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ON THE INTEGRAL REPRESENTATION OF VARIATIONAL

FUNCTIONALS ON BD

M. CAROCCIA, M. FOCARDI, AND N. VAN GOETHEM

Abstract. Following the global method for relaxation we prove an integral representation
result for a large class of variational functionals naturally defined on the space of functions with
Bounded Deformation. Mild additional continuity assumptions are required on the functionals.
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1. Introduction

In linearized elasticity one route is to consider the displacement (or the velocity) field u as basic
model variable. In this case, the deformation (or strain) tensor of an elastic body is given by the
symmetric gradient of u, i.e., e(u) := 1

2 (∇u+∇tu). Therefore, the study of well-posedness of the
PDE system of linear elasticity was at the origin of the study of the differential operator e(u) and in
particular its coerciveness properties, first analysed by Korn in 1906 [34] and followed by plenty of
refinements to this date (see for instance [30] for a survey). In linearized elasticity, the variational
approach consists in minimizing the stored elastic energy (which is quadratic in the strain) minus
the work of the external forces. However, as soon as elasto-plasticity is considered, two main
problems are faced: first, the observed stress-strain relation in plasticity is not linear anymore,
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resulting in a less-than quadratic, sometimes linear relation between the stored elastic energy and
the strain. Here we refer to the pioneer work by Suquet on well posedness in perfect plasticity [46]
itself based on preliminary work on the distributional operator of bounded deformation published
in [45, 44, 49, 50, 33]. Specifically, in the above quoted works the authors study the properties of
the differential operator Eu := 1

2 (Du+D
tu) where D stands for the distributional derivative that

generalizes the gradient ∇ to account for discontinuous fields u . In this way the space BD(Ω) of
function with Bounded Deformation on the open subset Ω of Rn has been introduced as the space
of L1(Ω;Rn) vector fields u whose symmetrized distributional derivative Eu is a Radon measure
(see [48, 1], see also section 3.2 to which we refer for the notation used in this introduction on BD
maps). Moreover, e(u) is proven to be the density of the absolutely continuous part of Eu.

The second issue arising in plastic problems is that concentration phenomena observed in plas-
ticity require some weak notion of deformation that allow for slip or boundary concentration of
strain for instance. Indeed, these effects are well handled in BD(Ω) by the so-called singular part
of the deformation measure field. It should also be said, that these aforementioned two issues are
related, since a linear growth of the stored elastic energy prevents coerciveness in Sobolev spaces.
Thus, bounds in the non-reflexive space L1 require to consider limit of sequences in the space of
Radon measures, and hence, again, justifies the choice of the space BD(Ω) when dealing with
elasto-plastic models. For these models, the associated general bulk stored elastic energy reads as
the integral

F0(u) :=

ˆ

Ω

f0
(
x, u(x), e(u)(x)

)
dx, (1.1)

where f0 has linear growth in the third variable and satisfies suitable assumptions (see Section 6.1),
and u ∈ BD(Ω) is such that Eu is absolutely continuous with respect to Ln Ω, namely u ∈
LD(Ω). To account also for singular effects a more general energy expression reads as

F1(u) :=

ˆ

Ω

f1
(
x, u(x), e(u)(x)

)
dx+

ˆ

Ju

g1
(
x, u−(x), u+(x), νu(x)

)
dHn−1 (1.2)

where f1 has linear growth in the third variable, f1 and g1 satisfy suitable assumptions (see
Section 6.2), and u ∈ SBD(Ω), the subspace of BD(Ω) where the singular part Esu of the
measure Eu is concentrated on the (n − 1)-rectifiable set of approximate discontinuity points Ju
(see Section 3.2 for the precise notation).

It is a classical problem in the Calculus of Variations to determine the lower semicontinuous
envelope of the energies in (1.1) and (1.2) in order to find the limits of minimizing sequences lying
in the larger space BD(Ω). More precisely, let F be the functional either in (1.1) or in (1.2) if u
belongs to LD(Ω) or SBD(Ω) respectively, and +∞ otherwise on L1(Ω;Rn). Then, the L1(Ω;Rn)
lower semicontinuous envelope of the functional F , that is the greatest functional less or equal
than F which is L1 lower semicontinuous, is given by

F(u) := inf
{
lim inf
j→+∞

F (uj) : uj → u in L1(Ω;Rn)
}
,

provided some coercivity assumptions on the integrands are imposed (cf. [27]).
A suitable localized version of the functional F to the family of open subsets of Ω turns out to

be a variational functional according to Dal Maso and Modica [17] naturally defined on the space
BD(Ω) (see Section 2.2 below and the discussion in what follows). Therefore, more generally,
we consider variational functionals in this sense and prove for them in Theorem 2.3 an integral
representation result following closely the celebrated global method for relaxation developed in
Bouchitté, Fonseca and Mascarenhas [7] to deal with the analogous problem for functionals defined
either on Sobolev spaces or on the space BV of functions with Bounded Variation (see [14] for an
extensive survey of the subject and an exhaustive bibliography).

The integral representation result in Theorem 2.3 will be applied to the above mentioned re-
laxation problems for the functionals of the type (1.1) and (1.2). More precisely, in Theorems 6.1
and 6.9 we show that the resulting L1 lower semicontinuous envelope F has indeed an integral
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representation of the type

F(u) =

ˆ

Ω

f
(
x, u(x), e(u)(x)

)
dx

+

ˆ

Ju

g
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x) +

ˆ

Ω

f∞
(
x, u(x),

dEcu

d|Ecu| (x)
)

d|Ecu|
(1.3)

for all u ∈ BD(Ω). Here, f∞ denotes the (weak) recession function of the integrand f . Moreover, a
characterization of the energy densities f and g is given in terms of asymptotic Dirichlet problems
involving F itself with boundary values related to the infinitesimal behaviours of the function u
around the base point x.

Apart from the usual lower semicontinuity (and therefore locality), growth conditions and
measure theoretical properties to be satisfied by the functional F (see assumptions (H1)-(H3) in
Section 2), we impose two conditions expressing continuity of the energy functional with respect
to specific family of rigid motions. More precisely, continuity with respect to translations both in
the dependent and independent variable is stated in (H4). Such a condition is used for instance
in [7] in the BV setting to express the energy density of the Cantor part in terms of the recession
function f∞ of the bulk energy density. Additionally, in the current BD setting we need to require
further assumption (H5), that expresses continuity of the energy with respect to infinitesimal
rigid motions. In turn, this condition implies that the bulk energy density depends only on the
symmetric part of the relevant matrix. Condition (H5) is crucial for our arguments both from a
technical side and conceptually as we discuss in details in Section 7.

In this respect, we emphasize that all integral representation, relaxation, lower semicontinuity
results available in literature for energies defined on BD(Ω) (see e.g. [5, 24, 42, 22, 4, 35, 18]) are
based on a stronger version of (H5) that imposes invariance of the energy with respect to infini-
tesimal rigid motions (cf. Remark 5.2). From a mechanical perspective such a condition reflects
a restriction on the material behaviour. Therefore, it is preferable to avoid it, also because of its
controversy in the continuum mechanics community (see [47, 40]). Note that the quoted invari-
ance property with respect to superposed infinitesimal rigid motions would imply the integrands
in (1.3) to be independent of u. In our result, though, this explicit dependence is kept, as was
the case in the BV (Ω) setting [7]. Finally, let us point out that assumption (H5) is actually not
needed to give a partial integral representation result on the subspace SBD(Ω), or more generally
on BD(Ω) but only for the volume and surface terms of the energies, as already noticed in [24].

Further possible applications of our main theorem are in the field of homogenization problems
(cf. Section 6.3), or more generally to problems in which the determination of variational limits
in terms of Γ-convergence of energies defined on BD are involved (see e.g. [16], [26, 13, 11]).

We mention that integral representation results for energies defined on distinguished subspaces
of BD (in particular satisfying a different set of growth conditions different from (H2)) have been
recently obtained either in the superlinear case in the 2 dimensional framework in [14], or in the
space of Caccioppoli affine functions in [29].

Let us now summarize the contents of the paper. In Section 2 we state Theorem 2.3 the
main result of the paper, all the preliminaries needed to prove it are provided in Section 3.
Section 4 focuses on the analysis of the Cantor part of the energy and more precisely on its
integral representation. In turn, those results are used in Section 5 to establish Theorem 2.3.
Applications of Theorem 2.3 to several issues related to energies with linear growth defined on
BD are studied in Section 6. More precisely, the relaxation of variational integrals is the topic of
Section 6.1, the lower semicontinuity either of bulk or of bulk and surface energies is investigated
in Section 6.2, eventually Section 6.3 deals with the periodic homogenization of bulk type energies.
In the final Section 7 an example of a quasiconvex function f : Mn×n → [0,+∞) being bounded
by the norm of the symmetric part of the relevant matrix, but on the other hand depending non-
trivially also on the skew-symmetric part, is provided following a celebrated example by Müller [39,
Theorem 1]. The issue of relaxation on BD for the associated bulk energy functional is discussed,
highlighting the role of assumption (H5) to deduce Theorem 2.3 and related open problems.
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2. Main result

2.1. Basic notation. The unitary vectors of the standard coordinate basis of Rn will be denoted
by e1, . . . , en. Mn×n stands for the set of all n× n matrices and Mn×n

sym , Mn×n
skew for the subsets of

all symmetric and skew-symmetric matrices, respectively.
For a given a set E we adopt the notation E(x0, r) := x0+rE for the rescaled copy of size r > 0

translated in x0. In particular, Qν(x0, r) stands for any cube centered at x0, with edge length r
and with one face orthogonal to ν. We also adopt the convention that, whenever ν is omitted then
ν = ei for some i ∈ {1, . . . , n}, and the corresponding cube Q(x0, r) is oriented according to the
coordinate directions.

In what follows, we shall often consider a function Ψ : (0,+∞) → [0,+∞) such that lim
t→0+

Ψ(t) =

0, referring to it as a modulus of continuity.
Finally, throughout the paper Ω will denote a non empty, bounded, open subset of Rn with

Lipschitz boundary, and O(Ω), O∞(Ω) denote the families of all the open subsets of Ω and of all
the open subsets of Ω with Lipschitz boundary, respectively.

2.2. Framework and main result. We consider a class of local energies typically arising in
variational problems: F : L1(Ω;Rn) × O(Ω) → [0,+∞], and BD(Ω) is the set of maps with
Bounded Deformation (for the precise definition, the notation used in what follows, and several
properties of BD functions see Section 3). We assume that the following properties are in force
on F :

(H1) F(·, A) is strongly L1(A;Rn) lower semicontinuous for all A ∈ O(Ω)1;
(H2) There exists a constant C > 0 such that for every (u,A) ∈ BD(Ω) ×O(Ω),

1

C
|Eu|(A) ≤ F(u,A) ≤ C(Ln(A) + |Eu|(A)); (2.1)

(H3) F(u, ·) is the restriction to O(Ω) of a Radon measure for every u ∈ BD(Ω);
(H4) There exists a modulus of continuity Ψ such that

|F(v + u(· − x0), x0 +A)−F(u,A)| ≤ Ψ(|x0|+ |v|)(Ln(A) + |Eu|(A)) (2.2)

for all (u,A, v, x0) ∈ BD(Ω)×O(Ω) × Rn × Ω, with x0 +A ⊂ Ω;
(H5) There exists a modulus of continuity Ψ such that

|F(u+ L(· − x0), A) −F(u,A)| ≤ Ψ(|L|diam(A))(Ln(A) + |Eu|(A)) (2.3)

for every (u,A,L) ∈ BD(Ω)×O(Ω) ×M
n×n
skew , and for all x0 ∈ A.

Remark 2.1. It is well-known that assumption (H1) implies locality of F(·, A) for all A ∈ O(Ω).
Namely, if u = v Ln a.e. on A then F(u,A) = F(v,A).

Remark 2.2. Hypothesis (H5) implies that the energy depends only on the symmetric gradient
(see formula (5.2) and Section 7 for more details).

Following the global method for relaxation introduced by Bouchitté, Fonseca and Mascarenhas
in [7] we consider the local Dirichlet problem

m(u,A) := inf
{
F(v,A) : v ∈ BD(Ω), v|∂A = u|∂A

}
, (2.4)

where (u,A) ∈ BD(Ω)×O∞(Ω) is given, and prove the ensuing result.

Theorem 2.3. Let F : L1(Ω;Rn) × O(Ω) → [0,+∞] be satisfying (H1)-(H5). Then, for all
(u,A) ∈ BD(Ω)×O(Ω)

F(u,A) =

ˆ

A

f
(
x, u(x), e(u)(x)

)
dx+

ˆ

Ju∩A
g
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x)

+

ˆ

A

f∞
(
x, u(x),

dEcu

d|Ecu|(x)
)
d|Ecu|(x),

1In the rest of the paper, we shall write L1 lower semicontinuous in place of strongly L1 lower semicontinuous
for the sake of simplicity.
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where for all (x0,A, v, v
−, v+, ν) ∈ Ω×Mn×n

sym × (Rn)4

f(x0, v,A) := lim sup
ε→0

m(v + A(· − x0), Q(x0, ε))

εn
, (2.5)

g(x0, v
−, v+, ν) := lim sup

ε→0

m(uv−,v+,ν(· − x0), Q
ν(x0, ε))

εn−1
, (2.6)

f∞(x0, v,A) := lim sup
t→+∞

f(x0, v, tA)− f(x0, v, 0)

t
, (2.7)

and

uv−,v+,ν(y) :=

{
v+ if y · ν ≥ 0
v− otherwise.

(2.8)

Note that f∞ is classically termed the weak recession function, in contrast to the strong recession
function for which the limit is assumed to exists (see the comments in Section 6.1). Its finiteness
is guaranteed by the linear growth of f (see (5.1)).

We point out that the analogous result to Theorem 2.3 for functionals defined on the space BV
of functions with bounded variation has been proven under the sole assumptions (H1)-(H4) (cf.
[7, Theorems 3.7, 3.12]). A detailed discussion on the need of assumption (H5) in the BD setting
is the topic of Section 7. Several comparisons with the BV case are discussed in Remarks 6.2 and
6.10.

3. Preliminaries

3.1. Some results of geometric measure theory. In the forthcoming blow-up procedure, it
will be mandatory to obtain limits satisfying additional structural properties. To this aim we
introduce some useful concepts of geometric measure theory. Let U ⊆ Rn be either open or closed.
Here and in what follows Mloc(U ;Rk) stands for the sets of all Rk-valued Radon measures on U ,
and M(U ;Rk) for the subset of all Rk-valued finite Radon measures on U .

Let µi, µ ∈ Mloc(U ;Rk), following [3] we say that µi locally weakly* converge to µ, and we

write µi
∗
⇀ µ in Mloc(U ;Rk), if

lim
i→+∞

ˆ

U

ϕdµi =

ˆ

U

ϕdµ for all ϕ ∈ C0
c (U).

If µi, µ ∈ M(U ;Rk), we say that µi weakly* converges to µ if the condition above holds for all
ϕ ∈ C0

0(U). The following property holds true.

Lemma 3.1 (Proposition 1.62 (b) [3]). Let {µi}i∈N be locally weakly* converging to µ in Mloc(U ;Rk),
and {|µi|}i∈N be locally weakly* converging to λ in Mloc(U). Then, λ ≥ |µ|, and µ(E) = lim

i→∞
µi(E)

for every relatively compact Borel subset E of U with |λ|(∂E) = 0.

We use standard notations for the push-forward of measures, and in particular, given µ ∈
Mloc(R

n;Rk), x ∈ Rn and ε > 0, we will often consider the push forward with the map F x,ε(y) :=
y−x
ε defined as

F x,ε# µ(A) := µ(x+ εA). (3.1)

Preiss’ tangent space Tan(µ, x) at a given point x ∈ Rn, is defined as the subset of non zero
measures ν ∈ Mloc(R

n;Rk) such that ν is the local weak* limit of 1/ciF
x,εi
# µ, for some sequence

{εi}i∈N ↓ 0 as i ↑ +∞ and for some positive sequence {εi}i∈N (see [38], [3], [43]). To ensure that
the total variation is preserved along the blow-up limit procedure we recall the ensuing result.

Lemma 3.2 (Tangent measure with unit mass, Lemma 10.6 [43]). Let µ ∈ Mloc(R
n;Rk). Then,

for |µ|-a.e. x ∈ Rn and for every bounded, open, convex set K the following assertions hold

(a) There exists a tangent measure γ ∈ Tan(µ, x) such that |γ|(K) = 1, |γ|(∂K) = 0;

(b) There exists {εi}i∈N ↓ 0 as i ↑ +∞ such that
F

x,εi
#

µ

F
x,εi
#

|µ|(K)

∗
⇀ γ in M(K;Rk).

Finally, with the help of the next result, we will be able to select a blow-up with a partial affine
structure.
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Theorem 3.3 (Tangent measures to tangent measures are tangent measures, Theorem 14.16 [38]).
Let µ ∈ Mloc(R

n;Rk) be a Radon measure. Then for |µ|-a.e. x ∈ Rn any ν ∈ Tan(µ, x) satisfies
the following properties

(a) For any convex set K,
Fy,ρ

#
ν

Fy,ρ
#

|ν|(K)
∈ Tan(µ, x) for all y ∈ spt ν and ρ > 0;

(b) Tan(ν, y) ⊆ Tan(µ, x) for all y ∈ spt ν;

Note that the original result in [38, Theorem 14.16 ] is proven for k = 1. However, the good
properties of tangent space of measures (i.e. [3, Theorem 2.44] or [43, Lemma 10.4]) allow to
immediately extend its validity for generic k.

3.2. Preliminaries on BD. We recall next some basic properties of the space BD needed for
our purposes. We refer to [48] for classical theorems, while for the fine properties we refer to [1]
(see also [23]).

The space of functions with Bounded Deformation on Ω, BD(Ω), is the set of all maps u ∈
L1(Ω;Rn) whose symmetrized distributional derivative Eu is a matrix-valued Radon measure. It
is a Banach space equipped with the norm ‖u‖BD(Ω) := ‖u‖L1(Ω,Rn) + |Eu|(Ω), where |µ| stands
for the total variation of the Radon measure µ (see [3]). A sequence {uj}j∈N is said to strictly
converge to u in BD(Ω) if

uj → u in L1(Ω;Rn) and |Euj |(Ω) → |Eu|(Ω),
as j → ∞.

As shown by Ambrosio, Coscia and Dal Maso in [1], BD(Ω) maps are approximately differen-
tiable Ln-a.e. in Ω, the jump set is Hn−1-rectifiable, and Eu can be decomposed as

Eu = e(u)Ln Ω + (u+(x)− u−(x))⊙ νuHn−1 Ju + Ecu, (3.2)

where e(u) = ∇u+∇ut

2 , ∇u is the approximate gradient of u, u+ − u− denotes the jump of u over
the jump set Ju, with u

± the traces left by u on Ju, νu is a unitary Borel vector field normal to
Ju (here, a ⊙ b := 1

2 (a ⊗ b + b ⊗ a), a, b ∈ Rn, denotes the symmetrized tensor product), Ecu is
the Cantor part of Eu defined as Ecu := Esu (Ω \ Ju) and Esu := Eu− e(u)Ln Ω (cf. [1, Eq.
(1.2), Definition 4.1]). Let Su be the complement of the set of points of approximate continuity
of u, [1, Theorem 6.1] implies that |Eu|(Su \ Ju) = 0, so that Ecu = Eu Cu, where

Cu :=
{
x ∈ Ω \ Su : limr↓0

|Eu|(Br(x))
rn = +∞, limr↓0

|Eu|(Br(x))
rn−1 = 0

}
. (3.3)

The limits in the definition of Cu can be taken with respect to any family K(x, r), with K a
bounded, open, convex set containing the origin. We shall often use the previous characterization
of Ecu throughout the paper.

The space of special functions of bounded deformation is then defined as

SBD(Ω) = {u ∈ BD(Ω) : Ecu = 0}.
The space C∞(Ω;Rn)∩W 1,1(Ω;Rn) is dense in BD(Ω) for the strict topology onBD(Ω). Moreover,
for Ω an open bounded set with Lipschitz boundary, there exists a surjective, bounded, linear trace
operator γ : BD(Ω) −→ L1(∂Ω,Rn) satisfying the following integration by parts formula: for every
u ∈ BD(Ω) and ϕ ∈ C1(Ω̄),

ˆ

Ω

u⊙∇ϕdx +

ˆ

Ω

ϕdEu =

ˆ

∂Ω

ϕγ(u)⊙ ν dHn−1,

with ν the unit external normal to ∂Ω. The trace operator is continuous if BD(Ω) is endowed
with the strict topology. For notational simplicity, in what follows γ(u) will be denoted simply by
u itself.

With the same assumptions on Ω, one also has the following embedding result: BD(Ω) →֒
Lq(Ω,Rn) is compact for every 1 ≤ q < n

n−1 . In view of compactness, the following holds for

Ω a bounded extension domain (cf [33], [48]): if {uj}j∈N is bounded in BD(Ω) there exists a
subsequence that converges to some u ∈ BD(Ω) with respect to the L1(Ω;Rn) topology.
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We recall next a Poincaré inequality for BD maps which has been proven in [1, Theorem 3.1],
(see also [23, Theorem 1.7.11] and also [23, Lemma 1.4.1]). To this aim consider the space of
infinitesimal rigid motions

R := {Lx+ v : v ∈ R
n, L ∈ M

n×n
skew} . (3.4)

Theorem 3.4. Let A be a bounded, open, connected set with Lipschitz boundary, then

R = {ϑ ∈ D′(A;Rn) : Eϑ = 0}. (3.5)

Moreover, let R : BD(A) → R be a linear continuous map which leaves the elements of R fixed.
Then there exists a constant c = c(A,R) such that for all u ∈ BD(A)

‖u−R[u]‖
L

n
n−1 (A;Rn)

≤ c|Eu|(A).

In particular, for a bounded, open convex set K, denoting by ν∂K the unit normal vector to
∂K, let RK : BD(K) → R be the map defined as

RK [u](y) := MK [u]y + bK [u], (3.6)

with

bK [u] :=

 

K

u dx , (3.7)

and

MK [u] :=
1

2Ln(K)

ˆ

∂K

(
u⊗ ν∂K − ν∂K ⊗ u

)
dHn−1 . (3.8)

For BV maps we express the quantity MK in (3.8) in terms of the skew-symmetric part of the
total variation measure.

Lemma 3.5. Let A be a bounded open set with Lipschitz boundary. Then, for all u ∈ BV (A;Rn)
ˆ

∂A

(
u⊗ ν∂A − ν∂A ⊗ u

)
dHn−1 = Du(A)− (Du)t(A) .

In particular, for all bounded, open, convex sets K, and for all u ∈ BV (K;Rn) we have

MK [u] =
1

2Ln(K)

(
Du(K)− (Du)t(K)

)
.

Proof. To prove the first equality we use the divergence theorem for scalar BV functions [3,
Corollary 3.89]

ˆ

A

v div Φ dx+

ˆ

A

Φ · dDv =

ˆ

∂A

vΦ · ν∂A dHn−1 ,

for all v ∈ BV (A), Φ ∈ C1(Ā;Rn), to get for any fixed y ∈ Rn

ˆ

∂A

(
u⊗ ν∂A

)
y dHn−1 =

ˆ

∂A

(ν∂A · y)u dHn−1 = Du(A)y ,

and moreover
ˆ

∂A

(
ν∂A ⊗ u

)
y dHn−1 =

ˆ

∂A

(u · y)ν∂A dHn−1 = (Du)t(A)y .

The very definition of MK [u] in (3.8) and the previous computation provide the conclusion. �

Proposition 3.6. R is an invariant set for RK .

Proof. If u is affine, i.e. u = Lx + v, L ∈ M
n×n
skew and v ∈ Rn, we have bK [u] = v by a simple

computation. Furthermore, by taking into account that Du = L, Lemma 3.5 implies

MK [u] =
1

2
(L− L

t) = L.

�
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As the trace theorem implies the continuity of RK : BD(K) → R, thanks to the previous
result, Theorem 3.4 yields the existence of a constant c > 0 depending only on K such that for
every u ∈ BD(K)

‖u−RK [u]‖
L

n
n−1 (K;Rn)

≤ c |Eu|(K). (3.9)

Remark 3.7. Let u ∈ BD(εK), where ε > 0 and K a bounded, open, convex set K containing
the origin. Then, for a constant c depending only on K we have

‖u−RεK [u]‖L1(εK;Rn) ≤ c ε|Eu|(εK) . (3.10)

This follows from Hölder inequality, (3.9) and a scaling argument by considering uε(y) := u(εy),
y ∈ K, and noting that RεK [u](εy) = RK [uε](y), ‖u−RεK [u]‖L1(εK;Rn) = εn‖uε−RK [uε]‖L1(K;Rn),

and |Eu|(εK) = εn−1|Euε|(K).

3.3. On the Cantor part of the symmetrized distributional derivative. Recently, the fine
properties of BD functions have been complemented with the analog of Alberti’s rank-one theorem
in the BV setting. More precisely, we recall the fundamental contribution by De Philippis and
Rindler (cf. [21]).

Theorem 3.8. Let u ∈ BD(Ω). Then, for |Ecu|-a.e. x ∈ Ω

dEu

d|Eu| (x) =
η(x)⊙ ξ(x)

|η(x)⊙ ξ(x)| (3.11)

for some ξ, η : Ω → Sn−1 Borel vector fields.

Next, we state a rigidity result for BD maps with constant polar vector that follows from that
established in [20, Theorem 2.10 (i)-(ii)] by taking into account that the measure on the right
hand side below is in addition positive (see also [20, Theorem 3.2]).

Proposition 3.9. If w ∈ BDloc(R
n) is such that for some η, ξ ∈ Rn

Ew =
η ⊙ ξ

|η ⊙ ξ| |Ew|, (3.12)

then

(i) if η 6= ±ξ
w(y) = α1(y · ξ)η + α2(y · η)ξ + Ly + v,

for some α1, α2 ∈ BVloc(R), L ∈ M
n×n
skew, v ∈ Rn;

(ii) if η = ±ξ
w(y) = α(y · ξ)ξ + Ly + v,

for some α ∈ BVloc(R), L ∈ M
n×n
skew , v ∈ Rn.

The next Lemma will be particularly useful when dealing with the anti-symmetric part of the
gradient in the Cantor part of the measure Eu (see (3.7) and (3.8) for the definitions of bK and
MK , respectively).

Lemma 3.10. Let K be a bounded, open, convex set containing the origin. For any u ∈ BD(Ω)
and for |Ecu|-a.e. x0 ∈ Ω

lim
ε→0

bK(x0,ε)[u] = u(x0), lim
ε→0

ε|MK(x0,ε)[u]| = 0.

Proof. Let u ∈ BD(Ω) be fixed. As noticed in the preliminaries |Ecu|-a.e. x0 ∈ Ω is a point of
approximate continuity for u, thus bK(x0,ε)[u] → u(x0) as ε ↓ 0.

For the second part of the statement, we use the computation in [1, Theorem 6.5, Corollary 6.7]
implying that for |Ecu|-a.e. x0 ∈ Ω

lim
ε→0

 

B(x0,ε)

|u− dB(x0,ε)[u]| dy = 0, (3.13)

where

dB(x0,ε)[u] :=

 

∂B(x0,ε)

u(x) dHn−1(x).
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Let x0 ∈ Cu be a point for which (3.13) holds, and recall then that ε1−n|Eu|(B(x0, ε)) → 0 as
ε ↓ 0. Define for any v ∈ BD(Ω) and for ε sufficiently small

R
∗
ε[v](y) := dB(x0,ε)[v] +MK(x0,ε)[v](y − x0).

Arguing as in the proof of Proposition 3.6 it is immediate to see that R is an invariant set for R∗
ε.

In particular, thanks to Theorem 3.4 we infer for all v ∈ BD(Ω) that

‖v −R
∗
ε[v]‖L1(B(x0,ε);Rn) ≤ c ε|Ev|(B(x0, ε))

where the constant c is independent from ε (this is obtained with a scaling argument similar to
that in Remark 3.7). In particular, it follows that

ˆ

B(x0,ε)

|u(y)− dB(x0,ε)[u]−MK(x0,ε)[u](y − x0)| dy ≤ c ε|Eu|(B(x0, ε)).

Therefore, by the triangular inequality we have
 

B(x0,ε)

|MK(x0,ε)[u](y − x0)| dy ≤
 

B(x0,ε)

|u(y)− dB(x0,ε)[u]| dy + C
|Eu|(B(x0, ε))

εn−1
,

and thus by the choice of x0 it follows

ε

 

B(0,1)

|MK(x0,ε)[u]z| dz =
 

B(x0,ε)

|MK(x0,ε)[u](y − x0)| dy → 0.

Notice that, the quantityM 7→
ffl

B(0,1) |Mz| dz defines a norm onMn×n, and thus for some constant

C depending only on the dimension, we have

ε|MK(x0,ε)[u]| ≤ Cε

 

B(0,1)

|MK(x0,ε)[u]z| dz → 0. �

3.4. Change-of-base formulas. It is well-known that the chain rule formula does not hold in
general for BD maps. We provide a simple variation of it that will be useful throughout the paper.

Lemma 3.11. Let B ∈ Mn×n be invertible, let w ∈ BD(Ω) and set

w̃(y) := Bw(Bty).

Then, w̃ ∈ BD(B−tΩ) and

Ew̃ = | detB|−1
B(B−t

# Ew)Bt.

Moreover, if K is an open convex set and v ∈ BD(K) we have

RB−tK [ṽ](y) = BRK [v](Bty) for all y ∈ R
n. (3.14)

Proof. Let ϕ ∈ C∞(Ω;Rn) ∩ BD(Ω) and define ϕ̃(y) := Bϕ(Bty). Clearly, ϕ̃ ∈ C∞(B−tΩ;Rn),
with ∇ϕ̃(y) = B∇ϕ(Bty)Bt and e(ϕ̃)(y) = Be(ϕ)(Bty)Bt. Hence, the symmetrized distributional
derivative of ϕ̃ is given by

Eϕ̃ = | detB|−1
B
(
B
−t
# (e(ϕ)Ln Ω)

)
B
t .

Finally, if w ∈ BD(Ω) we conclude by approximation of w by smooth maps in the BD strict
topology.

The last assertion follows from a direct computation. �

Remark 3.12. We shall often use Lemma 3.11 to reduce ourselves to the case in which the two
vectors ξ, η in the polar decomposition of (3.11) are actually given by e1 and e2. To this aim the
following remarks are useful. Let w ∈ BD(K) be given by

w(y) := ψ1(y · η)ξ + ψ2(y · ξ)η
for some ψ1, ψ2 ∈ BV (R) and for ξ, η ∈ Rn non-parallel unit vectors, i.e. η 6= ±ξ. Consider any
invertible matrix B ∈ Mn×n such that Bη = e1, Bξ = e2, and the associated function

w̃(y) := B(ψ1(B
ty · η)ξ + ψ2(B

ty · ξ)η) = ψ1(y · e1)e2 + ψ2(y · e2)e1.
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Then, w̃ ∈ BD(B−tK) with Ew̃ = | detB|−1B(B−t
# Ew)Bt. Furthermore, since

B
−t
# Ew =

η ⊙ ξ

|η ⊙ ξ|B
−t
# |Ew|

we then have

Ew̃ = | detB|−1 e1 ⊙ e2
|η ⊙ ξ| B

−t
# |Ew|,

in turn implying both

Ew̃ =
e1 ⊙ e2
|e1 ⊙ e2|

|Ew̃| (3.15)

and

|Ew̃| = | detB|−1 |e1 ⊙ e2|
|η ⊙ ξ| B

−t
# |Ew|. (3.16)

In particular, we conclude that

|Ew̃|(B−tK) = | detB|−1 |e1 ⊙ e2|
|η ⊙ ξ| |Ew|(K).

3.5. On the cell problem defining m. The next two results clarify the link between m and F .
They have been originally proved in [7] in the BV setting and then straightforwardly adapted to
the BD setting in [24].

Lemma 3.13 (Lemma 3.5, Remark 3.6 [7], Lemma 3.2 [24]). Let u ∈ BD(Ω), and set µ :=
Ln + |Esu|. Then, for any bounded, open, convex set K containing the origin we have

lim
r→0

F(u,K(x0, r))

µ(K(x0, r))
= lim
r→0

m(u,K(x0, r))

µ(K(x0, r))
for µ-a.e. x0 ∈ Ω.

Lemma 3.14. There exists a constant C > 0 such that for any u1, u2 ∈ BD(Ω), A ∈ O∞(Ω)

|m(u1;A)−m(u2;A)| ≤ C

ˆ

∂A

|u1 − u2| dHn−1.

Finally, we refine Lemma 3.14 as a consequence of assumptions (H4) and (H5). Following [7,
Remark 3.10], for allK bounded, open, convex set containing the origin, for every (A, v0, v, x0, x) ∈
Mn×n × (Rn)2 × (Ω)2 and for every ε > 0 small enough, hypothesis (H4) implies

|m(v + v0 + A(· − x− x0),K(x+ x0, ε))−m(v0 + A(· − x0),K(x0, ε))|

≤ CKΨ(|x|+ |v|)
(
1 + |A+A

t|
2

)
εn, (3.17)

and, in turn, hypothesis (H5) implies

|m(v0 + A(· − x0),K(x0, ε))−m(v0 +
A+A

t

2 (· − x0),K(x0, ε))|

≤ CKΨ
(
ε diam(K) |A−A

t|
2

)(
1 + |A+A

t|
2

)
εn (3.18)

for some constant CK > 0 depending on K only.

4. Analysis of the blow-ups of the Cantor part

In this section we show how to select a suitable blow-up limit at Cantor type points. To this
aim we fix some notation: let u ∈ BD(Ω), we may assume u to be extended to a map in BD(Rn)
being Ω Lipschitz (cf. [23, Corollary 1.6.4]). By a slight abuse of notation we denote by u the
extended function.

With fixed a bounded, open, convex set K containing the origin, for every ε > 0 and x ∈ Ω
set K(x, ε) := x+ εK. For ε sufficiently small, consider the associated rescaled functions uK,x,ε :
K → R

n given by

uK,x,ε(y) :=
u(x+ εy)−RK [u(x+ ε·)](y)

ε |Eu|(K(x,ε))
Ln(K(x,ε)))

, (4.1)
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where RK is defined in (3.6). Clearly, we may assume that |Eu|(K(x, ε)) > 0 for all ε ∈
(0, dist(x, ∂Ω)), otherwise u would be an infinitesimal rigid motion around x (cf. Eq. (3.5) in
Theorem 3.4). We analyze first basic compactness properties of the rescaled family {uK,x,ε}ε>0.

Proposition 4.1. For |Eu|-a.e. x ∈ Ω there exist a sequence εi ↓ 0, a map w ∈ BD(K), and a
measure γ ∈ Tan(Eu, x) such that

(i) {uK,x,εi}i∈N converges to w strictly in BD(K), RK [w] = 0
(ii) { 1

Ln(K)EuK,x,εi}i∈N converges to γ weakly* in M(K̄;Rn×n), |γ|(K) = |γ(K)| = 1, |γ|(∂K) =

0, |γ| ∈ Tan(|Eu|, x), γ = dEu
d|Eu|(x)|γ| |γ|-a.e. in R

n, and Ew = Ln(K)γ K.

Proof. We prove the conclusion for all Lebesgue points of the polar vector Ω ∋ x 7→ dEu
d|Eu|(x). A

simple computation shows that

EuK,x,ε = Ln(K)
F x,ε# Eu

F x,ε# |Eu|(K)
, (4.2)

(recall the definition of F x,ε# in (3.1)) so that |EuK,x,ε|(K) = Ln(K). Lemma 3.2 yields for

a sequence εi ↓ 0 that { 1
Ln(K)EuK,x,εi}i∈N converges weakly* in M(K̄;Mn×n) to some γ ∈

Tan(Eu, x), with |γ|(K) = 1, |γ|(∂K) = 0, |γ| ∈ Tan(|Eu|, x) and such that γ = dEu
d|Eu|(x)|γ|

|γ|-a.e. in Rn (for the last two claims see [3, Theorem 2.44], [43, Lemma 10.4]), then |γ(K)| = 1.
Moreover, by taking into account Remark 3.7 we get

‖uK,x,ε‖L1(K;Rn) =
Ln(K)

ε|Eu|(K(x, ε))
‖u(x+ ·)−RεK [u(x+ ·)](·)‖L1(εK;Rn) ,

so that for some constant depending only on K

‖uK,x,ε‖L1(K;Rn) ≤ cLn(K) .

The compact embedding BD(K) →֒ L1(K;Rn) yields that we can extract a subsequence (not
relabeled) with uK,x,εi converging in L1(K;Rn) to some limit map w belonging to BD(K) sat-
isfying RK [w] = 0. Therefore, EuK,x,εi converge to Ew weakly* in M(K;Rn×n), and thus
Ew = Ln(K)γ K. The strict convergence in BD(K) of {uK,x,εi}i∈N to w then follows at
once. �

In what follows, any map w given by Proposition 4.1 will be termed blow-up limit. If x
is a point of approximate differentiability or a jump point, usually introduced with a different
definition of the rescaled maps, the blow-up limit is well-known to be unique. In turn, this implies
that the Radon-Nikodým derivative of the functional F with respect to |Eu| in such points can be
straightforwardly characterized in terms of asymptotic Dirichlet problems with boundary values
given by the blow-up limit itself (cf. Lemma 3.13). In contrast, if x ∈ Cu is a point satisfying
(3.11), usually referred to as a Cantor type point, the blow-up limit is in general not unique.
In order to overcome this difficulty, a double blow-up procedure is performed. By means of this
argument, we can reduce ourselves to the case of a two dimensional BV map which is affine in
one direction.

The strategy of the proof is a slight variation of [22, Lemma 2.14], which is originally worked
out in the context of generalized Young measures. We basically follow the lines of such proof by
incorporating also the need of selecting a sequence preserving the mass along the blow-up process.
We shall improve upon the structure of blow-ups in Proposition 4.6 in section 4.2.

4.1. A double blow-up procedure. We introduce some notation necessary for the blow-up
procedure. Given a couple of vectors ξ, η ∈ Sn−1 (possibly ξ = ±η), consider an orthonormal
basis ζi of span{ξ, η}⊥ (thus for n = 2 either span{ξ, η}⊥ = {0} if ξ 6= ±η or i = 1 if ξ = ±η, and
for n ≥ 3 either 1 ≤ i ≤ n− 2 if ξ 6= ±η or 1 ≤ i ≤ n− 1 if ξ = ±η), then for all ρ > 0 define the
bounded, open, convex set containing the origin

P ξ,ηρ :=
{
y ∈ R

n : |y · η| ≤ ρ/2, |y · ξ| ≤ 1/2, |y · ζi| ≤ 1/2 for 1 ≤ i ≤ n− 2
}
, (4.3)
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if ξ 6= ±η, and otherwise if ξ = ±η
P ξ,ηρ :=

{
y ∈ R

n : |y · η| ≤ ρ/2, |y · ζi| ≤ 1/2 for 1 ≤ i ≤ n− 1
}
. (4.4)

We underline that the role of η and ξ is not symmetric in the definition of P ξ,ηρ (in this respect
see the comments right before Case 1 in the ensuing proof). Moreover, we do not highlight the
dependence of P ξ,ηρ on ζi not to further overburden the notation. In any case the specific choice
of ζi is not relevant for the arguments that follow.

With this notation at hand, we can state the key result to prove the integral representation of
the Cantor part (recall the definitions of F x,ε# Eu given in (3.1) and that of uK,x,ε given in (4.1)).

Proposition 4.2 (blow-up at |Ecu|-a.e. point). Let u ∈ BD(Ω). Then for |Ecu|-a.e. x ∈ Ω and
for every ρ > 0 there exist an infinitesimal sequence {εi}i∈N, vectors ξ, η ∈ Sn−1, bounded, open,
convex set containing the origin P xρ := P ξ,ηρ (cf. (4.3) and (4.4)), and a map vρ ∈ BV (P xρ ;R

n)
such that uPx

ρ ,x,εi converge to vρ strict in BD(P xρ ), where

vρ(y) = ψ̄ρ(y · η)ξ + (y · ξ)β̄ρ η + Lρy + vρ, (4.5)

for some ψ̄ρ ∈ BVloc(R), β̄ρ ∈ R, vρ ∈ Rn, and Lρ ∈ M
n×n
skew . Moreover, vρ satisfies

RPx
ρ
[vρ] = 0, |Evρ|(P xρ ) = Ln(P xρ ). (4.6)

and
dEvρ
d|Evρ|

(y) =
η ⊙ ξ

|η ⊙ ξ| |Evρ|-a.e. on P xρ .

Proof. We divide the proof in two steps, each corresponding to a blow-up procedure.

First blow-up. We perform a first blow-up in a point x satisfying all the conditions listed in
(I)-(III) that follows. More precisely, consider the subset of points x ∈ Cu (so that x is a point of
approximate continuity of u (see (3.3))) having the following additional properties:

(I) dEu
d|Eu|(x) =

dEcu
d|Ecu| (x) =

η(x)⊙ξ(x)
|η(x)⊙ξ(x)| , for some vectors ξ(x), η(x) ∈ Sn−1, and Tan(|Eu|, x) =

Tan(|Ecu|, x);
(II) Proposition 4.1 holds true with K := BtQ(0, ρ) if η(x) 6= ±ξ(x), where B is any invertible

matrix such that Bη(x) = e1 and Bξ(x) = e2, and K := P
ξ(x),η(x)
ρ if η(x) = ±ξ(x): we

extract a subsequence (not relabeled) such that uK,x,εi converge to some map w strict
in BD(K), with RK [w] = 0, { 1

Ln(K)EuK,x,εi}i∈N converges weakly* in M(K̄;Rn×n) to

some γ ∈ Tan(Eu, x) such that |γ|(K) = |γ(K)| = 1, |γ|(∂K) = 0, |γ| ∈ Tan(|Eu|, x),
γ = dEu

d|Eu|(x)|γ| |γ|-a.e. in Rn, and Ew = Ln(K)γ K;

(III) Tan(|Ew|, z) ⊆ Tan(|Ecu|, x) for all z ∈ spt |Ew|.
Notice that the set of points where either (I) or (II) or (III) fails is |Ecu|-negligible thanks to
Theorem 3.8, to the locality of Preiss’ tangent space to a measure, to Proposition 4.1 itself and to
Theorem 3.3. Proposition 3.9 describes the structure of the blow-up limit w in (II) in details:

• if η(x) 6= ±ξ(x): we can find two maps α1, α2 ∈ BVloc(R), Lρ ∈ M
n×n
skew and vρ ∈ Rn, such

that

w(y) = α1(y · η(x))ξ(x) + α2(y · ξ(x))η(x) + Lρy + vρ ,

• if η(x) = ±ξ(x): we can find a map α ∈ BVloc(R), Lρ ∈ M
n×n
skew and vρ ∈ Rn, such that

w(y) = α(y · ξ(x))ξ(x) + Lρy + vρ .

Thus, if η(x) = ±ξ(x) we conclude by setting vρ := w and with P xρ := P
ξ(x),η(x)
ρ . Otherwise, if

η(x) 6= ±ξ(x), we are forced to take a second blow-up to prove that (at least) one between the
αk’s can be taken affine.

Second blow-up if η(x) 6= ±ξ(x). First, we change variables by means of the invertible matrix

B introduced in item (II) above. Following Remark 3.12, with L̃ρ := BLρB
t and ṽρ := Bvρ, we

consider the associated map

w̃(y) = α1(y · e1)e2 + α2(y · e2)e1 + L̃ρy + ṽρ .
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We blow-up w̃ around a suitable point y ∈ B−tK = Q(0, ρ), distinguishing two cases depending
on the distributional derivatives of the αk’s. We note that the vectors η and ξ in the statement
correspond exactly to the two vectors provided by the polar decomposition of Ecu at x, η(x) and

ξ(x), respectively, if Dsα1 6= 0. In this case we also set P xρ := P
ξ(x),η(x)
ρ , the latter set being

introduced in (4.3). Instead, if Dsα1 = 0 and Dsα2 6= 0, then η corresponds to ξ(x) and ξ to η(x),

and P xρ := P
η(x),ξ(x)
ρ . Finally, if both Dsα1 = Dsα2 = 0, we choose η = η(x) and ξ = ξ(x) and

set P xρ := P
ξ(x),η(x)
ρ (actually, the opposite choice would be fine as well).

Case 1: either Dsα1 6= 0 or Dsα2 6= 0. Without loss of generality we may assume that
Dsα1 6= 0. Set P̃ xρ := B−tP xρ (the matrix B has been introduced above), and select a point
y ∈ Q(0, ρ) such that

(a) dEw̃
d|Ew̃| (y) =

e1⊙e2
|e1⊙e2| , and δ

−n|Ew̃|(P̃ xρ (y, δ)) → +∞ as δ ↓ 0;

(b) Proposition 4.1 holds true: w̃P̃x
ρ ,y,δi

, for some sequence δi ↓ 0, converge to a map g̃ρ

strict in BD(P̃ xρ ) with RP̃x
ρ
[g̃ρ] = 0, and { 1

Ln(P̃x
ρ )
Ew̃P̃x

ρ ,y,δi
}i∈N converges weakly* in

M( ¯̃P xρ ;R
n×n) to some γ̃ ∈ Tan(Ew̃, y) such that |γ̃|(P̃ xρ ) = |γ̃(P̃ xρ )| = 1, |γ̃|(∂P̃ xρ ) = 0,

|γ̃| ∈ Tan(|Ew̃|, y), and γ̃ = dEw̃
d|Ew̃| (y)|γ̃| |γ̃|-a.e. on Rn, Eg̃ρ = Ln(P̃ xρ )γ̃ P̃ xρ ;

(c) lim
r→0

 y·e2+r

y·e2−r
|α′

2(s)− α′
2(y · e2)| ds = lim

r→0

1

2r
|Dsα2|(y · e2 − r, y · e2 + r) = 0.

Since for L1-a.e. t ∈ R it holds

lim
r→0

 t+r

t−r
|α′

2(s)− α′
2(t)| ds = 0, lim

r→0

1

2r
|Dsα2|(t− r, t+ r) = 0,

conditions (c) is true for |Dsα1| ⊗ Ln−1-a.e. y ∈ Q(0, ρ). First, note that |Dsα1| ⊗ Ln−1 is non
trivial by assumption; then if I ⊆ R is the subset of points of full L1 measure for which the
previous two conditions hold true, we conclude that

(
|Dsα1| ⊗ Ln−1

)(
(−ρ/2, ρ/2)× ((−ρ/2, ρ/2) \ I)× (−ρ/2, ρ/2)n−2

)
= 0.

On the other hand, conditions (a)-(b) hold |Esw̃|-a.e. on Q(0, ρ) in view of Theorem 3.8, the
decomposition of Ew in (3.2), and Proposition 4.1 itself. Since the measures |Dsα1| ⊗ Ln−1 and
|Dα1|⊗ |Dsα2|⊗Ln−2 are mutually singular, the measure |Dsα1|⊗Ln−1 is absolutely continuous
with respect to |Esw̃|, thus we conclude that (a)-(c) hold for |Dsα1| ⊗ Ln−1-a.e. y ∈ Q(0, ρ).

Then, fix a point y ∈ Q(0, ρ) for which (a)-(c) are satisfied, we show that the second blow-up
limit g̃ρ satisfies

g̃ρ(z) = ψρ(z · e1) e2 + L̃ρz + ṽρ , (4.7)

for some ψρ ∈ BVloc(R), ṽρ ∈ Rn, and L̃ρ ∈ M
n×n
skew . We make a slight abuse of notation since

the latter two quantities maybe different from those in the definition of w̃, but as their role is
inessential we keep the same symbols. To this aim, we split Ew̃P̃x

ρ ,y,δi
as follows

Ew̃P̃x
ρ ,y,δi

= Ew̃
(1)
i + Ew̃

(2)
i ,

where we have set

w̃
(1)
i (z) :=

α1((y + δiz) · e1)e2 −RP̃x
ρ
[α1((y + δi·) · e1)e2](z)

δi
|Ew̃|(P̃x

ρ (y,δi))

Ln(P̃x
ρ (y,δi))

,

and

w̃
(2)
i (z) :=

α2((y + δiz) · e2)e1 −RP̃x
ρ
[α2((y + δi·) · e2)e1](z)

δi
|Ew̃|(P̃x

ρ (y,δi))

Ln(P̃x
ρ (y,δi))

.

First, we claim that as i ↑ +∞
|Ew̃(2)

i |(P̃ xρ ) → 0 . (4.8)
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Indeed, noting that

Ew̃
(2)
i = Ln(P̃ xρ )

e1 ⊙ e2

|Ew̃|(P̃ xρ (y, δi))

(
δni α

′
2((y + δi·) · e2)Ln P̃ xρ + F y,δi#

(
(L1 ⊗Dsα2 ⊗ Ln−2) P̃ xρ

))
.

On setting ti := 1/|Ew̃|(P̃x
ρ (y, δi)), and noting that tiδ

n
i is infinitesimal in view of the choice of y

above, if ϕ ∈ C0
c (P̃

x
ρ ;R

n) and α := α′
2(y · e2), we conclude that

tiδ
n
i

∣∣∣∣∣

ˆ

P̃x
ρ

ϕ(z) : (e1 ⊙ e2)α
′
2((y + δiz) · e2) dz

∣∣∣∣∣ ≤ ti

ˆ

P̃x
ρ (y,δi)

∣∣∣∣ϕ
(
x− y

δi

)∣∣∣∣ |α
′
2(x · e2)| dx

≤ ti‖ϕ‖∞
ˆ

P̃x
ρ (y,δi)

|α′
2(x · e2)− α| dx+ tiδ

n
i |α|‖ϕ‖∞Ln(P̃ xρ )

= ρ‖ϕ‖∞tiδni
 (y·e2)+δi/2

(y·e2)−δi/2

|α′
2(s)− α| ds+ o(1) ,

which vanishes as i ↑ +∞ (cf. item (b) above). Arguing similarly, we get that

ti

∣∣∣
ˆ

P̃x
ρ

ϕ(z) dF y,δi#

(
(L1 ⊗Dsα2 ⊗ Ln−2) P̃ xρ

)
(z)

∣∣∣

≤ ρ‖ϕ‖∞Ln(P̃ xρ )tiδn−1
i |Dsα2|(y · e2 − δi/2, y · e2 + δi/2)

is infinitesimal for i ↑ +∞, as well (cf. item (c) above).

In conclusion, (4.8) implies that w̃
(2)
i converges to 0 strongly in BD(P̃ xρ ) in view of Remark 3.7,

and then the limit of w̃P̃x
ρ ,y,δi

is equal to that of w̃
(1)
i . Moreover, the latter coincides with the

L1(P̃ xρ ;R
n) limit of

α1((y + δiz) · e1)e2 −RP̃x
ρ
[α1((y + δi·) · e1)e2](z)

δi
|E(α1(··e1)e2)|(P̃x

ρ (y,δi))

Ln(P̃x
ρ (y,δi))

.

as |Ew̃P̃x
ρ ,y,δi

|(P̃ xρ ) = Ln(P̃ xρ ) and |Ew̃(2)
i |(P̃ xρ ) is infinitesimal. Thus, by the blow-up theory for

BV functions (cf. [3, Proposition 3.77, Theorem 3.95]), Lemma 3.5 and Remark 3.7 we conclude
(4.7) with

g̃ρ(z) = ψρ(z · e1) e2 −
1√
2

(
e2 ⊗ e1 − e1 ⊗ e2

)
z .

Case 2: Dsα1 = Dsα2 = 0. In this case w̃ ∈W 1,1(P̃ xρ ,R
n), where P̃ xρ := B−tP xρ (the matrix B

has been introduced in item (II) above). Arguing as in Case 1, we select a point y ∈ Q(0, ρ) such
that

(a’) dEw̃
d|Ew̃| (y) =

e1⊙e2
|e1⊙e2| ;

(b’) Proposition 4.1 holds true: w̃P̃x
ρ ,y,δi

, for some sequence δi ↓ 0, converge to a map g̃ρ

strict in BD(P̃ xρ ) with RP̃x
ρ
[g̃ρ] = 0, and { 1

Ln(P̃x
ρ )
Ew̃P̃x

ρ ,y,δi
}i∈N converges weakly* in

M( ¯̃P xρ ;R
n×n) to some γ̃ ∈ Tan(Ew̃, y) such that |γ̃|(P̃ xρ ) = |γ̃(P̃ xρ )| = 1, |γ̃|(∂P̃ xρ ) = 0,

|γ̃| ∈ Tan(|Ew̃|, y), γ̃ = dEw̃
d|Ew̃| (y)|γ̃| |γ̃|-a.e. on Rn, and Eg̃ρ = Ln(P̃ xρ )γ̃ P̃ xρ ;

(c’) lim
r→0

 (y·ek)+r

(y·ek)−r
|α′
k(s)− α′

k(y · ek)| ds = 0 for k ∈ {1, 2};

(d’) |α′
1(y · e1) + α′

2(y · e2)| 6= 0.

Note that conditions (a’)-(c’) hold for Ln-a.e. y ∈ Q(0, ρ), and (d’) for a set of positive Lebesgue

measure in Q(0, ρ) as |Ew̃|(Q(0, ρ)) = |e1⊙e2|
|η⊙ξ| Ln(Q(0, ρ)) 6= 0 thanks to (3.16) and (II). As a

consequence of all these conditions, δ−n|Ew̃|(P̃ xρ (y, δ)) → |e(w̃)(y)|Ln(P̃ xρ ) 6= 0 as δ ↓ 0. Thus, by
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blowing-up the function w̃ at one such point along the sequence of radii δi given by (b’), we may

infer that, up to extracting a subsequence not relabeled, w̃P̃x
ρ ,y,δi

converge strictly in BD(P̃ xρ ) to

g̃ρ(z) =
α′
1(y · e1) + α′

2(y · e2)
2|e(w̃)(y)|

(
(z · e1) e2 + (z · e2) e1

)
.

To get the latter formula, we use that in this setting α1 and α2 are W 1,1
loc (R), and that condition

(c’) and Lemma 3.5 hold true.

Conclusion in case η(x) 6= ξ(x). Both in case 1 and 2 we have selected a point y ∈ Q(0, ρ),

a function g̃ρ ∈ BD(P̃ xρ ) and a measure γ̃ ∈ Tan(Ew̃, y) satisfying: g̃ρ is affine in (at least)

one direction between e1 and e2 (cf. (4.7)) and |γ̃|(P̃ xρ ) = |γ̃(P̃ xρ )| = 1, |γ̃|(∂P̃ xρ ) = 0, |γ̃| ∈
Tan(|Ew̃|, y), γ̃ = e1⊙e2

|e1⊙e2| |γ̃| |γ̃|-a.e. on Rn, and Eg̃ρ = Ln(P̃ xρ )γ̃ P̃ xρ .

Lemma 3.11 implies that Tan(Ew,Bty) = B−1
(
Bt#Tan(Ew̃, y)

)
B−t. Therefore, by setting gρ :=

B
−1g̃ρ(B

−t·) and γ := B
−1

(
B
t
#γ̃

)
B
−t we deduce that γ ∈ Tan(Ew,Bty) ⊆ Tan(Ecu, x) and that

|γ| ∈ Tan(|Ew|,Bty) ⊆ Tan(|Ecu|, x) in view of condition (III). Moreover, Egρ = Ln(P xρ )γ P xρ .

Let {ri}i∈N be a sequence of radii and {ci}i∈N of positive constants such that ciF
x,ri
# Eu converge

locally weakly* to γ inMloc(R
n;Rn×n), and ciF

x,ri
# |Eu| converge locally weakly* to |γ| onM(Rn).

Then, |γ|(∂P xρ ) = 0, by taking into account that |γ̃|(∂P̃ xρ ) = 0. Thus, Lemma 3.1 yields

ciF
x,ri
# |Eu|(P xρ ) → |Egρ|(P xρ )

(3.16)
= | detB| |η ⊙ ξ|

|e1 ⊙ e2|
Ln(P̃ xρ ) =

|η ⊙ ξ|
|e1 ⊙ e2|

Ln(P xρ ) .

Hence, Ln(P xρ )
F

x,ri
#

Eu

F
x,ri
#

|Eu|(Px
ρ )

∗
⇀ |e1⊙e2|

|η⊙ξ| Egρ inM(P xρ ;R
n×n), and Ln(P xρ )

F
x,ri
#

|Eu|
F

x,ri
#

|Eu|(Px
ρ )

∗
⇀ |e1⊙e2|

|η⊙ξ| |Egρ|
in M(P xρ ). Furthermore, note that the rescaled maps uPx

ρ ,x,ri converge strongly in L1(P xρ ;R
n) to a

map vρ ∈ BD(P xρ ) and EuPx
ρ ,x,ri converge weakly* to Evρ in M(P xρ ,R

n×n), up to a subsequence

not relabeled. Therefore, we find Evρ =
|e1⊙e2|
|η⊙ξ| Egρ as measures on P xρ (cf. Remark 3.12). In view

of Eq. (3.5) in Theorem 3.4, there is an infinitesimal rigid motion such that

vρ(z) =
|e1 ⊙ e2|
|η ⊙ ξ| gρ(z) + Lρz + vρ .

In addition, |Evρ|(P xρ ) = Ln(P xρ ), so that in particular uPx
ρ ,x,ri converge to vρ strictly in BD(P xρ ).

We complete the proof of (4.6) by deducing that RPx
ρ
[vρ] = 0 from RPx

ρ
[uPx

ρ ,x,ri] = 0 for all i and

the above mentioned strict convergence in BD(P xρ ). �

Remark 4.3. Notice that the parallelogram P xρ produced by Proposition 4.2, along which the
sequences uPx

ρ ,x,ε converges strictly in BD(P xρ ) to a function vρ affine in one direction, has been

chosen in a way that the short edge (the edge of size ρ) is oriented exactly in the direction of non-
affinity of vρ. The non-affine direction is exactly the one we need to control in order to conclude
the representation Theorem 2.3 and thus, the fact that the parallelograms P xρ are well oriented
plays a crucial role in the argument that will follow.

4.2. Finer analysis of the blow-up limits. We proceed next with the investigation of some
properties of the blow-up limits provided by Proposition 4.2 that follow by exploiting their struc-
ture evidenced in Eqs. (4.5)-(4.6). Similar results are available in the BD setting in case the
base point is either a point of approximate differentiability or a jump point. The analogue of the
ensuing result is also well-known for BV functions (see for instance [3, Theorem 3.95]).

We will state some technical lemmas that will allow us to identify in a more precise way the
blow-up limits. To this aim, for a function ψ ∈ BV ((a, b)) we denote by ψ(a), ψ(b) the right and
left traces in a, b ∈ R, respectively. We start with the case ξ 6= ±η.

Lemma 4.4. Let {vρ}ρ>0 ⊆ BV (P ξ,ηρ ;Rn), ξ, η ∈ Rn\{0} with ξ 6= ±η, be a sequence of functions
such that

vρ(x) = ψ̄ρ(x · η)ξ + (x · ξ)β̄ρ η + Lρx+ vρ
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for some ψ̄ρ ∈ BV
(
(−ρ/2, ρ/2)

)
, β̄ρ ∈ R, vρ ∈ Rn,Lρ ∈ M

n×n
skew . Assume also that

RP ξ,η
ρ

[vρ] = 0, |Evρ|(P ξ,ηρ ) = Ln(P ξ,ηρ ) ,

Then, vρ can be re-written as

vρ(x) = ψρ(x · η)ξ + x · ξ
2|η ⊙ ξ|η,

for some ψρ ∈ BV
(
(−ρ/2, ρ/2)

)
with zero average such that {ψρ(·)/ρ}ρ>0 is uniformly bounded in

L∞(
(−ρ/2, ρ/2)

)
and

Dψρ
(
(−ρ/2, ρ/2)

)
=

ρ

2|η ⊙ ξ| . (4.9)

Proof. Set Rρ :=
(
− ρ/2, ρ/2

)
×

(
− 1/2, 1/2

)n−1
, and let B ∈ Mn×n be any invertible matrix such

that Bη = e1,Bξ = e2 and mapping Rρ onto P
ξ,η
ρ . Namely, P ξ,ηρ = BtRρ. By invoking Lemma 3.11

and Remark 3.12 we can infer that

ṽρ(y) := Bvρ(B
ty)

satisfies ṽρ ∈ BD(Rρ) and

ṽρ(y) = ψ̄ρ(y · e1)e2 + (y · e2)β̄ρ e1 + L̃ρy + ṽρ,

with L̃ρ = BLρB
t, ṽρ = Bvρ. Moreover RRρ

[ṽρ] = 0, and

|Eṽρ|(Rρ) =
|e1 ⊙ e2|
|η ⊙ ξ| ρ, Eṽρ =

e1 ⊙ e2
|e1 ⊙ e2|

|Eṽρ|. (4.10)

Step 1: Identification and properties of ψρ and βρ. Condition RRρ
[ṽρ] = 0 is equivalent to

MRρ
[ṽρ] = bRρ

[ṽρ] = 0 (see (3.7) for the definition of bRρ
and (3.8) for that of MRρ

). In turn, from
these equalities we get that

ṽρ +
( 

Rρ

ψ̄ρ(y · e1) dy
)
e2 = ṽρ +

( ρ/2

−ρ/2

ψ̄ρ(t) dt
)
e2 = 0 .

Thanks to Lemma 3.5 we get

MRρ

[(
ψ̄ρ(y · e1) −

 ρ/2

−ρ/2

ψ̄ρ(t) dt
)
e2

]
=

1

2ρ

(
ψ̄ρ(ρ/2)− ψ̄ρ(−ρ/2)

)
(e2 ⊗ e1 − e1 ⊗ e2) ,

and

MRρ

[
(y · e2)β̄ρe1

]
=
β̄ρ
2
(e1 ⊗ e2 − e2 ⊗ e1) .

Therefore, recalling that MRρ

[
L̃ρy

]
= L̃ρy, we conclude that for every y ∈ Rρ

L̃ρy +MRρ
[ṽρ]y = L̃ρy + κρ(e2 ⊗ e1 − e1 ⊗ e2)y = 0 ,

where we have set

κρ :=
1

2ρ

(
ψ̄ρ(ρ/2)− ψ̄ρ(−ρ/2)− β̄ρρ

)
. (4.11)

In particular, by defining

ψρ(t) := ψ̄ρ(t)− κρt−
 ρ/2

−ρ/2

ψ̄ρ(t) dt, βρ := β̄ρ + κρ,

ψρ ∈ BV ((−ρ/2, ρ/2)) has zero average, and

ṽρ(y) = ψρ(x · e1)e2 + (x · e2)βρe1. (4.12)

Moreover, from the very definitions of ṽρ, ψρ and βρ we see that

Eṽρ = (e1 ⊙ e2)
(
Dψ̄ρ ⊗ Ln−1 + β̄ρLn

)
= (e1 ⊙ e2)

(
Dψρ ⊗ Ln−1 + βρLn

)
.
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Let I ⊆ (−ρ/2, ρ/2) be L1-measurable, then

e1 ⊙ e2
|e1 ⊙ e2|

|Eṽρ|(I × (−1/2, 1/2)n−1) = Eṽρ(I × (−1/2, 1/2)n−1)

= (e1 ⊙ e2)
(
Dψ̄ρ(I) + β̄ρL1(I)

)
= (e1 ⊙ e2)

(
Dψρ(I) + βρL1(I)

)
. (4.13)

In particular, if I = (−ρ/2, ρ/2) by exploiting (4.10) we conclude

Dψ̄ρ
(
(−ρ/2, ρ/2)

)
+ β̄ρρ = Dψρ

(
(−ρ/2, ρ/2)

)
+ βρρ =

ρ

|η ⊙ ξ| . (4.14)

Step 2: The value of βρ. Let I := {I ⊆ (−ρ/2, ρ/2) L1 -measurable : L1(I) > 0}, then from
(4.13) we deduce that

inf
I

Dψ̄ρ(I)

L1(I)
+ β̄ρ ≥ 0, inf

I

Dψρ(I)

L1(I)
+ βρ ≥ 0 .

Hence, t 7→ ψ̄ρ(t) + β̄ρt and t 7→ ψρ(t) + βρt are monotone non-decreasing functions.
Thus, thanks to the definition of κρ we infer that Dψρ(−ρ/2, ρ/2) = βρρ as

Dψρ
(
(−ρ/2, ρ/2)

)
= Dψ̄ρ

(
(−ρ/2, ρ/2)

)
− κρρ

(4.11)
=

1

2

(
Dψ̄ρ

(
(−ρ/2, ρ/2)

)
+ β̄ρρ

) (4.14)
=

1

2

(
Dψρ

(
(−ρ/2, ρ/2)

)
+ βρρ

)
.

In conclusion, we get

Dψρ
(
(−ρ/2, ρ/2)

)
= βρρ =

ρ

2|η ⊙ ξ| . (4.15)

Step 3: Inverse change of variables and conclusion. By combining (4.12) and (4.15) we are thus
led to

ṽρ(y) = ψρ(x · e1)e2 +
(x · e2)
2|η ⊙ ξ|e1 .

Due to the very definition, vρ(y) := B−1ṽρ(B
−ty), thus we get that

vρ(y) = ψρ(x · η)ξ + x · ξ
2|η ⊙ ξ|η .

Finally, by taking into account that t 7→ hρ(t) := ψρ(t) + βρt is monotone non-decreasing with
zero average we get (by [3, Remark 3.50] and a simple scaling argument)

‖hρ‖L∞((−ρ/2,ρ/2)) ≤ |Dhρ|
(
(−ρ/2, ρ/2)

)
=

ρ

|η ⊙ ξ| .

The statement for ψρ then follows at once. �

Similarly, we can characterize the case ξ = ±η.
Lemma 4.5. Let {vρ}ρ>0 ⊆ BV (P ξ,ηρ ;Rn), ξ, η ∈ Rn \ {0} with ξ = ±η, be a family of functions
such that

vρ(x) = ψ̄ρ(x · η)η + Lρx+ vρ

for some vρ ∈ R
n, Lρ ∈ M

n×n
skew , ψ̄ρ ∈ BV

(
(−ρ/2, ρ/2)

)
. Assume also that,

RP ξ,η
ρ

[vρ] = 0, |Evρ|(P ξ,ηρ ) = Ln(P ξ,ηρ ) .

Then, vρ can be re-written as

vρ(x) =ψρ(x · η)η
for a non-decreasing function ψρ ∈ BV

(
(−ρ/2, ρ/2)

)
with zero average. Moreover, {ψρ(·)/ρ}ρ>0 is

uniformly bounded in L∞(
(−ρ/2, ρ/2)

)
, and

|Dψρ|
(
(−ρ/2, ρ/2)

)
=

ρ

|η ⊙ η| . (4.16)

Let us summarize the results contained in Proposition 4.2, Lemma 4.4 and Lemma 4.5 in the
following statement (see (4.1) for the definition of uK,x,ε, and Eqs. (4.3), (4.4) for those of P ξ,ηρ ).
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Proposition 4.6 (Selecting a good blow-up |Ecu|-a.e.). Let u ∈ BD(Ω). Then for |Ecu|-a.e.
x ∈ Ω there exist vectors ξ, η ∈ Sn−1, {ρj}j∈N, ρj ↓ 0 as j ↑ +∞, and for all j ∈ N a sequence
{εi,j}i∈N, with εi,j ↓ 0 as i ↑ +∞, a bounded, open, convex set containing the origin P xj := P ξ,ηρj
and a function vj such that uPx

j
,x,εi,j converge to vj strictly in BD(P xj ) as i ↑ +∞, with

(a) if ξ 6= ±η:

vj(y) := ψj(y · η)ξ +
y · ξ

2|η ⊙ ξ|η

for some map ψj ∈ BV
(
(−ρj/2, ρj/2)

)
with zero average such that

Dψj
(
(−ρj/2, ρj/2)

)
=

ρj
2|η ⊙ ξ| , sup

j∈N

‖ψj(·)/ρj‖L∞((−ρj/2,ρj/2)) < +∞;

(b) if ξ = ±η:
vj(y) = ψj(y · η)η

for some non-decreasing map ψj ∈ BV
(
(−ρj/2, ρj/2)

)
with zero average such that

|Dψj |
(
(−ρj/2, ρj/2)

)
=

ρj
|η ⊙ η| , sup

j∈N

‖ψj(·)/ρj‖L∞((−ρj/2,ρj/2)) < +∞.

Proof. We prove the result for the subset of points F for which Proposition 4.2 holds true. In
particular, |Ecu|(Ω \ F ) = 0. One such point x being fixed, note that given any infinitesimal
sequence {ρj}j∈N we can extract a subsequence (not relabeled) along which the maps vρj provided
by Proposition 4.2 are affine in one single direction (either η or ξ) provided in the statement.
Without loss of generality we denote such a direction by ξ to be coherent with the notation of
Proposition 4.2 itself.

Assume first ξ 6= ±η. Thanks to Proposition 4.2 we can find a sequence of scales {εi,j}i∈N such
that the rescaled maps converge strictly in BD(P xj ) to a map vρj as in the statement there. By
using Lemma 4.4 we conclude.

Finally, if ξ = ±η we argue similarly by using Lemma 4.5 rather than Lemma 4.4. �

5. Proof of the main result

We first recall the results in [24, Theorem 3.3, Remark 3.5]. The original statement concerns
integral representation of the volume and jump energy densities of functionals satisfying (H1)-(H4)
and a more stringent version of (H5) (cf. Remark 5.2) and for functions in the subspace SBD(Ω).
In what follows we state the result for the full space BD(Ω). Indeed, the same proof works with no
difference since it is obtained via the global method for relaxation, hinging on a blow-up argument
and the characterization of the energy densities in terms of the Dirichlet cell formulas defining m.
We notice that (H4) and (H5) are actually not needed for the integral representation of the bulk
and surface terms of the energy.

Lemma 5.1. Let F be satisfying (H1)-(H3). Then, for every u ∈ BD(Ω)

(a) for Ln-a.e. x0 ∈ Ω

lim
ε→0

F(u,Q(x0, ε))

εn
= f(x0, u(x0),∇u(x0)),

where f denotes the function defined in (2.5);
(b) for Hn−1-a.e. x0 ∈ Ju

lim
ε→0

F(u,Qνu(x0)(x0, ε))

εn−1
= g(x0, u

−(x0), u
+(x0), νu(x0))

where g denotes the function defined in (2.6),

It should be noted that Lemma 5.1 and the lower semicontinuity of the integral onW 1,1 implies
that the Borel functions f and g are respectively quasiconvex (see [3, Definition 5.25], see also
formulas (5.3), (5.4) below) and BV elliptic (see [3, Definition 5.13]).



ON THE INTEGRAL REPRESENTATION OF VARIATIONAL FUNCTIONALS ON BD 19

By taking into account (H2), we conclude that there exists a constant C > 0 such that for every
(x, v,A) ∈ Ω× Rn ×Mn×n

1

C

∣∣∣A+A
t

2

∣∣∣ ≤ f(x, v,A) ≤ C
(
1 +

∣∣∣A+A
t

2

∣∣∣
)
, (5.1)

and that for every (x, v−, v+) ∈ Ω× (Rn)2

1

C
|(v+ − v−)⊙ ν| ≤ g(x, v−, v+, ν) ≤ C|(v+ − v−)⊙ ν|.

Several other properties of f and g can be inferred according to the invariance properties satisfied
by the functional F (cf. [7, Remark 3.8]). For instance, assumption (H5) implies that f depends
only on the symmetric part of the relevant matrix. Indeed, from (3.18) we immediately deduce,
for all (x0, v0,A) ∈ Ω× Rn ×Mn×n, (thanks also to item (a) in Lemma 5.1) that

f(x0, v0,A) = lim
ε→0

m(v0 + A(· − x0), Q(x0, ε))

εn

= lim
ε→0

m(v0 +
A+A

t

2 (· − x0), Q(x0, ε))

εn
= f

(
x0, v0,

A+A
t

2

)
. (5.2)

Therefore, in this case we deduce that f is symmetric quasiconvex. Namely, for every bounded
open set D ⊂ Rn, for Ln a.e. x ∈ Ω, for all (v,A) ∈ Rn ×Mn×n

sym and for all ϕ ∈ C1
c (D;Rn)

f(x, v,A) ≤
 

D

f(x, v,A+ e(ϕ)(y)) dy, (5.3)

or, equivalently, for all ϕ ∈ C1(Qν(0, 1);Rn) that are Qν(0, 1)-periodic, it holds

f(x, v,A) ≤
 

Qν(0,1)

f(x, v,A+ e(ϕ)(y)) dy. (5.4)

Remark 5.2. If, in addition, we strengthen (H5) to

F(u + L(· − x0) + v, A) = F(u,A) (5.5)

for every (u,A, v,L, x0) ∈ BD(Ω) × O(Ω) × Rn × M
n×n
skew × Ω, then the cell formulas imply

f
(
x, v, A+A

t

2

)
= f

(
x, A+A

t

2

)
and g(x, v−, v+, ν) = g(x, v+ − v−, ν).

5.1. Preliminary lemmas. We now exploit the result in Section 4, in particular Proposition 4.6,
to deduce the asymptotic behavior of the energy around |Ecu|-a.e. point along the same line
developed in [7, Lemma 3.9]. We keep the notation introduced in Proposition 4.6 and to simplify
it we set ψj := ψρj and P x0

j := P x0
ρj (for the definition of RK see (3.6)).

Lemma 5.3. Let F satisfy (H1)-(H4). Then, for every u ∈ BD(Ω) and for |Ecu|-a.e x0 ∈ Ω
there exist a sequence {ρj}j∈N infinitesimal as j ↑ +∞, and for all j ∈ N an infinitesimal sequence
{εi,j}i∈N as i ↑ +∞, such that

dF(u, ·)
d|Eu| (x0) = lim

j→+∞
lim sup
i→+∞

m
(
wi,j , P

x0

j (x0, εi,j)
)

|Eu|(P x0

j (x0, εi,j))
(5.6)

where

wi,j(y) := RP
x0
j (x0,εi,j)

[u](y − x0) +
|Eu|(Px0

j (x0,εi,j))

Ln(P
x0
j (x0,εi,j)))

η⊙ξ
|η⊙ξ| (y − x0). (5.7)

Proof. We consider the subset of points of Cu for which Proposition 4.2 (and hence Proposition 4.6)
is valid. For one such point x0 ∈ Cu consider the corresponding vectors ξ and η ∈ Sn−1. Note
that by Lemma 3.13 for any j ∈ N

dF(u, ·)
d|Eu| (x0) = lim

i→+∞

m(u, P x0

j (x0, εi,j))

|Eu|(P x0

j (x0, εi,j))
. (5.8)

Case 1: η 6= ±ξ. By Proposition 4.6 we have that for every j ∈ N

ui,j := uPx0
j ,x0,εi,j

→ vj := ψj(y · η)ξ +
y · ξ

2|η ⊙ ξ|η strict in BD(P x0

j ).
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Define, for some constant cj to be specified in what follows, the functions

vi,j(y) := wi,j(y) + εi,j
|Eu|(Px0

j (x0,εi,j))

Ln(P
x0
j (x0,εi,j))

cjξ. (5.9)

As by Remark 3.7

RP
x0
j
[u(x0 + εi,j ·)]

(
y − x0
εi,j

)
= RP

x0
j (x0,εi,j)[u](y − x0),

we have by Lemma 3.14

|m(u, P x0

j (x0, εi,j))−m(vi,j , P
x0

j (x0, εi,j))|
|Eu|(P x0

j (x0, εi,j))

≤ C

ˆ

∂P
x0
j (x0,εi,j)

|u(y)− vi,j(y)|
|Eu|(P x0

j (x0, εi,j))
dHn−1(y)

=
C

ρj

ˆ

∂P
x0
j

∣∣∣∣ui,j(y)−
η ⊙ ξ

|η ⊙ ξ| y − cjξ

∣∣∣∣ dH
n−1(y).

By taking the superior limit in i we thus get

lim sup
i→+∞

|m(u, P x0

j (x0, εi,j))−m(vi,j , P
x0

j (x0, εi,j))|
|Eu|(P x0

j (x0, εi,j))

≤ C

ρj

ˆ

∂P
x0
j

∣∣∣∣ψj(y · η)−
(y · η)
2|η ⊙ ξ| − cj

∣∣∣∣ dH
n−1(y)

=
C

ρj

∣∣∣∣ψj(ρj/2)−
ρj

4|η ⊙ ξ| − cj

∣∣∣∣+
C

ρj

∣∣∣∣ψj(−ρj/2) +
ρj

4|η ⊙ ξ| − cj

∣∣∣∣

+
C

ρj

ˆ ρj/2

−ρj/2

∣∣∣∣ψj(t)−
t

2|η ⊙ ξ| − cj

∣∣∣∣ dt,

recalling that P x0

j =
{
y ∈ Rn : |y · η| ≤ ρj/2, |y · ξ| ≤ 1/2, |y · ζi| ≤ 1/2 i = 1, . . . , n− 2

}
, and that ξ

and η depend on x0.
By choosing cj := ψj(−ρj/2)+ ρj

4|η⊙ξ| , since ψj(
ρj/2)−ψj( − ρj/2) =

ρj
2|η⊙ξ| , the first two summands

in the last inequality are then null. Therefore, we have

lim sup
i→+∞

|m(u, P x0

j (x0, εi,j))−m(vi,j , P
x0

j (x0, εi,j))|
|Eu|(P x0

j (x0, εi,j))

≤ C

ρj

ˆ ρj/2

−ρj/2

∣∣∣∣ψj(t)−
t

2|η ⊙ ξ| − cj

∣∣∣∣ dt ≤ C
(
‖ψj‖L∞(− ρj

2
,
ρj
2
)
+ ρj + cj

)
≤ Cρj ,

where we have used that ψj(·)/ρj is equi-bounded in L∞(
(−ρj/2, ρj/2)

)
, and that ψj(±ρj/2) are

boundary trace values to infer cj ≤ Cρj , for some universal constant C > 0. In conclusion, we
have proved that

lim
j→+∞

lim sup
i→+∞

|m(u, P x0

j (x0, εi,j))−m(vi,j , P
x0

j (x0, εi,j))|
|Eu|(P x0

j (x0, εi,j))
= 0,

so that (5.8) yields

dF(u, ·)
d|Eu| (x0) = lim

j→+∞
lim sup
i→+∞

m(vi,j , P
x0

j (x0, εi,j))

|Eu|(P x0

j (x0, εi,j))
. (5.10)

Finally, recalling the definition of wi,j in (5.7) and of vi,j in (5.9), by estimate (3.17) we have
∣∣∣m

(
vi,j , P

x0

j (x0, εi,j)
)
−m(wi,j , P

x0

j (x0, εi,j))
∣∣∣

≤ CPx0
j

Ψ
(
εi,j

|Eu|(Px0
j (x0,εi,j))

Ln(P
x0
j (x0,εi,j))

cj
)(

Ln(P x0

j (x0, εi,j)) + |Eu|(P x0

j (x0, εi,j))
)
.

and (5.6) then follows at once from (5.10) by letting i ↑ +∞, in view of the choice x0 ∈ Cu.
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Case 2: ξ = ±η. Suppose, without loss of generality that ξ = η. We argue as in Case 1. For the
sequences {ρj}j∈N, {εi,j}i∈N provided by Proposition 4.6 we have that

uPx0
j ,x0,εi,j

→ vj := ψj(y · η)η strict in BD(P x0

j ).

By setting

vi,j(y) := wi,j(y) + εi,j
|Eu|(Px0

j (x0,εi,j))

Ln(P
x0
j (x0,εi,j))

cjη,

for

cj := ψj(−ρj/2) +
ρj

2|η ⊙ η| ,

we conclude that

lim
j→+∞

lim sup
i→+∞

m(vi,j , P
x0

j (x0, εi,j))

|Eu|(P x0

j (x0, εi,j))
= lim

i→+∞

m(u, P x0

j (x0, εi,j))

|Eu|(P x0

j (x0, εi,j))
.

We again combine this equality with (5.8) to conclude. �

We now use assumption (H5) to prove a lower bound for the cell formula m computed on affine
functions as done in [7, Lemma 3.11].

Lemma 5.4. Let F satisfy (H1)-(H5). For all v ∈ Rn, ξ′ ∈ Rn \ {0}, η ∈ Sn−1, x0 ∈ Ω and for
every sequence (ti, εi) such that ti → +∞ and εiti → 0, and for every ρ > 0, it holds

f(x0, v, η ⊙ ξ′)− f(x0, v, 0) ≤ lim inf
i→+∞

m(v + ti η ⊙ ξ′(· − x0), P
ξ,η
ρ (x0, εi))

tiLn(P ξ,ηρ (x0, εi))

where ξ := ξ′/|ξ′|, P ξ,ηρ is defined either in (4.3) or (4.4) according to whether ξ 6= ±η or not, and
f is the volume energy density defined in item (a) of Lemma 5.1.

Proof. We start off noting that η⊗ ξ′ = η⊙ ξ′+L, where L := 1
2 (η ⊗ ξ′ − ξ ⊗ η′) ∈ M

n×n
skew . Then,

in view of (H5) formula (3.18) implies
∣∣m

(
v + ti η ⊗ ξ′(· − x0), P

ξ,η
ρ (x0, εi)

)
−m

(
v + ti η ⊙ ξ′(· − x0), P

ξ,η
ρ (x0, εi)

)∣∣

≤ CP ξ,η
ρ

Ψ(εiti|L|)(1 + ti|ξ′|)εni . (5.11)

Hence,

lim inf
i→+∞

m(v + tiη ⊙ ξ′(· − x0), P
ξ,η
ρ (x0, εi))

tiLn(P ξ,ηρ (x0, εi))
= lim inf

i→+∞

m(v + tiη ⊗ ξ′(· − x0), P
ξ,η
ρ (x0, εi))

tiLn(P ξ,ηρ (x0, εi))

≥ f(x0, v, η ⊗ ξ′)− f(x0, v, 0).

For the last inequality we have used [7, Lemma 3.11]. Moreover, since by (5.2)

f(x0, v, η ⊗ ξ′) = f(x0, v, η ⊙ ξ′),

the conclusion follows at once. �

Before proving Theorem 2.3, we note that the continuity estimate on m contained in (3.17),
deduced as a consequence of (H4), implies both

|f(x0 + x, v + v0,A)− f(x0, v0,A)| ≤ Ψ(|x|+ |v|)(1 + |A|) (5.12)

and

|g(x0 + x, v0 + v, v1 + v, ν)− g(x0, v0, v1, ν)| ≤ Ψ(|x|+ |v|)|v0 − v1|
for all (x0, x, v0, v1, v, ν,A) ∈ (Ω)2 × (Rn)3 × Sn−1 ×Mn×n

sym .
These properties are instrumental already in the BV setting to express the Radon-Nikodým

derivative of F at u with respect to |Ecu| in terms of an energy density computed on relevant
quantities related to the base function u itself. In particular, by taking such properties into
account, one can prove that the recession function f∞ of the bulk energy density f is actually the
energy density of the Cantor part.
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5.2. Proof of the integral representation result.

Proof of Theorem 2.3. The representation of the volume and surface energy densities is dealt with
in Lemma 5.1.

We then turn to the representation of the energy density of the Cantor part. For |Ecu|-a.e.
point x0 ∈ Cu we may apply Lemma 5.3 (in what follows we keep the notation introduced there)
and find infinitesimal sequences {ρj}j∈N, {εi,j}i∈N such that

dF(u, ·)
d|Ecu| (x0) =

dF(u, ·)
d|Eu| (x0) = lim

j→+∞
lim sup
i→+∞

m
(
wi,j , P

x0

j (x0, εi,j)
)

|Eu|(P x0

j (x0, εi,j))
. (5.13)

On setting

vi,j :=

 

P
x0
j (x0,εi,j)

u(x) dx, Li,j := MP
x0
j (x0,εi,j)

[u]

and ti,j :=
|Eu|(Px0

j (x0,εi,j))

Ln(P
x0
j (x0,εi,j))

, we have wi,j = vi,j + Li,j(· − x0) + ti,j
η⊙ξ
|η⊙ξ| (· − x0). Note that

ti,j → +∞ as i→ +∞ for all j ∈ N as x0 ∈ Cu. Moreover, recall that x0 is a point of approximate
continuity of u.

Next we note that

∣∣m
(
wi,j , P

x0

j (x0, εi,j)
)
−m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)∣∣∣

≤
∣∣m

(
wi,j , P

x0

j (x0, εi,j)
)
−m

(
vi,j + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)∣∣

+
∣∣∣m

(
vi,j + ti,j

η⊙ξ
|η⊙ξ|(· − x0), P

x0

j (x0, εi,j)
)
−m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)∣∣∣

(3.18), (3.17)

≤ CPx0
j

(
Ψ(εi,jdiam(P x0

j )|Li,j |) + Ψ(|vi,j − u(x0)|)
)
(1 + ti,j)ε

n
i,j .

By taking into account vi,j → u(x0) and εi,j |Li,j | → 0 as i ↑ +∞ thanks to Lemma 3.10, the
latter estimate combined with (5.13) leads to

dF(u, ·)
d|Ecu| (x0) =

dF(u, ·)
d|Eu| (x0)

= lim
j→+∞

lim sup
i→+∞

m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ|(· − x0), P

x0

j (x0, εi,j)
)

Ln(P x0

j (x0, εi,j))ti,j
. (5.14)

With fixed j ∈ N and λ > 0, by applying Lemma 5.4 with ξ′ = λ ξ
|η⊙ξ| and ti :=

ti,j/λ, Eq. (5.14)

implies

dF(u, ·)
d|Ecu| (x0) ≥

f
(
x0, u(x0), λ

η⊙ξ
|η⊙ξ|

)
− f(x0, u(x0), 0)

λ
.

Hence, by taking the superior limit as λ ↑ +∞ we infer

dF(u, ·)
d|Ecu| (x0) ≥ f∞(

x0, u(x0),
η⊙ξ
|η⊙ξ|

)
. (5.15)

On the other hand, using as a competitor in the cell problem defining

m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)
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the affine map u(x0) + ti,j
η⊙ξ
|η⊙ξ| (· − x0) itself, we can apply item (a) in Lemma 5.1 to deduce

m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)

ti,jLn(P x0

j (x0, εi,j))
≤

F
(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)

ti,jLn(P x0

j (x0, εi,j))

=

 

P
x0
j (x0,εi,j)

1

ti,j
f
(
x, u(x0) + ti,j

η⊙ξ
|η⊙ξ| (x− x0), ti,j

η⊙ξ
|η⊙ξ|

)
dx

(5.12)

≤ 1

ti,j
f
(
x0, u(x0), ti,j

η⊙ξ
|η⊙ξ|

)
+ 2Ψ(εi,j + εi,jti,j)

≤ 1

ti,j

(
f
(
x0, u(x0), ti,j

η⊙ξ
|η⊙ξ|

)
− f(x0, u(x0), 0)

)
+ C

ti,j
.

Since, ti,j → +∞ as i→ +∞ for all j ∈ N, we deduce that

lim
j→+∞

lim sup
i→+∞

m

(
u(x0) + ti,j

η⊙ξ
|η⊙ξ| (· − x0), P

x0

j (x0, εi,j)
)

Ln(P x0

j (x0, εi,j)))ti,j
≤ f∞

(
x0, u(x0),

η⊙ξ
|η⊙ξ|

)
,

that combined with (5.14) and (5.15) finally leads to

dF(u, ·)
d|Ecu| (x0) = f∞

(
x0, u(x0),

dEcu

d|Ecu| (x0)
)
. �

A standard monotone approximation technique provides the following extension of Theorem 2.3
(see Section 7 for a similar argument).

Corollary 5.5. Let F : L1(Ω;Rn) × O(Ω) → [0,+∞] be satisfying (H1), (H3), (H4), (H5) and
in place of (H2)

(HH2) there exists a constant C > 0 such that for every (u,A) ∈ BD(Ω)×O(Ω)

0 ≤ F(u,A) ≤ C(Ln(A) + |Eu|(A)).
Then, the conclusions of Theorem 2.3 hold for all u ∈ BD(Ω).

Proof. Let δ > 0, and consider the functionals Fδ : L1(Ω;Rn) × O(Ω) → [0,+∞] be defined by
Fδ(u,A) := F(u,A) + δ|Eu|(A). Since Fδ satisfies all the conditions (H1)-(H5) of Theorem 2.3
there are two functions fδ and gδ such that Fδ can be represented as in the statement there.
The family of functionals Fδ is pointwise increasing in δ, therefore there exist the pointwise
limits f of fδ and g of gδ as δ ↓ 0 (note that from the very definition of recession function
f∞
δ (x, v,A) = f∞(x, v,A) + δ|A|). As Fδ(·, A) is pointwise converging to F(·, A) for δ ↓ 0 on
BD(Ω) for all A ∈ O(Ω), we conclude that the integral representation with energy densities f , g
and f∞ for the bulk, surface and Cantor parts, respectively, holds for F . �

6. Some applications

Following [7, Section 4] we provide some applications of the integral representation Theorem 2.3
to the topics of relaxation of bulk energies, of bulk and interfacial energies, to that of L1 lower
semicontinuity of functionals defined on BD, and to that of homogenization of bulk energies.

Throughout the section, for all ν ∈ Sn−1 and r > 0 we denote the cubes Qν(0, r) by Qνr , and
moreover Q(0, r) by Qr.

6.1. Relaxation and L1 lower semicontinuity of bulk energies. In this section we address
the issue of giving an explicit expression to the L1 lower semicontinuous envelope of a linearly
growing functional defined on smooth maps, for instance LD(Ω).

Theorem 6.1 below generalizes to BD(Ω) the results proven in [5] and [24] on SBD(Ω). In
particular, in [5] a continuous autonomous integrand f0 (i.e. depending only on the symmet-
ric gradient) is considered, the integral representation is then given in terms of the symmetric
quasiconvex envelope of f0 (see the definition below) and its associated recession function. In
addition, Theorem 6.1 also generalizes partially the results on BD(Ω) established in [42] and [4,
Corollary 1.10], [35, Theorem 1.4]. Note that in the former, also a Dirichlet boundary condition is
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considered, while in the last two integral representations of the weakly* lower semicontinuous en-
velope of functionals with linear growth at infinity are provided for more general PDEs constraints
on the approximating sequences.

We stress that in the ensuing result, the strong recession function is not required to exist, and
that the integrand is allowed to depend also on x and v. Moreover, global continuity is replaced
by the weaker condition (H2’).

Let f0 : Ω× Rn ×Mn×n
sym → [0,+∞) be a Borel integrand satisfying:

(H1’) there exists a constant C > 0 such that for every (x, v,A) ∈ Ω× Rn ×Mn×n
sym

1

C
|A| ≤ f0(x, v,A) ≤ C

(
1 + |A|

)
; (6.1)

(H2’) there exists a constant C > 0 such that for every ε > 0 there exists δ > 0 such that

|x− x0|+ |v − v0| ≤ δ =⇒ |f0(x, v,A) − f0(x0, v0,A)| ≤ Cε(1 + |A|),
for every (x, v, v0,A) ∈ Ω× (Rn)2 ×Mn×n

sym .

Let then F0 : L1(Ω;Rn)×O(Ω) → [0,+∞] be the functional defined by

F0(u,A) := inf
{
lim inf
j→+∞

F0(uj , A) : uj → u in L1(Ω;Rn)
}
, (6.2)

namely the L1(Ω;Rn) lower semicontinuos envelope of the functional

F0(u,A) :=





ˆ

A

f0
(
x, u(x), e(u)(x)

)
dx if u ∈ LD(Ω)

+∞ otherwise on L1(Ω;Rn).

(6.3)

We denote by m the cell formula defined in (2.4) and related to F0, and recall the notation uv−,v+,ν

introduced in (2.8). We also recall that f∞ stands for the (weak) recession function as defined by
(2.7).

Theorem 6.1. Let F0 : L1(Ω;Rn) × O(Ω) → [0,+∞] be the functional defined in (6.3). Then,
assuming (H1’)-(H2’), the functional F0 : L1(Ω;Rn) ×O(Ω) → [0,+∞] defined in (6.2) is repre-
sented by

F0(u,A) =

ˆ

A

f
(
x, u(x), e(u)(x)

)
dx

+

ˆ

Ju∩A
g
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x) +

ˆ

A

f∞
(
x, u(x),

dEcu

d|Ecu| (x)
)
d|Ecu|(x),

for all (u,A) ∈ BD(Ω)×O(Ω), where for every (x0, v,A) ∈ Ω× R
n ×M

n×n
sym

f(x0, v,A) = lim sup
ε→0

inf
w∈LD(Q1)
w|∂Q1

=Ay|∂Q

ˆ

Q1

f0
(
x0, v + εw(y), e(w)(y)

)
dy, (6.4)

and for every (x0, v
−, v+, ν) ∈ Ω× (Rn)2 × Sn−1

g(x0, v
−, v+, ν) = lim sup

ε→0
inf

w∈LD(Qν
1)

w|∂Qν
1
=u

v−,v+,ν
|∂Qν

1

ˆ

Qν
1

ε f0
(
x0, w(y),

1
εe(w)(y)

)
dy. (6.5)

Remark 6.2. Assumption (H2’) implies that F0 satisfies (H4). Instead, in the BV -setting, the
ensuing weaker assumption (H3’) replaces (H2’) in [7, Section 4.1]:

(H3’) there exists a constant C > 0 such that for every ε > 0 there exists δ > 0 such that

|v − v0| ≤ δ =⇒ |f0(x, v,A) − f0(x, v0,A)| ≤ Cε(1 + |A|),
for every (x, v, v0,A) ∈ Ω× (Rn)2 ×Mn×n

sym .
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The latter condition and a truncation argument (cf. [7, Lemma 2.6]) are employed both to simplify
the minimum problems defining f and g with respect to the v-variable (cf. equations [7, (4.1.5) and
(4.1.6)], and also to dispense with the analogue of (H4). Therefore, since the integral representation
result in the BV setting cannot be directly applied, the quoted truncation argument and the analogue
of Lemma 5.3 are central to give an explicit formula for the energy density of the Cantor part of the
relaxed functionals analogous to F0 (cf. Eq. [7, (4.1.7) in Theorem 4.1.4] and [7, Remark 4.1.5]).
Instead, since truncations are not permitted in the current BD setting, we need the stronger
assumption (H2’) to enforce (H4).

Remark 6.3. In order to prove the integral representation of F0 over the subspace SBD(Ω)
only, assumption (H2’) is actually not needed and (H1’) can be weakened. Indeed, to that aim
one can allow for f0 to depend also on the skew-symmetric part of the given matrix in view of
Lemma 5.1 (cf. Section 7). Clearly, formulas (6.4) defining f and (6.5) defining g have to be
changed accordingly.

Remark 6.4. In view of the density of W 1,1(Ω;Rn) in BD(Ω) with respect to the strict topology
with assigned boundary trace (cf. [5, Theorem 2.6]), the space LD can be substituted with W 1,1 in
the minimum problems defining f and g.

Therefore, the same conclusions of Theorem 6.1 can be drawn if we consider the functional
F ′
0(u,A) := F0(u,A) for u ∈W 1,1(Ω;Rn), and +∞ otherwise on L1(Ω;Rn). Then the space of test

maps for the minimum problems defining f and g in (6.4) and (6.5) respectively, is W 1,1(Ω;Rn).

The main steps to prove Theorem 6.1 are similar to those exploited for the analogous result in
the BV setting in [7, Section 4.1] to which we refer. Therefore, we provide only a sketch of those
proofs for which some changes are needed.

Lemma 6.5 (Lemma 4.1.3 [7]). Assume (H1’)-(H2’). Then, F0 satisfies (H1)-(H5), and for all
(u,A) ∈ BD(Ω)×O∞(Ω)

m(u,A) = m0(u,A) := inf{F0(w,A) : w ∈ BD(A), w = u on ∂A}.
Proof. Assumptions (H1), (H2) and (H5) are easily checked to be satisfied by F0 in view of (H1’)
and the very definition of F0. Instead, (H4) follows from (H2’). For what concerns (H3) one can
argue similarly to [5, Proposition 3.9].

The inequality m(u,A) ≤ m0(u,A) follows from F0 ≤ F0. For the opposite, one uses the very
definition of F0 as the relaxation of F0 together with the version of the De Giorgi’s averaging/slicing
lemma stated in [5, Proposition 3.7]. �

By means of the alternative characterization of m provided by m0, of Theorem 2.3, of the results
in Section 4 and of a change of variable, Theorem 6.1 follows at once.

If an additional quantified closeness condition between f computed on large gradients and f∞

is added, formula (6.5) defining g can be simplified. The ensuing claim (6.6) is well-known in the
in the BV case (cf. [7, Theorem 4.1.4]).

Corollary 6.6. Under the assumptions and notation of Theorem 6.1 and in addition

(H4’) on setting for any L > 0 and x0 ∈ Ω

ωf0(x0, L) := sup
v∈R

n, t≥L
A∈M

n×n
sym : |A|=1

∣∣∣f∞
0 (x0, v,A)−

1

t
f0(x0, v, tA)

∣∣∣ ,

then ωf0(x0, L) is infinitesimal as L→ +∞,

the function g in Eq. (6.5) in the conclusions of Theorem 6.1 is characterized alternatively by

g(x0, v
−, v+, ν) = inf

w∈LD(Qν
1)

w|∂Qν
1
=u

v−,v+,ν
|∂Qν

1

ˆ

Qν
1

f∞
0

(
x0, w(y), e(w)(y)

)
dy. (6.6)

Furthermore, we deal with the v-independent case for which (H4’) is actually not needed (cf.
[28, Remark 2.17] for the analogous result in the BV setting). We start off with a preliminary
result.
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Corollary 6.7. Under the assumptions and notation of Theorem 6.1, if the integrand f0 satisfies
f0(x, v,A) = f0(x,A) for every (x, v,A) ∈ Ω× Rn ×Mn×n

sym , then

g(x0, v
−, v+, ν) = f∞(

x0, (v
+ − v−)⊙ ν

)

for every (x0, v
−, v+, ν) ∈ Ω× (Rn)2 × Sn−1.

Proof. We start off defining

F̃0(u,A) :=





ˆ

A

f
(
x, e(u)(x)

)
dx if u ∈ LD(Ω)

+∞ otherwise on L1(Ω;Rn),

where f is given by (6.4). Note that f is v-independent as F0(u + z, A) = F0(u,A) for all
(u,A, z) ∈ BD(Ω) ×O(Ω) × R

n. Moreover, f(x0,A) ≤ f0(x0,A), for all (x0,A) ∈ Ω ×M
n×n
sym , by

using the linear function Ay itself as a test in (6.4) and (H2’).

Denote by F̃0 the L1(Ω;Rn) lower semicontinuous envelope of F̃0. Then, F̃0 ≤ F0 implies that

F̃0 ≤ F0 on L1(Ω;Rn), and since F0 = F̃0 on LD(Ω) and F0 ≤ F̃0 otherwise, we conclude that

F0 ≡ F̃0. Therefore, equality (6.5) defining g holds with f in place of f0 in the minimum problem
there. In passing, we point out that the invariance of f0 implies that g = g(x, v+ − v−, ν), as well
(cf. Remark 5.2).

Let us first prove that g(x0, v
+ − v−, ν) ≥ f∞(

x0, (v
+ − v+) ⊙ ν

)
. Let {ν1, . . . , νn−1, ν} form

an orthonormal basis of Rn and set

Aν :=
{
w ∈W 1,1(Qν1 ;R

n) :w|{x∈∂Qν
1 :x·ν=±1/2} = 0,

w is 1-periodic in νi, 1 ≤ i ≤ n− 1
}
,

and

Bν :=
{
w ∈W 1,1(Qν1 ;R

n) : (w − uv−,v+,ν)|{x∈∂Qν
1 :x·ν=±1/2} = 0,

w is 1-periodic in νi, 1 ≤ i ≤ n− 1
}
,

In particular, note that Bν = ζ(·) +Aν , where

ζ(x) :=
v+ + v−

2
+ (v+ − v−)x · ν. (6.7)

We then argue as follows

g(x0, v
+ − v−, ν) = lim sup

ε→0
inf

w∈LD(Qν
1)

w|∂Qν
1
=u

v−,v+,ν
|∂Qν

1

ˆ

Qν
1

εf
(
x0,

1
εe(w)(y)

)
dy

= lim sup
ε→0

inf
w∈W 1,1(Qν

1 ;R
n)

w|∂Qν
1
=u

v−,v+,ν
|∂Qν

1

ˆ

Qν
1

εf
(
x0,

1
εe(w)(y)

)
dy

≥ lim sup
ε→0

inf
w∈Bν

ˆ

Qν
1

εf
(
x0,

1
εe(w)(y)

)
dy

= lim sup
ε→0

inf
w∈Aν

ˆ

Qν
1

εf
(
x0,

1
ε (v

+ − v−)⊙ ν + 1
εe(w)(y)

)
dy , (6.8)

where for the second equality we have used Remark 6.4, and for the last, Eq. (6.7). Using the
characterization of symmetric quasiconvexity expressed in (5.4) we conclude from (6.8) that

g(x0, v
+ − v−, ν) ≥ lim sup

ε→0
εf

(
x0,

1
ε (v

+ − v−)⊙ ν
)
= f∞(

x0, (v
+ − v−)⊙ ν

)
.

To prove the opposite inequality, consider the affine function ζ in (6.7), extend it by 1-periodicity
in the directions νi, 1 ≤ i ≤ n − 1, and extend it further by v± if ±x · ν ≥ 1/2 (with a slight
abuse we keep the same notation for the extended function). Next let w̃ ∈ W 1,1(Qν1 ;R

n) have
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the same trace of uv−,v+,ν on ∂Qν1 (cf. [5, Theorem 2.6]), extend it by 1-periodicity in the
directions νi, 1 ≤ i ≤ n − 1, and then extend it by uv−,v+,ν on the complement set (again we
keep the same notation for the extended function). Let r and δ ∈ (0, 1) and fix a cut-off function

ϕ ∈ W 1,∞
0 (Qν1 ; [0, 1]) such that ϕ|Qν

r
≡ 1. Define ζr,δ := ϕ ζ(·/δ) + (1 − ϕ)w̃(·/δ) ∈ W 1,1(Qν1 ;R

n)

and use it as a test function in the minimum problem in (6.5). Note that ζr,δ = v± if ±x · ν ≥ 1/2.
A simple computation yields,

e(ζr,δ) =
1
δ

(
ϕe(ζ)(·/δ) + (1− ϕ)e(w̃)(·/δ)

)
+∇ϕ⊙ (ζ(·/δ)− w̃(·/δ)),

thus using (H1’), a simple scaling argument and periodicity give for some ωδ ↓ 0 as δ ↓ 0

g(x0, v
+ − v−, ν) ≤ lim sup

ε→0

ˆ

Qν
1

εf
(
x0,

1
εe(ζr,δ)(y)

)
dy

= lim sup
ε→0

(ˆ

Qν
1∩{|x·ν|≤δ/2}

εf
(
x0,

1
εe(ζr,δ)(y)

)
dy + εf

(
x0, 0

))

≤(1 + ωδ) lim sup
ε→0

ˆ

Qν
1

εδf
(
x0,

1
εδ (v

+ − v+)⊙ ν
)
dy

+ C(1 + ωδ)

ˆ

(Qν
1\Qν

r )∩{|x·ν|≤δ/2}

(
1
δ |e(ζ)(y/δ)|+ 1

δ |e(w̃)(y/δ)|+ |∇ϕ||ζ(y/δ)− w̃(y/δ)|
)
dy

≤(1 + ωδ)f
∞(
x0, (v

+ − v−)⊙ ν
)
+ C

ˆ

Qν
1\Qν

r

(
|e(ζ)|+ |e(w̃)|

)
dy

+
Cδ

1− r

ˆ

Qν
1\Qν

r

|ζ(y)− w̃(y)| dy.

We conclude

g(x0, v
+ − v−, ν) ≤ f∞(

x0, (v
+ − v+)⊙ ν

)
,

by letting first δ ↓ 0 and then r ↑ 1 in the latter inequality. �

In view of the previous corollary we are able to characterize explicitly the relaxed functional F0

in the v-independent case. Additionally, as a consequence, we are also able to deal with the issue
of L1 lower semicontinuity on BD. In particular, we improve upon [42] and [4, Corollary 1.10] (in
the curl-curl case according to terminology used there) dispensing with the existence of the strong
recession function. Note that f0 is allowed to depend on x and that the full continuity of f0 is not
required, being replaced by the weaker assumption (H2’).

To state the result recall that given f : Mn×n
sym → R a Borel function, its symmetric quasiconvex

envelope SQf : Mn×n
sym → R is defined to be

SQf(A) := sup{h(A) | h ≤ f, h is symmetric quasiconvex}.
Clearly, f is symmetric quasiconvex if and only if f = SQf . Finally, if f : Ω×Mn×n

sym → [0,+∞)
we write SQf(x, ·) := SQ(f(x, ·)) for all x ∈ Ω.

Corollary 6.8. Let f0 : Ω × Mn×n
sym → [0,+∞) be a Borel function satisfying (H1’)-(H2’). Let

F0 : L1(Ω;Rn)×O(Ω) → [0,+∞] be the functional defined in (6.3) corresponding to f0.
Then, for all (u,A) ∈ BD(Ω)×O(Ω)

F0(u,A) =

ˆ

A

SQf0
(
x, e(u)(x)

)
dx+

ˆ

A

(SQf0)
∞
(
x,

dEsu

d|Esu|(x)
)
d|Esu|. (6.9)

In particular, if f0 : Ω ×Mn×n
sym → [0,+∞) is a Borel symmetric quasiconvex satisfying (H1’)-

(H2’), the functional F̃0 : L1(Ω;Rn)×O(Ω) → [0,+∞] defined by

F̃0(u,A) :=

ˆ

A

f0
(
x, e(u)(x)

)
dx+

ˆ

A

f∞
0

(
x,

dEsu

d|Esu| (x)
)
d|Esu| (6.10)

if u ∈ BD(Ω) and +∞ otherwise, is L1(Ω;Rn) lower semicontinuous.
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Proof. We start off noting that by (6.4), by inequality SQf0 ≤ f0, and by the symmetric quasi-
convexity of SQf0 we get

f(x0,A) = inf
w∈LD(Q1)

w|∂Q1
=Ay|∂Q1

ˆ

Q

f0
(
x0, e(w)(y)

)
dy

≥ inf
w∈LD(Q1)

w|∂Q1
=Ay|∂Q1

ˆ

Q1

SQf0
(
x0, e(w)(y)

)
dy ≥ SQf0(x0,A).

As noticed in Corollary 6.7, the bulk energy density f is symmetric quasiconvex and f ≤ f0. Thus,
by the very definition of SQf0, we get f ≤ SQf0. Therefore, the representation for F0 in (6.9) is
attained thanks to Corollary 6.7.

Finally, the L1(Ω;Rn) lower semicontinuity of F̃0 in (6.10) follows at once. �

6.2. Relaxation of bulk and interfacial energies. In this section we consider linear functionals
defined on the subspace SBD(Ω) and provide a relaxation result for them. To our knowledge this
is the first result of this kind.

We introduce the notation required for our purposes following [7, Section 4.2]. Let f1 : Ω ×
Rn ×Mn×n

sym → [0,∞) and g1 : Ω× (Rn)2 × Sn−1 → [0,∞) be continuous integrands such that

(H1”) there exists a constant C > 0 such that for every (x, v,A) ∈ Ω× Rn ×Mn×n
sym

1

C
|A| ≤ f1(x, v,A) ≤ C

(
1 + |A|

)
; (6.11)

(H2”) there exists a constant C > 0 such that for every ε > 0 there exists δ > 0 such that

|x− x0|+ |v − v0| ≤ δ =⇒ |f1(x, v,A) − f1(x0, v0,A)| ≤ Cε(1 + |A|),
for every (x, x0, v, v0,A) ∈ (Ω)2 × (Rn)2 ×M

n×n
sym ;

(H3”) there exist C > 0, such that for every (x, v−, v+, ν) ∈ Ω× (Rn)2 × Sn−1

1

C
|v+ − v−| ≤ g1(x, v

−, v+, ν) ≤ C|v+ − v−|.

(H4”) there exist C > 0, such that for every (x, x0, v
−, v+, v0, ν) ∈ (Ω)2 × (Rn)3 × S

n−1;

|x− x0|+ |v0| ≤ δ =⇒ |g1(x, v− + v0, v
+ + v0, ν)− g1(x0, v

−, v+, ν)| ≤ Cε|v+ − v−|.
Let then F1 : L1(Ω;Rn)×O(Ω) → [0,+∞] be the functional defined by

F1(u,A) := inf
{
lim inf

j
F1(uj ,Ω) : uj → u in L1(Ω;Rn)

}
, (6.12)

namely the L1(Ω;Rn) lower semicontinuos envelope of the functional

F1(u,A) :=





ˆ

A

f1
(
x, u(x), e(u)(x)

)
dx

+

ˆ

Ju∩A
g1
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x) if u ∈ SBD(Ω)

+∞ otherwise on L1(Ω;Rn).

(6.13)
Denote by m the cell formula defined in (2.4) related to F1. We provide next an integral repre-
sentation result for F1

Theorem 6.9. Let F1 : L1(Ω;Rn) × O(Ω) → [0,+∞] be the functional defined in (6.13). Then,
assuming (H1”)-(H4”), the functional F1 : L1(Ω;Rn) × O(Ω) → [0,+∞] defined in (6.12) is
represented by

F1(u,A) =

ˆ

A

f
(
x, u(x), e(u)(x)

)
dx

+

ˆ

Ju∩A
g
(
x, u−(x), u+(x), νu(x)

)
dHn−1(x) +

ˆ

A

f∞
(
x, u(x),

dEcu

d|Ecu| (x)
)
d|Ecu|(x),
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for all (u,A) ∈ BD(Ω)×O(Ω), where for every (x0, v,A) ∈ Ω× Rn ×Mn×n
sym

f(x0, v,A) = lim sup
ε→0

inf
w∈SBD(Q1)
w|∂Q1

=Ay|∂Q1

{ˆ

Q1

f1
(
x0, v + εw(y), e(w)(y)

)
dy

+

ˆ

Jw∩Q1

1
εg1(x0, v + εw−(y), v + εw+(y), νw(y)) dHn−1(y)

}
, (6.14)

and for every (x0, v
−, v+, ν) ∈ Ω× (Rn)2 × Sn−1

g(x0, v
−, v+, ν) = lim sup

ε→0
inf

w∈SBD(Qν
1 )

w|∂Qν
1
=u

v−,v+,ν
|∂Qν

1

{ˆ

Qν
1

ε f1
(
x0, v + εw(y), 1εe(w)(y)

)
dy

+

ˆ

Jw∩Qν
1

g1(x0, w
−(y), w+(y), νw(y)) dHn−1(y)

}
. (6.15)

Remark 6.10. In the BV setting under study in [7] conditions (H3”) and (H4”) are additionally
used to simplify the analogue of formulas (6.14) for f and (6.15) for g thanks to the truncation
argument quoted in Remark 6.2 (cf. equations [7, (4.2.3) and (4.2.4) in Theorem 4.2.2]).

Remark 6.11. Formulas (6.14) for f and (6.15) for g can be expressed in terms of the recession
functions of f1 at ∞, f∞

1 , and the recession function of g1 at 0, g01, provided some further technical
conditions in the spirit of (H3’) in Corollary 6.6 are imposed (cf. Eq. [7, (4.2.3)’ and (4.2.4)’ in
Remark 4.2.3]).

The proof of Theorem 6.9 is similar to the corresponding one of [7, Theorem 4.2.2]. First, we
note that arguing as in Lemma 6.5 one can prove the following result.

Lemma 6.12. Assume (H1”)-(H4”). Then, F1 satisfies (H1)-(H5), and for all (u,A) ∈ BD(Ω)×
O∞(Ω)

m(u,A) = m1(u,A) := inf{F1(w,A) : w = u on ∂A}.
The alternative characterization of m via m1, Theorem 2.3, the results in Section 4 and a change

of variable provide the proof of Theorem 6.9.
We give next an explicit application of Theorem 6.9.

Corollary 6.13. Let f1 : Ω × Mn×n
sym → [0,+∞) be a Borel, symmetric quasiconvex function

satisfying (H1”)-(H2”).
If F1 : L1(Ω;Rn)×O(Ω) → [0,+∞] is the functional in (6.13) corresponding to f1 and g1 = f∞

1 ,
then

F1(u,A) =

ˆ

A

f1
(
x, e(u)(x)

)
dx+

ˆ

A

f∞
1

(
x,

dEsu

d|Esu|(x)
)
d|Esu| (6.16)

if u ∈ BD(Ω) and +∞ otherwise.

Proof. We start off defining

F̃1(u,A) :=





ˆ

A

f1
(
x, e(u)(x)

)
dx if u ∈ LD(Ω)

+∞ otherwise on L1(Ω;Rn).

Denote by F̃1 the L1(Ω;Rn) lower semicontinuous envelope of F̃1. Note that F1 ≤ F1 ≤ F̃1,

therefore F1 ≤ F̃1. On the other hand, Corollary 6.8 shows that F̃1 coincides with the right hand

side of (6.16), therefore F̃1 ≤ F1, and then F̃1 ≤ F1. �

6.3. Homogenization. In this section we briefly show how to apply Theorem 2.3 to a homog-
enization problem in BD. More precisely, we identify the Γ(L1(Ω;Rn))-limit of the family of
functionals Fδ : L

1(Ω;Rn)×O(Ω) → [0,+∞], δ > 0, given by

Fδ(u,A) :=






ˆ

A

f0

(x
δ
, e(u)(x)

)
dx if u ∈ LD(Ω)

+∞ otherwise on L1(Ω;Rn),
(6.17)
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where f0 : Rn ×Mn×n
sym → [0,+∞) is any Borel function satisfying

(Hom) f0(·,A) is Q1-periodic for all A ∈ Mn×n
sym and

1

C
|A| ≤ f0(x,A) ≤ C(1 + |A|)

for all (x,A) ∈ Rn ×Mn×n
sym and for some universal constant C > 0.

Homogenization type problems are well-known, the literature on the topic is very rich, we refer to
the book [9] for an exhaustive introduction in particular in the case of variational energies defined
on Sobolev spaces (see also [16] for more classical results), to [10] for homogenization issues related
to energies defined on suitable subspaces of SBV , to [6], to [19] and to [7, Section 4.3] for energies
defined on BV , and to [37] for linear growth functionals in the setting of A-quasiconvexity under
additional conditions both on the differential operatorA, ruling out the curl-curl setting considered
in this section, and on the density f0, i.e. f0(x, ·) is Lipschitz continuous uniformly in x ∈ Rn.

For energy densities f0(x, ·) convex for all x ∈ Rn, the homogenization of the energies in (6.17)
on BD(Ω) has been investigated in [6, Theorem 3.2] by duality methods. In this subsection, we
extend such a result to the general case under the sole assumption (Hom) thanks to the global
method for relaxation. In this perspective, Corollary 6.8 and [2, item (ii) of Lemma 4.3] will be
instrumental.

In addition, let us remark that the argument used in Theorem 6.14 below works also in the
setting of homogenization of bulk energies defined on BV , thus recovering the results contained in
[6, Theorem 3.1], for f0(x, ·) convex for all x ∈ Rn, and in [19, Theorem 4.7], for f0(x, ·) continuous
for Ln-a.e. x ∈ Rn, via the global method for relaxation without any additional assumption on
f0 than (Hom). Finally, we remark that [7, Section 4.3] deals with the analogous problem in BV
for energies consisting more generally of the sum of a volume and of a surface term. We shall not
deal with that more general setting here, that will be the object of further studies. Despite this,
our result for the homogenization of bulk integrals seems to be new for what the regularity of f0
is concerned in the BV setting, as well.

We recall for the reader’s convenience the definition of Γ(d)-convergence for a family of func-
tionals Fδ : (X, d) → R ∪ {±∞} defined on a metric space (X, d): {Fδ}δ>0 Γ(d)-converges to
F : (X, d) → R ∪ {±∞} if for every infinitesimal sequence δi the ensuing two conditions are
satisfied

(i) For all x ∈ X and for all xi
d−→ x it holds lim inf

i→+∞
Fδi(xi) ≥ F(x);

(ii) For all x ∈ X there exists xi
d−→ x such that lim sup

i→+∞
Fδi(xi) ≤ F(x).

We refer to the books [16], [8], and to the survey [25] for several properties of Γ-convergence in
metric spaces.

In what follows, we use the short hand notation uv,ν for the piecewise constant function uv,0,ν
defined in (2.8).

We are now ready to prove the following homogenization result.

Theorem 6.14. Let f0 : Rn ×Mn×n
sym → [0,+∞) be a Borel function satisfying (Hom).

The family Fδ : L1(Ω;Rn) × O(Ω) → [0,+∞] defined in (6.17) Γ(L1(Ω;Rn))-converges to the
functional Fhom : L1(Ω;Rn)×O(Ω) → [0,+∞] given for (u,A) ∈ BD(Ω)×O(Ω) by

Fhom(u,A) :=

ˆ

A

fhom
(
e(u)(x)

)
dx+

ˆ

A

f∞
hom

(
dEsu

d|Esu|(x)
)

d|Esu| (6.18)

and +∞ otherwise on L1(Ω;Rn), where fhom : Mn×n
sym → [0,+∞) is defined by

fhom(A) := lim
T→+∞

1

T n
inf

w∈LD(QT )
w|∂QT

=Ay|∂QT

ˆ

QT

f0
(
x, e(w)(x)

)
dx , (6.19)

and where f∞
hom denotes the recession function of fhom.
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The first part of the proof of Theorem 6.14 is a simplification of that of [7, Theorem 4.3.1]
since we deal only with bulk energies (cf. Steps 1 and 2). For this reason, we give a concise proof
providing precise references whenever details are omitted. Instead, the second part is based upon
a homogenization type argument contained in [2, item (ii) of Lemma 4.3] (cf. Step 3).

Proof. We divide the proof in intermediate steps for the sake of convenience.
We start off recalling some abstract compactness properties that follows from the general theory

of Γ-convergence (cf. [16, Chapters 14, 16, 18]). In view of the growth condition on f0 in (Hom),
with given any sequence δi ↓ 0, we can extract a subsequence δij such that the Γ(L1(Ω;Rn))-limit
of Fδij (·, A) exists for all A ∈ O(Ω) (cf. [16, Propositions 16.9, 18.6], and [7, Lemma 4.3.4]).

For the sake of notational convenience we denote the subsequence δij simply by δj and by F the

corresponding Γ(L1(Ω;Rn))-limit.
In what follows, we shall show that F does not depend on the chosen subsequence, thus proving

that the Γ(L1(Ω;Rn))-limit of the family {Fδ}δ>0 exists by Urysohn’s property (cf. [16, Proposi-
tion 16.8]). To prove that, we shall first show that each functional F introduced above satisfies
the assumptions of the integral representation Theorem 2.3, and then we shall identify its energy
densities with fhom for the absolutely continuous part, and with f∞

hom for the singular part.

Step 1: Integral representation of F . We start off noting that [10, Lemma 3.7] (see also [7,
Lemma 4.3.3]) implies that F satisfies (H4) and (H5), namely one can prove that

F(u(· − x0) + L ·+v, x0 +A) = F(u,A) (6.20)

for all (u,A, v, x0,L) ∈ BD(Ω)×O(Ω)× (Rn)2 ×M
n×n
skew , with x0 +A ⊆ Ω. The very definition of

F gives immediately (H1), (Hom) implies (H2), and finally arguing as in [7, Lemma 4.3.4] together
with [5, Proposition 3.7] yields (H3).

In particular, we can apply Theorem 2.3 to deduce that F can be represented as

F(u,A) =

ˆ

A

f
(
e(u)(x)

)
dx

+

ˆ

Ju∩A
g
(
u+(x)− u−(x), νu(x)

)
dHn−1(x) +

ˆ

A

f∞
( dEcu

d|Ecu| (x)
)
d|Ecu|(x)

(6.21)

where f and g are identified by the cell formulas (2.5) and (2.6), respectively. Indeed, on account
of Eq. (6.20) with x0 = 0, Remark 5.2 implies that f

(
x, v,A

)
= f

(
x,A

)
and g(x, v−, v+, ν) =

g(x, v+ − v−, ν). Instead, if in Eq. (6.20) one chooses L = 0 and v = 0, we infer that f and g do
not depend on x.

Finally, since F is translation invariant we may assume that 0 ∈ Ω, this will simplify the
notation in the sequel.

Step 2: f = fhom. First we claim that the limit defining fhom(A) exists finite for all A ∈ Mn×n
sym .

Indeed, with fixed A ∈ Mn×n
sym , the proof of such a claim follows by applying the global ergodic

theorem in [36, Theorem 2.1] (or [36, Theorem 3.1]) to the Zn-invariant subadditive process
S : O∞(Rn) → [0,+∞] defined by S(A) := m(Ax;A) (for more details cf. Eq. (4.3.15) in
[7, Lemma 4.3.7] and [7, Lemma 4.3.6]). In particular, we note that the conclusions of [36,
Theorem 2.1] are true also for subadditive processes defined only on bounded open sets with
Lipschitz boundary, as outlined in the remark at the end of [36, Section 2.1].

For (u,A) ∈ BD(Ω) ×O∞(Ω) and j ∈ N, consider the intermediate cell problems

mδj (u,A) := inf
{
Fδj (u,A) : w ∈ LD(A), w = u on ∂A

}
.

With fixed x0 ∈ Ω using the version of the De Giorgi’s averaging/slicing lemma developed in [5,
Proposition 3.7] one can argue as in [7, Lemma 4.3.5] to establish the convergence

lim inf
j→+∞

mδj (u,Q(x0, r)) = m(u,Q(x0, r)) (6.22)

for L1-a.e. r ∈ (0, 2√
n
d(x0, ∂Ω)), where m is the cell formula for F defined in Eq. (2.4).
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Thus, by taking into account (2.5) and (6.22) we conclude that

f(A) = lim
ε→0

lim inf
j→+∞

mδj (Ax,Qε)

εn
. (6.23)

We prove f ≥ fhom. With fixed A ∈ Mn×n
sym , select δjε , with δjε/ε → 0 as ε ↓ 0, and vε ∈ LD(Qε),

with vε|∂Qε
= Ax|∂Qε

, such that

f(A) = lim
ε→0

1

εn
Fδjε (vε, Qε).

Set Tε := ε/δjε ↑ +∞ and wε(y) := 1
δjε
vε(δjεy) ∈ LD(QTε

), then wε|∂QTε
= Ax|∂QTε

and by a

change of variables the very definition of fhom(A) yields

f(A) = lim
ε→0

1

εn
Fδjε (vε, Qε) = lim

ε→0

1

T nε

ˆ

QTε

f0
(
z, e(wε)(z)

)
dz ≥ fhom(A).

For the converse inequality f ≤ fhom, for every T > 0 choose uT ∈ LD(QT ) such that uT |∂QT
=

Ax|∂QT
and

fhom(A) = lim
T→+∞

1

T n

ˆ

QT

f0
(
x, e(uT )(x)

)
dx .

For every ε > 0 and j ∈ N, let Tε,j = ε/δj > 0, and set wε,j(z) := δjuTε,j

(
z
δj

)
. For every ε > 0

note that Tε,j ↑ +∞ as j ↑ +∞, wε,j |∂Qε
= Az|∂Qε

, and thus by changing variables that

fhom(A) = lim
j→+∞

1

T nε,j

ˆ

QTε,j

f0
(
z, e(uTε,j

)(z)
)
dz

= lim
j→+∞

1

εn

ˆ

Qε

f0

( z
δj
, e(wε,j)(z)

)
dz ≥ lim inf

j→+∞

mδj (Az,Qε)

εn
.

Therefore, Eq. (6.23) provides the inequality f(A) ≤ fhom(A) by letting ε ↓ 0 in the inequality
above.

In particular, since the argument above is independent from the chosen subsequence δj , we
conclude that for all (u,A) ∈ LD(Ω)×O(Ω)

F(u,A) =

ˆ

A

fhom
(
e(u)(x)

)
dx (6.24)

for all functionals F arising as Γ(L1(Ω;Rn))-limits of subsequences of the family {Fδ}δ>0. There-
fore, by (6.24) the Γ-liminf F− of the family {Fδ}δ>0, defined as

F−(u,A) := inf{lim inf
j→+∞

Fδj (uj , A) : uj → u L1(Ω;Rn), δj → 0} ,

satisfies

F−(u,A) =

ˆ

A

fhom
(
e(u)(x)

)
dx (6.25)

for all (u,A) ∈ LD(Ω) ×O(Ω). In particular, by definition F−(·, A) is L1(Ω;Rn) lower semicon-
tinuous and

F(u,A) ≥ F−(u,A) (6.26)

for all (u,A) ∈ LD(Ω)×O(Ω), where F is any Γ(L1(Ω;Rn))-limit of a subsequence Fδj .

Step 3: g = f∞
hom. We start off proving the inequality g ≤ f∞

hom. For all (u,A) ∈ L1(Ω;Rn)×O(Ω)
set

F (u,A) :=





ˆ

A

fhom
(
e(u)(x)

)
dx if u ∈ LD(Ω)

+∞ otherwise on L1(Ω;Rn),

then by Steps 1 and 2 it follows that F(u,A) ≤ F (u,A). Denoting by F̃ the L1(Ω;Rn) lower

semicontinuous envelope of F , then F(u,A) ≤ F̃(u,A). Hence, we conclude g ≤ f∞
hom in view of

Corollary 6.8 that provides the explicit expression of F̃ .
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To prove g ≥ f∞
hom we argue as follows. For every ε > 0, we introduce the family of auxiliary

functionals F
(ε)
δj
, F (ε) : L1(1εΩ;R

n)×O(1εΩ) → [0,+∞] defined by

F
(ε)
δj

(u,A) :=






ˆ

A

f0

( ε
δj
x, e(u)(x)

)
dx if u ∈ LD(1εΩ)

+∞ otherwise on L1(1εΩ;R
n),

and

F (ε)(w,A) :=

ˆ

A

fhom
(
e(w)(x)

)
dx

+

ˆ

Jw∩A

1
εg

(
ε(w+(x)− w−(x)), νw(x)

)
dHn−1(x) +

ˆ

A

f∞
hom

( dEcw

d|Ecw| (x)
)
d|Ecw| .

For w ∈ BD(Ω) set wε(y) :=
1
εw(εy) ∈ BD(1εΩ), then a simple scaling argument yields that (cf.

Remark 3.7)

Fδj (w,A) = εnF
(ε)
δj

(wε,
1
εA) and F(w,A) = εnF (ε)(wε,

1
εA) ,

so that F (ε)(u,O) = Γ(L1(1εΩ;R
n))- lim

j→+∞
F

(ε)
δj

(u,O) for all (u,O) ∈ BD(1εΩ) ×O(1εΩ). In addi-

tion, for all (v, ν) ∈ Rn × Sn−1, by (2.6) we deduce that

g(v, ν) = lim
ε→0

m(uv,ν, Q
ν
ε )

εn−1
= lim

ε→0
ε inf{F (ε)(w,Qν1) : w = 1

εuv,ν on ∂Qν1} .

We next claim that for all ε > 0

inf{F (ε)(w,Qν1) : w = 1
εuv,ν on ∂Qν1} ≥ fhom

(v⊙ ν

ε

)
. (6.27)

Given this for granted, we infer that

g(v, ν) ≥ lim sup
ε→0

ε fhom

(v⊙ ν

ε

)
= f∞

hom(v ⊙ ν) .

Thus, to conclude we are left with the proof of (6.27). To this aim we use a construction
introduced in [2, item (ii) of Lemma 4.3], and adapt their argument to our setting. By scaling we
assume that Q2 ⊂ Ω, and for the sake of simplicity we assume ν = e1. In particular, F (ε)(w,Q1) =
F (ε)(w(·+ e), (0, 1)n) for every ε > 0 and w ∈ BD(Q1), where e :=

1
2 (e1 + . . .+en). Therefore, in

place of (6.27) we shall equivalently prove that for all ε > 0

inf{F (ε)(w, (0, 1)n) : w = 1
εuv,ν(· − e) on ∂(0, 1)n} ≥ fhom

(v⊙ ν

ε

)
. (6.28)

We introduce next some notation: ⌊t⌋ stands for the integer part of t ∈ R, and with a slight abuse
set ⌊x⌋ := (⌊x1⌋, . . . , ⌊xn⌋) for all x ∈ Rn. Then, for every w ∈ BD((0, 1)n) with w = 1

εuv,ν(· − e)
on ∂(0, 1)n, set

wj(x) :=
1
j

(
w
(
jx− ⌊jx⌋

)
+ 1

ε⌊jx1⌋v
)

for all j ∈ N and for all x ∈ (0, 1)n. The sequence {wj}j∈N is bounded in BD((0, 1)n) and
converges to the affine function w∞(x) := x1

ε v strongly in L1((0, 1)n;Rn) (we do not highlight
the dependence of wj and w∞ on ε for notational convenience). Indeed, it is easy to check that
1
j ⌊jx1⌋ converges to x1 strongly in L∞((0, 1)n;Rn), and that by Q1-periodicity of w

1

j

ˆ

(0,1)n

∣∣∣w
(
jx− ⌊jx⌋

)∣∣∣ dx =
1

jn+1

ˆ

(0,j)n
|w(y − ⌊y⌋)| dy =

1

j

ˆ

(0,1)n
|w(y)| dy .

Let Q(1), . . . , Q(jn) be the standard decomposition of (0, 1)n into jn congruent subcubes of side 1/j
with sides parallel to the coordinate hyperplanes. Since by construction |Ew1|(π) = 0 for every
coordinate hyperplane of the form π = {x ∈ R

n : xi = c ∈ Z
n}, for some i ∈ {1, . . . , n}, and

wj(x) =
1
jw1(jx), then |Ewj |((0, 1)n ∩ ∂Q(k)) = 0, for all k ∈ {1, . . . , jn}. Then, |Ewj |((0, 1)n) =

|Ew|((0, 1)n).
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By translation invariance of F (εj) and by (0, 1/j)n-periodicity of wj we have that

F (εj)(wj , (0, 1/j)
n) = F (εj)(wj , Q

(i)) (6.29)

for all i ∈ {1, . . . , jn}. Recalling that fhom(A) ≤ C(1 + |A|) for all A ∈ Mn×n
sym , then F (εj)(u,A) ≤

C(Ln(A) + |Eu|(A)) for all (u,A) ∈ BD((0, 1)n) × O((0, 1)n). Therefore, F (εj)(wj , (0, 1)
n ∩

∂Q(k)) = 0, and thus from (6.29) we get that

F (εj)(wj , (0, 1)
n) = jnF (εj)(wj , (0, 1/j)

n) . (6.30)

On the other hand, by changing variables (x = y/j) we get that

F (εj)(wj , (0, 1/j)
n) = j−nF (ε)(w, (0, 1)n) . (6.31)

In conclusion, Eqs. (6.30) and (6.31) yield that for all ε > 0 and for all j ∈ N

F (ε)(w, (0, 1)n) = F (εj)(wj , (0, 1)
n) . (6.32)

Since F
(ε)
δj

(·, (0, 1)n) = Fδj/ε(·, (0, 1)n) for all j ∈ N and ε > 0, then F (ε) is a Γ(L1(Ω;Rn))-limit of

a (suitable) subsequence of the family {Fδ}δ>0. Thus, by the L1(Ω;Rn) lower semicontinuity of
the Γ-liminf functional F−(·, (0, 1)n), we conclude that

F (ε)(w, (0, 1)n)
(6.32)
= lim inf

j→+∞
F (εj)(wj , (0, 1)

n)

(6.26)

≥ lim inf
j→+∞

F−(wj , (0, 1)
n) ≥ F−(w∞, (0, 1)

n)
(6.25)
= fhom

(v⊙ e1
ε

)
.

In turn, from this (6.28) follows at once. �

Remark 6.15. In the convex case it is well-known that the homogenized bulk energy density fhom
can be alternatively expressed for all A ∈ Mn×n

sym as

fhom(A) = inf
w∈LDloc(R

n)
w Q1-periodic

ˆ

Q1

f0(x,A+ e(w)(x)) dx

(see [9, Theorems 14.5, 14.7, and Remark 14.6] and [6, Theorem 3.1]).

7. Comments on the assumption of invariance under superposed rigid body motion

In this section we comment on the need of assumption (H5) in the BD setting. As noticed
in formula (5.2), assumption (H5) implies that the bulk energy density f of F , and then in turn
its recession function f∞, does not depend on the skew-symmetric part of the relevant matrix.
This piece of information has been substantially used in the proof of Theorem 2.3 to give a lower
bound of the Radon-Nikodým derivative of F at u ∈ BD(Ω) with respect to |Ecu| (cf. (5.15)),
the upper bound instead being always true. As far as we have understood, this seems not to
be a mere technical issue as we try to explain in what follows. First we notice that there exist
one-homogeneous, nonconvex, quasiconvex functions f satisfying for all A ∈ Mn×n

1

C
|A+A

t|
2 ≤ f(A) ≤ C |A+A

t|
2 (7.1)

and depending non trivially on the skew-symmetric part of the relevant matrix A. The example
is obtained by a slight modification of the one-homogeneous, nonconvex, quasiconvex function
exhibited by Müller [39, Theorem 1] that we briefly recall. Given a matrix A ∈ M2×2 consider

h(A) := |A11 − A22|+ |A12 + A21|+min{|A11 + A22|, |A12 − A21|}

and set Qh to be the quasiconvexification of h, i.e.

Qh(A) := sup{h′(A) | h′ ≤ h, h′ is quasiconvex}.
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Clearly, Qh is quasiconvex by definition and it is easy to see that it is one-homogeneous and

satisfying 0 ≤ Qh(A) ≤ C |A+A
t|

2 for all A ∈ M2×2. To prove the nonconvexity of Qh, Müller
shows that for the rank-2 matrix

A0 :=

(
1 −1
1 1

)

Qh(A0) > 0 is satisfied. On the other hand, it is easy to show that the convex envelope of h is
null on A0. In addition, to prove that Qh depends on the skew-symmetric part of the matrix A it
suffices to notice that

A0 + At0

2
= Id,

A0 − At0

2
=

(
0 −1
1 0

)

and that h(Id) = 0, in turn implying Qh(Id) = 0. Finally, in order to satisfy the growth condition
in (7.1) we define the function f to be equal to

Qh(A) + ε |A+A
t|

2

for ε > 0 sufficiently small. Indeed, the set

I :=
{
ε ≥ 0 : M

n×n ∋ A 7→ Qh(A) + ε |A+A
t|

2 is convex
}

is closed (and potentially empty), since convexity is stable under pointwise convergence, and
0 ∈ [0,+∞) \ I. In passing, we recall that an example of similar nature has been exhibited in the
superlinear case in [14, Remark 4.14] with a polyconvex, non-convex energy density.

Hence, the full integral representation result for the corresponding functional

F(u,A) := inf
{
lim inf

j

ˆ

A

f
(
∇uj(x)

)
dx : uj → u in L1(Ω;R2), uj ∈ LD(Ω)

}

can be proven by means neither of Theorem 2.3, since assumption (H5) is violated (while (H1)-(H4)
are easily checked to be valid), nor of any of the results available in the related literature (cf. [5],
[24], [42], [4], [35]). On the other hand, thanks to Lemma 5.1 (cf. [24, Theorem 3.3, Remark 3.5]),
the quasiconvexity and 1-homogeneity of f itself imply that for all (u,A) ∈ SBD(Ω) × O(Ω) it
holds

F(u,A) =

ˆ

A

f
(
∇u(x)

)
dx+

ˆ

Ju∩A
f
(
(u+(x) − u−(x)) ⊗ νu(x)

)
dH1 (7.2)

(see also Theorem 6.1, Remark 6.3 and Corollary 6.8). More generally, such representations of the
volume and surface parts of the energy hold for all u ∈ BD(Ω) in view of Lemma 5.1 itself.

In addition, for all (u,A) ∈ BV (Ω;R2)×O(Ω) we claim that

F(u,A) =

ˆ

A

f
(
∇u(x)

)
dx+

ˆ

Ju∩A
f
(
(u+(x)− u−(x))⊗ νu(x)

)
dH1 +

ˆ

A

f
( dDcu

d|Dcu| (x)
)
d|Dcu| .

(7.3)
To prove this, for δ ∈ (0, ε) consider the functional

Fδ(u,A) := inf
{
lim inf
j→+∞

ˆ

A

fδ(∇uj) dx : uj → u in L1(Ω;R2), uj ∈ W 1,1(Ω;R2)
}
,

where M2×2 ∋ A 7→ fδ(A) := f(A) + δ |A−A
t|

2 , and note that it satisfies the assumptions of the
integral representation result [7, Theorem 4.1.4]. To this aim, set

Fδ(u,A) :=

ˆ

A

fδ(∇u) dx, and F (u,A) :=

ˆ

A

f(∇u) dx,

if u ∈ W 1,1(Ω;R2) and +∞ otherwise on L1(Ω;R2). In particular, F turns out to be the L1

lower semicontinuous envelope of F (cf. Remark 6.4). Furthermore, by its very definition fδ is
quasiconvex, one-homogeneous and δ|A| ≤ fδ(A) ≤ C|A| for all A ∈ M2×2, for some C independent
from δ. Therefore, [7, Theorem 4.1.4] gives that for all (u,A) ∈ BV (Ω;R2)×O(Ω)

Fδ(u,A) =
ˆ

A

fδ
(
∇u(x)

)
dx+

ˆ

Ju∩A
fδ
(
(u+(x)−u−(x))⊗νu(x)

)
dH1+

ˆ

A

fδ

( dDcu

d|Dcu| (x)
)
d|Dcu|,

and moreover Fδ(u,A) = +∞ if u ∈ L1 \BV (Ω;R2).
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Being δ 7→ Fδ monotone increasing and converging to F as δ ↓ 0 in view of the pointwise
convergence of fδ to f , the Γ-limit in the strong L1(Ω;R2) topology of both (Fδ)δ and (Fδ)δ is
exactly F (cf. [16, Propositions 5.7 and 6.11], [8, Theorem 1.17 and Remark 1.40], see also [25,
Example 2.5 and Theorem 2.8]). Moreover, δ 7→ Fδ is monotone increasing with pointwise limit as

δ ↓ 0 the functional F̃ given by the right hand side of (7.3) for all (u,A) ∈ BV (Ω;R2)×O(Ω) and
+∞ otherwise on L1(Ω;R2). The equality in (7.3) then follows at once in view of the L1(A;R2)

lower semicontinuity of F̃(·, A) itself on BV (A;R2) for all A ∈ O(Ω) (cf. [2, Theorem 4.1],

[3, Theorem 5.47]). In addition, the functional F̃ turns out to provide the L1
loc(Ω;R

2) lower
semicontinuous envelope of F on (u,A) ∈ BV (Ω;R2)×O(Ω) in view of [2, Theorem 4.1].

Actually, as a byproduct, it follows that for all (u,A) ∈ BD(Ω) ×O(Ω)

F(u,A) = inf
{
lim inf
j→+∞

F̃(uj , A) : uj → u in L1(Ω;R2), uj ∈ BV (Ω;R2)
}
. (7.4)

Summarizing, for the functional F related to the integrand f introduced above, we can prove an
integral representation result on maps u ∈ BV (Ω;R2) (see (7.3)) with volume density expressed
in terms of the full approximate gradient of u and with surface density depending on the full
tensor product of the jump and the approximate normal to the jump set of u (cf. (7.2) and (7.3)).
For BD(Ω) maps which are not BV (Ω;R2) we are not able to provide the integral representation
of the Cantor term. The expression of F for BV maps in (7.3) suggests that despite the recent
progresses obtained by De Philippis and Rindler in [21], some other structure properties of the
Cantor part of the symmetrized distributional derivative are still missing for BD maps (see [20,
Conjecture 3.4] for further discussions on the topic). In Theorem 2.3 we use assumption (H5) to
rule out such kind of difficulties.

As already noticed, (H5) is not needed for the integral representation on the subspace of func-
tions SBD(Ω). The latter comment is coherent with the needed assumptions in case of functionals
defined on SBDp(Ω), p > 1 (see [14, Theorem 1.1 and Remark 4.14]).

Finally, we note that all the (few) known examples of functions u in BD(Ω) \ BV (Ω;Rn) are
such that ∇u /∈ L1(Ω;Mn×n), though, with a slight abuse of notation, Dsu ∈ M(Ω;Mn×n) (cf.
[41], [1, Example 7.7], [12, Theorem 1], [31], [32, Theorems 1.3 and 5.1], [15, Theorems 3.1 and
3.6]).

Remark 7.1. More generally, considering a generic functional F satisfying (H1)-(H4), similar
conclusions as those discussed above can be drawn for what concerns the integral representation
on the subspace BV (Ω;Rn) and the analogous of the relaxation formula (7.4).
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Centro de Matemática e Aplicações Fundamentais, Universidade de Lisboa

E-mail address: vangoeth@fc.ul.pt


	1. Introduction
	2. Main result
	2.1. Basic notation
	2.2. Framework and main result

	3. Preliminaries
	3.1. Some results of geometric measure theory
	3.2. Preliminaries on BD
	3.3. On the Cantor part of the symmetrized distributional derivative
	3.4. Change-of-base formulas
	3.5. On the cell problem defining m.

	4. Analysis of the blow-ups of the Cantor part
	4.1. A double blow-up procedure
	4.2. Finer analysis of the blow-up limits

	5. Proof of the main result
	5.1. Preliminary lemmas
	5.2. Proof of the integral representation result

	6. Some applications
	6.1. Relaxation and L1 lower semicontinuity of bulk energies
	6.2. Relaxation of bulk and interfacial energies
	6.3. Homogenization

	7. Comments on the assumption of invariance under superposed rigid body motion
	Acknowledgements

	References

