4]). First in the

R2 space, the integration process associated with the numerical scheme can be expressed as a

Markov process with the transition kernel,

K∆t

(

(xn−1
1 , xn−1

2 ), (xn
1 , x

n
2 )
)

=

1

2πσ2∆t
exp

(

−

(

xn
1 − xn−1

1 + f(xn−1
2 )∆t

)2

+
(

xn
2 − xn−1

2 − g
(

xn−1
1 − f(xn−1

2 )∆t
)

∆t
)2

2σ2∆t

)

,

(22)
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where(xn
1 , x

n
2 ) is the solution obtained by applying the scheme (13) on (xn−1

1 , xn−1
2 ) with time

step ∆t.

Since f and g are periodic functions, we can project the solution of SDE (10) on the torus

space Ỹ = R2/Z2 pathwisely. We denote the solution on the torus as X̃ and its numerical

approximation as X̃n. Given any periodic function f , we know f(X) = f |
Ỹ
(X̃). Later on,

for simplicity reasons, we do not distinguish f and f |
Ỹ
. Moreover, we do not distinguish X

and X̃ when we apply a periodic function on it. Eq.(22) can be directly extended to the torus

space Ỹ as

K̃∆t

(

(xn−1
1 , xn−1

2 ), (xn
1 , x

n
2 )
)

=
∑

i,j∈Z

1

2πσ2∆t
·

exp

(

−

(

xn
1 + i− xn−1

1 + f(xn−1
2 )∆t

)2

+
(

xn
2 + j − xn−1

2 − g
(

xn−1
1 − f(xn−1

2 )∆t
)

∆t
)2

2σ2∆t

)

.

(23)

One can see that if 0 < ∆t ≪ 1, then K̃ is smooth and is essentially bounded above zero, i.e.,

essn K̃ > 0, ∀
(

(xn−1
1 , xn−1

2 ), (xn
1 , x

n
2 )
)

∈ Ỹ × Ỹ . Thus, the operator I∆t is compact since it is

an integral operator with a smooth kernel. Then applying the Theorem 3.3.1 in [4], we prove

the assertion of the Proposition 4.1.

Now, we state a corollary that is a simple conclusion of exponential decay property proved

in Proposition 4.1, which will be useful in the proof of main results of this paper.

Corollary 4.2. Given that the assumptions in Proposition 4.1 are satisfied and φ ∈ B(Ỹ ),

we have for all initial X0 ∈ R2

lim
n→∞

1

n

n
∑

i=1

Eφ(Xi) =

∫

Ỹ

φ(x)π(dx). (24)

Before we close this subsection, we present a convergence result for the inverse of operator

sequences, which can also be viewed as a modification of Theorem 1.16 in Section IV of [18].

Proposition 4.3. Let X ,Y denote two Banach spaces. Assume Tn, T are bounded linear

operators from X to Y, satisfying limn→∞ ||Tn − T ||B(X ,Y) = 0, and T−1 ∈ B(Y ,X ). Given

f ∈ Y, if T−1
n f , n = 1, 2, ... uniquely exist, then we have a convergence estimate as follows,

lim
n→∞

∣

∣

∣

∣(T−1
n − T−1)f

∣

∣

∣

∣ = 0. (25)

Proof. After some simple calculations, we get

T−1
n − T−1 = T−1(T − Tn)T

−1
n

= T−1(T − Tn)T
−1 + T−1(T − Tn)(T

−1
n − T−1). (26)

10



Now applying T−1
n − T−1 on f , we get

||(T−1
n − T−1)f || ≤||T−1||2 · ||T − Tn|| · ||f ||

+ ||T−1|| · ||T − Tn|| · ||(T−1
n − T−1)f || (27)

Since limn→∞ ||Tn − T || = 0, we assume for n ≥ N0, ||Tn − T || · ||T−1|| < 1
2
, then,

||(T−1
n − T−1)f || ≤ 2||T−1||2 · ||T − Tn|| · ||f ||, ∀n ≥ N0, (28)

Eq.(25) follows if we take the limit as n → ∞ on both sides of (28).

4.2. A discrete-type cell problem

In the Eulerian framework, the periodic solution of the cell problem (6) and the corresponding

formula for the effective diffusivity (5) play a key role in studying the behaviors of the chaotic

and stochastic flows. In the Lagrangian framework, we shall define a discrete analogue of

the cell problem that enables us to compute the effective diffusivity. We revisit the scheme

Eq.(13),

{

xn
1 = xn−1

1 − f(xn−1
2 )∆t + σNn−1

x1

xn
2 = xn−1

2 + g
(

xn−1
1 − f(xn−1

2 )∆t
)

∆t + σNn−1
x2

,
(29)

where Nn−1
x1

, Nn−1
x2

∼
√
∆tN (0, 1) are i.i.d. normal random variables.

We will show that the solutions xn
1 and xn

2 obtained by the scheme (29) have bounded

expectations if the initial values are bounded. Taking expectation of the first equation of

Eq.(29) on both sides, we obtain

Exn
1 = Exn−1

1 −∆tEf(xn−1
2 ) = Ex0

1 −∆t

n−1
∑

k=0

Ef(xk
2). (30)

As a symplectic scheme in 2D, (29) admits the uniform measure as its invariant measure.

Then applying Proposition 4.1 and using the fact that f is a periodic function with zero mean,

we know that,

sup
(x0

1,x
0
2)∈R

2

∣

∣Ef(xk
2)
∣

∣ ≤ e−ρk||f ||∞. (31)

By applying triangle inequalities in Eq.(30) and using the result in Eq.(31), we arrive at,

|Exn
1 | ≤ |Ex0

1|+ C1||f ||∞, (32)

11



where C1 does not depend on n. Using the same approach, we know that Exn
2 is also bounded.

Now, we are in the position to define the discrete-type cell problem. Recalling that Xn =

(xn
1 , x

n
2 )

T denotes the solution of discrete scheme at tn = n∆t, we first define

f̂(x) = −∆t
∞
∑

n=0

E[f(Xn)|X0 = x], x ∈ R2, (33)

where the summability is guaranteed by Eq.(31). f(Xn) is equivalent to f(xn
2 ) in our case.

This is due to that the velocity fields are given by separable Hamiltonian functions, so f(Xn) =

f(xn
1 , x

n
2 ) is independent of xn

1 . At the same time, we should notice that f̂(x) relies on the

second component of x, as the initial condition is X0 = x. Then, we shall show that f̂(x)

satisfies the following properties.

Lemma 4.4. According to our assumption on the Hamiltonian, which is separable and periodic

along each dimension, we know that f is a periodic function with zero mean on Ỹ , i.e.,
∫

Ỹ
f = 0. Therefore, f̂ defined in (33) is the unique solution in B0(Ỹ ) such that,

f̂(X0) + ∆tf(X0) = E[f̂(X1)|X0]. (34)

Moreover, f̂ is smooth.

Proof. Starting from Eq.(33) and by the periodicity of f , we know that f̂ is a periodic function.

Then, by using basic properties of conditional expectation, we can get that

f̂(X0) + ∆tf(X0) =∆tE[

∞
∑

m=0

−f(Xm)|X0] + ∆tf(X0) = −∆tE[

∞
∑

m=1

f(Xm)|X0]

=−∆tE
[

E[
∞
∑

m=1

f(Xm)|X1]|X0
]

= E[f̂(X1)|X0]. (35)

Recall the definition of the operator (18), Eq.(35) implies that

(I∆t − Id)f̂ = I∆tf̂ − f̂ = ∆tf, (36)

where Id is the identity operator. Moreover, since f is smooth and the mapping of the operator

I∆t on bounded functions will generate smooth functions, so f̂ is smooth.

According to Proposition 4.1, the invariant (measure) of I∗∆t is unique and it is the uniform

measure. In other words, the null space of the operator I∗∆t−Id consists of constant functions.

Then following the assumption that f is mean zero on Ỹ, we know f is in N (I∗∆t − Id)
⊥.

By the Fredholm alternative with the fact that I∆t is a compact operator, we arrive at the

conclusion that the solution f̂ to Eq.(36) is unique in B(Ỹ) up to a constant and it smoothly

depends on f .

Noticing that the passive tracer model (10) is autonomous, we obtain

E[f̂(Xn+1)|Xn]− f̂(Xn) = ∆tf(Xn), a.s. ∀n ∈ N. (37)

12



Remark 4.1. For the second component of the solution Xn, i.e., xn
2 , we can define the discrete

cell problem in the same manner. Notice the numerical schemes for xn
1 and xn

2 have the same

structures. As such, we define

ĝ(x) = ∆t
∞
∑

n=0

E[g(X
′,n)|X0 = x], x ∈ R2, (38)

where X
′,n = Xn − ∆t (f(Xn), 0)T . Under the assumption that the drift terms f and g in

Eq.(10) are smooth, we know the leading order term of g(X
′,n) is g(Xn). Then, we can carry

out the analysis for ĝ(x) in the same manner as that for f̂(x).

The Proposition 4.1 and the Lemma 4.4 are very general results. In the remaining part

of this paper, we only need the result that f̂ is unique in an Hölder space C
p,α
0 (Ỹ) ( B(Ỹ).

To be precise, given a smooth drift function f , f̂ shall be in C
p,α
0 (Ỹ ), where p ≥ 6, 0 < α < 1

and the subscript index 0 indicates that it is a subspace with zero-mean functions. To prove

that I∆t is a compact operator from C
p,α
0 (Ỹ ) to itself is quite standard. We can apply the

Arzelà-Ascoli theorem to verify the relative compactness of the operator I∆t by studying its

mapped results on a bounded set. Both equicontinuity and point-wise boundedness come as

the result that I∆t is an integral operator with a smooth kernel. However, we do not want to

complicate the presentation by pursuing this avenue.

4.3. Convergence estimate of the discrete-type cell problem

After defining the discrete-type cell problem (e.g., Eq.(36)) and proving the existence and

uniqueness of the solution f̂ , we shall prove that f̂ converges to the solution of a continuous

cell problem in certain subspace, e.g., C6,α
0 (Ỹ). We remark that in the remaining part of

this paper, we shall choose the space C
6,α
0 (Ỹ) to carry out our analysis. However there is no

requirement that we have to choose this space. In fact, any space that has certain regularity

(belongs to the domain of the operator L) will work. To start with, we define the following

continuous cell problem

Lχ1 = f, (39)

where the operator L is defined in Eq.(15). Given f is a smooth function defined on Ỹ with

zero mean, the Eq.(39) admits a unique solution χ1 in C
6,α
0 (Ỹ). This is a standard result of

elliptic PDEs in Hölder space (see, e.g., the Theorem 6.5.3 in [19]). Moreover, L is a bijection

between two Banach spaces C6,α
0 (Ỹ) and C

4,α
0 (Ỹ), and its inverse is bounded. The following

theorem states that under certain conditions the solution of the discrete-type cell problem

converges to the solution of the continuous one.

Theorem 4.5. Assume f is a smooth function defined on Ỹ with zero mean. Let f̂ and

χ1 be the solutions to the discrete-type cell problem (36) and continuous cell problem (39),

respectively. When ∆t → 0, the solution f̂ converges to the solution χ1 in C
p,α
0 , at the rate of

O(∆t), where p ≥ 6 and 0 < α < 1.

Proof. Integrating Eq.(39) along time gives,

13



exp(∆tL)χ1 − χ1 = f∆t +O((∆t)2) := ∆tf̄ , (40)

where f̄ = f +O(∆t). Combining Eqns.(36) and (40), we obtain

exp(∆tL)χ1 − I∆tf̂ − (χ1 − f̂) = ∆t(f̄ − f) (41)

Eq.(41) shows the connection between χ1 and f̂ . After some simple calculations, we get

L(χ1 − f̂) = (L − L̃1)(χ1 − f̂) + L̃2f̂ + (f̄ − f), (42)

where

L̃1 :=
exp(∆tL)− Id

∆t
, and L̃2 :=

I∆t − exp(∆tL)
∆t

. (43)

One can easily verify that in the space of bounded linear operators from C
6,α
0 (Ỹ) to C

4,α
0 (Ỹ),

there is a strong convergence in the operator norm || · ||,

||L̃1 −L|| = O(∆t) as ∆t → 0. (44)

For the operator L̃2, by using the BCH formula (17) we can obtain,

L̃2 →
exp

(

∆t2

2

(

[L3, L2] + [L2, L1] + [L3, L1]
)

+O((∆t)3)
)

− Id

∆t
· exp(∆tL)

→∆t

2

(

[L3, L2] + [L2, L1] + [L3, L1]
)

+O((∆t)2). (45)

Denoting L̃3 := L̃1 + L̃2 ≡ I∆t−Id
∆t

, we have L̃3 → L in B
(

C
6,α
0 (Ỹ),C4,α

0 (Ỹ)
)

. Finally, applying

the Proposition 4.3, we get,

lim
∆t→0

f̂ = lim
∆t→0

L̃−1
3 f = L−1f = χ1. (46)

In addition, combining the results of the Eqns.(40), (44), (45) and (46) for the right hand side of

Eq.(42), we know that when ∆t is small enough (does not depend on the total computational

time T , but may depend on the estimate of f , g and σ), the following convergence estimate

holds

||χ1 − f̂ || = O(∆t). (47)

Thus, the assertion in Theorem 4.5 is proved.

4.4. Convergence estimate for the effective diffusivity

We shall show the main estimates in this section. We first prove that the second-order moment

of the solution obtained by using our numerical scheme has an (at most) linear growth rate.

Secondly, we provide the convergence rate of our method in computing the effective diffusivity.
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Theorem 4.6. Let Xn = (xn
1 , x

n
2 )

T denote the solution of the passive tracer model (10) ob-

tained by using our numerical scheme with time-step ∆t. If the Hamiltonian H(x1, x2) is

separable, periodic and smooth enough (in order to guarantee the existence and uniqueness of

the solution to the SDE (10)), then we can prove that the second-order moment of the solution

Xn (a discrete Markov process) is at most linear growth, i.e.,

max
n

{

E
||Xn||2

n

}

is bounded. (48)

Proof. We first estimate the second-order moment of the first component of Xn = (xn
1 , x

n
2 )

T ,

since the other one can be estimated in the same manner. Simple calculations show that

E[(xn
1 )

2|(xn−1
1 , xn−1

2 )] = E
(

xn−1
1 − f(xn−1

2 )∆t + σNn−1
x1

)2

= E(xn−1
1 )2 +∆t

(

σ2 − 2E[xn−1
1 f(xn−1

2 )]
)

+ (∆t)2E(f(xn−1
2 ))2. (49)

We should point out that the term E[xn−1
1 f(xn−1

2 )] corresponds to the convection enhanced

level of the diffusivity. Our goal is to prove that the term E[xn−1
1 f(xn−1

2 )] is bounded over n,

though it may depend on f , g and σ. To be noted that, here we are calculating the expectation

of (xn
1 )

2, which is not defined in the torus space. But in the following derivation we will show

that it can be decomposed into sums of periodic functions acting on Xn = (xn
1 , x

n
2 )

T . Hence

after the decomposition (see Eq.(53)) we can still apply the previous analysis on torus space.

We now directly compute the contribution of the term E[xn−1
1 f(xn−1

2 )] to the effective

diffusivity with the help of Eq.(37),

∆t
n−1
∑

i=0

E[xi
1f(x

i
2)] =

n−1
∑

i=0

E
[

xi
1

(

E[f̂ (Xi+1)|Xi]− f̂(Xi)
)]

. (50)

Throughout the proof, we shall use the fact that if X, Y are random processes and Y is

measurable under a filtration F , then with appropriate integrability assumption, we have

E[XY] = E
[

E[XY|F ]
]

= E
[

E[X|F ]Y
]

. (51)

Let Fi denote the filtration generated by the solution process until Xi. Notice that xi
1 ∈ Fi,

for the Eq.(50), we have

RHS =

n−1
∑

i=0

E
[

xi
1

(

f̂(Xi+1)− f̂(Xi)
)]

=
n
∑

i=1

E
[

f̂(Xi)(xi−1
1 − xi

1)
]

− f̂(X0)x0
1 + E[f̂(Xn)xn

1 ]

=

n
∑

i=1

E
[

f̂(Xi)
(

f(xi−1
1 )∆t− σN i−1

x1

)]

− f̂(X0)x0
1 + E[f̂ (Xn)xn

1 ]. (52)

15



Hence,

1

n
E
[

(xn
1 )

2|(x0
1, x

0
2)
]

=
1

n
(x0

1)
2 +∆tσ2 − 2∆t

1

n

n−1
∑

i=0

E[xi
1f(x

i
2)] + (∆t)2

1

n

n−1
∑

i=0

Ef 2(xi
2)

=
1

n
(x0

1)
2 +∆tσ2 + (∆t)2

1

n

n−1
∑

i=0

Ef 2(xi
2)−

2

n

n
∑

i=1

E
[

f̂(Xi)
(

f(xi−1
2 )∆t− σN i−1

x1

)]

− 2

n

(

f̂(X0)x0
1 − E[f̂(Xn)xn

1 ]
)

. (53)

Recall the fact that Xn = (xn
1 , x

n
2 ) converges to the uniform measure in distribution. So given

any continuous periodic function f ∗, the Corollary 4.2 implies

lim
n→∞

Ef ∗(Xn) =

∫

Ỹ

f ∗(x)dx. (54)

Furthermore, we have the estimate

lim sup
n→∞

E
1

n

n
∑

i=0

f ∗(Xi) < ∞. (55)

Applying the Cauchy-Schwarz inequality for the term 2
n

∑n

i=1 E
[

f̂(Xi)
(

f(xi−1
2 )∆t − σN i−1

x1

)]

in Eq.(53) and replacing f ∗ by f 2 and f̂ 2 in Eq.(55), we can prove that 1
n
E
[

(xn
1 )

2|(x0
1, x

0
2)
]

is

bounded. Using the same trick, we know that 1
n
E
[

(xn
2 )

2|(x0
1, x

0
2)
]

is also bounded. Thus, the

assertion in Eq.(48) is proved.

In our numerical scheme (13), we first fix the time-step ∆t and use it to compute the

effective diffusivity until the result converges to a constant, which may depend on ∆t. Next,

we shall prove that the limit of the constant converges to the exact effective diffusivity of

the original passive tracer model as ∆t approaches zero. Namely, we shall prove that our

numerical scheme is robust in computing the effective diffusivity.

Theorem 4.7. Let xn
1 , n = 0, 1, .... be the numerical solution of the first component of the

scheme (13) and ∆t denote the time-step. We have the convergence estimate of the effective

diffusivity as

lim
n→∞

E(xn
1 )

2

n∆t
= σ2 − 2

∫

T2

χ1f +O(∆t), (56)

where the constant in O(∆t) does not depends on the computational time T .

Proof. We divide both sides of the Eq.(53) by ∆t and obtain
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1

n∆t
E[(xn

1 )
2|(x0

1, x
0
2)] =

1

n∆t
(x0

1)
2 + σ2 +

∆t

n

n−1
∑

i=0

Ef 2(xi
2)

− 2

n∆t

n
∑

i=1

E
[

f̂(Xi)
(

f(xi−1
2 )∆t− σN i−1

x1

)]

− 2

n∆t

(

f̂(X0)x0
1 − E[f̂(Xn)xn

1 ]
)

(57)

First, we notice that for a fixed ∆t, the terms 1
n∆t

(x0
1)

2 and 2
n∆t

f̂(X0)x0
1 converge to zero as

n → ∞, where we have used the fact f̂(X0) is bounded. Then, for a fixed ∆t, we have

lim
n→∞

2

n∆t

∣

∣E[f̂ (Xn)xn
1 ]
∣

∣ ≤ lim
n→∞

2√
n∆t

||f̂ ||∞E| x
n
1√
n
| ≤ lim

n→∞

1√
n∆t

||f̂ ||∞E[
(xn

1 )
2

n
+ 1] = 0, (58)

where the term E[
(xn

1 )
2

n
] is bounded due to the Theorem 4.6 and ||f̂ ||∞ → ||χ1||∞ < ∞ due

to the Theorem 4.5. Therefore, we only need to focus on the estimate of terms in the second

line of Eq.(57), which correspond to the convection-enhanced diffusion effect. Notice that

f̂ ∈ C6,α, we compute the Ito-Taylor series approximation of f̂(Xi),

f̂(Xi) =f̂(Xi−1) + f̂x1(X
i−1)
(

− f(xi−1
2 )∆t + σN i−1

x1

)

+ f̂x2(X
i−1)
(

g(xi−1
1 )∆t+ σN i−1

x2

)

+
1

2

(

f̂x1x1(X
i−1) + f̂x2x2(X

i−1)
)

σ2∆t+O(∆t2). (59)

Since f̂ → χ1 in C
6,α
0 , the truncated term O(∆t2) in Eq.(59) is uniformly bounded when

∆t is small enough. Substituting the Taylor expansion of f̂(Xi) into the target term of our

estimate, we get

E[f̂(Xi)(f(xi−1
2 )∆t− σN i−1

x1
)] = E

[(

f(xi−1
2 )∆t− σN i−1

x1

)

·
(

f̂(Xi−1) + f̂x1(X
i−1)
(

− f(xi−1
2 )∆t + σN i−1

x1

)

+ f̂x2(X
i−1)
(

g(xi−1
1 )∆t+ σN i−1

x2

)

+
1

2

(

f̂x1x1(X
i−1) + f̂x2x2(X

i−1)
)

σ2∆t +O(∆t2)
)]

.

(60)

Combining the terms with the same order of ∆t, we obtain

E
[

f̂(Xi)
(

f(xi−1
2 )∆t− σN i−1

x1

)]

= ∆tE[f̂ (Xi−1)f(xi−1
2 )− σ2f̂x1(X

i−1)] +O(∆t2), (61)

where we have used the facts that: (1) Xi−1 is independent of N i−1
x1

and N i−1
x2

so the expecta-

tions of the corresponding terms vanish; (2)N i−1
x1

andN i−1
x2

are independent so EN i−1
x1

N i−1
x2

= 0;
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and (3) E(N i−1
x1

)2 = ∆t. Finally, by using the Corollary 4.2 and noticing the invariant measure

is the uniform measure, we obtain from Eq.(57) that

lim
n→∞

1

n∆t
E[(xn

1 )
2|(x0

1, x
0
2)] = σ2 − 2

∫

(f̂f − σ2f̂x1) +O(∆t). (62)

Thus, our statement in the Eq.(56) is proved using the facts that f̂ converges to χ1 (see

Theorem 4.5) and
∫

f̂x1 = 0.

Remark 4.2. If we divide two on both sides of the Eq.(56), we can find that our result recovers

the definition of the effective diffusivity DE
11 defined in the Eq.(5). This reveals the connection

of the definition of the effective diffusivity using the Eulerian framework and Lagrangian

framework.

4.5. Generalizations to high-dimensional cases

To show the essential idea of our probabilistic approach, we have carried out our convergence

analysis based on a two-dimensional model problem (10). In fact, the extension of our ap-

proach to higher-dimensional problems is straightforward. Now we consider a high-dimensional

problem as follow,

dX(t) = v(X(t))dt+ ΣdW(t), (63)

where X = (x1, x2, · · · , xd)
T ∈ Rd is the position of a particle, v = (v1, v2, · · · , vd)T ∈ Rd is

the Eulerian velocity field at position X , Σ is a d×d constant non-singular matrix, and W(t)

is a d-dimensional Brownian motion vector. In particular, we assume the vi does not depend

on xi, i = 1, ..., d. Thus, the incompressible condition for v(X) (i.e. ∇X · v(X) = 0) is easily

guaranteed.

For a deterministic and divergence-free dynamical system, Feng et. al. proposed a volume-

preserving method [10], which splits a d-dimensional problem into d − 1 subproblems with

each of them being a two-dimensional problem and thus being volume-preserving. We shall

modify Feng’s method (first-order case) by including the randomness as the last subproblem

to take into account the additive noise, i.e.,











































x∗
1 = xn−1

1 +∆tv1(x
n−1
2 , xn−1

3 , xn−1
4 , · · · , xn−1

d−1 , x
n−1
d ),

x∗
2 = xn−1

2 +∆tv2(x
∗
1, x

n−1
3 , xn−1

4 , · · · , xn−1
d−1 , x

n−1
d ),

x∗
3 = xn−1

3 +∆tv3(x
∗
1, x

∗
2, x

n−1
4 , · · · , xn−1

d−1 , x
n−1
d ),

· · · ,
x∗
d = xn−1

d +∆tvd(x
∗
1, x

∗
2, x

∗
3, x

∗
4, · · · , x∗

d−1),

Xn = X∗ + Σ(Wn −Wn−1),

(64)

where X∗ = (x∗
1, x

∗
2, · · · , x∗

d)
T , Wn − Wn−1 is a d-dimensional independent random vector

with each component of the form
√
∆tξi, ξi ∼ N (0, 1), and Xn = (xn

1 , x
n
2 , · · ·, xn

d)
T is the

numerical approximation to the exact solution X(tn) to the SDE (63) at time tn = n∆t.
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The techniques of the convergence analysis for two-dimensional problem can be applied to

high-dimensional problems without much difficulty. For the high-dimensional problem (63),

the smoothness and strict positivity of the transition kernel in the discrete process can be

guaranteed if one assumes that the covariance matrix Σ is non-singular and the scheme (64)

is explicit. According to our assumption for the velocity field, the scheme (64) is volume-

preserving. Thus, the solution to the first-order modified equation is divergence-free and the

invariant measure on the torus (defined by Rd/Zd, when period is 1) remains uniform. Finally,

the convergence of the cell problem can be studied by using the BCH formula (17) with d+1

PDE operators. Recall that in the Eq.(18) we have three PDE operators when we study

the two-dimensional problem. Therefore, our numerical methods are robust in computing

effective diffusivity for high-dimensional problems, which will be demonstrated through the

three-dimensional chaotic flow problems in the Section 5.

5. Numerical Examples

The aim of this section is two-fold. First, we shall design challenging numerical examples to

verify the convergence analysis proposed in this paper, especially the Theorem 4.7. Secondly,

we shall investigate the diffusion enhancement for several chaotic velocity fields. Without

loss of generality, we compute the quantity E[x1(T )2]
2T

, which is used to approximate DE
11 in the

effective diffusivity matrix (5).

5.1. Verification of the convergence rate

We first consider a passive tracer model, where the velocity field is given by a chaotic cellular

flow with oscillating vortices. Specifically, the flow is generated by a Hamiltonian defined as

H(x1, x2) =
1

2π
exp(sin(2πx1))−

1

4π
exp(cos(4πx2 + 1)). (65)

The motion of a particle moving in this chaotic cellular flow is described by the SDE,

{

dx1 = sin(4πx2 + 1) exp(cos(4πx2 + 1))dt+ σdW1,

dx2 = cos(2πx1) exp(sin(2πx1))dt+ σdW2,
(66)

where σ =
√
2× 0.01, Wi are independent Brownian motions, and the initial data (x0

1, x
0
2)

follows uniform distributions in [−0.5, 0.5]2.

In our numerical experiments, we use Monte Carlo samples to discretize the Brownian

motions W1 and W2. The sample number is denoted by Nmc. We choose ∆tref = 0.001 and

Nmc = 640, 000 to solve the SDE (66) and compute the reference solution, i.e., the “exact”

effective diffusivity, where the final computational time is T = 12000 so that the calculated

effective diffusivity converges to a constant. It takes about 20 hours to compute the reference

solution on a 64-core server (Gridpoint System at HKU). The reference solution for the effective

diffusivity is DE
11 = 0.12629.
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In Fig.1a, we plot the convergence results of the effective diffusivity using our method

(i.e., E[x1(T )2]
2T

) with respective to different time-step ∆t at T = 6000 and T = 12000. The

computational time of our method depends on Nmc, ∆t, and T . In this example, it takes less

than two hours to get the one associated with the Nmc = 640, 000, ∆t = 0.01, and T = 12000.

In addition, we show a fitted straight line with the slope 1.04, i.e., the convergence rate is

about (∆t)1.04. Meanwhile, by comparing two sets of data in the Fig.1a, corresponding to the

numerical effective diffusivity obtained at different computational times, we can see that error

does not grow with respect to time, which justifies the statement in Theorem 4.7.

0.01 0.020.03 0.06 0.1 0.2 0.3 0.6

 t
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T=12000
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(a) 2D chaotic cellular flow, fitted slope ≈ 1.04
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(b) 3D Kolmogorov-type flow, fitted slope ≈ 1.27

Figure 1: Error of DE

11
in different computational times and flows with different time-steps.

To further study the accuracy and robustness of our numerical method in solving high-

dimensional problems, we consider a 3D Kolmogorov-type flow. Let (x1, x2, x3)
T ∈ R3 denote

the position of a particle in the 3D Cartesian coordinate system. The motion of a particle

moving in the 3D Kolmogorov-type flow is described by the following SDE,















dx1 = cos(4πx3 + 1) exp(sin(4πx3 + 1))dt+ σdW1,

dx2 = cos(6πx1 + 2) exp(sin(6πx1 + 2))dt+ σdW2,

dx3 = cos(2πx2 + 3) exp(sin(2πx2 + 3))dt+ σdW3,

(67)

where Wi are independent Brownian motions. This is inspired by the so-called Kolmogorov

flow [12] (see Eq.(69)). The Kolmogorov flow is obtained from the Arnold-Beltrami-Childress

(ABC) flow with A = B = C = 1 and with cosines taken out. Behaviors of the classic

Kolmogorov flow will be discussed later.

In our numerical experiments, we choose ∆tref = 0.001 and Nmc = 6, 400, 000 to solve

the SDE (67) and compute the reference solution, i.e., the “exact” effective diffusivity. After

some numerical tests, we find that the passive tracer model will enter a mixing stage if the

computational time is set to be T = 2400. It takes about 56 hours to compute the reference

solution on the server and the reference solution for the effective diffusivity is DE
11 = 0.13106.
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In Fig. 1b, we plot the convergence results of the effective diffusivity using our method

with respect to different time-step ∆t. In addition, we show a fitted straight line with the

slope 1.27, i.e., the convergence rate is about (∆t)1.27. This numerical result also agrees with

our error analysis.

5.2. Investigation of the convection-enhanced diffusion phenomenon

We first consider the classical ABC flow with our symplectic stochastic integrators. The ABC

flow is a three-dimensional incompressible velocity field which is an exact solution to the

Euler’s equation. It is notable as a simple example of a fluid flow that can have chaotic trajec-

tories. The particle is transported by the velocity field v = (A sin(x3)+C cos(x2), B sin(x1)+

A cos(x3), C sin(x2) + B cos(x1)) and perturbed by an additive noise. The associated passive

tracer model reads














dx1 = (A sin(x3) + C cos(x2))dt+ σdW1,

dx2 = (B sin(x1) + A cos(x3))dt+ σdW2,

dx3 = (C sin(x2) +B cos(x1))dt+ σdW3,

(68)

where Wi are independent Brownian motions. In Fig.2, we show the relation between DE
11 and

D0. Recall that the parameter D0 = σ2/2. By setting A = B = C = 1, we recover the same

phenomenon as the Fig.2 in [5], for D0 ∈ [10−3, 10−1] and can extend to D0 ∈ [10−5, 10−4] ;

see Fig.2. As a comparison to our stochastic structure-preserving scheme, we directly apply

the Euler-Maruyama scheme (also called the Euler scheme) to solve the SDE (68). We can

see that the Euler scheme failed to recover it when D0 is small. The evidence for the failure of

the Euler scheme when D0 is small can be also found in [35]. The Fig.2 shows that the DE
11

of the ABC flow obtained by our symplectic method corresponds to upper-bound of Eq.(8),

i.e. the maximal enhancement, DE
11 ∼ O(1/D0). This maximal enhancement phenomenon

may be attributed to the ballistic orbits of the ABC flow, which was discussed in [25, 36].

From Fig.3a we can see that diffusion time, i.e., the time when E[x1(t)2]
2t

approaches a

constant, increases as O(1/D0) when D0 → 0 in the symplectic scheme. Interested readers

are referred to [11] to find that the upper bound of diffusion time can be a bit smaller than

O(1/D0) given the strong mixing property of the flows. Due to the gap between chaotic and

strongly mixing flows, to the best of our knowledge, the diffusion time (as D0 tends to 0) for

chaotic flows has yet to be rigorously proved. Fig.3a shows the diffusion time of ABC flow

may reach the upper bound in the a priori estimate for general flows. However, the Euler

scheme gives a different result in Fig.3b. It attains a diffusion time which is much faster than

O(1/D0). This may be due to the numerical dissipation of the Euler scheme. The statement

that the Euler scheme generates wrong results can also be found in the Fig.2.

We point out that the error estimate in Theorem 4.7 is just an upper bound. Fig.4 shows

that when D0 is 10−3, the convergence rate is about O(∆t1.42). It is very expensive to study

the passive tracer model for the ABC flow since the diffusing time is extremely long. In our

numerical test for the Fig.4, we choose Nmc = 120, 000, ∆t = 0.001, and T = 12, 000. In

this setting, the error of the Monte Carlo simulation cannot be avoided, so there is a small

oscillation around the fitted slope.
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Figure 2: Convection-enhanced diffusion with maximal enhancement in ABC flow: � for the symplectic

scheme, × for the Euler scheme, −− for reference line y = 1
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of different D0 in the symplectic scheme
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Figure 3: Calculated DE

11
in the ABC flow along time via two different schemes

Finally, we investigate the convection-enhanced diffusion phenomenon for another chaotic

flow, i.e., the Kolmogorov flow. The associated passive tracer model reads,















dx1 = sin(x3)dt+ σdW1,

dx2 = sin(x1)dt+ σdW2,

dx3 = sin(x2)dt+ σdW3,

(69)

where Wi are independent Brownian motions. In Fig.5, we show the relation between DE
11 and

D0, where D0 = σ2/2. For each D0, we use Nmc = 120, 000 particles to solve the SDE (69)

via the symplectic method and the Euler method with ∆t = 0.1 . The final computational
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Figure 4: Error of DE

11
in the ABC flow, the dashed line with � is for the symplectic scheme, and the slope

of the fitted is ≈ 1.42.

time is T = 12, 000 so that the particles are fully mixed for D0 ≥ 10−6.

Under such setting, we find that the dependency of DE
11 on D0 is quite different from the

chaotic and stochastic flows that we have studied in [35] and from the foregoing ABC flow

(maximal enhancement). The fitted slope within D0 ∈ [10−6, 10−5] is −0.13, which indicates

that DE
11 ∼ O(1/D0.13

0 ). The slope is significantly greater than −1 and this can be called

sub-maximal enhancement. The existence of sub-maximal enhancement may be explained

by the fact that the Kolmogorov flow is more chaotic than the ABC flow [12]. The chaotic

trajectories in Kolmogorov flow enhance diffusion much less than channel like structures such

as the ballistic orbits of ABC flows [25, 36]. More studies on the diffusion enhancement

phenomenon of the ABC flow and the Kolmogorov flow, especially the time-dependent cases

will be reported in our future work.

We also compare the performance of the symplectic scheme and Euler scheme in computing

the effective diffusivity for the Kolmogorov flow. Specifically, we implement the symplectic

scheme and Euler scheme with time step ∆t = 0.1 and ∆t = 0.01, respectively. In Fig.5, we

find that (1) the symplectic scheme with ∆t = 0.1 and ∆t = 0.01 will give similar results

in computing the effective diffusivity; (2) the symplectic scheme and the Euler scheme with

∆t = 0.01 will give almost the same convergent results in computing the effective diffusivity,

which provides evidence that our statement on the Kolmogorov flow (i.e., the sub-maximal

enhancement phenomenon) is correct; (3) the Euler scheme with ∆t = 0.1 gives wrong results

but the symplectic scheme with ∆t = 0.1 gives acceptable results, which provides evidence that

the symplectic scheme is very robust in computing the effective diffusivity. In this example,

the symplectic scheme approximately achieves a 10× speedup over the Euler scheme.

Fig.6a and Fig.6b show different behaviors of the numerical effective diffusivity E[x1(t)2]
2t

obtained using the symplectic scheme and the Euler scheme with respect to computational
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Figure 5: Convection-enhanced diffusion with sub-maximal enhancement in Kolmogorov flow. “sym” means

the results for symplectic scheme and “em” means the results for Euler scheme. −− means the fitted line for

small D0 with slope ≈ −0.13.

time. Specifically, Fig.6a shows T = 12000 is quite enough for D0 ≥ 10−6. And in Fig.6b, it

seems that in Euler scheme, the diffusion time is much smaller. Similar to our investigation

in ABC flows, this may be due to the excess numerical dissipation generated by the Euler

scheme. In Fig.7, we also study the convergence rate of the symplectic scheme in computing

the effective diffusivity for the Kolmogorov flow (69). We find that the convergence rate is

O(∆t1.3) in this example.
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Figure 6: Calculated DE

11
in the Kolmogorov flow via two different schemes.
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Figure 7: Error of DE

11
in the Kolmogorov flow. The slope of the fitted line is ≈ 1.30.

6. Conclusions

In this paper, we analyzed the robustness of a numerical scheme to compute the effective

diffusivity of passive tracer models, especially for the three-dimensional ABC flow and the

Kolmogorov flow. The scheme is based on the Lagrangian formulation of the passive tracer

model, i.e., solving SDEs. We split the SDE problem into a deterministic sub-problem and

a stochastic one, where the former is discretized using a symplectic-preserving scheme while

the later is solved using the Euler scheme. We provide a completely new error analysis for

our numerical scheme that is based on a probabilistic approach, which gives a sharp and

uniform in time error estimate for the numerical solution of the effective diffusivity. Finally,

we present numerical results to demonstrate the accuracy of the proposed method for several

typical chaotic flow problems of physical interests, including the Arnold-Beltrami-Childress

(ABC) flow and the Kolmogorov flow. We observed the maximal enhancement phenomenon

in the ABC flows and the sub-maximal enhancement phenomenon in the Kolmogorov flow,

respectively.

There are two directions we plan to explore in our future work. First, we shall extend

the probabilistic approach to provide sharp convergence analysis in computing effective diffu-

sivity for time-dependent chaotic flows, such as time-dependent ABC flows. In addition, we

shall investigate the convection-enhanced diffusion phenomenon for general spatial-temporal

stochastic flows [20, 23] and develop convergence analysis for the corresponding numerical

methods.
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