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Abstract. A systematic mathematical framework for the study of numerical algorithms would allow com-
parisons, facilitate conjugacy arguments, as well as enable the discovery of improved, accelerated,
data-driven algorithms. Over the course of the last century, the Koopman operator has provided a
mathematical framework for the study of dynamical systems, which facilitates conjugacy arguments
and can provide efficient reduced descriptions. More recently, numerical approximations of the oper-
ator have enabled the analysis of a large number of deterministic and stochastic dynamical systems
in a completely data-driven, essentially equation-free pipeline. Discrete or continuous time numerical
algorithms (integrators, nonlinear equation solvers, optimization algorithms) are themselves dynam-
ical systems. In this paper, we use this insight to leverage the Koopman operator framework in the
data-driven study of such algorithms and discuss benefits for analysis and acceleration of numer-
ical computation. For algorithms acting on high-dimensional spaces by quickly contracting them
towards low-dimensional manifolds, we demonstrate how basis functions adapted to the data help
to construct efficient reduced representations of the operator. Our illustrative examples include the
gradient descent and Nesterov optimization algorithms, as well as the Newton-Raphson algorithm.
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1. Introduction. The relation between algorithms and dynamical systems has been stud-
ied for a long time. Due to the breadth of the topic, we cannot give an exhaustive review
of the literature and will only briefly discuss some of the research areas important to this
work. The book by Stuart and Humphries [42] and the article by Chu [8] provide a broad
overview of the relation between algorithms and dynamical systems. Much recent research
focuses on the discrete steps in the solution to linear systems and the relation to continuous
dynamics on manifolds of matrices [8, 16, 25, 33]. In particular, algorithms for eigenvalue
problems have been studied in this context, with the relation to integrable systems (Lax-pair
formulation) [44]. Studying the connection between algorithms and dynamical systems led
to many surprising results, such as the definition of systems that can “sort numbers” [4], or,
more generally, solve optimization problems with constraints [15]. Chaotic dynamical systems
that “paint”, i.e., have stationary distributions according to the distribution of paint in an
image, have been studied in relation to Markov Chain Monte Carlo algorithms [39]. Another
connection relates particle dynamics to algorithmic solutions [11]. In the neural network re-
search community, the idea of a (deep) neural network representing an iterated map of a
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discrete dynamical system has gained attention, particularly with respect to the continuous
generator of this discrete map [36]. In general, optimizing the same loss function through
different algorithms such as gradient descent or “stochastic” gradient descent may result in
different trajectories, and different local or even global minima may be found. Optimization
algorithms modeling second-order dynamical systems (for example, Nesterov’s method, some-
times called the “heavy ball with friction” algorithm) are favoured over traditional gradient
descent methods, because of their ability to overcome local minima [2, 35].

The work of Koopman and von Neumann on ergodic, mixing, and chaotic dynamical
systems [20, 45] revealed that that there is a canonical, linear operator associated to each
system. The operator acts on complex-valued functions of the system state, the result being
evaluation of the function at a future time. Linearity of the operator makes it amenable
to finite-dimensional matrix approximations on computers, which was heavily exploited in
the last twenty years [29, 7]. The Koopman operator and its adjoint, the Frobenius-Perron
operator, are also known to provide optimal basis functions for uncertainty quantification [1,
14].

In this paper, we discuss benefits of the operator viewpoint on algorithms, when consider-
ing them as dynamical systems. The main problem we are addressing with the new operator
viewpoint is the data-driven analysis of complex algorithms acting on high-dimensional state
spaces. The Koopman operator and related numerical approximation methods for it allow us
to treat this challenge in a unified way, solving many pressing issues such as acceleration and
formulation of data-driven surrogate models, discovery of (almost) invariant sets and regions
of convergence, and high-dimensional state spaces through model order reduction. We demon-
strate that a numerical approximation of the operator may be possible, even for systems with
partially available or high-dimensional data. We also show how properties of the Koopman op-
erator, such as ergodic quotients and spectral analysis, offer valuable insight into algorithmic
behavior. Even if the only available data is a set of randomly distributed, single-iteration pairs
of states, the operator (and thus a sense of the algorithm) can be approximately constructed.
We demonstrate a particularly novel approach to algorithm analysis through the computation
of the spectrum of the Koopman operator. Summarizing a complex, nonlinear algorithm in
such a meaningful way–and in the language of linear algebra–may provide a missing link to
more fundamental results. An example is the comparison of algorithms based on their Koop-
man spectrum, which may lead to a definition of metrics or distances between algorithms.
Conjugacy arguments have also been used to analyze dynamical systems for a long time. The
operator viewpoint on algorithms can bring this successful approach to algorithm analysis,
comparison, and development, even in a data-driven setting [3].

The remainder of the paper is organized as follows. In section 2.1, we introduce the relation
between algorithms and dynamical systems. In section 2.2, we describe the Koopman operator
framework, followed by section 3 with the Extended Dynamic Mode Decomposition algorithm
for numerical approximation of the operator. Acceleration and domain decomposition of al-
gorithms is outlined in section 4.1. In section 4.2, we describe how to construct a continuous
version of the iterative Nesterov algorithm in a data-driven way. Section 4.3 describes nu-
merical approximations of the Koopman operator for algorithms that act on high-dimensional
spaces, but move their state close to a low-dimensional manifold after a few iterations. We
analyze the Newton-Raphson method for root finding of polynomials on the complex plane in
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section 4.4, with explicit construction of the spectrum and eigenfunctions, as well as a numer-
ical analysis of chaotic behavior of the method on the real line. Appendix A contains some
preliminary computational experiments on the impact (on the numerical construction of the
Koopman operator) of only partial information about the state space (due to finite sample
size). We conclude with a summary of the results and an outlook on data-driven algorithm
analysis in section 5.

2. The Koopman operator of algorithms. The focus of this paper is on potential benefits
of the data-driven study of algorithms as dynamical systems from the Koopman operator
viewpoint. In this section, we describe the necessary mathematical framework for dynamical
systems, state the algorithms that we will use as examples, and briefly introduce the Koopman
operator.

2.1. Algorithms are dynamical systems. In this paper, we consider algorithms that act
on their state either continuously or in discrete steps (iterations). We assume that the algo-
rithms’ state spaces X ⊆ Rd are smooth, k-dimensional Riemannian submanifolds embedded
in Euclidean space of dimension d ∈ N, d ≥ k. The Riemannian metric on X is induced by the
embedding. We define iterative algorithms as differentiable maps a : X → X, with iteration
number n ∈ N. For a single iteration of the map a on a state xn, we write

xn+1 = a(xn), n ∈ N.

For some algorithms, it is useful to consider continuously evolving state variables. In this case,
the algorithm is typically represented as a differentiable vector field v : X → Rk. Starting
from a given initial state x0 ∈ X, this vector field generates a curve c : R+ → X in the state
space through

(2.1)
d

ds
c(s) = v(c(s)), c(0) = x0.

Equation (2.1) describes the action of a continuous algorithm. It can be reformulated as a
discrete map through the definition of a flow: The map S : R+×X → X is called a (semi-)flow
of the vector field v if, for all t, s ∈ R+ and all x ∈ X,

S(t+ s, x) = S(t, S(s, x)),
d

dt
S(t, x)

∣∣∣∣
t=0

= v(x).

If we fix a time interval ∆t ∈ R+, the map S(∆t, ·) =: S∆t(·) : X → X is an iterative
algorithm (a discrete-time dynamical system). This construction is always possible: however,
it is important to note that in general it is not possible to find a continuous algorithm v for
a given iterative algorithm a. We will discuss the necessary properties of a for a continuous
version to exist, and show how it can be approximated in a data-driven procedure through
the consideration of the Koopman operator. In this paper, we study the prototypical forms
of algorithms listed in Table 1, formulated in continuous and discrete time.

2.2. Introduction to the Koopman operator. We start with a definition of the family of
Koopman operators in the deterministic setting in section 2.2.1. Details about the operator
in the stochastic setting, and the relation with its adjoint, the Frobenius–Perron operator, are
discussed in section 2.2.2.
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Table 1
Algorithms formulated as dynamical systems, with their continuous (left) and discrete versions (right).

Starting from a point x0 ∈ Rn, the function f : Rn → R (or its absolute value, in case of root-finding algorithms)
is to be minimized, where ∇f denotes its gradient, and Hxf the Hessian matrix at x. If f is vector-valued, Jxf
denotes its Jacobian matrix at x. The symbol h ∈ R+ denotes a small, positive constant.

Gradient Decent

ẋ = −∇f(x) xn+1 = xn − h∇f(xn)

Davidenko / Newton-Raphson method for optimization

(Hxf)ẋ+∇f(x0) = 0 xn+1 = xn − (Hxnf)−1∇f(xn)

Davidenko / Newton-Raphson method for root finding

(Jxf)ẋ+ f(x0) = 0 xn+1 = xn − (Jxnf)−1f(xn)

Nesterov method

ẍ+ r
t ẋ+∇f(x) = 0, r ≥ 3 xn+1 = yn − h∇f(yn)

yn+1 = xn+1 + n
n+3(xn+1 − xn)

2.2.1. Deterministic setting. Given a deterministic dynamical system with vector field
v : X → Rk, flow St : X → X, initial condition x0 ∈ X, and

(2.2)
d

dt
St(x)

∣∣∣∣
t=0

= v(x), S0(x) = x0,

the family of Koopman operators Kt indexed by t ∈ R is a family of linear operators acting
on the function space F of observables g : X → C such that

[Ktg](x) := (g ◦ St)(x).

The choice of function space F crucially determines the properties of Kt. A typical choice
is the space of complex-valued functions on the domain X that are square-integrable with
respect to a measure µ, denoted

(2.3) F = L2(X,C, µ) := {g : X → C, s.t.
∫
X
|g(x)|2dµ(x) <∞}.



ON THE KOOPMAN OPERATOR OF ALGORITHMS 5

The space L2(X,C, µ) is typically equipped with an inner product

〈g1, g2〉 :=

∫
X
g1(x)g2(x)dµ(x),

where the bar over g2(x) denotes complex conjugation. The set of all Kt forms a continuous
group w.r.t the strong operator topology. It is a semi-group if St is not invertible for all t
(e.g., if the system approaches spatial infinity in finite time). The strong operator topology
is defined through pointwise convergence on (F , ‖ · ‖F ) [13]. The map t 7→ Kt is continuous
in the strong operator topology on a compact subset B ⊂ R if, for t ∈ B,

t 7→ Ktf

is continuous for every f ∈ F . Continuous (semi-)groups are then defined as follows. The
family {Kt}t∈R is a continuous (semi-)group of operators if, in the strong operator topology,

lim
t→0
‖Kt − I‖ = 0.

Typically, a fixed t = t0 is chosen, and the associated Koopman operator Kt0 is studied. In
the remaining text, if the specific choice of time is not important in the context, we will choose
t = 1 and drop the superscript t to simplify notation. An important feature of the operator
is the spectrum σ(K) ⊂ C, where we consider the atomic (or pure-point) part σpp and the
absolutely continuous part σac (see [7, 31] for discussions of the singularly continuous part).
We can use the spectral theory for linear operators [34, 29] to write

(2.4) K =
∑
k

λk︸︷︷︸
∈σpp

Pλk +

∫
σac

λdE(λ),

where Pλ and E(λ) are projection operators mapping functions to their projection in the
eigenspaces associated to λ. Equation (2.4) decomposes the operator Kt at t = 1. Following
functional calculus, the spectrum associated to other values of t can be obtained by expo-
nentiation of λ, i.e. if λ ∈ σ(K) then λt ∈ σ(Kt). For an eigenvalue λ ∈ σpp(K), there are
functions φλ ∈ F such that

[Ktφλ](x) = (φλ ◦ St)(x) = λtφλ(x), t ∈ R+.

These functions are called eigenfunctions associated to the eigenvalue λ. To predict the time
evolution of a function g ∈ span{φλ,k} ⊂ F such that g =

∑
k ckφλ,k, ck ∈ C, we can thus

write

(2.5) Ktg = Kt
∑
k

ckφλ,k =
∑
k

ckKtφλ,k =
∑
k

ckλ
tφλ,k.

The coefficients ck are sometimes called “Koopman modes” for the observable g, since they
are used to reconstruct it. For many dynamical systems, the span of the eigenfunctions is a
rich subspace of F , and many observables can be defined through their Koopman modes.
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For continuous-time dynamical systems, another important object related to the Koopman
operator group Kt is the infinitesimal generator AK, where

(2.6) AKg := lim
t→0

Ktg − g
t

for all g ∈ D(AK) ⊂ F . For continuous semi-groups, the domain D(AK) is dense in F [13]. The
infinitesimal generator has the same eigenfunctions as any Kt. For fixed t > 0 and eigenvalues
λt of Kt, the eigenvalues ω of AK satisfy exp(tω) = λt. The generator is important because it
induces the following relation on the eigenfunctions φλ:

(2.7) 〈∇φλ(x), v(x)〉Rn = ωφλ(x)

for all x ∈ Rn where the eigenfunctions and the vector field are defined (see [3] for a discussion).
Note that equations (2.6) and (2.7) reveal the relation between the generator AK and the vector
field v. If we interpret v as a map from a point x ∈ X to the coefficients vi for basis vectors
∂i of the tangent space TxX, then we can write

v(x) =
d∑
i

vi(x)∂i.

With this reformulation, the vector field is an object that acts on functions g : X → R from
the left, i.e. vg =

∑d
i vi∂ig, which is exactly what equation (2.6) describes. Also, formally,

Kt = exp (tAK) .

In this sense, the vector field v acts as the generator of the Koopman operator (semi)group.
The generator AK can be used to obtain an approximation of the vector field v from only
discrete-time samplings of the dynamical system. This was used to identify vector fields
from data of dynamical systems [26], and we will use it to identify vector fields for discrete
algorithms in section 4.2.

The identification of vector fields using the Koopman operator is a global approach, taking
into account all the data to obtain the vector field at every point. A different, more localized
idea of identifying continuous vector fields on discrete data (e.g., [38, 37, 17]) is becoming
increasingly popular in the machine learning literature.

2.2.2. Stochastic setting. We provide a brief introduction to the operator definitions
in the stochastic setting. The manuscript mostly focuses on deterministic algorithms, and
thus we refer to [41, 9, 19] for more theoretical details and applications of the stochastic
case. Note that some numerical algorithms used to approximate the Koopman operator in
the deterministic setting can be analyzed using a stochastic approximation of the system that
accounts for numerical errors [46, 9].

Different from the deterministic systems based on equation (2.2), in this section, we start
with a time-homogeneous stochastic process {xt}t∈R+

0
defined on the space X with a proba-

bility measure P. In this setting, the formulation of the Koopman operator and its adjoint,
the Frobenius-Perron operator, can be stated in terms of the transition density function [19].
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Definition 2.1. The transition density function p : R+
0 ×X×X → R+

0 of a process {xt}t∈R+
0

is defined by

(2.8) P[xt+τ ∈ A|xt = x] =

∫
A
p(τ, x, y)dy

for all measurable sets A ⊆ X.

Note that for a deterministic system with flow φ, the transition density function collapses to
a Dirac delta centered on the point φ(t, x):

(2.9) p(t, x, y) = δφ(t,x)(y).

For 1 ≤ p ≤ ∞, the spaces Lp(X,µ) denote the p-integrable functions w.r.t. µ (see equa-
tion (2.3) for p = 2). The Koopman operator and its adjoint can now be defined as follows.

Definition 2.2. Let q(t, ·) ∈ L1(X,µ) be a probability density and f(t, ·) ∈ L∞(X,µ) an
observable of the system with flow φ. For a given time step ∆t ∈ R+, the Koopman operator
K∆t : L∞(X,µ)→ L∞(X,µ) is defined by

(2.10) K∆tf(t, x) =

∫
X
p(∆t, x, y)f(t, y)dµ(y) = E [f(t, xt+∆t)|xt = x] ,

and the Frobenius–Perron operator P∆t : L1(X,µ)→ L1(X,µ) is defined by

(2.11) P∆tq(t, x) =

∫
X
p(∆t, y, x)q(t, y)dµ(y).

The Koopman and Frobenius–Perron operators are adjoint w.r.t the inner product on a func-
tion space F if for all f, g ∈ F ,

(2.12)
〈
K∆tf, g

〉
F =

〈
f, P∆tg

〉
F .

If for a given stochastic dynamical system the transition function satisfies the detailed
balance condition

p(t, x, y) = p(t, y, x)

for all t ∈ R+ and all states x, y ∈ X, the Koopman operator is self-adjoint (and hence equal
to the Frobenius–Perron operator) on L1(X) ∩ L∞(X), which is a direct consequence of the
definitions of the operators (equations (2.10–2.11)).

The Frobenius–Perron and Koopman operators are the solution operators of the forward
(Fokker–Planck) and backward Kolmogorov equations, respectively [22, section 11]. That is
why they are also often referred to as forward and backward (transfer) operators.

General Smoluchowski equations of a d-dimensional system are given by

(2.13) dxt = −D∇V (xt)dt+
√

2dDdWt,

with potential V : X → R, diffusion coefficient D, and Wiener process Wt. They are time-
reversible [28, 23], and so their transition density function satisfies the detailed balance con-
dition. Therefore, the two transfer operators are identical (self-adjoint). The fact that this
holds for equations of type (2.13) is extremely strong and useful, particularly for the analysis
of molecular dynamics simulators. As many algorithms can be reformulated in this setting,
too, these strong results can be carried over directly.
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2.3. Illustrative example: Koopman operator of the Euler method. We use a typical
example from the stability analysis of algorithms to familiarize the reader with the concept
of Koopman operators of algorithms. Consider the following ordinary differential equation
(ODE) with parameter a > 0,

(2.14)
d

dt
St(x)

∣∣∣∣
t=0

= −ax, x ∈ R, t ≥ 0,

and solution St(x) = exp(−at)x. A trajectory St(x0) can be approximated with a numerical
algorithm, an initial value solver, given only the ODE (2.14) and an initial condition x0 ∈ R.
Here, we choose the forward Euler method, compute its Koopman operator, and show how
stability analysis of the method is related to the spectrum of the operator. For a given step
size ∆t > 0, the forward Euler method is given through the following iterative scheme, starting
at x0 for n = 0:

(2.15) xn+1 = xn + ∆t
d

dt
St(xn)

∣∣∣∣
t=0

.

For the ODE (2.14), we thus have the linear, discrete-time dynamical system

(2.16) xn+1 = xn − a∆txn = (1− a∆t)xn.

We now choose the function space F = span{xk, x ∈ R, k ∈ N}, with the identity function
g(x) = x as the generator of the basis. The Koopman operator Kn : F → F applied to the
generator is

[Kng](x) = g((1− a∆t)nx) = (1− a∆t)ng(x),

which shows that g is an eigenfunction of Kn associated to the eigenvalue (1− a∆t). On the
space F , the spectrum of K consists of the eigenvalues ωk = (1−a∆t)k, k ∈ N, associated to the
eigenfunctions φk(x) = g(x)k = xk. It is easy to see that for a∆t ∈ [0, 2], Kn is a contraction
operator on F : for all k, |λk| ≤ 1. This is a sufficient condition for the numerical stability
of the Euler method in this region. Note that system (2.14) has eigenvalues λk = exp(−ka)
on F , and so the discrete system (2.16) defined by the Euler method is not conjugate to
the continuous system for any ∆t > 0 (for conjugacy, the eigenvalues would have to be the
same). Consistency–and thus, convergence–of the algorithm can now also be interpreted in
the spectral sense, by setting n := d1/∆te (rounding to the next largest integer) and applying
the formula

lim
n→∞

(
1− a

n

)n
= exp(−a).

After this pedagogical example, we show how Koopman operators can provide a useful frame-
work to understand more general algorithms. In a more applied setting, “the algorithm” is
usually a large, complex piece of software that is treated as a black box data generator (for ex-
ample, an optimization procedure for a supply chain). Then, numerical approximations of the
Koopman operator can be used. In the next section, we briefly describe Extended Dynamic
Mode Decomposition as an example for such an approximation procedure from data.
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3. Data-driven approximation of the Koopman operator. We briefly cover the approx-
imation methods employed in the computational experiments of later sections. The methods
include an approximation of the Koopman operator with pure-point spectrum (Extended Dy-
namic Mode Decomposition), extracting the infinitesimal generator of the family of Koopman
operators, as well as an approximation algorithm in case the Koopman operator is unitary
and has continuous spectrum.

3.1. Extended Dynamic Mode Decomposition. One extension of Dynamic Mode Decom-
position (DMD) [40] to nonlinear systems with pure-point spectrum is Extended DMD [46,
48, 47] (EDMD). Many more numerical methods exist, such as Generalized Laplace Averag-
ing [30, 27], EDMD with dictionary learning through neural networks [24], dictionary selection
through L1-optimization [5], etc.

We consider the state space of a given system–usually, a smooth manifold M embedded
in Euclidean space Rd–sampled with a finite number of points X = {xk ∈ M ⊂ Rd|k =
1, . . . , NX}, NX ∈ N. The main idea of (Extended) Dynamic Mode Decomposition is to
approximate the action of the operator on a function space F over M by choosing a finite-
dimensional subspace spanned by a finite set of real-valued functions of M (called a “dictio-
nary”, with “observables” as elements). For F , we typically use the space L2(M,C, µ), see
equation (2.3). The EDMD algorithm computes the action of the Koopman operator on the
dictionary at the points in X, and then approximates the Koopman operator by solving a
least-squares problem:

1. Given a dictionary D = {dk : M → R|k = 1, . . . , ND} ⊂ F with ND observables,
construct

G = D(X) = [d1(X), d2(X), . . . , dND
(X)] ∈ RNX×ND .

2. For a fixed t > 0, compute the action of the Koopman operator Kt on the dictionary
elements using the flow map St : M →M of the given system:

[Ktdk](x) = (dk ◦ St)(x),

and construct the matrix

A = [KtD](X) =
[
Ktd1(X),Ktd2(X), . . . ,KtdND

(X)
]
∈ RNX×ND .

3. Approximate the operator Kt through the matrix

K =
1

N2
D

(GTG)†(ATA) ∈ RND×ND ,

where (GTG)† denotes the pseudo-inverse of the matrix (GTG).
The choice of the dictionary D is crucial for a successful approximation of the operator, see [24,
46, 47] and references therein. In this paper, we employ thin-plate radial basis functions [10],

(3.1) dx(y) = ‖x− y‖2 ln(‖x− y‖+ δ), x, y ∈ X, δ > 0,
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where the point x is the center of the radial basis function and δ is a small, positive constant to
extend the function to points y = x (here: δ = 10−3). The centers x are uniformly distributed
over the data set X, where the uniform distribution is constructed through an appropriate
k-means algorithm, clustering the data in ND clusters and using the centers of the clusters as
the centers for the basis functions.

3.2. Approximation of the infinitesimal generator. After some of the eigenfunctions φ̂
and eigenvalues λ of K are available through their numerical approximations, we can rep-
resent the approximation of the infinitesimal generator AK for the group Kt as a matrix
L = V ln[Λ]

∆t V
−1 (see [26]), where V contain the eigenvectors of the matrix representation of

a particular K∆t, obtained with EDMD from snapshot data (x, S∆t(x)). For the coordinate
functions xi ∈ F and a finite step size ∆t,

(3.2) AKxi = lim
t→0

(Kt − I)xi
t

≈ ln [Λ]

∆t
φ̂(x)Ci,

where Λ is the diagonal matrix of eigenvalues of K, ln is the complex logarithm (where we
pick the principal branch), and C are the “Koopman modes” associated to the coordinate
functions xi : X → R. The approximation of the vector field v generating the flow St is thus

(3.3) v(x) ≈ ln [Λ]

∆t
φ̂(x)C.

Note that the approximation of the generator through the logarithm of the eigenvalues involves
several challenges: numerical issues with eigenvalues of Λ close to zero, and non-invertibility
(or rather, non-uniqueness) of the complex logarithm. The issue with non-uniqueness is noted
by Mauroy and Goncalves [26]. In the example where we construct L (section 4.2), the
spectrum of the Koopman operator lies in the unit disk, so the complex logarithm is unique
when picking its principal branch. To mitigate numerical issues, we set all eigenvalues with
Re(lnλ) < −2/∆t to zero.

3.3. Approximation of the continuous spectrum. The EDMD algorithm is applicable for
approximating the Koopman operator if its spectrum only consists of eigenvalues (pure-point
spectrum). Not many numerical approximations are available for operators with continuous
spectra. Here, we briefly describe the results from Korda, Putinar and Mezić [21] for unitary
Koopman operators, where the spectrum is concentrated on the unit circle T in the complex
plane. We will use this approximation to analyze the Newton algorithm in section 4.4. If the
Koopman operator of a system is unitary, we can write it as an integral over a projection
operator-valued measure E on the unit circle T ⊂ C,

K =

∫
T
zdE(z).

For any observation function g in the domain F of K, the measure E defines a real-valued,
positive measure µg on T through

µg(A) := 〈E(A)g, g〉F
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for all Borel sets A ⊂ T. The moments mk, k ∈ Z of µg are defined by

mk :=

∫
T
zkdµg(z) =

〈
Kkg, g

〉
F
,

where the last identity follows from the spectral theorem. The measure µg depends on the
choice of observable g, but under certain conditions on g, µg fully determines the operator
K. The conditions are satisfied if g is ?-cyclic, meaning that repeated applications of K to
g span the function space F , see [21]. In this case, approximating the measure µg not only
reveals information about the specific observable g, but also about the underlying system
(and its operator K). The density of µg on the unit circle can be visualized after a numerical
approximation of the moments. If we have N observations yi = g(xi) along a trajectory of an
ergodic system, we can estimate the moments through

mk ≈
1

N − k

N−k∑
i=1

yi+kȳi.

Define ψN (z) = [1, z, z2, . . . , zN ]T , and write the Christoffel–Darboux kernel as

KN (z, w) = ψN (w)HM−1ψN (z),

with a semi-positive definite, Hermitian Toeplitz matrix M defined through

M :=



m0 m1 · · · · · · · · · mN

m1 m0 m1
. . .

. . . mN−1
... m1 m0

. . .
. . . mN−2

...
. . .

. . .
. . .

...
...

. . . m0 m1

mN · · · · · · · · · m1 m0


.

Inverting the matrix M is non-trivial, see [21] for details. Instead of inverting M directly, the
authors propose to invert a matrix M̃ where the elements mk in M are replaced by elements

m̃k :=

{
mk + 1 if k = 0,
mk if k > 0.

Given the kernel K̃N (now using M̃ instead of M), the continuous density ρ of µg at a given
angle θ ∈ T ∼= [0, 2π) can be approximated through

N + 1

K̃N (exp(iθ), exp(iθ))
− 1 ≈ ρ(θ).

4. Analysis of algorithms through their Koopman operator. This section contains il-
lustrative examples of algorithm analysis through their Koopman operator. We demonstrate
several aspects of our solution to the main challenge: how to analyze complex, nonlinear
algorithms in a data-driven setting within a unified framework. In particular, we show
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1. how to accelerate algorithms by constructing data-driven surrogate models,
2. approximations of infinitesimal generators for discrete-time algorithms,
3. approximations of the (asymptotic, long-time) operator in high-dimensional state spa-

ces,
4. and a combination of an explicit operator analysis for the Newton-Raphson method

with a data-driven approximation of its continuous spectrum.

4.1. Acceleration. We can employ the predictive capabilities of the Koopman operator
framework to accelerate the application of algorithms. First, the Koopman operator eigenval-
ues, eigenfunctions, and modes are constructed in an offline phase, using EDMD (see section 3).
Second, given a new initial condition close to the ones in the data set used for constructing
the operator, we can use the approximation as a data-driven surrogate model for the original
algorithm.

Such a surrogate model may be useful in accelerating the training of neural networks.
There, the state space is often very high-dimensional, because each state consists of all weights
and biases of the network. The typical optimization algorithm, stochastic gradient descent,
employed to change the state in order to minimize a certain loss function, is based on the
gradient descent algorithm we study in this section. The stochastic version can be analyzed
similarly, using the setting described in section 2.2.2. Different types of training (e.g. through
mini-batches, or dropout) will induce different biases, and the Koopman operator based sur-
rogate may provide a path towards quantifying and comparing such inductive biases.

Figure 2 shows the setting used for the example in this section, where we study the
Gradient Descent algorithm minimizing Himmelblau’s function [18]—a standard test function
for optimization algorithms:

f(x1, x2) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2.

This function has one local maximum and four local minima with three connecting saddle
points (see figure 1, a). As a dictionary for EDMD, we employ 500 thin-plate radial basis
functions (see equation (3.1)), chosen uniformly distributed on M = [−4, 4]2. In addition to
the radial basis functions, we add the two coordinate functions x1, x2 as well as the constant
function with value 1 to the dictionary.

Figure 2 shows four predicted trajectories using the approximated Koopman operator. To
generate a trajectory, we follow the prediction steps outlined in section 2.2 (equation (2.5)),
using all 503 eigenvalues and eigenfunctions.

The eigenfunctions of Kt at eigenvalue λ = 1 are special, as they are preserved under
the flow of the system—they do not decay, expand, or oscillate. This can be used to con-
struct an ergodic decomposition [6, 7] of the state space, separating the basins of attrac-
tion. In the system discussed here, we expect to see four basins of attraction, correspond-
ing to four attracting fixed points, and accordingly, at least four eigenfunctions associated
to eigenvalue λ = 1. To approximate the ergodic decomposition, we consider the map
M 3 p 7→ [φ1(p), . . . , φ4(p)]T ∈ C4, i.e. from the states M into the values of eigenfunc-
tions associated to λ = 1. In this space (shown projected to two dimensions in figure 2, b),
there should be four clusters of values corresponding to the different values the eigenfunctions
take on over the corresponding basins of attraction. Clustering the data using the k-means
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Figure 1. Level sets of Himmelblau’s function (a), and sample data (yn, yn+1) from Gradient Descent (b),
where yn+1 is generated through one iteration step with ∆t = .001.
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Figure 2. Panel (a) shows predicted trajectories from four initial points. All four trajectories approach
the correct minima in their respective basin of attraction. An ergodic decomposition of the state space through
k-means clustering of values from four complex-valued Koopman eigenfunctions associated to eigenvalues close
to 1 (a projection of the eight-dimensional data to two dimensions is shown in panel b) separates the four basins
of attraction (c).

algorithm then allows us to distinguish the original points in M (plot c in figure 2).

4.2. Continuous versions of discrete algorithms. In recent years, extensive research has
focused on re-deriving established algorithms as discrete versions of continuous dynamical
systems, in this way “explaining” the original, iterative algorithm. In the case of the Nesterov
method, the appropriate continuous system derived by Candès et al. [43] is a time-dependent,
second-order ordinary differential equation. This ODE can be (trivially) transformed to a
first-order system of autonomous equations, given through

(4.1) ẋ = v, v̇ = −r
t
v −∇f(x), ṫ = 1,

where ẋ now refers to a derivative with respect to a new time variable. In the example we
discuss below, the function to minimize is f(x) = 1

2x
2, x ∈ R. As in the previous section,
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we use EDMD to approximate the eigensystem of the Koopman operator with 125 thin-plate
radial basis functions (see equation (3.1)) as well as the x, v, t coordinates and the constant
function as a basis for the function space of observables on R3 ((x, v, t)-space). The operator
approximation is performed with data (zn, zn+1) from the discrete algorithm with step size
h = 0.01 (see table 1), where zn := (x(n), (x(n) − x(n − 1))/h, t(n)). We then approximate
the corresponding vector field on the three coordinates of z through equations (3.2) and (3.3),
which should be similar to the vector field in equation (4.1). Figure 3 shows streamlines of
the vector field (4.1) for three different values of t, with a distinguished sample trajectory,
compared to the vector field approximated by using the Koopman operator. This example
illustrates that it is possible to extract a continuous version (an infinitesimal generator) of a
discrete algorithm.

Figure 3. Approximation of the vector field through EDMD (top row), and the ODE found by Candès
et al. [43] (bottom row), at times t ∈ { 1

10
, 1
2
, 1}. The orange trajectory shows an example solution over this

(time-dependent!) vector field.

4.3. High-dimensional state spaces. Many algorithms are operating on points in high-
dimensional state spaces that are parametrized through a large number of variables. In this
case, sampling the full state space to obtain an accurate approximation of the Koopman
operator for the algorithm is difficult, especially when the action of the algorithm on the state
is nonlinear. However, if a few iterations of the algorithm quickly contract the whole state
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space towards a low-dimensional subset, then numerical approximations can be successful in
reducing the overall computational effort. The EDMD algorithm does not need an explicit
expression for this low-dimensional subset if, for example, radial basis functions are used for
the dictionary.

As an example, we construct a high-dimensional optimization problem with a low-dimen-
sional, attracting manifold, where gradient descent is used as an optimizer. On the manifold,
starting from the Müller-Brown potential, we add quadratic terms to obtain asymptotically
stable, attractive behavior in the directions transverse to the manifold. On the manifold (here,
a two-dimensional subspace of R100 parametrized by x, y), the potential is defined by

V (x, y) =
4∑

k=1

Ak exp
(
ak(x− x0

k)
2 + bk(x− x0

k)(y − y0
k) + ck(y − y0

k)
2
)
,

with

A = (−200,−100,−170, 15),

a = (−1,−1,−6.5, 0.7),

b = (0, 0, 11, 0.6),

c = (−10,−10,−6.5, 0.7),

x0 = (1, 0,−0.5,−1),

y0 = (0, 0.5, 1.5, 1).

The cost function C : R100 → R on the embedding space is then defined through

C(x) = V ([Ux]1, [Ux]2) +

98∑
i=0

(Ux)2
i , x ∈ R100,

where we rotate the data by a random, unitary matrix U ∈ R100×100 into the 100 dimensional
space to demonstrate that the EDMD algorithm with radial basis functions does not depend
on the chosen embedding coordinate system. Now, all coordinates have non-trivial dynamics,
but the low-dimensional, attractive manifold is still present. To approximate the operator, we
use 625 thin-plate radial basis functions with centers randomly distributed over the initial data
set in the 100-dimensional space, as well as the 100 coordinates x1, . . . , x100 and the constant
function (i.e., the final dictionary has 726 elements). The initial data consists of 2500 data
points, sampled in a 100-dimensional standard normal distribution around zero, and then
evolved forward with five iterations of the algorithm to converge towards the low-dimensional
structure. Note that this number of points is–by far–not enough to densely sample the high-
dimensional space, but the attracting behavior of the algorithm towards the low-dimensional
structure is nonetheless sufficient to numerically approximate the operator. We use radial
basis functions for EDMD to circumvent the need for an explicit approximation of the low-
dimensional space: the functions only depend on the distance between the points, not the
ambient dimension. As in section 4.1, we can again accurately predict trajectories of gradient
descent (see figure 4).
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Figure 4. Top-Left: Data gathered by sampling the 100-dimensional state space with a Gaussian distribu-
tion, converging to the low-dimensional manifold in five iterations of gradient descent (end points marked in
orange), and then recording one additional iteration (blue points). The coordinates x1 and x2 here are only the
first two of all 100 present in the data set. Top-Right: Predicted trajectories of the algorithm (blue) that were
computed after the construction of the operator, for ten initial conditions chosen at random from the initial
data set (orange points). The bottom panels show predicted (blue, dots) and actual (orange, dashed) trajectories
for the coordinates x1, x2, and x20, to demonstrate that all coordinate trajectories are reconstructed accurately.

4.4. Koopman operators for the Newton-Raphson method. In this section, we mostly
use the conjugacy results from [32] to construct eigenfunctions for the Koopman operator
of the Newton-Raphson method for root finding. We only consider polynomial functions of
degree two in this analysis, and at the end give a hint of more complicated dynamics present
for cubic polynomials. The Newton-Raphson method to find roots of a function f is defined
as the iterative scheme

xn+1 = xn − [Jf ]−1(xn)f(xn) =: Nf (xn),

where [Jf ]ij = ∂fi
∂xj

is the Jacobian matrix of f . In the example we consider here, the function

f : C → C is a complex polynomial of degree two, for which the Newton-Raphson method
simplifies to

Nf (z) = z − f(z)

f ′(z)
.
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Without loss of generality, we assume f has the form f(z) = az2 + bz + d with a, b, d ∈ C,
a 6= 0. Any polynomial f of degree two is conjugate to exactly one polynomial gc(z) = z2 + c,
c ∈ C (see [32]), where the conjugacy is given through a linear transformation h(z) = az + b

2 ,
such that

f ◦ h = h ◦ gc.

The constant c is related to a, b, d through c = ad+ b
2 −

b2

4 . The map h scales and translates
the argument so that gc has the desired form. The conjugacy of f and gc implies that we
only need to analyze the Newton-Raphson method applied to functions of the form gc, with
a given c. For this simpler form of f , the Newton-Raphson method becomes

Nc(z) = z − z2 + c

2z
=
z2 − c

2z
.

In the Koopman operator picture, the map Nc defines the dynamical system in discrete time
with an associated Koopman operator KNc . An important result in [32] is that the map Nc

is conjugate to the polynomial g0(z) = z2 through the map

h0(z) =
z + i

√
c

z − i
√
c
,

which is a Möbius transformation, and hence invertible on C ∪ {∞}. Thus, eigenfunctions of
KNc can be constructed through eigenfunctions of Kg0 , which are defined through

[Kg0φk](z) = (φk ◦ g0)(z) = λkφk(z), k ∈ Z.

Since g0(z) = z2, there are eigenfunctions φk of the form φk(z) = ln(|z|)k, associated to the
eigenvalues λk = 2k. Through the given conjugacy h0, we have that

(4.2) ψk(z) = (φk ◦ h0)(z) = ln

(∣∣∣∣z + i
√
c

z − i
√
c

∣∣∣∣)k
are eigenfunctions for KNc , associated to the eigenvalues λk. Fig. 5 shows ψ1 for c = 1, i.e.
for the polynomial f(z) = z2 + 1. The roots at ±i are clearly visible as the points where the
eigenfunction diverges.

4.4.1. An example with chaotic behavior. Consider the function f(z) = z2 + 1 from the
previous section, with its two roots at ±i. Interpreting the Newton-Raphson method as a
discrete dynamical system, the real line is the basin boundary separating the two basins of
attraction on the complex plane. When started exactly on the real line, the Newton-Raphson
method exhibits chaotic behavior, which we analyze in this section. The Newton-Raphson
method applied to f is defined by the map

(4.3) Nf (z) = z − z2 + 1

2z
=
z2 − 1

2z
,
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Figure 5. The eigenfunction ψ1 of KNc for a = 1, b = 0, c = 1, and d = 1, with corresponding polynomial
f(z) = z2 + 1. Left: Plot on the complex plane, with contour lines labeled by the function values. Right:
Eigenfunction evaluated on [−2i, 2i]. The numbered, red dots show four evaluations of the Newton-Raphson
method with starting point z1 = 0.5i, ψ1(z1) ≈ 1.0986. As expected, ψ1(zk+1) = 2kψ1(z1) and the function
diverges at the roots ±i of f .

so that zn+1 = Nf (zn) yields a new iterate, starting at z0 ∈ C. For z0 ∈ C/R, the limit points
of the iterative scheme are the extremal points, where

limn→∞ zn = i Im(z0) > 0,
limn→∞ zn = −i Im(z0) < 0.

For z0 ∈ R, however, the scheme does not converge (see Fig. 6) and gives rise to the chaotic
recurrence (which can be solved explicitly in this case)

(4.4) z(n) = − cot (c12n) , c1 = arctan(−1/z0).

A similar discrete system with explicit solution is given by the logistic map at parameter r = 4,
with recurrence relation yn+1 = ryn(1− yn) and solution yn = sin(c0 2n)2, c0 = arcsin

(√
y0

)
.

Accordingly, except for the constant function, the continuous eigenfunctions of the Koopman
operator computed in the previous section are all zero (or infinity, for k < 0) on the real line,
see equation (4.2). For the map Nf , the real line is an invariant, repelling limit set of measure
zero.

The results so far have been constructed explicitly. Addressing the main challenge of
the manuscript, we now want to demonstrate that numerical algorithms can also be used to
analyze the behavior of the Newton-Raphson algorithm. To this end, we employ the numerical
method by Korda, Putinar and Mezić [21] (as described in section 3.3) to approximate the
continuous spectrum of the Koopman operator associated to the map Nf . Figure 7 shows
how different numbers of points (i.e. lengths of trajectories) approximate the measure µg for
g(z) = 1 + exp(2πiz), with z ∈ R from a trajectory of the Newton-Raphson method starting
at z0 = 1/2. The point spectrum is σpp = {1} with eigenvalue 1 associated to the constant
function, as expected for a chaotic system. The absolutely continuous spectrum appears to
be σc = T/{1}, with no singularly continuous part. The trajectories were computed with
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Figure 6. Left: The first five iterations of the Newton-Raphson method (blue dots) on the polynomial
f(z) = z2 + 1, with the initial condition z(0) = 1/2. The exact recurrence relation is shown as red lines,
evaluated over a continuous space, showing that the expansion and folding leads to faster and faster oscillations,
a sign for chaotic behavior on the discrete iterations. Right: Invariant density over the real line, approximated
from a single trajectory of length n = 106, starting at z0 = 0.3.

the iteration of Nf (equation (4.3)) with 16 digits of accuracy, and with the explicit formula
(equation (4.4)) with 35,000 digits of accuracy, using the Wolfram Mathematica 11 software.
The high accuracy is necessary to exactly represent the number 2100,000 ≈ 1031,000 for the last
point in the longest trajectory.

4.4.2. Fractal eigenfunctions. For cubic polynomial functions, application of the New-
ton-Raphson method is known to exhibit an even richer structure compared to the quadratic
polynomials described in the previous section. We only give numerical results, inspired by [32].
Figure 8 shows the number of iterations (in color) of the Newton-Raphson method until the
derivative of the objective function is smaller than 0.01. Figure 9 shows eight iterations of the
Newton-Raphson method on a subset of points sampled on the complex plane, for a polynomial
of degree two (left three columns), and degree three (right three columns). The convergence
to the two (and three) roots is visible in the third and sixth column. The first/second and
fourth/fifth columns show the real/imaginary parts of the final positions as functions on the
initial positions, which makes the fractal structure for degree three (and higher) apparent.

5. Conclusions. Many modern algorithms (e.g. those associated with training neural
networks) can difficult to analyze in a classical sense: they are complex, interconnected, can
be deterministic or stochastic, act on high-dimensional states, and are often only accessible
as input-output blax box systems. To address this challenge, we propose to employ the
unifying view of the Koopman operator framework, with several numerical approximations
readily available. In a series of examples, we demonstrated that the Koopman operator
provides such a unifying view of many important issues in the analysis of algorithms: (spectral)
convergence, algorithm acceleration, state space decomposition, high-dimensional state spaces,
partial information, and generating processes for discrete algorithms. In the last section,
we gave an outlook to chaotic behavior of algorithms and how the behavior of statistics
of observables can be analyzed through the spectrum of the operator. We discussed the
possibility of using this approach to accelerate algorithms in high-dimensional embedding
spaces whose long-term dynamics lie on low-dimensional manifolds. Another possibility is
to use this approach to create surrogates of complicated “black box” algorithms that are
difficult to analyze mathematically; the data-driven surrogates obtained by sampling iterated
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algorithm states may provide useful insights in their nature and behavior. The Koopman
operator has been shown to provide a convenient framework for constructing data-driven
homeomorphisms between dynamical systems; it is an intriguing possibility that we can use
this framework to realize homeomorphisms between different algorithms for solving the same
problem.
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Appendix A. Computational experiments with partial information. In most applica-
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explore the behavior of the approximated operator spectrum on such partial domains. The
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tions” [31], i.e. eigenfunctions defined only on parts of the state space. Not all the results
from the computational experiments can be readily explained by the current theory, however,
as we will detail below.

We study discrete gradient descent on the function

f(x1, x2) = x4
1 − x2

1 + x1/4 + x2
2.

Figure 10 illustrates the function values on [−1, 1]2 through contour lines (color), and the
sample points used for the approximation of the operator (red area). When using gradient
descent to minimize f , we obtain a (discrete) dynamical system with two attracting steady
states, and one saddle point in between them (see figure 10). The spectrum obtained by
EDMD for the given sample domain (red) is shown on the right: all eigenvalues are inside the
unit disk, indicating that the system behavior is purely attracting. This result is reasonable,
because in the limit of infinite applications of the Koopman operator, all observable functions

g ∈ F of the data set can be expressed by two piecewise constant eigenfunctions φ
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associated to the eigenvalue λ = 1:

lim
n→∞

Kng = a1φ
(1)
1 + a2φ

(2)
1 ; a1, a2 ∈ C, g ∈ F ,(A.1)

φ
(1)
1 (x) =

{
c

(1)
1 if x1 < x

(s)
1

c
(1)
2 if x1 ≥ x(s)

1

, φ
(2)
1 (x) =

{
c

(2)
1 if x1 < x

(s)
1

c
(2)
2 if x1 ≥ x(s)

1

,(A.2)

where x
(s)
1 is the x1 coordinate of the saddle point between the two steady states. The

constants a1, a2 are determined by the value of g on the two attracting steady states and the

four constants c
(1)
1 , c

(2)
1 , c

(1)
2 , c

(2)
2 ∈ C associated to the two eigenfunctions. Equation (A.1)

illustrates that, in the function space F , there is a four-dimensional (real and imaginary
parts of two complex numbers a1, a2), attracting subspace that is the limit set of the system
gn+1 = Kgn.

If we shift the domain to the right (figure 11, C), the left attracting steady state leaves the
sampling domain. This causes trajectories starting in the sampling domain to leave it after
some time, which typically indicates a repelling set—explaining the numerically obtained ei-
genvalues outside the unit disk in parts A and C of figure 11. Note that since many trajectories
leave the domain after a finite number N of iterations (depending on the initial state xn), the
dynamical system is not defined for iteration numbers n > N . For points on the boundary of
the domain, N = 0, so the flow map at these points is only defined for iterations backwards in
time. Since there is a saddle inside the domain, the system is also not defined for some states
x ∈ X on the boundary that would leave the domain backwards in time (iteration numbers
n < 0). This poses problems with the definition of the Koopman operator family {Kn}, since
it acts on functions defined on all of X—and for all n 6= 0, some elements leave X, so that the
flow map on the entire set X is not defined for n 6= 0. If all vectors on the boundary of the
data domain pointed inward (outward), the flow would exist for all forward (backward) time,
and the problem would be related to inflowing (overflowing) invariant manifolds [12]. Eigen-
values with a real part larger than one indicate unstable behavior, indicating the existence of
unstable nodes or saddles in the data set.
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Figure 7. The spectral density on the unit circle T, associated to the observable g(z) = 1 + exp(2πiz),
is approximated with single trajectories of Newton’s method with length 103, 104, and 105 (rows) starting at
z0 = 1/2 + 0i. The point spectrum with eigenvalue at 1 + 0i associated to the constant function and the
continuous spectrum on T/{1} can be distinguished. The blue curves are obtained from iterating the map Nf

with 16 digits of accuracy, the orange curves by using the exact formula and 35,000 digits of accuracy.
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Figure 8. Number of iterations n (colorbar) until convergence up to |Nf (z∗) − z∗| < 0.01 or n ≥ 100, for
a cubic polynomial function f(z) = (z + w)(z − w)(z − 1) with w = .589 + .605j. The fractal structure of the
number of iterates is visible in both panels. The right panel shows a zoomed in version of the left (marked with
a box on the left).
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Figure 9. Iterations on the complex plane for a polynomial function of degree two (left) and degree three
(right). The eigenfunctions at eigenvalue 1 are limits of the process. On the left, the eigenfunction has two
separate values for the two basins of attraction. On the right, the eigenfunction has a persistent fractal structure.
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Figure 10. Partial sampling (orange rectangle) of a two-dimensional domain. The objective function is
shown as a countour plot. The two attracting steady states are both inside the rectangle, and the spectrum is
fully inside the unit disk (right plot).
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Figure 11. At the beginning, the right steady state is not inside the data domain (orange rectangle, A).
When both steady states are contained in the data, the maximum of the real part of all eigenvalues is close
to one (B). As the available data set moves to the right, the left steady state is no longer available to the
approximation (C). When the rectangle is moved even further (D), the saddle between the two steady states also
disappears and only one, attracting steady state is contained in the data.
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