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PREDICT-AND-RECOMPUTE CONJUGATE GRADIENT
VARIANTS*

TYLER CHEN! AND ERIN C. CARSON?*

Abstract. The standard implementation of the conjugate gradient algorithm suffers from com-
munication bottlenecks on parallel architectures, due primarily to the two global reductions required
every iteration. In this paper, we study conjugate gradient variants which decrease the runtime per
iteration by overlapping global synchronizations, and in the case of pipelined variants, matrix-vector
products. Through the use of a predict-and-recompute scheme, whereby recursively-updated quan-
tities are first used as a predictor for their true values and then recomputed exactly at a later point
in the iteration, these variants are observed to have convergence behavior nearly as good as the
standard conjugate gradient implementation on a variety of test problems. We provide a rounding
error analysis which provides insight into this observation. It is also verified experimentally that the
variants studied do indeed reduce the runtime per iteration in practice and that they scale similarly
to previously-studied communication-hiding variants. Finally, because these variants achieve good
convergence without the use of any additional input parameters, they have the potential to be used
in place of the standard conjugate gradient implementation in a range of applications.

Key words. Krylov subspace methods, Conjugate Gradient, Parallel algorithms, Numerical
algorithms
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1. Introduction and background. The conjugate gradient method (CG), due
to Hestenes and Stiefel [22], is a widely-used method for solving a linear system of
equations Ax = b, when A € R" " is a large symmetric positive definite matrix.
While the low storage costs and low number of floating point operations per iteration
make CG an attractive choice for solving very large sparse systems, the dependency
structure of the standard conjugate gradient algorithm given in [22], which we call
HS-CG and present in Algorithm 1.1, requires that nearly every computation be
done in sequence. In particular, it requires two inner products and one (typically
sparse) matrix-vector product per iteration, none of which can occur simultaneously.
On distributed memory parallel systems, this results in a communication bottleneck
[13, 1, 2, 14]. This is because inner products require a costly global reduction involving
communication between all nodes, and the matrix-vector product, even if sparse or
structured, requires some level of communication between individual nodes.

To address this bottleneck, many mathematically equivalent variants of the CG
method have been introduced; see for instance [30, 31, 5, 25, 32, 6, 36, 16, 15, 9, 10,
etc.]. Broadly speaking, these variants rearrange the HS-CG algorithm such that the
communication occurs less frequently or is overlapped with other computations. As a
result, the time per iteration of these methods may be reduced on parallel machines
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in certain settings. The algorithmic variants of CG presented in this paper are most
closely related to the communication-hiding variants which we call M-CG, CG-CG,
and GV-CG (pipelined CG), introduced by Meurant [25], Chronopoulos and Gear [6],
and Ghysels and Vanroose [16], respectively. These communication-hiding variants
maintain the iteration structure of HS-CG but add auxiliary vectors such that the
computations within an iteration can be arranged so that expensive ones can occur
simultaneously, effectively “hiding” the cost of communication. A comparison of these
variants is given in Table 1 and full descriptions are given in Appendix D.

Algorithm 1.1 Hestenes and Stiefel Conjugate Gradient (preconditioned)

1: procedure HS-CG(A, M, b, x¢)
2 INITIALIZE()

3 for k=1,2,...do

4 Xk = Xg—1 + Qg—1Pk—1

5: Iy =Tp 1 — Qp 1Sk-1, Tp =M1y
6 v = (Tg, Tk

7 Br = Hk/l/kq

8: Pr =T + BePr—1

9: S — Apk

10: tr = (P, Sk)

11: Q= z/k/,uk

12: end for

13: end procedure

Notably, however, many communication-hiding variants suffer from numerical
problems due to this rearranging of computations within each iteration. Indeed, it is
well known that CG is particularly sensitive to rounding errors and any modification
to the HS-CG algorithm can have a significant effect on numerical behavior; see
[19, 27] for summaries of CG and Lanczos in finite precision. Specifically, both the
rate of convergence (the number of iterations to reach a given level of accuracy) and
the maximal attainable accuracy of any algorithmic variant of CG may be severely
impacted by carrying out computations in finite precision.

These effects are particularly pronounced in pipelined methods, such as GV-CG,
because the additional auxiliary recurrences can cause rounding errors to be amplified
[4]. For example, as shown in section 4, there are many problems for which the final
accuracy attainable by GV-CG is orders of magnitude worse than that attainable by
HS-CG. As a result, the practical use of some of the pipelined variants is potentially
limited because the algorithms may fail to reach an acceptable level of accuracy, or
require so many iterations to do so that there is no benefit to the overall runtime.
While there have been many approaches to improving the numerical properties of
these variants, such as residual replacement [16, 8] and the use of shifts in auxiliary
recurrences [9], these strategies typically require certain parameters to be selected
ahead of time based on user intuition or rely on heuristics for when and how to
apply corrections. Moreover, as in the case of residual replacement, these strategies
sometimes result in delayed convergence.

In this paper, we present a communication-hiding variant similar to M-CG which
requires a single global synchronization per iteration. Like the M-CG algorithm, our
variants employ a predict-and-recompute scheme which recursively computes quan-
tities as a predictor for their true values and then recomputes them later in the
iteration. We then introduce “pipelined” versions of both this variant and of M-CG
which allow the computation and communication from the matrix-vector product and
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preconditioning steps to be overlapped with the global reduction associated with the
inner products. We demonstrate numerically that the convergence behavior of our
pipelined variants is comparable to that of HS-CG despite overlapping all matrix
products with global reductions as in other pipelined variants such as GV-CG. This
observation is complemented by a rounding error analysis, which provides new insight
into the way the predict-and-recompute schemes can improve the numerical behavior.
More broadly, this work demonstrates that it is reasonable to add extra computation
to improve the numerical properties of a communication-hiding CG variant, provided
that that the computation is done in a way which does not affect the communication
pattern of the algorithm. All of the algorithms introduced in this paper require ex-
actly the same inputs as HS-CG and therefore require no additional tuning by the
end user.

Our primary contributions are as follows. First, we provide rounding error analy-
ses of the variants introduced in this paper. In particular, we derive expressions for
the residual gap, which is the quantity that dictates the maximum attainable accu-
racy, as well as for the error in the three-term Lanczos recurrence, which gives some
inidcation of the rate of convergence. Our analysis provides a rigorous explanation
to a conjecture made by Meurant in [25] that the predict-and-recompute scheme re-
solves a potential source of instability. In addition, we provide a range of numerical
experiments to further support the claim that our pipelined variants can significantly
improve the rate of convergence and ultimately attainable accuracy versus existing
pipelined variants. In particular, we note that in the numerical experiments in sec-
tion 4, our variants appear to converge similarly HS-CG without any additional input
parameters. As such, they have the potential to be used as black box solvers wherever
HS-CG is used. Finally, we demonstrate through a strong scaling experiment that
the new variants can reduce the time per iteration in a parallel setting.

Unless otherwise stated, matrices should be assumed to be of size nxn and vectors
of size n x 1. The transpose of a matrix is denoted with the superscript T, and the
inverse of the transpose denoted with the superscript —T. The standard Euclidean
inner product and corresponding spectral/operator norm are respectively denoted (-, -)
and || - ||, and the inner product and norm induced by a positive definite matrix B
are denoted (-,-)p and || - ||g. While much of the theory about the conjugate gradient
algorithm applies to complex systems, we consider real systems for convenience.

The variants studied in this paper are all compatible with a preconditioner M~ =
R "R!, which allows the algorithms to implicitly solve the system R"TAR 'y =
R~ "b and then set x = R~ 1y, using only products with M~'; i.e. the R™! factors
need not be known. As summarized in Table 1, the preconditioned variants require
some additional memory to store the preconditioned residual and any related auxiliary
vectors, and updating these additional vectors has the potential to introduce addi-
tional rounding errors. Throughout this paper, we use a tilde (“ ~ ") above a vector
to indicate that, in exact arithmetic, the tilde vector is equal to the preconditioner
applied to the non-tilde vector; i.e., T, = M~ 'ry, §, = M~ lsy, etc.

2. Derivation of new variants. In this section we describe PR-CG, a new
communication-hiding variant which requires only one global synchronization point
per iteration. This variant is similar to M-CG, introduced by Meurant in [25], and
the relationship between the two algorithms is discussed.

Then, in the same way that GV-CG is obtained from CG-CG, we “pipeline” PR-
CG to overlap the matrix-vector product with the inner products. The order in which
operations are done in the pipelined version of PR-CG allows for a vector quantity
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variant mem. vec. scal. time

HS-CG 4 (+1) 3 (+0) 2 2Cg 4+ Try + Crny
CG-CG 5(+1) 4 (+0) 2 Cer + Trav + Crny
M-CG 4(+2) 3(+1) 3 Cer + Trv + Crnv
PR-CG 4 (+2) 3 (+1) 4 Cgr + Tinv + Cinv
GV-CG 7(+3) 6(+2) 2 max(Cgr, Ty + Crny)
pIPE-M-CG 6 (+4) 5 (+3) 3 max(Cgr, Tomy + Cmv)
pPIPE-PR-CG 6 (+4) 5 (+3) 4 max(Cgr, Tomy + Cv)

Table 1: Summary of costs for various conjugate gradient variants. Values in paren-
thesis are the additional costs for the preconditioned variants. The quantity mem.
gives the number of vectors stored, vec. gives the number of vector updates (AXPYs)
per iteration, scal. gives the number of inner products per iteration, and time gives
the dominant costs (ignoring vector updates and inner products). Cg, is the time spent
on communication for a global reduction. Ty, and C,,, are the times spent on com-
putation and communication, respectively, for a matrix-vector product which depend
on the method of matrix multiplication (for instance a dense matrix has Cyy = Cgy).
Tomy 18 the cost of computing two matrix vector products simultaneously, which is
less than 2 T, if implemented in an efficient way. Note that in this abstraction we
assume that the communication time is independent of the size of messages sent.

to be recomputed using an additional matrix-vector product, giving the pipelined
predict-and-recompute variant PIPE-PR-CG. Since this matrix-vector product can
occur at the same time as the other matrix-vector product and as the inner products,
the communication costs per iteration are not increased. For comparison, we also
derive a pipelined version of Meurant’s M-CG method, which we call piPE-M-CG.

Table 1 provides a comparison between some commonly used communication
avoiding variants and the newly introduced variants. It should be noted that although
the number of matrix-vector products and inner products in PIPE-M-CG and PIPE-
PR-CG are increased, most of this work can be done locally, and they have the same
dominant communication costs as GV-CG.

2.1. A simple communication-hiding variant. Like the derivation of M-
CG in [25] and the variants introduced in [23, 30, 31, 32], we derive PR-CG by
substituting recurrences into the inner product vy, = (¥j,r)). This allows us to obtain
an equivalent expression for the inner product involving quantities which are known
earlier in the iteration.

To this end, we first recall that given §;, = M™!s;, we have

(21) f‘k :fk—l *ak—lék—l-

Then, by substituting the recurrences for ry and rg from Algorithm 1.1 into v, =
(Tg,rk), we can write

Vi = (Fp—1 — O0h—18k—1,Th—1 — Qp—1Sk—1)
(22) = (Fe-1,Te-1) — k-1 (Feo1,8k-1) — k1 (Sk—1,Th1) + @i (Bk—1,8k-1)-
Since M, and therefore M~!, are symmetric, (Sx_1,Tr_1) = (Sk_1,Tx_1). Thus,

(2.3) Vg = Vg1 — 201 (Fp_1,86-1) + af_1 (Sk_1,Sk_1)-
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Once s, = Apy and §; = M~ !s; have been computed, we can simultaneously com-
pute the three inner products,

(2.4) pr = (P Sk), o = (Tk, Sk), Ve = (8K, Sk)-

A variant using a similar expression for v, was suggested in [24] and briefly
mentioned in [4]. However, one term of their formula for v has a sign difference from
(2.3), and no numerical tests or rounding error analysis were provided.

Algorithm 2.1 Predict-and-recompute conjugate gradient

procedure PR-CG(A, M, b, xq)
INITIALIZE()
for k=1,2,... do
Xk = Xg—1 + Qp—1Pk—1

1:
2
3
4:
5: rp =Tk 1 — Qk_18k—1, Tk =Tp_1 — Qp_1Sk_1
6
7
8

/! 2
Vi, = Vg1 — 20101 + Q3 _1Vk—1
!
Br = v}, /Vk—1
Pr = Fr + BrPr—1

9: sk = Apy, 8, =M's; 3 .

10: pr = (Pk,Sk), Ok = (Tk,Sk), Yo = (Sk,Sk), Uk = (T, Tk)
11: ap = Vk/,uk

12: end for

13: end procedure

As shown in Figure 1, if (2.3) is used to recursively update vy, the final accuracy
can be severely impacted. This phenomenon was observed previously in [30, 23, 31],
all of which study variants which use expressions for vy similar to that in M-CG. This
catastrophic loss of accuracy is caused by the updated value of v, becoming negative.
In [25], Meurant suggests using the recursively-updated value of vy, as a predictor for
the true value in order to update any vectors required for the algorithm to proceed,
and then to recompute v = (Tg,r)) at the same time as the other inner products.
We observe experimentally that using this strategy effectively brings the ultimately
attainable accuracy to a level similar to that of HS-CG. Our rounding error analysis
in section 3 explains this improvement. This algorithm, denoted PR-CG, is given in
Algorithm 2.1. Note that we use a prime (“’ ”) to distinguish the recursively updated
quantity v, from the explicitly computed quantity vy.

It is not hard to see that (2.3) can be simplified further. Indeed, observing that
(8k,rx) = (Pk, Sk), which follows from the A-orthogonality of p; and pi_1, and using
the expression ay = vi/pur = (T, rr)/(Pk, Sk), We can write

Ve = —(Fr—1,Th—1) + @3 (Sk—1,86-1) = —Vk—1 + a2 (Sk—1,Sk_1)-

This is exactly the expressions studied in [25] and used by M-CG; i.e., M-CG can be
obtained by replacing line 6 of PR-CG with v}, = —vy + a3k A similar expression,
Vi = —ag ik + a3k, was studied in [36].

The natural question is then: What is the advantage of the expression for vy
used in PR-CG over the expression used in M-CG? The incomplete response is that
experimentally it seems to work a bit better, especially in the pipelined versions of
these variants. Intuitively, this is because the less simplification that occurs, the closer
the variant is to HS-CG. Of course then it is reasonable to wonder if we should use
(2.3) instead of (2.2). The again incomplete response is that this change doesn’t seem
to significantly influence the numerical behavior. This is perhaps not particularly
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surprising; for instance, in the case of the unpreconditioned variants, (2.2) and (2.3)
are equivalent even in finite precision. An extended discussion on this topic is included
in Appendix C; a full theoretical explanation remains future work.

2.2. New pipelined variants. Recall that our goal is to be able to compute
the matrix-vector product and inner products simultaneously. To this end, note that
in both M-CG and PR-CG we have the recurrence py = i+ 8xpPx—1. Thus, defining
wj = Ary, we can write

(2.5) sy = Apy = ATy + BrApPr—1 = Wi + BSk—1-
Similarly, defining ug = Asy,
(2.6) Wi = AT = AT 1 —ap1ASE_1 = W1 — Qp_1U)_1.

Using these recurrences allows us to compute the product u;y = ASy at the same time
as all of the inner products.
To move the preconditioning step, we define Wi, = M~ 'wy, so that

(2.7) Sk =M"'sp =M 'wy + B:M 'sp_1 = Wy, + BiSp_1,
and define 0, = M~ luy, so that
(2.8) Wi = Milwk = Milwk_l - ak_leluk_l =Wpg_1 — Qp_1U0x_1.

The recurrences above could be used to implement a pipelined variant which, in
each iteration, overlaps the matrix product and preconditioning steps with the global
reduction. However, like GV-CQG, this variant suffers from delayed convergence and
reduced final accuracy compared to HS-CG, M-CG, and PR-CG. To address this,
we observe that wj, = A, and W, = M~ 'wy, can be recomputed at the same time
as the other matrix-vector product and all inner products are being computed. Thus,
in the same way we use the recursively-updated value of v, as a predictor for the
true value, we can use the recursively-updated value of wy as a predictor for the true
value in order to update other vector quantities, and then update the value of wy
later in the iteration. Using this predict-and-recompute approach gives PIPE-M-CG
and PIPE-PR-CG.

Algorithm 2.2 shows PIPE-PR-CG, from which PiPE-M-CG can be obtained by
using the alternate expression v;, = —vp_1 +o¢i71*yk_1 in line 7. Using this expression
means that o need not be computed. As before, we use a prime to denote predicted
quantities.

2.2.1. Implementation. The presentation of PIPE-PR-CG in Algorithm 2.2 is
intended to match the derivation from HS-CG and to emphasize the mathematical
equivalence of the two algorithms. However, as with any parallel algorithm, some care
must be taken at implementation time as an inefficient implementation may actually
increase the runtime per iteration.

We suggest computing the scalars ay_1,v}, and S (lines 14, 7, 8) at the be-
ginning of each iteration. This will allow all vector updates (lines 4, 5, 6, 9, 10)
to occur simultaneously. The vector updates require only local on-node communi-
cation and are therefore assumed to be very fast. Finally, the matrix-vector prod-
ucts/preconditioning (lines 11, 12) and inner products (line 13) can all be computed
simultaneously. As a result, the dominant cost per iteration will be either the time
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Algorithm 2.2 Pipelined predict-and-recompute conjugate gradient

procedure PIPE-PR-CG(A, M, b, xq)
INITIALIZE()
for k=1,2,...do
Xk = Xgp—1 T Qk—1Pk-1

1:
2
3
4
5: Iy =Tp 1 — Qg_1Sk—1 , Tjp =Tp_1 — Qp_15k_1

6: Wi, = Wg_1 — Qp_1Ug_1, W), = Wg_1 — Q_1Ux_1
7 Vj, = Vg1 — 200—10%—1 + Q1 V-1
8 Br = v, /Vk—1
9 Pr = Tk + BkPr-1
0

: 7 z =~/ z
10: Sk = W}, + BrSp—1, Sk = W, + [rSp_1

11: up = ASg, U = M_luk

12: wp = Arp, W = ].V[_IW]~C

13: He = <pk;sk>a Ok = <f‘kask>7 Ve = <§kvsk>7 Vi = <f‘k;rk>
14: Qp = Vi / Uk

15: end for

16: end procedure

for the global reduction associated with the inner products or with the matrix-vector
products, thus giving the runtime max(Cgy, Tomy + Cmy) as listed in Table 1.

The matrix-vector products (and preconditioning) in lines 11 and 12 can be com-
puted together using efficient kernels. In particular, this means that within a single
node, PIPE-PR-CG still requires only one pass over A (and M~1!) in each iteration.
This is an especially important consideration if A is too large to store in fast memory.
Similarly, three of the inner products involve sy, so the number of passes over s; can
be reduced from three to one. However, this is likely not to have a noticeable effect
until the cost of reading s from memory becomes large compared to the reduction
time. Finally, there is no need to store wy and wyj, as separate vectors.

3. Rounding error analysis. We give a rounding error analysis which provides
some insight into how predict-and-recompute schemes may lead to the improved max-
imal accuracy and convergence behavior observed on test problems.

The maximal attainable accuracy of a CG algorithm in finite precision is typically
analyzed in terms of the residual gap A,, := (b — Axy) — rj [18, 33], an expression
introduced by Greenbaum in [17, Theorem 2]. For many variants, such as HS-CG
and those introduced in this paper, it is observed experimentally that the norm of the
updated residual ry decreases to much lower than the machine precision. As a result,
the size of the residual gap A,, can be used to estimate of the size of the smallest
true residual which can be attained in finite precision, thereby giving an estimate of
the accuracy of the iterate x;. Similar analyses have been done for a three-term CG
variant [21], as well as for CG-CG, GV-CG, and other pipelined CG variants [8, 4].
However, for some variants such as GV-CG, the updated residual r; may not decrease
to well below machine precision, so some care must be taken when interpreting such
results.

There is also existing theory about the rate of convergence of a CG implementation
in finite precision due to Greenbaum [17], which extends the work of Paige [28, 29].
This analysis applies to a perturbed Lanczos recurrence, which, in effect, shows that
the error norms of a CG algorithm run in finite precision for k steps correspond to the
error norms of exact arithmetic CG applied to a larger matrix whose eigenvalues lie
in small intervals about the eigenvalues of A, provided that the updated residuals rg
satisfy certain conditions. This provides a method for applying the well-understood
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theory about the convergence of CG in exact arithmetic to the finite precision setting.

The conditions required for the analysis in [17] are that (i) successive updated
residuals are approximately orthogonal; i.e., (rg,rp—1) ~ 0, and (ii) that they approx-
imately satisfy the three-term Lanzos recurrence; i.e.,

1 Ty 1 Br—1 1 |[lrg—1
(31) AQk ~ H || qr+1 + ( 4+ L + || H K1,
a1 [lri-1]l Q-1 k-2 a2 [ri—2||
where oy and By are computed in finite precision and qzy1 = (—1)*ry/||rx| is ob-

tained from the updated residuals.

If these conditions are satisfied, then for some small n which depends on the
machine precision and on the technical definition of “approximately” (see [17] for
details), the error norms will satisfy the relaxed minimax bound!

(3.2) ller||a < min [ max |p(z)|} , L(A) = UP‘Z — 1, + 7).

leolla ~ pePi [zeL(a) et

The degree to which these conditions are satisfied in finite precision directly impacts
the size of n, with better approximations yielding smaller n and therefore stronger
bounds. In fact, if the conditions are exactly satisfied, then the analysis will yield
17 =0 and (3.2) becomes the well-known minimax bound for exact arithmetic CG.

However, it remains to be proved that any of the variants discussed in this paper
satisfy both of the conditions of [17] in a meaningful way. Experimentally, it seems to
be the case that these variants do keep successive residuals approximately orthogonal
(this has been essentially proved for HS-CG [26, Proposition 5.19]), and that, with the
exception of GV-CG, they approximately satisfy the three-term Lanczos recurrence.
In [20], expressions for the degree to which the updated residuals from HS-CG, CG-
CG, and GV-CG satisfy (3.1) in finite precision are given in terms of roundoff errors,
and it is shown that while HS-CG and CG-CG satisfy the three-term recurrence to
within local rounding errors, GV-CG does not. While this analysis does not prove
the degree to which any of the variants satisfy the conditions of [17], it does provide
some indication that the size of n for HS-CG and CG-CG will likely be smaller than
for GV-CG on most problems.

Experimentally, on many problems the rate of convergence of all variants is
roughly the same prior to the stagnation of the true residuals. However, on other
problems, the rate of convergence of different variants is observed to differ signifi-
cantly. Both cases are shown in the experiments in section 4; see, e.g., Figure 3. In
[20] it is suggested that the first case corresponds to problems where the size of 1 has
little effect on the strength of the relaxed minimax bound (3.2) (such as those with
a relatively uniformly distributed spectrum), while the second case corresponds to
problems where the size of 7) has a large effect on the strength of this bound (such as
those with large gaps in the upper spectrum). Thus, on the second type of problem
where the size of 7 is important, the fact that GV-CG does not do a good job of
satisfying the three-term Lanczos recurrence (3.1) means that the relaxed minimax
bound will be stronger for HS-CG and CG-CG than for GV-CG. Again, while this
analysis does not prove that HS-CG and CG-CG will have better rates of convergence

LGreenbaum’s theory actually applies to HA’l/QlﬂkH7 which in exact arithmetic is equal to the
A-norm of the error |exlla = |[A" b — xz|la = ||[A~1/2(b — Axy)||. Thus, the relaxed minimax
bound (3.2) only applies before the updated and true residuals begin to differ significantly; i.e., when
the residual gap Ark is still small.
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on such problems, it is evidence supporting the observation that they do have better
rates of convergence in practice.

Throughout the analysis we assume the standard model of floating point arith-
metic, i.e.,

(3.3) [fp(ao B) —ao | < elaof

for real numbers o and 8 with standard operations o € {4, —, X, +}, where € is the
unit roundoff of the machine and all computations inside the fp(-) are performed in
finite precision. From this, to first order we have the bounds

(3-4) [Hp(x + ay) = (x + ay)|| < e ([[x]| + 2|ally]]),
(3.5) [ fp(Ax) — Ax|| < ecAl[x];
(3.6) [p((x,¥)) = (%, ¥) Il < enllx[lyl,

where n is the length of the vectors x and y and ¢ is a constant depending on spar-
sity /structure of A and the method of matrix multiplication used; for instance, it is
common to take ¢ = mn'/? where m is the maximum number of nonzero entries in a
row of A.

3.1. Predict-and-recompute CG. In finite precision, PR-CG generates the
recurrences

(3.7) Xp = Xp—1 + @k—1Pr—1 + Op,, Iy =Tp 1 — Qp_1Sk_1 + Op,
Vg = Vk—1 — 2010k —1 + 04%_1%—1 + 6%, Bk = Vi /Vk—1 + 95,
Pk =Tk + BePr—1 + Op,, Sk = APy + s,
Vg = (g, k) + Oy, o = (g, 8k) + 0oy,

Ve = <S/€’Sk> + 6%7

where the dquantity terms represent roundoff errors incurred at each step and are
bounded by the appropriate application of (3.3)—(3.6).

It was observed by Meurant [25] that the instability caused by recursive com-
putation of vy via the formula (2.3) is due to the value of v} eventually becoming
negative. Our methods, like those in [30, 31, 25], also break down if v} becomes
negative. Meurant conjectures in [25] that using the predict-and-recompute approach
appears to solve this problem, but he does not offer a rigorous theoretical explanation
of this behavior.

We begin this section by filling in this gap. We first show that the predict-and-
recompute scheme suggested in [25] and used in M-CG, PR-CG, pipE-M-CG, and
PIPE-PR-CG keeps the estimate for vj, to within local rounding errors of the true
value (ry,ry). To this end, we define the v/-gap as Ay = (rg,rr) — V. Then

Ay = (g1 — p 18k 1 + 0, Tho1 — k181 + 0r) —
= (Th—1,Th—1) — 2001 (Tp—1,8%—1) + % _1 (Sk—1,Sk—1)
+2(0pys Tho1 — Qg—18k—1) + (Ory, Ory) — Vi,

=Vp—1 — Oy, — 20k—1(0k—1 — Oor_,) + 0%y (Vo1 — 6, _,)
+ 2<6rkark> - <5rk761‘k> - Vllc

= (k-1 — 206-10k—1 + 0F_1Yk—1) — (6, — 205100, + 07104, ,)
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Fig. 1: Demonstration, on model _48_8_3 with no preconditioner, of breakdown of
PR-CG when vj, is not recomputed. Breakdown occurs when v} becomes negative
which can be avoided using the recompute scheme.

+ 2<5l‘kvrk> - <6I‘k’5rk> - Vllc
= Vl/c - 5V,’€ - (5%71 — 20100, + O‘%—lé’mq) + 2<5!‘k7rk> - <5rk’6rk> - Vllc
(3'8) = 2<6rk’rk> - <5!‘k361‘k> - 61/,'c - (51/1@71 - 20‘76—150%71 + ai—167k71)'

Applying (3.4)—(3.6) we have the bound

(3.9)
|AV,'€| < 2H6rkH”rk” + H(SI“ICHQ + |6V,'c| + |6Vk:—1| + 2|ak*1||601«—1| + ‘ak*1‘2|57k—1|'

We will now bound the terms on the right-hand side of (3.9) using standard
analysis techniques. We can rearrange the expression for ry in (3.7) to obtain
1

= m(rk—l — Tk + Orp)s

Sk—1
which gives the bound
1
(3.10) lIsk—1ll < —— (ler—sll + l[erll + [10rc 1) -
la—1]

We now seek to bound the norms of the quantities 6y, , 0, _,, 06,15 0y,_,, and
6, Using (3.7), (3.10), and the bounds (3.4)-(3.6), and dropping terms of order
O(€?), we have

[0, [l < € (llrell + 2|ar—1llsp-1])

1
< (el + 2ancal (- el + el + 10,1 )
< c(Blrel + 2 ) +2¢ 3
By <3enl el
312) 5| < enlrial?
orss| < enlee-alse-al

< enllrr] (

lov—1]

(e + re] + ||6rk||>)
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1

(3.13) < ] (lek—o” + ler—alllewll) »
10y, | < €nllsp_q?
1 2
(3.14) <en T (ler—all + [frxl)”,

where we have used the bound,

1
[sk—1ll < (1 +3€) ——(l[re—1ll + llrx|)-
lov—1]

Finally, using (3.7), (B.1), and (3.4)—(3.6), we find
100 | < 3€(lvr—1] + 2lan—1llor—1] + [ox—1[*|yr-1l)
< 3¢ (lren-1ll* + 2lon—alllre—1lllse—1ll + k-1 |*[lsk—1])

< 3e (llre—al® + 2lee—slllrr—sll + llrell) + (lrr—all + lrel)?)
(3.15) =3¢ (Allrn—1]l* + 4llre— | llrell + e ) -

Substituting (3.11)—(3.15) into (3.9) gives a bound on the v}, gap:

(316) Ay ] < e((12+ 3n)|rp-1 ]| + (18 + 4n) [[rr—[lflrel| + (9 + n) [re]?)
(3.17) < e (304 7n) (Ilek—1)1* + lIrel?) -
Therefore, given that v}, = [lrx[|* = A,/ it is clear from the above bound that

vk > llrell* = € (30 + 7n) (lrr—1]1* + [lrell?)

Assuming € is small enough that the higher order terms do not have an signif-
icant impact on the derived bounds, this quantity will remain positive provided
llee—1)?/llrkl> < 1/(e (30 + 7n)) — 1. While we do not explicitly bound |rx_1|/|rx],
we note that in practice it is unlikely to be of size ~ 1/y/en, thus explaining why the
recompute scheme keeps v}, positive.

We now consider the case where we do not use the recomputed value v;_1, i.e.,
if we were to instead compute

(3.18) Vi = Vi1 = 2061031 + QF 11 + 0,

where éy; represents the local rounding errors in computing this recurrence. In this
case we would have, letting AV;Q represent the v’-gap without recomputation,

Ay = (Ch—1,Tr-1) = 200-1(0k—1 = 05y _,) + @41 (Yh—1 = Oyp_y)
+2(00, Tr) = (Orps G ) = Vipmy + 20k 10k-1 — QY1 — 8y
= ((Th—1,Tho1) = V1) + 200100,y — QG105 + 2(0e, ) = (Ory, Or) — 8y
=A,  +2a5-100,_, — 107y +2(0p, Th) = (Opys Oy ) — Sy

Taking the absolute value of both sizes and and ignoring terms of O(e), we thus have
the bound

(819) 181 <18, |+ 2a llfo |+ 0 118, |+ 20k, [rkl + 18, |
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From (3.18) we have

vl

The only term in (3.19) that remains to bound is |d,,
10,1 < 3¢ (|vh—1| + 2lar—1llon—1] + af_1llve-1ll) -

By definition, v}_, = [[rp_1]]? -4, 0

10,1 < 3e (lIrxaall + 18, |+ 2apallor-a] + af_ilmal) -

Vi1

Thus, using an approach similar to the computation in (3.15) we have
(3.20) 8,1 < 3 (Al 2+ Al el + el + 12, 1)
Plugging (3.20), (3.13), (3.14), and (3.11) into (3.19), we obtain

A, 1< A+36]4,  [+eOm) (el + [Ire]?) -

Using that [A,/| < en |lro||?, this can be written

(3.21) A, | <eOn Z [[r:]|%,
1=0
Thus for the v/-gap without recomputation, we have the bound
k
(3.22) v = rell? = €Om) Y [lrs*.
i=0

Since now the term subtracted involves the sum of the squares of all previous
residuals, which can be large especially at the beginning of the iterations, it is entirely
possible that v, can become negative at some point during the iterations. While (3.22)
is only an upper bound, it is more or less clear that this is the cause of instability
in the case without recomputation, which explains the observations of Meurant [25].
In fact, if we assume that early residuals have norm = 1, the form of the expression
(3.22) suggests that v, can no longer be guaranteed to be positive once ||ry| ~ /e.
This aligns with what we have observed in practice; see for instance Figure 1.

3.1.1. Maximum attainable accuracy. We now compute an expression for
the residual gap in Algorithm 2.1. Substituting in our recurrences for xj and ry
computed in finite precision, we find

Ar, =b — A(xp—1 + ap—1Pk-1 + 0x,) — (k-1 — ¥g—1Sk—1 + r,)
= (b — Axj—1 — 1) + @—1(Sk—1 — APx—1) — Adx, — Ir,
= Al‘ka + O‘k—l(;sk,l - A(;xk — 5l‘k'

Therefore the residual gap can be written
k

Ar, =Dro + Y (io10s,_, — Adx, — br,) .
i=1
This expression is a simple accumulation of local rounding errors. We note that the
residual gaps for HS-CG and CG-CG are both given by

k
Al‘k = Ar‘o - Z (Aéxi + 51‘1) )

i=1
where the dquantity terms correspond to the round off errors made by those algorithms
respectively [8].
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3.1.2. Towards understanding convergence. We now derive an expression
for the extent to which the recurrence (3.1) is satisfied by PR-CG in finite precision.
We express s, = Apy, + Js, in terms of rj, and si_;, writing

sk = A(ry + BrPr—1 + 0p,) + s,
= Ark + ﬂkApk—l + A6pk + 6sk
(323) = Ar, + ﬁk(sk_l — 5Sk—1) + A(Spk + 551«

By rearranging the equation ry = rp_; — ag—1Sk—1 + Or,, We can write sp_1 =
(1/ag—1)(rk—1 — v + Oy, ). From this we compute

1
Sk — BrSk—1 = OT;C (I‘k —Tg41 + 6rk+1) - (rk—l — I+ 5rk)

Op—1
1 1
=——Tkq1 + ( + P > T — Tp—1+ —O0r ., — ﬁ&w
o, o gy Q-1 o Qp—1
Thus, shifting the indexing down by one, (3.23) becomes
1 1 _ _
(3.24) Arp_ 1 =— ry + ( + B 1) rp_1— Pra rp—o + fi,
Q-1 Qf—1 Qf—2 Qg2
where
Br— 1
fi, = _716!%71 + /kal(ssk—Z - A(spk—l - 65k—1 + 75%'
Qp—2 Qp—1
Defining g1 := (—1)¥ry/|rx|| we obtain the three-term recurrence
(3.25)
1 r 1 _ 1 |lri— —1)k-1
Aq, — [[rx]l Qk+1+( +ﬂk 1) k+/8k 1Hk2||qk_1_( ) £,
g1 [[rp—1]] k-1 Qg2 g2 [[r—1]] llrr—1l]

In order for Greenbaum’s analysis to apply, we must write this as a symmetric
three-term recurrence with some perturbation term. Using our definition of the v/-
gap, A, 1= (ry,Ty) — vy, we have

v, rel® + Ay x5 ]|
Bp= Lo gy = i T = R A
veer T e |2+ o, o e o
where Ag, := B — ||tk ||?/||rk—1]|? can be written explicitly as
Ay + llrk-1]ds, + 0, Ip, —[rxl*6,;
Br — .
* [kl + 00, er—v [ (frr—al? + vy _,)

Then, by plugging this expression for S;_1 into (3.25), we obtain the approxi-
mately symmetric three-term recurrence for qg,

1 Iy ka 1 re_
= Il Ak+1 + ( + = g+ H 1”%4 + Fu,
g1 |[rr—1]] Q-1 Qg2 g2 ||rr—2l|
so that the error in the three-term Lanczos recurrence is given by
A _ re_ 2 -1 k
vy Y S o VY
ap—z [lrp—1] [omy
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Fig. 2: Residual gap (lefT) and 2-norm of error in three-term Lanczos recurrence
(right) on model_48_8_3 without a preconditioner. In the legend, “no recompute”
indicates that wy is not recomputed.

Hence, the amount by which the updated residuals in PR-CG fail to satisfy
(3.1) depends only on local rounding errors, which was also observed for HS-CG and
CG-CG in [20]. While |[ri—1|| may become quite small, we note that fj, consists of
roundoff errors made in iterations k — 1 and k£ — 2 and corresponds to vectors which
are of comparable size to ri_1; i.e., it is reasonable to assume that the ratio of the
norms of these vectors to ri_; will be much less than 1/e. Based on this heuristic,
£ /||rk—1| can be expected to stay small, which provides some indication for why the
rate of convergence of PR-CG tends to be similar to HS-CG and CG-CG.

3.2. Pipelined predict-and-recompute CG. We now provide for PIPE-PR-
CG a similar rounding error analysis for the residual gap and Lanczos recurrence as
we did for PR-CG. Of course, the dqyantity €rror terms in this section are different
from those in the previous section, even though we use many of the same symbols for
notational convenience. In particular, our expression for s; in finite precision is now
Sk = W}, + BrSp—1 + Js, and we add the recurrences

!
W), = Wg—1 — Qg—1Uk—1 + 0w/, Wi = Ary + Ow,,

Pk =Tk + BkPik—1 + Op,, u, = Asy + 0y,

We note that the same expression holds for A, as with PR-CG; see (3.8).

3.2.1. Maximum attainable accuracy. Similarly as for PR-CG, we can write
the residual gap in PIPE-PR-CG as

Ark :bfAkaI‘k
=Ar,_, top_1(Sk—1 — Apr—1) — Ady, — or,
— Av L — 1A, — Aby, — 6,
k

=Ar, = Y [ 1As,_, + Ay, + 61,
=1

Tp—1

where Ag, := Ap; —s; represents the gap between Ap; and the recursively-computed
quantity s;. We can write this s-gap as

As, = A(r; + Bipi—1 + 6p,) — (W) + Bisi—1 + Js,)



PREDICT-AND-RECOMPUTE CONJUGATE GRADIENTS 15

= (Ar; = w}) + Bi(Api—1 —si-1) + Adp, — 05,
= Aw; + ﬁiAsi,l + A(SPL — (551.

= A [I18+D |(Aw +Asp, —65) ] 8|
j=1 j=1

t=j+1

where Aw; denotes the gap Aw; = Ar; — w;. Now we look at how to bound this
w'-gap. In PIPE-PR-CG, we have

Aw.; = A(I‘j,1 —aj-18;—1 + 5rj) — (Wj,1 —aj_1u5-1 + 6w/7)
= AI‘j,l —W;_1— O[jfl(Aijl — lljfl) - 5W;c + A(sr].

(3.26) = —0w;_, + @j_10u;_, — Ady, — (5w;,
which is the sum of local rounding errors.
Notice that without recomputation, i.e., if we were to instead compute

/ /
Wj — Wj—l —Q;_1U51 +éw37

where J.,, denotes the local rounding errors in computing this recurrence, then we
J
would have, letting A, denote the w’-gap in the case of no recomputation,
J
éw; = AI‘j,l — W;-fl - Oéjfl(Aijl — lljfl) + A(Srj - éw;

= Aw3_71 + O‘j—l(;uj_l + A(Srj - éw;

J
(3.27) =Dy +> [ag,léw_l +AG, + 5w2] .
=1
Thus, comparing (3.26) with (3.27), we see that if we use recomputation, Aws
is essentially “reset” in each iteration; the errors made do not accumulate and AW;
remains a small multiple of the machine precision. Without recomputation, however,
a bound on size of the quantity éw; will be monotonically increasing, growing larger
in each iteration due to the accumulation of rounding errors. We note that the
expression for the maximum attainable accuracy for PIPE-PR-CG in (3.27), without
the recomputation of w;, closely resembles the expression derived for the maximum
attainable accuracy for GV-CG derived in [8]. This is demonstrated numerically in
Figure 2. Indeed, without recomputation, it is easily observed that PIPE-PR-CG and
GV-CG typically behave quite similarly.
If we look at the expression for A, we see that Ay (or in the case of no

recomputation, A ), along with local rounding errors Ady, and ds,, is amplified by
J

a product of 5 terms, Hz:j 41 B¢ In exact arithmetic at least, we have

H Be = Bj41Bj42--Bi =

I=j+1

and we expect this quantity to be greater than one in cases where CG exhibits large
oscillation in the residual norm.

Thus it is clear why recomputation can improve the maximal attainable accuracy:
the term Aw; should remain small (some multiple of €) in this case, whereas without
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recomputation, the analogous term can grow larger and larger throughout the itera-
tions. It is also clear why the PIPE-PR-CG method can exhibit potentially decreased
accuracy versus the HS-CG method; the local rounding errors (including the term
Aw;) are amplified by quantities related to the ratios of residual norms, which can be
large for certain problems.

Finally, we note that the same theory holds for PIPE-M-CG as the expressions
for the relevant recurrences are the same as in PIPE-PR-CG.

3.2.2. Towards understanding convergence. Following the same procedure
as for PR-CG, we can write

Sk = Wi, + BkSk—1 + 0, = Arg + Bisp_1 — Ay + s,

This is almost the same as (3.23) except that Adp, — Brds, , has been replaced by
wa;c. Thus, through similar computations as above, we find

1 r 1 _ 1 rp_
Aqy = el Qk+1+< + Br 1>Qk+ Iz 1||(lk—1+Fka
a1 ||re—1]] Qp—1 Q2 ap—2 ||rp—2|

where there error term is given by

F, — Aﬁk—l ”rku”2 (_1)k
k= T3 9k—1 — k
ag—2 [[rg—1]l k-1l
and
&:—@i&H+A%—&H+&W

Qg2

While the three-term Lanczos recurrence generated by PIPE-PR-CG is satisfied
to within local rounding errors, the error term Fj, for PIPE-PR-CG depends on Aw;
rather than Adp,. Thus, it is reasonable to expect it to be larger than the error
term for PR-CG. On the other hand, the expression for the degree to which GV-CG
satisfies the three-term Lanczos recurrence depends on errors made in all previous
steps [20]. This provides some intuition for why the rate of convergence of PIPE-PR-
CG is observed to be better than GV-CG. Again, a numerical comparison is shown
in Figure 2.

4. Numerical experiments. In this section we present the results of numeri-
cal experiments intended to give insight into the numerical behavior of the variants
introduced in this paper. We run experiments on a range of matrices from the Matrix
Market [3]. In addition we include a model problem which was introduced in [34]
and has since been considered in [35, 12, 20]. This model problem has eigenvalues
M =1/k, Ay =1,and fori=2,3,...,n—1,

i—1 :
L) =2

(4.1) MM+<

for n = 48, p = 0.8, and x = 102, with eigenvectors chosen uniformly from the set of
unitary matrices. Since the spacing between eigenvalues grows exponentially, this is
a particularly difficult problem in finite precision arithmetic.

The experiments are implemented in NumPy using IEEE double precision floating
point arithmetic. The results are outlined in Table 2. In this table we give two
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Fig. 3: Error A-norm of conjugate gradient variants on selected problems.

summary statistics: (i) the number of iterations required to decrease the A-norm of
the error by a factor of 105, and (ii) the minimum error reached. For a given problem,
these two quantities give a rough indication of the rate of convergence and ultimately
attainable accuracy. Plots of convergence for all experiments appearing in Table 2
can be found online in the repository linked in Appendix A. As was done in [16],
the right-hand side b is chosen so that x* = A~!b has entries 1/y/n, and the initial
guess Xq is the zero vector. For most problems we selected, we run tests without a
preconditioner, and then with a simple Jacobi (diagonal) preconditioner. For each
problem, we run all variants for a sufficient number of iterations such that the true
residual stagnates.

Figure 3 shows the results of four of the numerical tests contained in Table 2.
These problems were chosen to highlight some of the types of behavior observed
for finite precision CG variants. On some problems such as bcsstk03 and the model
problem model_48_8_3, the rate of convergence and final accuracy of each variant may
differ, due primarily to the large gaps in the spectrum [4]. Alternatively, on many
other problems, such as bcsstk15 with Jacobi preconditioning, the rate of convergence
for all variants is the same until the final accuracy is reached. However, even on such
problems, it may be possible for the final accuracy of a variant to be significantly
worse than other variants. For instance, on s3rmg4ml with Jacobi preconditioning,
the final accuracy of GV-CG is 8 orders of magnitude worse than HS-CG even though
the rates of convergence are initially the same.

We note that on problems where CG-CG encounters a delay of convergence, such
as bcsstk03, PR-CG converges more quickly. More notably, for the experiments in
Table 2, the pipelined predict-and-recompute variants PIPE-M-CG and pPiPE-PR-CG
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matrix prec. n nnz iterations: min{k : [ex|a/[leola < 1077} minimum error: ming log,(|lexlla/lleolla)
HS cG M PR GV PM PPR HS CG M PR GV PM PPR
1138 _bus - 1138 4054 | 1721 1753 1797 1727 1870 1799 1733 | -12.69 -12.52 -12.70 -12.73 -6.54 -11.85 -11.85
494 bus - 494 1666 898 917 941 899 1040 957 909 | -13.14 -12.48 -13.11 -13.11 -6.89 -12.24 -12.16
662_bus - 662 2474 443 447 451 444 464 451 444 | -13.93 -13.21 -13.93 -13.95 -8.78 -12.67 -13.35
685_bus - 685 3249 437 456 455 439 485 471 445 | -14.36 -14.10 -14.31 -14.36  -9.53 -13.15 -13.06
bcsstk03 - 112 640 364 439 425 380 598 492 411 | -14.55 -14.49 -14.40 -14.43 -6.86 -12.65 -12.96
besstkld - 1806 63454 | 3982 4060 4045 4003 4212 4096 4014 | -14.31 -14.19 -14.30 -14.29 -5.32 -14.24 -14.26
besstkls - 3948 117816 | 5702 5777 5782 5721 5951 5820 5738 | -13.77 -13.40 -13.79 -13.79 -5.60 -13.61 -13.74
besstki16 - 4884 290378 429 430 430 430 818 431 430 | -14.48 -14.34 -14.47 -1447 -5.07 -14.18 -14.20
besstkl7? - 10974 428650 | 17568 18103 18174 17590 - 18497 17795 | -13.42 -12.85 -13.42 -13.45 -4.25 -12.06 -12.30
bcsstk18 - 11948 149090 | 42525 43366 43118 42652 49210 43704 42908 |-13.18 -13.15 -13.16 -13.18 -5.00 -13.15 -13.18
bcsstk27 - 1224 56126 519 521 523 520 531 523 520 | -14.42 -14.26 -14.42 -14.43 -9.85
besstml9 - 817 274 287 286 274 334 299 277 | -14.84 -14.84 -14.82 -14.82 -9.63
besstm20 - 219 221 205 239 228 208 | -15.06 3
besstm21 - 3 3 3 3 3 31 -15.69
besstm22 - 43 43 43 43 43 43 | -15.43
bcsstm23 - 1376 1360 1342 1434 1367 1346 | -14.35
besstm24 - 1689 1686 1595 19411 1698 1605 | -14.14
besstm25 - 10948 10963 10293 12736 11245 10400 | -13.84
model 48 8.3 - 42 45 44 45 43 44 | -14.32
nosi - 1895 2008 1843 2305 1999 1870 | -12.81 .
nos2 - 4137 | 29829 30672 32717 29706 - 32157 29744 | -11.29 2
nos3 - 15844 221 221 221 221 221 221 221 | -13.39 .3
nos4 - 594 72 72 72 72 72 72 72 |-14.33 3 .33 .
nos5 - 5172 315 315 316 316 317 316 316 | -14.98 -14.97 -15.00 -14.99 -10.97
nos6é - 675 3255 551 555 582 555 672 601 589 | -12.21 -12.28 -12.23 -12.22 -6.67
nos7 - 729 4617 | 2869 2798 3536 2874 - 3416 2899 | -9.01 -8.7 -8.97 -9.01 -0.65
sirmq4mi - 5489 281111 | 3406 3447 3432 3410 3603 3442 -13.55 -13.56 -8.23
sirmt3ml - 5489 219521 | 3890 3932 3910 3895 4076 3916 -13.39 -13.40 -7.35
s2rmq4mi - 5489 281111 | 10476 10699 10651 10491 11622 10693 -13.11 -13.12  -6.07
s2rmt3ml - 5489 219521 | 14484 14727 14655 14533 - 14679 -12.82 -12.81 -4.55
s3rmq4m1 - 5489 281111 | 26628 29395 28004 26937 - 28822 28161 -12.06 -12.10 -4.20
s3rmt3ml - 5489 219521 | 38459 41037 40188 38471 - 40839 40105 -12.08 -12.07 -4.07
s3rmt3m3 - 5357 207695 | 69095 72598 71471 69051 - 72258 70852 -12.59 -12.71  -4.20
1138_bus Jac. 1138 4054 734 734 734 734 734 734 734 -12.67 -12.70  -8.62
494 bus Jac. 494 1666 371 371 371 371 371 371 371 -13.09 -13.15 -9.84
662 _bus Jac. 662 2474 166 166 166 166 166 166 166 -14.15 -14.19 -10.94
685_bus Jac. 685 3249 192 192 192 192 192 192 192 -14.59 -14.46 -11.32
besstk03 Jac. 112 640 118 118 120 120 120 120 121 -14.10 -14.05 -9.48
besstkild Jac. 1806 63454 198 198 198 198 198 198 198 -14.66 -14.67 -11.18
besstkls Jac. 3948 117816 442 442 443 444 444 444 444 -14.11 -14.10 -10.05
bcsstkl6 Jac. 4884 290378 132 132 132 132 132 132 132 -14.60 -14.60 -10.98
besstkl7 Jac. 10974 428650 | 2203 2205 2210 2212 2218 2214 2216 -13.98 -14.00 -7.99
besstki8 Jac. 11948 149090 536 537 539 541 542 541 542 -14.57 -14.55 -10.12
bcsstk27 Jac 1224 56126 173 173 173 174 174 174 174 X -14.67 -14.70 -10.45
model 48 8.3 | Jac. 48 2304 49 48 50 50 52 50 50 | -14.30 -14.25 -14.28 -14.29 -10.66
nosi Jac. 237 1017 306 314 322 312 346 323 326 | -12.98 -12.93 -12.96 -6.70
nos2 Jac. 957 4137 | 3047 3184 3197 3097 - 3326 3303 | -11.27 -11.32 -11.30 -11.27 -3.44
nos3 Jac. 960 15844 186 186 186 186 186 186 186 | -13.38 -13.42 -13.37 -13.39 -9.62
nos4 Jac 100 594 67 67 67 67 67 67 67 | -14.30 -14.39 -14.34 -14.36 -11.76
nos5 Jac. 468 5172 136 136 136 136 136 136 136 | -15.07 -14.99 -15.11 -15.08 -12.02
nos6é Jac. 675 3255 71 71 71 71 71 71 71 (-1217 -12.00 -12.19 -1220 -9.10
nos7 Jac. 729 4617 67 67 67 67 67 67 67| -891 -9.21 -890 -8.88 -6.41
sirmg4ml Jac. 5489 281111 595 595 596 596 597 597 597 | -13.95 -13.86 -13.97 -13.90 -8.49
slrmt3ml Jac. 5489 219521 674 674 674 675 675 675 676 | -13.58 -13.76 -13.60 -13.62 -8.76
s2rmq4ml Jac. 5489 281111 | 1437 1437 1438 1439 1439 1439 1440 | -13.16 -12.65 -13.15 -13.23 -6.65
s2rmt3m1 Jac. 5489 219521 | 2030 2028 2033 2034 2040 2037 2039 | -12.84 -12.83 -12.81 -6.19
s3dkq4m2 Jac. 90449 4820891 | 25527 25513 25548 25551 - 25576 25582 | -11.09 -11.10 -11.09  -4.03
s3dkt3m2 Jac. 90449 3753461 | 36195 36152 36247 36263 - 36327 36348 | -11.39 -11.39 -11.39  -3.97
s3rmq4m1 Jac. 5489 281111 | 5743 5726 5775 5780 - 5800 5806 | -12.06 -12.03 -12.04 -3.82
s3rmt3ml Jac. 5489 219521 | 8827 8806 8867 8871 - 8908 8917 | -12.07 -11.78 -12.09 -12.10 -3.78
s3rmt3m3 Jac. 5357 207695 | 10251 10248 10317 10324 - 10385 10404 | -12.84 -11.77 -12.58 -12.93 -4.43

Table 2: Summary statistics of convergence behavior on problems from the Ma-
trix Market. Preconditioners are applied using preconditioned variants rather than
constructing an explicitly-preconditioned system. Values are bold if they differ from
HS-CG by more than ten percent, and dashes indicate that a method failed to reach

the specified accuracy. Note that e, = A~'b — x;, is the error at step k.
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Fig. 4: Strong scaling experiment on (dense) model problem with n = 10752 un-
knowns and 1000 iterations. Time to solution is approximate time to decrease the
A-norm of error by a factor of 10°.

show significantly better convergence than GV-CG, frequently exhibiting convergence
similar to that of HS-CG. In particular, on all the problems tested, PiPE-M-CG and
pPIPE-PR-CG converge to a final accuracy within 10 percent (on a log scale) of that
of HS-CG if Jacobi preconditioning is used, and on some problems, these two variants
actually converge to a better final accuracy than HS-CG.

5. Parallel performance. We implement the unpreconditioned variants dis-
cussed in this paper using mpidpy [11] and perform a strong scaling experiment on
the Hyak supercomputer at the University of Washington. In this experiment we
solve the model problem (4.1) with parameters n = 10752, p = 0.9, x = 10°. In
order to demonstrate that the additional computation costs associated with the extra
matrix-vector product required by PIPE-PR-CG are not particularly important, we
represent our model problem as a dense matrix. In each trial, we first allocate 48
nodes with 16 processors each and then iterate over a selection of node counts. On
each node count we run each variant with for 1000 iterations timing only the main
loop of each variant and not any costs corresponding to setup. In order to account
for effects such as cluster topology and system noise we repeat this process 4 times
and report the minimum runtimes and accuracy of these runs.

Figure 4 shows the results of the experiment. In our implementation, we compute
Asj and Ary simultaneously using a block vector [sg,ry] so that A is accessed only
once per iteration. While the number of floating point operations is nearly doubled in
PIPE-PR-CG, the memory access pattern is more or less unchanged. Specifically, A
needs to only be read/communicated a single time per iteration. For this reason, the
runtime of PIPE-PR-CG is almost the same as GV-CG. If we compute the two matrix
products separately, then the runtime of PIPE-PR-CG is approximately doubled on
low node counts.

In both cases, as a higher number of nodes are used, and communication costs
begin to come into play, PIPE-PR-CG becomes faster than the non-pipelined variants
and exhibits similar scaling properties as GV-CG. In the high node limit, GV-CG
does perform marginally better than PIPE-PR-CG. This is because our test involves a
dense matrix, so due to the two matrix-vector products, the amount of data commu-
nicated between nodes in PIPE-PR-CG is nearly double that of GV-CG. However,
it is important to keep in mind that the actual “time to solution” is given by the
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product of the time per iteration and the number of iterations required.

6. Future work. First, while we have provided an analysis of the maximal
attainable accuracy for our new variants, the analysis of the resulting convergence
rate is far from complete. This is a difficult area of study and deserves further rigorous
treatment.

Second, since the maximum reduction in communication cost of PIPE-PR-CG
over HS-CG is only a factor of three, potential ways of further decreasing communi-
cation costs should be explored. Recently, there has been work on “deep pipelined”
CG variants where more matrix-vector products are overlapped with global commu-
nication; see, for instance, [16, 10, 7]. This approach is similar to the “look ahead”
strategy suggested in [30] and may be compatible with the schemes introduced here.

Alternatively, it may be possible to either incorporate predict-and-recompute
strategies into s-step methods or to develop new s-step methods which are built
on PR-CG. As CG-CG is the s = 1 case of the s-step method from [6], we expect
it may be possible to develop an s-step method based based on PR-CG which has
slightly better numerical properties than CG-CG. Finding such a method which is
usable in practice would be of great practical interest.

Finally, the predict-and-recompute variants presented here can be naturally ex-
tended to other related methods such as conjugate residual and conjugate gradient
squared.

7. Conclusion. In this paper we extend the predict-and-recompute idea of Meu-
rant [25] and derive new pipelined CG variants, PIPE-M-CG and PIPE-PR-CG. These
variants exhibit better theoretical scaling properties than the standard HS-CG algo-
rithm as well as improved numerical behavior compared to their previously-studied
counterpart, GV-CGQG, on every numerical experiment we ran. We provide an analysis
of the maximum attainable accuracy, applicable to both PiPE-M-CG and piPE-PR-
CG, which explains the benefit of the predict-and-recompute with regards to avoiding
the breakdown observed in [25], as well as to the improved final accuracy and rate
of convergence observed by our pipelined variants. We additionally provide a strong
scaling experiment which confirms the potential performance benefits of our approach.
Our predict-and-recompute variants require exactly the same input parameters as HS-
CG, and therefore have the potential to be used wherever HS-CG is used without any
additional parameter selection. Despite these advances, there is still significant room
for future work on high performance CG variants, especially in the direction of further
decreasing the communication costs.
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results of this paper. We also thank everyone who provided feedback on early drafts,
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Appendix A. Additional resources.

A repository with the code necessary to reproduce all of the figures and results
in this paper is available at https://github.com/tchen01/new_cg variants, and
released to the public domain under the MIT License. The repository also contains
convergence data and plots for all the matrices listed in Table 2.

We are committed to facilitating the reproducibility process, and encourage ques-
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tions and inquiries into the methods used in this paper.

Appendix B. Bound on sum of products. Define

C= Y 1_]:61‘7]'.
i=1j=1
Then
fp ch,] ch,j > 1+€ H|Cl]|
SO
(B.1) | fp(C) — C| Snez 14e€)P H\cm| —neZka + O(e

=1 =1 j5=1

Appendix C. A note on other variants studied.

Many of the scalar quantities appearing in the variants discussed in this paper can
be replaced with equivalent expressions. For instance, the difference between M-CG
and PR-CG (as well as PIPE-M-CG and PIPE-PR-CG) is the choice of expression
for vg, which in exact arithmetic is equal to (T, ry). However, it is not typically clear
which scalar expression should be used.

We first discuss our simplified expression for (2.2) which is used in PR-CG and
PIPE-PR-CG. Recall that in exact arithmetic, (Sg,rr) = (sg,Tx). This cannot be
expected to be true in finite precision.

Writing the finite precision recurrences

~ 71 ~ ~ ~
S =M™ 's; + 05, Tp =Tp—1 — ak—15k—1 + O3,
we have

(81, 1) = (M~ 'sy, + 05, , 11)
= (sk, M~ 'ry) + (05, , T1)
= (Sk,Tk) + (Sks Ag,) + (05,5 Tk)s

where we have defined the F-gap as Ag, := M~ !rj, — ¥;. For the f-gap, we have

As, =M Hrp_1 —ap_18k_1 + 0p,,) — (Fp_1 — ap_185_1 + 9z,
=M rpo1 = Fro1) — a1 (M spog — Sp_1) + M5, — 05,
= Ai’-k_l + akfléék_l + M_ldrk — 5f-k.

k
= Ag, + Z [ai*légifl + M_lél‘z‘ - 5121‘} :

i=1

We note that for preconditioners with a simple structure, the errors induced by
the preconditioner application may not be that large. In such cases it is reasonable
to use (ry,sy) and (ry,Sg) interchangeably. On the other hand, if the structure of
the preconditioner is such that the size of the rounding errors associated with its
application may be large, then it may advantageous to use the original expression
(2.2) rather than the reduced expression (2.3).
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We now discuss the simplification of (2.2) used in M-CG and PipE-M-CG. This
expression relies on the exact arithmetic relation (sy,Tr) = (Pk,sk). Using the finite
precision recurrence ay = Vg /p + 04, Wwe compute

Tr,Ti) + 0y, 5
W+§ak> (FrySi)-

~ Vg ~
) = — + 6a : ) =
oy (T, Sk) <Mk k) (T, Sk) <<pk75k> .

In exact arithmetic, (pgsi) = (Tx, sx). However, in finite precision

(Pk,Sk) = (Tx + BruPk—1 + Opy.s Sk)
= (Tk,Sk) + Be(Pr—1 + dp,, APi + s, )
== <I~‘ka Sk> + ﬂk<Pk—1; Apk> + <5pk7Apk + 5sk> + <5Pk755k>'

This differs from the expression for (Sg,ry) in that it relies on understanding
the size of (pg_1, Apg) which should be small due to the orthogonality of certain
vectors. While expressions for local orthogonality of such vectors exist for HS-CG
[26, Proposition 5.19], these vectors need not be particularly orthogonal in other
variants. Indeed, it is easy to verify that in these variants such local orthogonality
can be quite weak.

Finally, we make two remarks about previously-studied communication-hiding
variants. First, the formula for p in CG-CG and GV-CG is derived in a similar way
to (2.2) but then simplified. If left unsimplified, convergence of CG-CG appears to be
slightly improved on difficult problems. However, using the unsimplified expression
in GV-CG does not seem to lead to improved convergence.

Second, the predict-and-recompute idea may be applied to GV-CG by recomput-
ing s = Apg and/or ux = Asj, or any of the recursively computed inner products.
While recomputing both s and uj seems to result in even worse final accuracy, re-
computing one or the other leads to a better rate of convergence and final accuracy
than GV-CG on some problems (although neither is as good as PiPE-PR-CG). Re-
computing inner products was not observed to have a significant effect. Further study
may be of value.

As an afterthought, we suggest that it may be possible to procedurally generate
mathematically equivalent CG variants, and then automatically check if they have
improved convergence properties. Perhaps, by finding many variants which work
well, the similarities between them could provide insights into necessary properties
for a good finite precision CG variant.

Appendix D. Previously studied communication-hiding variants.

While we omitted the full descriptions of M-CG [25], piPE-M-CG, CG-CG [6],
and GV-CG [16] in the main paper, we include them here for completeness. We
additionally include the initialization required to fully implement these variants. Note
that not all variants require all of the variables defined in Algorithm D.1. For instance,
HS-CG does not use any of the variables after «y.

Algorithm D.1 Initilizations

1: procedure INITIALIZE
~ -1 ~ ~
2: ro = b—Axg, Ty = M~ 'rg, 1y = (ro,To), Po = To, So = Apo, & = v/ (Po,So)
Wy = Af‘o, V~Vo = Milv\!m g() = M71~S0, ug = Aéo, fl() = Miluo, 50 = Milso,
Qo = 1/0/<p07$0>7 oy = <I‘0,So>’ Yo = <Soyso>
3: end procedure




Algorithm D.2 Meurant conjugate gradient Algorithm D.3 Chronopoulos and Gear conjugate gradient

1. procedure M-CG(A, M, b, xq) 1: procedure CG-CG(A, M, b, xq)
2 INITIALIZE() 2 INITIALIZE()

3 for k=1,2,...do 3 for k=1,2,... do

4: X = Xgp—1 + 0p—1Pk—1 4 X = Xgp—1 + Qg—1Pk—1

5: Tp =Tg_1— Qg_1Sk—1, Tk = Fp_1 — Qp_1Sk—1 5: Ty =Th_1 — Qp_156—1, T = M1y
6 V,/c = —Vp_1+ ai717k71 6: Wi = f&f‘/C ~

7 Br = v}, /Vk—1 7 v = (T, ), Mk = (Tr, W)
8: Pk = Tj + BrPr-1 8: Br = vk/vi1

9: Sy = Apy, 8= M™ls; 9: Pk = Ty + BkPr—1
10: pk = (PksSk), Y = (8k,Sk), Yk = (T, Tk) Lo Sk = Wi + Prsp—1
11: ar = U/ 11 =Mk — (Br/ok—1)vk

12: end for 12: ak = Ui/ [

13: end for

13: end procedure

14: end procedure

Algorithm D.4 Pipelined predict-and-recompute Meurant conju-
gate gradient

Algorithm D.5 Ghysels and Vanroose conjugate gradient

1: procedure GV-CG(A, M, b, xq)
1: procedure PIPE-M-CG(A, M, b, xq) 2 INITIALIZE()
2 INITIALIZE() 3 fork=1,2,... do
3 for k=1,2,...do 4 X = Xg—1 + Qg—1Prk-1 ~
4 Xp = Xg—1 + Qp—1Pk—1 _ 3 B 5: Ip =Tg—1 — Qk—18k—1, Tk = Tk—1 jlak—lsk—l
5: I‘k,: p—1 — Qg—1Skg—1 , I‘k~,: Fp—1 — Og—18Sk-1 6 Wi = Wkg—1 — Qk—1Uk—1, Wi = M~ wy,
6: Wi =Wg_1 — Qp_1Ug—1, Wp =Wgp_1 — Qp_1Ug_1 7 v = (I'kJ I‘k>7 Nk = <I‘k7Wk>
1 : = _
=v, /vp_ -
S glzi = f‘i/%-kﬁklpk 1 10: Py = Tk + frPr-1
) L - ~ 11: Sk = Wi + OrSk—1, Sk = Wi + BrSkp—
10: St = Wy, + BiSk—1, 8 = W, + BiSi—1 12: u’; _ t:—i—,(?:u: 1’ k b BrSk
. — AS.. i = M-! : = -
11: ug = ASJQ, ll]i =M 711]@ 13 e = T — (ﬂk/akfl)l/k
12: wy = ATy, , W = 1\/[~ Wi _ 14: o = Vk/,uk
13: pk = (Pk,Sk), Yk = (Sk,Sk), Vk = (Tk,Tk) 15:  end for
14: Qg = Vi/ 16: end procedure
15: end for

16: end procedure
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