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Abstract

Nonnegative matrix factorizations are often encountered in data mining applications
where they are used to explain datasets by a small number of parts. For many of these
applications it is desirable that there exists a unique nonnegative matrix factorization
up to trivial modifications given by scalings and permutations. This means that model
parameters are uniquely identifiable from the data. Rigidity theory of bar and joint
frameworks is a field that studies uniqueness of point configurations given some of
the pairwise distances. The goal of this paper is to use ideas from rigidity theory to
study uniqueness of nonnegative matrix factorizations in the case when nonnegative
rank of a matrix is equal to its rank. We characterize infinitesimally rigid nonnegative
factorizations, prove that a nonnegative factorization is infinitesimally rigid if and only
if it is locally rigid and a certain matrix achieves its maximal possible Kruskal rank,
and show that locally rigid nonnegative factorizations can be extended to globally rigid
nonnegative factorizations. These results give so far the strongest necessary condition
for the uniqueness of a nonnegative factorization. We also explore connections between
rigidity of nonnegative factorizations and boundaries of the set of matrices of fixed
nonnegative rank. Finally we extend these results from nonnegative factorizations to
completely positive factorizations.

1 Introduction

Nonnegative matrix factorization of size r decomposes a matrix M ∈ Rm×n
≥0 as M = AB

where A ∈ Rm×r
≥0 and B ∈ Rr×n

≥0 . The smallest r ∈ N such that M has a size-r nonnegative
factorization is called the nonnegative rank of M . Approximations by matrices of low non-
negative rank are ubiquitous in data mining applications where they are used to explain a
dataset by a small number of parts; the number of parts being equal to nonnegative rank of
the approximation. For example, Lee and Seung [20] used nonnegative matrix factorizations
for studying databases of face images. In this application, rows of M correspond to different
pixels of an image and columns of M correspond to different images. A size-r nonnegative
factorization finds r basis images (corresponding to columns of A) such that every original
image is a nonnegative linear combination of these basis images (nonnegative coefficients are
given by columns of B). Another popular application is topic modeling [32], where the matrix
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M gives frequencies of words in documents, and a nonnegative matrix factorization decom-
poses this matrix with respect to topics. Nonnegative matrix factorizations and nonnegative
rank appear also in complexity theory [33], computational biology [8], music analysis [27],
blind source separation [6], spectral data analysis [24]. For many of these applications it
is desirable that there exists an essentially unique nonnegative factorization that explains
the data, i.e. model parameters are identifiable from the data. We say essentially unique
because nonnegative matrix factorizations are never completely unique: Given a nonnegative
factorization AB one obtains a new factorization (AC)(C−1B) by multiplying A and B by
a scaling or permutation matrix and its inverse correspondingly.

The uniqueness of nonnegative factorizations was first addressed by Donoho and Stod-
den [10] for black and white images with P parts such that each part can appear in A
articulations. They showed that separability and complete factorial sampling guarantee
uniqueness of nonnegative matrix factorization. Separability requires that one of the factors
contains the r × r identity matrix as a submatrix and complete factorial sampling requires
that the database contains all AP images where each of the P parts appears in each of the A
articulations. Another sufficient condition appears in the work of Gillis [15] and it requires
M to have r nonzero columns each with r − 1 zero entries with different sparsity patterns.
Theis et al [28] prove uniqueness under a sparsity assumption on the nonnegative factors.
Ding et al show that nonnegative matrix factorizations are unique assuming that one of
the factors is orthogonal [9]. Many authors have established guarantees for identifiability
under volume minimization or maximization of the polytope associated to one of the fac-
tors [4, 31, 13, 21, 11]. The first necessary condition was given by Laurberg et al [19] and it
requires the rows of A and columns of B to be boundary closed. More precisely, for every
i 6= j ∈ [r] there must exist a row ak of A such that aki = 0 and akj 6= 0 (and similarly
for columns of B). A comprehensive review on uniqueness of nonnegative matrix factoriza-
tions is given by Fu et al [12]. Despite the recent progress on uniqueness of nonnegative
matrix factorizations, the current sufficient conditions are either relatively restrictive or re-
quire additional assumptions on nonnegative factors, and a little is known about necessary
conditions.

The goal of this paper is to study the uniqueness of nonnegative matrix factorizations
by building on the rigidity theory of bar and joint frameworks, which studies uniqueness
of point configurations given some pairwise distances between the points. This approach
has been already successfully adapted to investigating the uniqueness of low-rank matrix
completion [26]. Similarly to rigidity theory, we define infinitesimally, locally and globally
rigid nonnegative matrix factorizations. We consider the case when nonnegative rank is
equal to rank. Before going into more details, we give a brief overview of the implications
between these notions. Global rigidity is the same as the uniqueness of a nonnegative matrix
factorization. Local rigidity is a necessary condition for global rigidity and infinitesimal
rigidity is a sufficient condition for local rigidity. We give a characterization of infinitesimal
rigidity that can be checked computationally (Proposition 3.3). We show that infinitesimal
rigidity implies local rigidity and that a locally rigid nonnegative matrix factorization that
is not infinitesimally rigid implies that the Kruskal rank of a specified matrix is not maximal
(Proposition 4.8). These results lead to Algorithm 1 for determining local rigidity of a
nonnegative matrix factorization (one possible output of the algorithm is that local rigidity of
the matrix cannot be determined) and to a necessary condition for uniqueness of nonnegative
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factorizations that strengthens the necessary condition in [19, Theorem 3] (Corollary 4.10).
A next step will be to use rigidity theory to study sufficient conditions for global rigidity. To
do this, we believe that one has to come up with an analogue of a stress matrix in rigidity
theory, similarly as we have developed an analogue of a rigidity matrix in this work.

In more detail, in the rigidity theory of frameworks and low-rank matrix completion,
infinitesimal motions are required to have derivatives of pairwise distances or inner products
equal to zero. A framework is called infinitesimally rigid if all its infinitesimal motions are
trivial ones. Checking infinitesimal rigidity is equivalent to checking rank of a rigidity or a
completion matrix. In the nonnegative matrix factorization case, infinitesimal motions are
additionally required to preserve nonnegativity of factors. Now checking infinitesimal rigidity
amounts to checking whether positive span of a matrix is isomorphic to a specified linear
subspace of Rr2 (Proposition 3.3). The difference with the frameworks and low-rank matrix
completion case is that instead of linear span one has to consider positive span of a rigidity
matrix. Hence a linear algebra problem becomes a polyhedral geometry problem. We also
give purely combinatorial necessary conditions for infinitesimal rigidity that follow from this
characterization (Theorem 3.4, Lemmas 3.9 and 3.10). Infinitesimal rigidity always implies
local rigidity, and although the converse is not always true as we will see in Example 4.11,
then if a nonnegative factorization is locally rigid and a certain matrix achieves its maximal
possible Kruskal rank, then it is infinitesimally rigid (Proposition 4.8). We also show that
every locally rigid nonnegative factorization can be extended to globally rigid nonnegative
factorization by adding at most r strictly positive rows to A and at most r strictly positive
columns to B (Corollary 4.7).

Matrices of size m×n and nonnegative rank at most r form a semialgebraic set, which we
denote byMm×n

≤r . We explore connections between rigidity of nonnegative matrix factoriza-
tions and boundaries of the setMm×n

≤r . The first motivation for this is that a matrix with a
unique nonnegative matrix factorization always lies on the boundary ofMm×n

≤r . The second
motivation is that understanding boundaries of a semialgebraic set is often easier than de-
riving a semialgebraic description of the set, and sometimes boundaries provide the first step
towards obtaining a semialgebraic description. This was the case for matrices of nonnegative
rank at most three [18]. This semialgebraic description gives an algorithm, polynomial in m
and n, to decide if a rank-three matrix has nonnegative rank three by checking one condition
for each possible boundary component. A semialgebraic description of the setMm×n

≤r would
in general allow one to check directly whether a matrix has nonnegative rank at most r
without constructing a nonnegative factorization of the matrix. Neither boundaries nor a
semialgebraic description ofMm×n

≤r is known for r ≥ 4. Vavasis showed that computing non-
negative rank is NP-hard [30] and the best known algorithm for deciding whether an m× n
matrix has nonnegative rank at most r runs in time (mn)O(r2) by the work of Moitra [22].
A necessary and sufficient condition for a matrix to lie on the boundary of Mm×n

≤3 is that it
contains a zero or all its size three nonnegative factorizations are infinitesimally rigid [23].
This is not true for r > 3. Example 4.11 provides a nonnegative matrix factorization that
is locally and globally rigid, and hence on the boundary, but not infinitesimally rigid. Fur-
thermore, in Section 5.2 we will see matrices on the boundary of Mm×n

≤r with nonnegative
factorizations that are not even locally rigid.

We finish the paper with extending our results to completely positive factorizations. Let
M be a nonnegative real symmetric matrix. The completely positive rank of M is the
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smallest r such that M = AAT for some nonnegative n × r matrix A [1]. We consider
real symmetric matrices whose completely positive rank is equal to their rank. We define
infinitesimally, locally and globally rigid completely positive factorizations, and show that
results analogous to the nonnegative factorizations case hold.

The outline of our paper is the following. In Section 2, we give preliminaries on rigidity
theory (Section 2.1), geometric characterizations of nonnegative rank via nested polytopes
(Section 2.2) and nonnegative rank boundaries (Section 2.3). In Section 3, we study infinites-
imally rigid factorizations. In Section 4, we study locally rigid nonnegative factorizations.
In Section 5, we study connections between rigidity and boundaries of Mm×n

≤r . In Section
6, we adapt these results on nonnegative rank of general matrices, to the case of completely
positive rank on symmetric matrices. In Appendix A, we show that in the case of 5× 5 ma-
trices of nonnegative rank four, for every zero pattern that satisfies the necessary condition
in Theorem 3.4, there exists an infinitesimally rigid nonnegative factorization (A,B) that
realizes the zero pattern. Code for computations in this paper is available at

https://github.com/kaiekubjas/nonnegative-rank-four-boundaries

2 Preliminaries

2.1 Rigidity theory

The goal of rigidity theory is to determine whether n points in Rd can be determined uniquely
up to rigid transformations (translations, rotations, reflections) given a partial set of pair-
wise distances between them. We will introduce rigidity theory following [26, Section 2]
and discuss the connection between the rigidity theory and uniqueness of low-rank matrix
completions established by Singer and Cucuringu [26, Sections 3 and 4]. This subsection can
be skipped at the first reading and used as a reference.

A bar and joint framework G(p) in Rd consists of a graph G = (V,E), a set of distances
{dij ∈ R≥0 : (i, j) ∈ E} and a set of points p1, . . . , p|V | ∈ Rd such that ‖pi − pj‖ = dij for all
(i, j) ∈ E. One can think of the distance constraints as bars that are joining corresponding
points. Consider a motion of the bar and joint framework parametrized by t, i.e. pi(t) is the
position of the i-th point at time t. To preserve the distances given by E, the motion has to
satisfy

d

dt
‖pi − pj‖2 = 0 for all (i, j) ∈ E.

Denoting the velocity of pi by ṗi for i = 1, . . . , |V |, these constraints can be rewritten as

(pi − pj)T (ṗi − ṗj) = 0 for all (i, j) ∈ E, (2.1)

or in the matrix form asRG(p)ṗ = 0 whereRG(p) is a |E|×n|V |matrix and ṗ = (ṗT1 , . . . , ṗ
T
n )T .

The matrix RG(p) is called the rigidity matrix of the bar and joint framework.
A motion satisfying Equation (2.1) is called an infinitesimal motion. Trivial motions are

motions given by rotation and translation of the entire framework, also referred to as rigid
transformations. A trivial motion satisfies ṗi = Dpi + b with D ∈ Rd×d skew-symmetric
and b ∈ Rd, and every trivial motion is infinitesimal. A bar and joint framework is called
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infinitesimally rigid if all its infinitesimal motions are trivial. There are (d−1)d
2

degrees of
freedom choosing a skew-symmetric matrix D (rotations) and d degrees of freedom choosing
a vector b (translations). Every trivial motion is in the kernel of the rigidity matrix RG(p),
so the framework is infinitesimally rigid if and only if the dimension of the kernel of the
rigidity matrix RG(p) is equal to d(d+1)

2
.

A framework G(p) is locally rigid if there exists a neighborhood N of the framework
G(p) such that G(p) is the only framework up to rigid transformations with the same dis-
tance constraints in the neighborhood N . A framework G(p) is regular if rankRG(p) =
max{rankRG(q) : ‖qi − qj‖ = dij for all (i, j) ∈ E}.

Theorem 2.1 ([2]). A framework is infinitesimally rigid if and only if it is regular and
locally rigid.

A framework is called generic if the coordinates of the points p1, . . . , p|V | are algebraically
independent over Q. Any generic framework is regular. Theorem 2.1 implies that local
rigidity is a generic property in the sense that if generic G(p) is locally rigid then most
frameworks G(q) are locally rigid. Hence one can talk about local rigidity of graphs. This
also allows one to check with probability one whether a framework is locally rigid by choosing
a random configuration p1, . . . , p|V | and checking whether the dimension of the kernel of the

rigidity matrix RG(p) is equal to d(d+1)
2

.
Finally, a framework G(p) is globally rigid if all other frameworks in Rd that have the

same distance constraints are related to G(p) by rigid transformations. Global rigidity is
also a generic property, and there are necessary and sufficient results using ranks of stress
matrices for checking generic global rigidity. However, since we focus on infinitesimal and
local rigidity of nonnegative factorizations in this paper, we do not present them here.

Singer and Cucuringu established a connection between the rigidity theory and low-rank
matrix completion [26]. Let M be a m × n matrix of rank r and let (A,B) give a rank-
r factorization of M . Let the rows of A be aT1 , . . . , a

T
m ∈ Rr and the columns of B be

b1, . . . , bn ∈ Rr. Then Mij = aTi bj.
The observed entries of M define a bipartite graph G = (V,E) on m + n vertices. The

vertices V correspond to a1, . . . , am, b1, . . . , bn and the edges E correspond to observed entries
of M . Instead of distance constraints, one fixes inner products Mij = aTi bj for (i, j) ∈ E. The
graph G, the inner products {Mij ∈ R : (i, j) ∈ E} and the points a1, . . . , am, b1, . . . , bn ∈ Rr

define a framework. Consider a deformation of a framework parametrized by t. To preserve
the inner products Mij = aTi bj for (i, j) ∈ E, the deformation has to satisfy

aTi ḃj + ȧTi bj = 0 for all (i, j) ∈ E (2.2)

where ȧ and ḃ are velocities of a and b. The same constraints can be written in a matrix
form using the r × (m+ n) completion matrix CG(a, b).

A deformation satisfying Equation (2.2) is called an infinitesimal deformation. A trivial
deformation is one given by ȧi = DTai and ḃj = −Dbj with D ∈ Rr×r, and every trivial
deformation is infinitesimal. The framework G(a, b) is called infinitesimally completable if
all its infinitesimal motions are trivial. Since there are r2 degrees of freedom choosing an
invertible matrix D and every trivial deformation is in the kernel of the completion matrix
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CG(a, b), then a non-trivial infinitesimal deformation exists if and only if the dimension of
the kernel of the completion matrix CG(a, b) is equal to r2.

A framework G(p) is locally completable if there exists a neighborhood N of the frame-
work G(p) such that G(p) is the only framework in the neighborhood N up to trivial defor-
mations with the same inner products. As in the rigidity theory of bar and joint frameworks,
local completability of a generic framework is equivalent to infinitesimal completability, and
hence local completability is a generic property. Therefore one can talk about local com-
pletability of a bipartite graph. For the low-rank matrix completion problem this implies
that although one does not know the factor matrices A and B, one can check with probability
one whether a partial matrix is locally completable by checking whether the partial matrix
with the same underlying graph constructed from generic A and B is locally completable.

A framework is globally completable if it is the only framework up to trivial deformations
giving the same inner products. Singer and Cucuringu also conjecture a sufficient condition
for global completability using rank of stress matrices.

In Sections 3 and 4, we will establish the connection between rigidity theory and non-
negative matrix factorizations. Although a framework is defined similarly to the low-rank
matrix completion setting, the definition of infinitesimal rigidity is different because of the
nonnegativity requirement of the factorization. Essentially, a linear algebra problem becomes
a convex geometry problem: Instead of computing the span of a completion matrix one has
to compute the conic hull of a factorization matrix.

2.2 Geometric characterization of nonnegative rank

Nonnegative rank can be characterized geometrically via nested polyhedral cones. We de-
scribe two equivalent constructions from the literature for matrices of equal rank and non-
negative rank.

The first description is due to Cohen and Rothblum [7]. It defines P as the convex cone
spanned by the columns of M and Q as the intersection of Rm

≥0 and the column span of M .
Let (A,B) be a rank-r factorization of M , and let ∆ be the simplicial cone spanned by the
columns of A. Since A and M have the same column span, the cones P , ∆ and Q all span the
same dimension-r subspace of Rm. If A is nonnegative, then ∆ is contained in the positive
orthant, so ∆ ⊆ Q. If B is nonnegative then each column of M is a conic combination
of columns of A with coefficients given by columns of B, hence P ⊆ ∆. Conversely, one
can construct a size-r nonnegative factorization (A,B) from a dimension-r simplicial cone
∆ that is nested between P and Q by taking the generating rays of ∆ to be the columns of
A. Therefore the matrix M has nonnegative rank r if and only if there exists a simplicial
cone ∆ such that P ⊆ ∆ ⊆ Q. Gillis and Glineur defined the restricted nonnegative rank of
M as the smallest number of rays of a cone that can be nested between P and Q [16], which
is an upper bound on the nonnegative rank in the case that the rank and nonnegative rank
differ.

The work of Vavasis [30] presents a second description of the same nested cones up to
a linear transformation. Fix a particular rank factorization (A,B) of M (not necessarily
nonnegative). All rank factorizations of M have the form (AC,C−1B) where C ∈ Rr×r is an
invertible matrix. Let P be the cone spanned by the columns of B; let ∆ be the cone spanned
by the columns of C; let Q be the cone that is defined by {x ∈ Rr : Ax ≥ 0}. The linear
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map A sends these three polyhedral cones to their counterparts in the first construction.
Zeros in a nonnegative factorization correspond to incidence relations between the three

cones, P , ∆ and Q. In particular, a zero in A means that a ray of ∆ lies on a facet of Q. A
zero in B means that a ray of P lies on a facet of ∆.

One often considers nested polytopes instead of nested cones. One gets nested polytopes
from nested cones by intersecting the cones with an affine plane, which is usually defined by
setting the sum of the coordinates to 1.

Below we present a different geometric picture to help understand when a rank-r matrix
has nonnegative rank r and specifically when it lies on the boundary of the semialgebraic
set. We will however at times refer to the nested polytopes P ⊆ ∆ ⊆ Q.

2.3 Nonnegative rank boundaries

Fixing m, n and r, let Rm×n denote the set of real m×n matrices, and Rm×n
≤r the subset with

rank at most r. The set Rm×n
≤r is algebraic, meaning it is cut out by polynomial equations

on the entries, namely by the (r + 1)× (r + 1) minors. There is an algebraic map

µ : Rm×r × Rr×n → Rm×n

given by matrix multiplication, and Rm×n
≤r is its image. Let Mm×n

≤r be the subset of Rm×n
≤r

consisting of the matrices that also have nonnegative rank at most r. This set is the image of
µ restricted to the m× r and r×n matrices with nonnegative entries. Certain combinations
of these inequalities when mapped forward produce the polynomial inequalities that describe
Mm×n
≤r as a subset of Rm×n

≤r (see Proposition 5.3). A set such as Mm×n
≤r that is described by

a finite number of polynomial equations and inequalities is called a semialgebraic set. Its
relative boundary has a finite number of (algebraic) boundary components, each where one
of the defining inequalities attains equality. The boundary components are themselves irre-
ducible semialgebraic sets, each of dimension one lower than Mm×n

≤r . Some of the boundary
components of Mm×n

≤r are straight-forward: for a matrix M to have a nonnegative rank,
each of its entries must be greater than or equal to zero. These inequalities define the trivial
boundary components of Mm×n

≤r .
Some boundary components of Mm×n

≤r consist of matrices that have infinitesimally rigid
factorizations. Such factorizations are locally unique, so they are important for understand-
ing which matrices have unique nonnegative factorizations. Using the ideas of rigidity theory,
we show in Section 3 that infinitesimally rigid factorizations are characterized by certain pat-
terns of zero entries in the factors. We give several necessary conditions on zero patterns
that can result in infinitesimally rigid factorizations. These results generalize the previously
known full characterization of such zero patterns for r = 3 [18]. All boundary components
of Mm×n

≤3 come from infinitesimally rigid factorizations, and there is only one zero pattern
up to row and column permutation and transposition. For higher rank, characterizing these
zero patterns is more complicated. In addition, we show in Sections 4.2 and 5.2 that for
r ≥ 4 there are other kinds of boundary components with no analogue in the rank 3 case,
and some of these components do not lead to locally unique factorizations.

We will show in Section 5 that when a matrix M lies in the relative interior of Mm×n
≤r ,

the set of rank-r nonnegative factorizations has the full dimension, so it is not uniquely
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decomposable. On the other hand, if M is positive and lies on the relative boundary, then the
nonnegativity constraints cut down the set of nonnegative factorizations to lower dimension.
On some types of boundary components, the set of factorizations of M is cut down to a single
point, meaning the factorization is locally unique. Moreover if M lies on no other boundary
components, this factorization is globally unique. Understanding the boundary components
of Mm×n

≤r then also provides an understanding of which matrices have unique nonnegative
factorizations. The equations and inequalities describing the boundary components of each
type provide semialgebraic conditions that can be checked on a matrix of rank r to determine
if it has a unique nonnegative rank-r factorization.

3 Infinitesimally rigid factorizations

In this section, we will establish a connection between rigidity theory and nonnegative matrix
factorizations. The setup is similar to the low-rank matrix completion case, although there
are three main differences: The graph G is always a complete bipartite graph, there are
additional nonnegativity constraints, and the space of “trivial” deformations is much smaller.
We will assume that nonnegative rank of a matrix is equal to its rank.

Let G = (V,E) be the complete bipartite graph on m+n vertices. As before, the vertices
V correspond to a1, . . . , am, b1, . . . , bn and the edges E correspond to the entries of a matrix
M . We consider an infinitesimal motion of a framework parametrized by t. In addition to
preserving the inner products Mij = aTi bj for all i ∈ [m], j ∈ [n], also ai and bj need to stay
positive. Hence an infinitesimal motion has to satisfy

aTi ḃj + ȧTi bj = 0 for (i, j) ∈ [m]× [n], (3.1)

ai + tȧi ≥ 0 for i ∈ [m] and t ∈ [0, ε), bj + tḃj ≥ 0 for j ∈ [n] and t ∈ [0, ε) (3.2)

for some ε > 0.
As before, let A and B be the rank-r matrices with rows aT1 , . . . , a

T
m and columns b1, . . . , bn

respectively. Similarly, define Ȧ and Ḃ to be the matrices with rows ȧT1 , . . . , ȧ
T
m and columns

ḃ1, . . . , ḃn respectively. Then M = AB and Equation (3.1) can be expressed as AḂ+ȦB = 0.
For the equation to hold, the column span of Ȧ must be contained in that of A and similarly
for the row spans of Ḃ and B. Therefore Ȧ = AD1 and Ḃ = −D2B for r × r matrices D1

and D2. Moreover −AD2B+AD1B = 0 and the fact that A and B are full rank implies that
D1 = D2. Therefore every solution to Equation (3.1) has the form ȧi = DTai and ḃj = −Dbj
with D ∈ Rr×r. Conversely it can be checked that any a1, . . . , am, b1, . . . , bn with derivatives
of this form satisfy Equation (3.1). The set of matrices D ∈ Rr×r that define infinitesimal
motions is

W(A,B) := {D ∈ Rr×r | ∃ ε > 0 such that A+ tAD ≥ 0, B − tDB ≥ 0 for t ∈ [0, ε)}.

If matrix D is diagonal then ȧi = DTai and ḃj = −Dbj always define an infinitesimal
motion, and such a motion is called trivial.

Definition 3.1. A framework is infinitesimally rigid if all its infinitesimal motions are trivial.
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An infinitesimal motion does not necessarily correspond to any actual smooth path
through (A,B) in the space of nonnegative factorizations of M , but only to a tangent direc-
tion that does not violate nonnegativity. Thus infinitesimal rigidity is not a necessary (and
also not a sufficient) condition for the uniqueness of a nonnegative matrix factorization. How-
ever, every infinitesimally rigid nonnegative factorization is locally rigid (Proposition 4.2)
and local rigidity is a necessary condition for the uniqueness of a nonnegative matrix factor-
ization. In fact, when Kruskal rank of a certain matrix is maximal possible, then a locally
rigid nonnegative factorization is infinitesimally rigid (Proposition 4.8). These results allow
us to state in Section 4 so far the strongest necessary condition for the uniqueness of a
nonnegative factorization.

Example 3.2. A rank-3 matrix M with positive entries is on the boundary ofMm×n
3 if and

only if all nonnegative factorizations of M are infinitesimally rigid. This follows from the
analysis of Mond, Smith and van Straten in [23, Lemma 4.3]. One can show that a size-3
infinitesimally rigid nonnegative factorization has up to permuting rows of A, permuting
columns of B, simultaneously permuting columns of A and rows of B, and switching A and
BT the following form 

0 · ·
· 0 ·
· · 0
· · 0
· · · · ·
...

. . .
...

· · · · ·



0 · · · · · · ·
· 0 · ...

. . .
...

· · 0 · · · · ·

 . (3.3)

We will now study the set W(A,B) of matrices D ∈ Rr×r that define infinitesimal motions.
The inequality ai+ tDTai ≥ 0 is trivially satisfied for t ∈ [0, ε) and some ε > 0 for all positive
coordinates of ai. Hence a row aTi of A defines an inequality on the jth column of D if and
only if the jth coordinate of ai is zero. The corresponding inequality is dTj ai ≥ 0 where
dj denotes the jth column of D. For each i = 1, . . . ,m, let Si ⊆ {1, . . . , r} be the set of
entries of ai that are zero. Then D ∈ W(A,B) satisfies dTj ai ≥ 0 for all j ∈ Si. Equivalently
〈aieTj , D〉 ≥ 0, where 〈·, ·〉 denotes entry-wise inner product on r × r matrices.

On the other hand, a column bi of B defines an inequality on the jth row of −D if and
only if the jth coordinate of bi is zero. This inequality is −d′jbi ≥ 0 where d′j denotes the
jth row of D. For each i = 1, . . . , n, let Ti ⊆ {1, . . . , r} be the set of entries of bi that are
zero. Then D ∈ W(A,B) satisfies −d′jbi ≥ 0 or equivalently 〈−ejbTi , D〉 ≥ 0 for j ∈ Ti.

Hence W(A,B) is a polyhedral cone and we have described it in terms of its facet inequal-
ities, but it will often be easier to work with its dual cone. For each i = 1, . . . ,m, define
Ai = {aieTj | j ∈ Si}, and for each i = 1, . . . , n, define Bi = {−ejbTi | j ∈ Ti}. Then

W∨
(A,B) = cone(A1 ∪ · · · ∪ Am ∪ B1 ∪ · · · ∪ Bn).

Proposition 3.3. A nonnegative factorization (A,B) is infinitesimally rigid if and only if
W∨

(A,B) is isomorphic to Rr2−r (meaning W∨
(A,B) is an (r2− r)-dimensional real vector space).

Proof. If the cone W(A,B) consists only of r× r diagonal matrices then the dual cone W∨
(A,B)

consists of all r × r matrices that are zero along the diagonal. This is a linear space of
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dimension r2−r. Conversely, if W(A,B) contains other matrices, then its dimension is strictly
larger than r. Hence the dimension of the largest subspace contained in W∨

(A,B) is strictly

less than r2 − r.

Proposition 3.3 gives an algorithm for checking whether a nonnegative factorization is
infinitesimally rigid. For example, open source tool Normaliz [3] allows one to compute the
largest linear subspace contained in a cone given by its extremal rays. However, Propo-
sition 3.3 does not give insight how to construct infinitesimally rigid nonnegative matrix
factorizations. To solve this problem, we give a completely combinatorial necessary condi-
tion for a nonnegative matrix factorization to be infinitesimally rigid. In Appendix A, we
will use this result to construct infinitesimally rigid nonnegative matrix factorizations for
5× 5 matrices of nonnegative rank four, which is the first nontrivial case.

Theorem 3.4. If (A,B) is an infinitesimally rigid nonnegative rank-r factorization then

• A and B have at least r2 − r + 1 zeros in total and

• for every distinct pair i, j taken from 1, . . . , r, there must be a row of A with a zero in
position i and not in position j. Similarly for the columns of B.

Proof. A nonnegative factorization (A,B) being infinitesimally rigid is equivalent toW∨
(A,B)

∼=
Rr2−r. To express Rr2−r as the convex cone of a finite number of vectors requires at least
r2− r+1 vectors. The size of the generating set defining W∨

(A,B) is equal to the total number
of zeros in A and B.

The vectors coming from A are nonnegative and the ones from B are nonpositive. If
W∨

(A,B)
∼= Rr2−r, for each coordinate there must be at least one vector with a strictly positive

value there, and one with a strictly negative value. To get a positive value in coordinate dij
requires A to have a row with zero in the jth entry and a non-zero value in the ith entry.
Similarly for columns of B.

The second condition is a necessary condition for the uniqueness of nonnegative matrix
factorization, see [19, 15].

Example 3.5. Let r = 3. The zero pattern (3.3) is the unique zero pattern with seven zeros
that fulfills the conditions in Theorem 3.4, up to allowed permutations.

We conclude this section with some properties of infinitesimally rigid nonnegative factor-
izations.

Corollary 3.6. If (A,B) is an infinitesimally rigid nonnegative rank-r factorization with
exactly r2 − r + 1 zeros, then AB is strictly positive.

Proof. If (A,B) is infinitesimally rigid, then the dual cone W∨
(A,B) is equal to the space of

matrices with zero diagonal of dimension r2 − r. The zeros of A and B correspond to the
elements of a distinguished generating set of W∨

(A,B) as described above. A generating set of

size r2 − r + 1 is minimal, so the only linear relation among the generators must be among
all r2 − r + 1.

10



If AB has a zero in entry ij then row ai of A and column bj of B have zeros in com-
plementary positions so that ai · bj = 0. Since the support of bj is contained in the set of
columns for which ai is zero, the outer product matrix aTi b

T
j can be expressed as a nonneg-

ative combination of the dual vectors coming from ai. Similarly, the matrix −aTi bTj can be
expressed as a nonnegative combination of the dual vectors coming from bj. Summing these
gives a linear relation among a strict subset of the generators, which is a contradiction.

Corollary 3.7. If (A,B) is an infinitesimally rigid nonnegative factorization, then there is
at least one zero in every column of A and in every row of B.

Proof. It follows directly from Theorem 3.4.

Corollary 3.8. If M is strictly positive and (A,B) is an infinitesimally rigid nonnegative
rank-r factorization of M , then there are at most r− 2 zeros in every row of A and in every
column of B.

Proof. Since M is positive, no row of A or column of B can contain only zeros. If a row
of A contains r − 1 zeros, then there has to be a row of B that does not contain any zero,
because otherwise AB would have a zero entry. This contradicts Corollary 3.7.

Lemma 3.9. If (A,B) is an infinitesimally rigid nonnegative rank-r factorization with r2−
r + 1 zeros, then there are at most r − 1 zeros in every column of A and in every row of B.

Proof. As in the proof of Corollary 3.6, the only linear relation among the generators of
W∨

(A,B) must be among all r2 − r + 1 generators. If there were r zeros in the same column
of A, then there would be r generators of W∨

(A,B) contained in a r− 1 dimensional subspace,
implying a smaller linear relation which is impossible. Similarly for the case of r zeros in a
row of B.

This argument can be generalized to forbid other configurations of zeros that concentrate
too many generators of W∨

(A,B) into too small a support.

Lemma 3.10. Let (A,B) be an infinitesimally rigid nonnegative rank-r factorization with
r2− r+ 1 zeros. Let α, β ⊆ [r] and suppose A has a k× |α| submatrix of zeros with columns
α, and B has a |β| × ` submatrix of zeros with rows β. Then

k|α|+ `|β| ≤ (r − |α|)|α|+ (r − |β|)|β| − |α \ β||β \ α|.

Proof. As in the proof of Corollary 3.6, a generating set of size r2 − r+ 1 is minimal, so the
only linear relation among the generators must be among all r2 − r + 1. It can be checked
that the zeros of A described above correspond to k|α| generators of W∨

(A,B) supported on

entries ([r] \ α) × α. Similarly the zeros of B corresponds to `|β| generators supported on
entries β × ([r] \ β). The intersection of these two supports is (β \α)× (α \ β). The number
of generators cannot exceed the number of entries they are supported on, which gives the
inequality.

Lemma 3.9 is the special case when α is a singleton and β is empty or the reverse, and
this case seems to be the most applicable condition when r is small.
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4 Locally rigid factorizations

4.1 Definition and properties

Definition 4.1. A nonnegative factorization (A,B) is locally rigid if all nonnegative factor-
izations of AB in a neighborhood of (A,B) are obtained by scaling the columns of A and
rows of B.

If a matrix has a unique size-r nonnegative factorization, then this factorization has to
be locally rigid. We recall that the second condition in Theorem 3.4 is a necessary condition
for the uniqueness of a nonnegative matrix factorization by [19, Theorem 3]. In fact, it
is a necessary condition for local rigidity of a nonnegative matrix factorization using the
argument in [15, Remark 7].

It concludes from the definition of an infinitesimally rigid nonnegative factorization that
all nonnegative factorizations in some neighborhood are obtained from scalings.

Proposition 4.2. If nonnegative factorization (A,B) is infinitesimally rigid, then it is locally
rigid.

We will see in the next subsection that the converse is true if a certain matrix achieves
its maximal possible Kruskal rank.

Example 4.3. It follows from the discussion in Example 3.2 that if M lies on the boundary
of Mm×n

3 , then all its nonnegative factorizations are locally rigid. This can be also seen
using the geometric characterization of boundaries in [18, Corollary 4.4]. Namely, a matrix
with positive entries lies on the boundary of Mm×n

3 if and only if for every nonnegative
factorization of the matrix the corresponding geometric configuration satisfies that (i) every
vertex of the intermediate triangle lies on an edge of the outer polygon, (ii) every edge of the
intermediate triangle contains a vertex of the inner polygon, (iii) a vertex of the intermediate
triangle coincides with a vertex of the outer polygon or an edge of the intermediate triangle
contains an edge of the inner polygon. Such geometric configurations are isolated for fixed
inner and outer polygons, hence the corresponding nonnegative factorizations are locally
rigid.

In the rest of the subsection, we will explore modifications of locally rigid nonnegative
matrix factorizations.

Lemma 4.4. Let (A,B) be a locally rigid factorization. Let (A′, B′) be a factorization that
is obtained from (A,B) by erasing all rows of A and columns of B that do not contain any
zero entries. Then (A′, B′) is locally rigid.

We will postpone proof of Lemma 4.4 until Section 5.1 where we take a more geometric
view on rigidity.

Lemma 4.5. Let (A,B) be a nonnegative factorization. For ε > 0 small enough, there exists
A′ obtained from A by adding at most r strictly positive rows and B′ obtained from B by
adding at most r strictly positive columns such that any nonnegative factorization of A′B′ is
in the ε-neighborhood of (A′P, P−1B′) for some r × r scaled permutation matrix P .

12



Proof. Consider the geometric configuration of cones in Rr corresponding to the factorization
(A,B). Since (A,B) is a nonnegative factorization, the intermediate cone is spanned by the
unit vectors. We add r strictly positive rows to A that correspond to hyperplanes at most
distance δ from the facets of the intermediate cone. We add r strictly positive columns to B
that correspond to points that are at most distance δ from the vertices of the intermediate
cone. Neither of these operations changes incidence relations between the three cones. The
new outer cone is contained in (1 + δ) times larger copy of the intermediate cone and the
new inner cone contains a (1 − δ) times smaller copy of the intermediate cone. For ε small
enough, there exists δ such that the only other cones with r rays that one can be nested
between a larger and smaller copy of the intermediate cone give factorizations that are in
the ε-neighborhood of (A′P, P−1B′).

Definition 4.6. A nonnegative factorization (A,B) is globally rigid if all nonnegative fac-
torizations of AB are obtained by scaling and permuting the columns of A and rows of
B.

Corollary 4.7. Given a locally rigid nonnegative factorization (A,B), then by adding at
most r strictly positive rows to A and at most r strictly positive columns to B, one can get
a globally rigid nonnegative matrix factorization.

4.2 When is infinitesimal rigidity equivalent to local rigidity?

Let Z(A,B) be a matrix with columns equal to the elements of A1 ∪ · · · ∪Am ∪B1 ∪ · · · ∪ Bn.
Let c be the number of columns of Z(A,B). Let the Kruskal rank be the maximal value k
such that any k columns are linearly independent. We denote the Kruskal rank of Z(A,B)

by K-rank(Z(A,B)). We will show that if K-rank(Z(A,B)) = min(c, r2 − r), then local rigidity
implies infinitesimal rigidity. This result can be seen as an adaptation of Theorem 2.1 by
Asimow and Roth to nonnegative matrix factorizations.

Proposition 4.8. If (A,B) is a nonnegative factorization that is locally rigid but not in-
finitesimally rigid, then K-rank(Z(A,B)) < min(c, r2 − r).

Proof. We assume that (A,B) is nonnegative factorization that is locally rigid but not in-
finitesimally rigid. We will show that r < dimW(A,B) < r2. The first inequality follows
immediately from the fact that (A,B) is not infinitesimally rigid. The second inequality
follows from the fact that (A,B) is locally rigid by applying either Proposition 5.6, or the
following argument that does not require the machinery of Section 5.

Since (A,B) is not infinitesimally rigid there exists D ∈ W(A,B) that is not diagonal. If

(ȧi)j = (DTai)j is strictly positive for all (i, j) such that (ai)j is zero and (ḃj)i = (−Dbj)i
is strictly positive for all (i, j) such that (bj)i is zero, then the corresponding motion gives
nonnegative factorizations for all t ∈ [0, ε) for some ε small enough. Hence a necessary
condition for a locally rigid nonnegative factorization that is not infinitesimally rigid is that
(ȧi)j = (DTai)j = 0 for some (i, j) such that (ai)j = 0 or (ḃj)i = (−Dbj)i = 0 for some (i, j)
such that (bj)i = 0. Moreover, there exists at least one pair (i, j) such that for all D ∈ W(A,B)

we have (ai)j = (DTai)j = 0 or (bj)i = (−Dbj)i = 0, because otherwise one could take a
conic combination of matrices D with (DTai)j = 0 and (−Dbj)i = 0 for different (i, j) to get
an element of W(A,B) with no (DTai)j = 0 or (−Dbj)i = 0.
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Without loss of generality we assume that (ai)j = (DTai)j = 0 for all D ∈ W(A,B). Hence
aie

T
j and −aieTj both belong to the dual cone W∨

(A,B). Since the dual cone has a non-trivial

lineality space, dimW(A,B) < r2.
From the fact that r < dimW(A,B) < r2, it follows that the dual cone, W∨

(A,B), has

dimension-k lineality space with 0 < k < r2 − r. A generating set of W∨
(A,B) has a subset

of size at least k + 1 that generates the lineality space, and any k + 1 of those generators
are linearly dependent. Therefore Z(A,B) has k + 1 columns that are linearly dependent, so
K-rank(Z(A,B)) ≤ k < r2 − r. Because k + 1 ≤ c, this also implies K-rank(Z(A,B)) < c.

Corollary 4.9. If a nonnegative factorization (A,B) is locally rigid, then W V
(A,B)

∼= Rr2−r

or K-rank(Z(A,B)) < min(c, r2 − r).

Since local rigidity is a necessary condition for global rigidity, the conditions in Corol-
lary 4.9 are necessary for the uniqueness of a nonnegative factorization. We will also state
Corollary 4.10 that is a simplified version of Corollary 4.9. Corollary 4.10 directly strength-
ens the necessary condition for uniqueness in [19, Theorem 3] that states that the support
of any column of A cannot be contained in the support of any other column of A and the
support of any row of B cannot be contained in the support of any other row of B.

Corollary 4.10. If (A,B) is a globally rigid nonnegative factorization, then the support of
any column of A cannot be contained in the support of any other column of A, the support
of any row of B cannot be contained in the support of any other row of B, and the matrices
A and B have at least r2 − r + 1 zeros in total or K-rank(Z(A,B)) < min(c, r2 − r).

Separability based sufficient conditions for uniqueness, e.g. in [10] and [19], satisfy the
additional condition that A and B have at least r2 − r + 1 zeros in total, because the
separability condition quaratees that one of the factors has at least r2− r zeros and there is
at least one additional zero coming from the zero pattern in the other factor. It is unknown
which of the two additional conditions is satisfied by sufficiently scattered based sufficient
conditions, discussed in [12]. Our methods do not compare directly with methods that
guarantee identifiability under further assumptions such as orthogonality of a factor, maximal
sparseness, volume minimization or maximization of the polytope associated to one of the
factors.

Corollary 4.9 together with the necessary condition for uniqueness from [19, Theorem 3]
gives Algorithm 1 for determining infinitesimal and local rigidity of a nonnegative matrix
factorization.

To test global rigidity of a size-r nonnegative matrix factorization (A,B), one can run a
program that searches numerically for size-r nonnegative matrix factorizations of the matrix
AB. If (A,B) is not globally rigid, then we do not expect the program to output precisely
(A,B) up to permutations and scalings. On the contrary, if the program outputs only (A,B)
up to permutations and scalings over multiple runs, then this provides evidence towards
(A,B) being globally rigid. This approach is further discussed in Appendix A.

In the rest of the section, we present a locally rigid factorization which is not infinites-
imally rigid. The example we present is a modification of an example by Shitov [25] that
he uses to show that nonnegative rank depends on the field. His example is a matrix of
nonnegative rank five, we present a geometric configuration corresponding to a matrix of
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Algorithm 1 Local rigidity of a size-r nonnegative matrix factorization (A,B)

1: procedure LocalRigidityNMF(A,B, r)
2: if the support of any column of A (resp. row of B) is contained in the support of

any other column of A (resp. row of B) then
3: return (A,B) is not locally rigid.
4: else
5: Construct the matrix Z(A,B). Let c be the number of columns of Z(A,B).
6: if the Kruskal-rank of Z(A,B) is equal to min(c, r2 − r) then
7: construct the polyhedral cone W V

(A,B) spanned by the columns of Z(A,B).

8: if W V
(A,B) is isomorphic to Rr2−r then

9: return (A,B) is locally and infinitesimally rigid.
10: else
11: return (A,B) is not locally rigid.
12: end if
13: else
14: return (A,B) is not infinitesimally rigid; local rigidity cannot be determined.
15: end if
16: end if
17: end procedure

nonnegative rank four. Checking local rigidity involves studying signs of second derivatives
in addition to the requirements on zeros and first derivatives.

Example 4.11. The outer polytope Q = conv(Ω1,Ω2, Ai, Bi, Ci : 1 ≤ i ≤ 3) is a modi-
fication of a simplex. Let ε = 1/20. Three vertices of this simplex are replaced by small
triangles conv(Ai, Bi, Ci), where

A1 = (0, 1/3 + ε, 1/3− ε, 1/3), B1 = (0, 1/3, 1/3 + ε, 1/3− ε), C1 = (0, 1/3− ε, 1/3, 1/3 + ε),

A2 = (1/3, 0, 1/3 + ε, 1/3− ε), B2 = (1/3− ε, 0, 1/3, 1/3 + ε), C2 = (1/3 + ε, 0, 1/3− ε, 1/3),

A3 = (1/3− ε, 1/3, 0, 1/3 + ε), B3 = (1/3 + ε, 1/3− ε, 0, 1/3), C3 = (1/3, 1/3 + ε, 0, 1/3− ε).

The last vertex of the simplex is replaced by a small edge conv(Ω1,Ω2). The vertices Ω1

and Ω2 are points on the line

1

(1 + (0.416827− 1)t)
(1/3, 1/3− 2t, 1/3 + t, 0.416827t)

that are sufficiently close to and on the opposite sides of (1/3, 1/3, 1/3, 0). For example, one
can take t to be equal to 1/40 and −1/40. Here 0.416827 is an approximate number and we
will explain later how to get the exact value.

The intermediate simplex ∆ is conv(Ω, V1, V2, V3), where

V1 = (0, 1/3, 1/3, 1/3), V2 = (1/3, 0, 1/3, 1/3), V3 = (1/3, 1/3, 0, 1/3), Ω = (1/3, 1/3, 1/3, 0).

The vertex Ω lies on the edge conv(Ω1,Ω2) of the outer polytope. All other vertices Vi lie
on the triangles conv(Ai, Bi, Ci).
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(a) P ⊆ Q (b) ∆ ⊆ Q (c) P ⊆ ∆

Figure 1: The pairwise inclusions of the three polytopes P ⊆ ∆ ⊆ Q in Example 4.11.

The inner polytope P is conv(W,Wi, Fij, H : 1 ≤ i ≤ 3, 1 ≤ j ≤ 2), where

W1 = (1− 3ε)V1 + εV2 + εV3 + εΩ, W2 = εV1 + (1− 3ε)V2 + εV3 + εΩ,

W3 = εV1 + εV2 + (1− 3ε)V3 + εΩ, W = εV1 + εV2 + εV3 + (1− 3ε)Ω,

F11 = 0.81V2 + 0.01V3 + 0.18Ω, F12 = 0.14V2 + 0.20V3 + 0.66Ω,

F21 = 0.43V1 + 0.22V3 + 0.35Ω, F22 = 0.20V1 + 0.49V3 + 0.31Ω,

F31 = 0.11V1 + 0.87V2 + 0.02Ω, F32 = 0.43V1 + 0.12V2 + 0.45Ω,

H = 1/3V1 + 1/3V2 + 1/3V3.

It has one vertex close to every vertex of the intermediate simplex: The vertex W is close
to Ω and the vertices Wi are close to Vi. Moreover, there are two vertices on each facet of
the intermediate simplex besides the facet that is opposite to Ω: The vertices Fij lie on the
facet of the simplex spanned by all vertices but Vi. The interior polytope also contains the
vertex H that lies on the facet of the intermediate simplex that is opposite to Ω.

The pairwise inclusions of the three polytopes are depicted in Figure 1. The matrix M
corresponding to this geometric configuration is obtained by evaluating the facets of the
outer polytope Q at the vertices of the inner polytope P . The facets of Q can be found for
example using polymake [14]. The matrix A in the nonnegative factorization is obtained by
evaluating the facets of Q at the vertices of B; the matrix B is obtained by evaluating the
facets of Q at the vertices of P . The nonnegative factorization has the following zero pattern
(after removing rows of A and columns of B that do not contain zeros):

0 · · ·
· 0 · ·
· · 0 ·
· · · 0
· · · 0




0 0 · · · · ·
· · 0 0 · · ·
· · · · 0 0 ·
· · · · · · 0


The number of zeros in this factorization is 12, so this factorization is not infinitesimally

rigid. We will show that it is locally rigid, i.e. that ∆ is the only simplex that can be nested
between P and Q. The proof is analogous to the proof in [25]. We present it here so that
the reader is able to directly check the correctness of our example.

Since P and Q are constructed such that they are close to ∆, any other simplex ∆′ that
can be nested between P and Q must be close to ∆. We will give a parametrization of
simplices and show that any simplex ∆′ close to ∆ can be parametrized in such a way.
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We restrict to the affine plane in R4 defined by x1 + x2 + x3 + x4 = 1. Let ω be
a point on this plane such that ‖Ω − ω‖ < ε. Let fij = (Fij − (0, 0, 0, vij))/(1 − vij)
where vij are parameters. Let Hi(ω, v) be the hyperplane through fi1, fi2, ω. Define the
point Vi(ω, v) as the intersection of the hyperplanes xi = 0 and Hj(ω, v) for j 6= i. Define
∆(ω, v) = conv(V1(ω, v), V2(ω, v), V3(ω, v), ω). Then ∆ = ∆(Ω, 0).

Since ∆′ is close to ∆, the facet of ∆′ opposite to the vertex V ′i intersects the line
of fi1’s and the line of fi2’s. Moreover, the points where the facet of ∆′ intersects these
lines correspond to nonnegative vij, because Fij ∈ P ⊂ ∆′ correspond to zero parameters
and going outwards from P on the line of fij’s increases the value of the parameters vij.
Furthermore, since maximal simplices inside Q have vertices on the boundary of Q, we can
assume that this is the case for ∆′ and hence ∆′ = ∆(ω, v) for some ω ∈ Q and v ≥ 0.

Let Ψ(ω, v) = det(V1(ω, v), V2(ω, v), V3(ω, v), H). We note that Ψ(Ω, 0) = 0 and
det(V1, V2, V3,Ω) > 0. To show that ∆ is the only simplex that can be nested between
P and Q it is enough to show that for all other ∆(ω, v) close to ∆ with ω ∈ Q and v ≥ 0,
we have H 6∈ ∆(ω, v). This is equivalent to Ψ(ω, v) < 0 and (Ω, 0) being a local maximum
of Ψ when ω ∈ Q and v ≥ 0. It can be checked that the partial derivatives ∂Ψ/∂vij and the
directional derivatives in the directions from (Ω, 0) to (Ai, 0), (Bi, 0), (Ci, 0) are negative at
(Ω, 0). Finally, on the line

1

(1 + (0.416827− 1)t)
(1/3, 1/3− 2t, 1/3 + t, 0.416827t),

we have Ψ′ = 0 and Ψ′′ < 0. In fact, the number 0.416827 is an approximation of the solution
for x in the equation ∂Ψ((1/3,1/3−2t,1/3+t,xt),v)

∂t
|(t=0,v=0) = 0.

This example is a modification of an infinitesimally rigid example with 13 zeros where
a vertex of the outer polytope is replaced with an edge conv(Ω1,Ω2). The corresponding
nonnegative factorization would have an extra row in A with zero in the last column. The
vertex of the intermediate simplex that for the infinitesimally rigid configuration coincides
with the vertex of the outer polytope lies now on the new edge. The only difference between
the two examples is that theoretically one can now move the vertex of the intermediate
simplex also along the edge conv(Ω1,Ω2), but in fact this is not possible, because the local
maximum of Ψ on conv(Ω1,Ω2) is Ω. By results of Mond, Smith and van Straten [23], it is
not possible to construct an analogous example for polygons.

5 Rigidity and boundaries

In this section we useMm×n
r to denote the set of m×n matrices with rank and nonnegative

rank both equal to exactly r. A matrix of nonnegative rank three is on the boundary of
Mm×n

3 if and only if it has a zero entry or all its nonnegative factorizations are infinitesimally
rigid. The goal of this section is to study the connection between boundaries of Mm×n

r and
rigidity theory for r ≥ 4. We already saw in Example 4.11 that there exist locally rigid
nonnegative matrix factorizations that are not infinitesimally rigid. Combining this with
results in Section 5.1, one can show that there exists a matrix on the boundary ofMm×n

4 for
m,n large enough that has a locally rigid nonnegative factorization but no infinitesimally
rigid nonnegative factorizations. Furthermore, in Section 5.2 we will show that there exist
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strictly positive matrices on the boundary ofMm×n
r for r ≥ 4 that have nonnegative factor-

izations that are not locally rigid. There exists a neighborhood of a such factorization whose
dimension is strictly between r and r2, the minimal and maximal dimensions of spaces of
factorizations.

5.1 Geometry of nonnegative matrix factorizations

As in Section 2.3 let µ be the usual matrix multiplication map, but we now restrict the
domain to pairs of matrices with full rank r:

µ : Rm×r
r × Rr×n

r → Rm×n
r .

The image of µ is Rm×n
r , the set of m × n matrices with rank r. The positive orthant

(Rm×r
r )≥0 × (Rr×n

r )≥0 is mapped onto Mm×n
r , the set of rank-r matrices with nonnegative

rank r. The trivial boundary ofMm×n
r consists of such matrices with at least one zero entry.

Fix a rank-r matrix M with strictly positive entries and a rank factorization (A,B) with
M = AB. The set of all rank factorizations of M is the fiber

µ−1(M) = {(AC,C−1B) | C ∈ Rr×r invertible}.

This set is a real r2-dimensional smooth irreducible variety. Let

F := {(C,C−1) | C ∈ Rr×r invertible} ⊆ Rr×r × Rr×r.

F is the graph of the inverse function on r × r matrices. The injective linear map

ν(A,B) : Rr×r × Rr×r → Rm×r × Rr×n

(C,D) 7→ (AC,DB)

sends F to µ−1(M). The image of ν(A,B) is the subspace of pairs (α, β) such that the columns
of α are in the columns span of A and the rows of β are in the row span of B.

Proposition 5.1. The map µ : Rm×r
r × Rr×n

r → Rm×n
r is a fiber bundle, with fiber F .

Proof. A matrix M ∈ Rm×n
r has a set of r linearly independent columns. Given a rank

factorization (A,B) of M , the same set of columns is linearly independent in B. Call the
r × r submatrix they form C. Then (AC,C−1B) is a rank factorization of M with C−1B
having the r × r submatrix in these columns equal to the identity, and this is the unique
factorization of M with that property. Let K be the subset of Rm×r

r × Rr×n
r of pairs (α, β)

in which β has this particular submatrix equal to the identity.
All matrices in Rm×n

r have a unique factorization in K unless there is linear dependence
among the chosen columns. Such exceptions form a lower dimensional subset, so in particular
M has a neighborhood X of matrices with factorizations in K. Then µ−1(X) has product
structure (µ−1(X) ∩K)× F by map

((α, β), (γ, γ−1)) 7→ (αγ, γ−1β)

which can be checked is continuous with continuous inverse. This proves the fiber bundle
structure of µ.

18



A factorization (AC,C−1B) of M is a nonnegative factorization of M if AC ∈ (Rm×r
r )≥0

and C−1B ∈ (Rr×n
r )≥0. Let c1, . . . , cr denote the columns of C and c′1, . . . , c

′
r the rows of C−1.

The inequality Aci ≥ 0 gives m linear inequalities on ci and defines a polyhedral cone in Rr

with at most m facets which we will denote PA. Similarly c′iB ≥ 0 defines a polyhedral cone
PBT in (Rr)∗ with at most n facets. The nonnegative factorizations of M then correspond
to the set F ∩ (P×rA × P

×r
BT ). Let U(A,B) := (P×rA × P

×r
BT ), which is itself a polyhedral cone.

Fixing M and a rank factorization (A,B), the injective linear map ν(A,B) that sends F to
µ−1(M) also maps cone U(A,B) to (Rm×r

r )≥0× (Rr×n
r )≥0 ∩ im(ν(A,B)). The boundary of U(A,B)

maps to pairs of matrices that have at least one zero entry. Because M is assumed to have
positive entries, im(ν(A,B)) is not contained in a coordinate hyperplane of Rm×r

r ) × Rr×n
r ).

Therefore the interior of U(A,B) maps to pairs of matrices with positive entries. Sometimes
it will be convenient to work in one or the other system of coordinates.

Remark 5.2. PA is the outer cone, Q, and PBT is dual to the inner cone, P , in the second
geometric characterization in Section 2.2.

If (A,B) is a nonnegative factorization of M then (AD,D−1B) is as well for any diagonal
matrix D with positive diagonal entries. We will generally be interested only in factorizations
modulo this scaling.

Now we have introduced the tools for proving Lemma 4.4.

Proof of Lemma 4.4. Let (A,B) be a locally rigid factorization. Let (A′, B′) be a factoriza-
tion that is obtained from (A,B) by erasing all rows of A and columns of B that do not
contain any zero entries.

For the sake of contradiction, assume that (A′, B′) is not locally rigid. Equivalently
every neighborhood of (I, I) in F ∩U(A′,B′) contains a pair (C,C−1) where C is not diagonal.
This implies that there is a row ai of A with positive entries and a column cj of C such
that aicj < 0 or there is a column bi of B with positive entries and a row c′j of C−1 such
that c′jbi < 0. Let cmax be the maximal entry of A and B; let cmin be the minimal non-
zero entry of A and B. Consider the ε-neighborhood of (I, I) where ε = cmin

cmin+(r−1)cmax
.

For any (C,C−1) in this neighborhood, every non-diagonal entry of C is greater than −ε
and every diagonal entry is greater than 1 − ε. Since A and B are nonnegative, we have
aicj ≥ −(r − 1)εcmax + (1− ε)cmin = 0 and similarly c′jbi ≥ 0 for all i, j.

Proposition 5.3. Positive M ∈ Mm×n
r lies on boundary of Mm×n

r if and only if every
nonnegative factorization (A,B) of M has at least one zero entry.

Proof. Suppose M has a strictly positive rank factorization (A,B). Then (A,B) has a
relatively open neighborhood W contained in µ−1(M) ∩ (Rm×r

r )>0 × (Rr×n
r )>0. Since µ is

a fiber bundle, it is an open mapping. Therefore µ(W ) is an open neighborhood of M in
Mm×n

r , so M is in the interior.
Suppose M does not have any strictly positive rank factorizations. Equivalently F does

not intersect the interior of U(A,B). We will construct a rank-r matrix M ′ arbitrarily close
to M with rank+(M ′) > r. For cone PA ⊆ Rr, let P∨A ⊆ (Rr)∗ denote the dual cone, which
consists of all linear functionals that are nonnegative on PA, and similarly let P∨BT be the dual
cone of PBT . Neither the cone PA nor PBT contains a line since after a change of coordinates
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each are a subspace intersected with a positive orthant. Therefore we can choose functionals
x and y in the interiors of P∨A and P∨BT respectively. The functional x has the property that
for any non-zero v ∈ PA, xv > 0, and similarly for y with respect to PBT .

Let X be the m× r matrix with x in every row, and Y the r× n matrix with y in every
column. Choose vectors v and w in the interiors of PA and PBT respectively. Let A′ = A−εX
and B′ = B − εY for ε > 0 chosen small enough so that v and w are still in the interiors
of PA′ and P(B′)T respectively. Then U(A′,B′) contains the point given by r copies of v and r
copies of w that is in U(A,B).

Let (C,D) be any non-zero point on the boundary of U(A,B), so either aicj = 0 for some
row ai of A and column cj of C or dibj = 0 for some row di of D and column bj of B.
Without loss of generality assume the first case. Letting a′i denote the ith row of A′ we have
a′icj = aicj − εxcj < 0 because cj ∈ PA. This implies (C,D) is outside of the cone U(A′,B′).
Since U(A′,B′) \{0} intersects the interior of U(A,B) but not its boundary, it must be contained
in the interior of U(A,B). Since F does not intersect the interior of U(A,B) or the origin, it
does not intersect U(A′,B′). Therefore M ′ = A′B′ has rank+(M ′) > r.

Note that M ′ = M − ε(XB + AY ) + ε2(XY ), which can be made arbitrarily close to
M in 2-norm by choosing ε small enough. For sufficiently small ε, A′ and B′ have full rank
since this is an open condition, so rank(M ′) = r.

Proposition 5.4. Positive M has a strictly positive rank factorization if and only if the
set of nonnegative rank factorizations of M contains a nonempty subset that is open in the
Euclidean subspace topology on µ−1(M) (or equivalently the Zariski closure of µ−1(M) ∩
(Rm×r

r )≥0 × (Rr×n
r )≥0 is µ−1(M)).

Proof. First we show that the set F is not contained in any facet hyperplane of U(A,B).
Every facet H of U(A,B) is defined by a linear equation involving either only the first set of
coordinates or only the second set. Consider the former case without loss of generality. Recall
that F is the graph of the inverse function on r × r matrices, so the first set of coordinates
are algebraically independent in F . Therefore H ∩ F has strictly lower dimension than F .

Suppose an open neighborhood of F is contained in U(A,B). If the neighborhood is con-
tained in the boundary of U(A,B) then F is contained in the hyperplane of one of the facets
since F is irreducible. As shown above, this cannot happen so there must be a point on F in
the interior of U(A,B). Conversely, if F ∩ int(U(A,B)) is non-empty, it is open in the subspace
topology on F since int(U(A,B)) is open.

Suppose rank+(M) = r, and that (A,B) is a nonnegative factorization. The point
(I, I) ∈ F has ν(A,B)(I, I) = (A,B). To understand the possible boundary components of
sets of matrices with rank and nonnegative rank equal to r, it is sufficient to understand the
ways that F and U(A,B) can intersect in a neighborhood of (I, I). It is not true that if F and
int(U(A,B)) are disjoint in a neighborhood of (I, I), then M is on the boundary of Mm×n

r ;
they may intersect elsewhere. However, the following corollary to Lemma 4.5 demonstrates
we can always construct M ′ = A′B′ that has M as a submatrix, is on the boundary, and for
which U(A′,B′) agrees with U(A,B) in a neighborhood of (I, I).

Corollary 5.5. Suppose positive matrix M has a nonnegative factorization (A,B) such that
all nonnegative factorizations of M in a neighborhood of (A,B) have at least one zero entry.
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Then there is a matrix A′ ∈ Rm′×r
r obtained by adding at most r strictly positive rows A and

a matrix B′ ∈ Rr×n′
r obtained by adding at most r strictly positive columns to B, such that

M ′ = A′B′ is on the non-trivial boundary of Mm′×n′
r .

We now consider the tangent space of F at (I, I), and how it intersects U(A,B). The
tangent space of F at (I, I) is

T(I,I)F = {(D,−D) | D ∈ Rr×r}.

The cone W(A,B) from Section 3 is the projection to the first Rr2 factor of tangent directions
(D,−D) such that the line (I + tD, I − tD) stays in U(A,B) for t ∈ [0, ε) for some ε > 0.
The tangent directions along the diagonal matrices D always lie in W(A,B). We recall that a
nonnegative factorization (A,B) is infinitesimally rigid if W(A,B) consists only of the diagonal
matrices, and it is locally rigid if a neighborhood of (I, I) in F ∩U(A,B) has dimension r, the
minimal possible dimension.

Proposition 5.6. If W(A,B) has full dimension r2, then M is in the interior of Mm×n
r .

Proof. As in the proof of Proposition 5.4, if W(A,B) has full dimension, then the tangent
space T(I,I)F intersects the interior of U(A,B) in a neighborhood of (I, I). This implies that
F itself intersects the interior of U(A,B). By Propositon 5.3 and Proposition 5.4, M is in the
interior of Mm×n

r .

In Example 4.11, a neighborhood of (I, I) in F∩U(A,B) has dimension r, but dimW(A,B) >
r. In general, if r < dimW(A,B) < r2 then this value may differ from the dimension of a
neighborhood of (I, I) in F ∩ U(A,B) in either direction.

Example 5.7. Consider the following rank 3 matrix with nonnegative rank 3 factorization

M =

2 1 1
1 2 1
1 1 2

 =

0 1 1
1 0 1
1 1 0

0 1 1
1 0 1
1 1 0

 .

Here W∨
(A,B) is the conic combination of the 6 vectors0 0 0

1 0 0
1 0 0

 ,

0 1 0
0 0 0
0 1 0

 ,

0 0 1
0 0 1
0 0 0

 ,

0 −1 −1
0 0 0
0 0 0

 ,

 0 0 0
−1 0 −1
0 0 0

 ,

 0 0 0
0 0 0
−1 −1 0


corresponding to the 6 zeros in A and B. This forms a 5 dimensional subspace of R9 and
W(A,B) is the orthogonal complement which is a space of dimension 4 (the 3 trivial diagonal
directions plus 1),

W(A,B) =


d1 −t t
t d2 −t
−t t d3

 ∣∣∣∣∣ t, d1, d2, d3 ∈ R

 .

However any neighborhood of (I, I) in F ∩ U(A,B) has full dimension 9. In fact M is not on
the algebraic boundary ofM3×3

3 . The geometry of the nested polytopes of this example are
shown in Figure 2.
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Figure 2: On the left are the nested polytopes P ⊆ ∆ ⊆ Q corresponding to factorization
(A,B) of M from Example 5.7. The arrows indicate a tangent direction in W(A,B). On the
right is a nearby factorization (AC,C−1B) with (C,C−1) in the interior of U(A,B).

Suppose that factorization (A,B) is not locally rigid, so F ∩U(A,B) has dimension larger
than r in a neighborhood of (I, I). If we suppose also that (A,B) is a boundary factorization,
then locally F ∩U(A,B) cannot exceed the cone W(A,B), which represents the local intersection
of the tangent space T(I,I) and U(A,B) (in contrast to Example 5.7). Within this situation,
there are two broad cases to consider: either F ∩U(A,B) is equal to W(A,B) in a neighborhood
of (I, I), or it is strictly contained in W(A,B). We will study the first case in Section 5.2.
An example of the second case is the locally rigid nonnegative factorization that is not
infinitesimally rigid in Example 4.11.

5.2 Partially infinitesimally rigid factorizations

Here we present a construction to produce matrices of rank r > 3 that are on the non-
trivial boundary of nonnegative rank r, and have a positive dimensional set of nonnegative
factorizations.

Definition 5.8. A nonnegative factorization (A,B) is partially infinitesimally rigid if W(A,B)

is equal to F ∩ U(A,B) in a neighborhood of (I, I), and dimW(A,B) < r2.

Partially infinitesimally rigid factorizations generalize infinitesimally rigid factorizations.
When dimW(A,B) exceeds r, the factorization (A,B) is not rigid. In the examples we have
encountered, the nonnegative factorizations in a neighborhood of (A,B) have some columns
of A fixed, while others have freedom.

For F to contain the cone W(A,B), it must contain its affine hull, so we first examine the
question: what affine linear spaces passing through (I, I) are contained in F? A line through
(I, I) has the form

(I + tD, I + tE).

To be contained in F , it must be that (I + tD)(I + tE) = I. This holds exactly when
E = −D and D2 = 0. Therefore an affine linear space in F through (I, I) has the form

{(I +D, I −D) | D ∈ V }
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where V is some linear space of r × r matrices D satisfying D2 = 0.
One way to produce such a space V is to choose a subspace S ⊆ Rr and define

VS = {D ∈ Rr×r | imD ⊆ S ⊆ kerD}.

However not all spaces V have this form, as the following example shows. We do not know
a full characterization of such spaces V .

Example 5.9. Let V be the space

V =




0 s t 0
0 0 0 t
0 0 0 −s
0 0 0 0


∣∣∣∣∣ s, t ∈ R

 .

Each matrix D ∈ V has imD = kerD = 〈e1, te2− se3〉, so there is no uniform space S ⊆ R4

such that imD ⊆ S ⊆ kerD for all D ∈ V .

We focus on the case of a space VS with S a coordinate subspace of Rr because we have
a simple procedure to create factorizations (A,B) for which W(A,B) has this form.

Proposition 5.10. Let (A,B) be an infinitesimally rigid nonnegative rank-r factorization.
There is a partially infinitesimally rigid nonnegative rank r+1 factorization (A′, B′) where A′

is a n×(r+1) matrix obtained from A by adding a positive column and B′ is a (r+1)×(m+1)
matrix obtained from B by adding a row of zeros and then a positive column.

Proof. Let S be 〈e1, . . . , er〉. Then VS consists of matrices that are supported only in the
first r entries of the last column. We will construct the positive column added to A such
that

W(A′,B′) = 〈e1e
T
1 , . . . , er+1e

T
r+1〉+ VS,

This is equivalent to showing that W∨
(A′,B′) is equal to the space of (r+ 1)× (r+ 1) matrices

supported on the off-diagonal entries of the first r columns.
The positive column added to B′ is only to bring B′ up to full rank, r + 1. It does not

contribute to W∨
(A′,B′) and will not arise again in the proof.

First we show that the linear span of W∨
(A′,B′) is equal this space of matrices. We char-

acterize the generating set of W∨
(A′,B′) coming from the zeros of A′ and B′. The natural

embedding of each generator of W∨
(A,B) of the form −eibTj is a generator of W∨

(A′,B′) since the
columns of B′ are the columns of B with a zero entry added to the end. Each generator
of the form aTj e

T
i corresponds to aTj e

T
i + aj,r+1er+1e

T
i in W∨

(A′,B′). In addition, W∨
(A′,B′) has

generator −er+1b
T
j for each j = 1, . . . ,m coming from the new zero row added to B′. It

follows that W∨
(A′,B′) is contained in the space claimed. The generators of the form −er+1b

T
j

span V T
S since B has full rank r. Under the natural projection R(r+1)×(r+1) → Rr×r, the

generating set of W∨
(A′,B′) maps to the generating set of W∨

(A,B) and zero, which span the
r × r matrices with zero diagonal. Therefore W∨

(A′,B′) spans the matrices supported on the
off-diagonal entries of the first r columns.
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To prove thatW∨
(A′,B′) is a linear space, we show that zero is a strictly positive combination

of the generators, and therefore zero is in the relative interior. Since W∨
(A,B) is a linear space,

zero is a positive combination of its generators,

0 =
n∑

j=1

∑
i∈Sj

ci,ja
T
j e

T
i −

m∑
j=1

∑
i∈Tj

di,jeib
T
j

where Sj is the set of zeros in aj and Tj the set of zeros in bj. Let v denote the same positive
combination of the corresponding generators of W∨

(A′,B′),

v =
n∑

j=1

∑
i∈Sj

ci,j(a
T
j e

T
i + aj,r+1er+1e

T
i )−

m∑
j=1

∑
i∈Tj

di,jeib
T
j

=
n∑

j=1

∑
i∈Sj

ci,jaj,r+1er+1e
T
i .

The matrix v is strictly positive on the first r entries of the last row and zero elsewhere,
and its positive entries depend on the new positive entries chosen for A′. The convex cone
cone(b1, . . . , bm) ⊆ Rr is full dimensional and contained in the positive orthant. Choose a
vector w in the interior of the cone, so it can be expressed as a strictly positive combination
of the columns of B. We choose the entries a1,r+1, . . . , an,r+1 so that

n∑
j=1

∑
i∈Sj

ci,jaj,r+1ei = w.

Then −er+1w
T is a positive combination of the generators of W∨

(A′,B′) of the form −er+1b
T
j

and
v − er+1w

T = 0.

Thus zero is a positive combination of all the generators.
Finally, to conclude that (A′, B′) is partially infinitesimally rigid, we show that W(A′,B′)

is contained in F . After modding out by the diagonal scaling directions, W(A′,B′) is equal to
VS, so its elements square to zero.

An non-trivial algebraic boundary component of Mm×n
r consisting of matrices with in-

finitesimally rigid factorizations (A,B) is defined by r2 − r + 1 zero conditions on (A,B).
The above construction gives a recipe to produce non-trivial algebraic boundary components
consisting of matrices with partially infinitesimally rigid decompositions (A,B) that is also
defined by zero conditions on (A,B). However, the number of zero conditions is gener-
ally fewer. On the other hand, each matrix has a higher dimensional space of nonnegative
factorizations.

The following example demonstrates a matrix and its partially infinitesimally rigid fac-
torization on the algebraic boundary ofMm×n

4 . While infinitesimally rigid factorizations for
rank 4 have at least 13 zeros, this example has only 10. The space of nonnegative factoriza-
tions in its neighborhood after modding out by diagonal scaling is 3 rather than zero.
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(a) P ′ ⊆ ∆′ ⊆ Q′ (b) P ⊆ ∆ ⊆ Q

Figure 3: In Example 5.11, slicing the nested polytopes for (A′, B′) along the hyperplane of
facet ∆ of produces the nested polytopes for (A,B).

Example 5.11. Let M ∈M4×3
3 be the matrix with nonnegative factorization

A =


0 1 2
1 0 2
2 1 0
1 2 0

 , B =

0 1 1
1 0 1
1 1 0

 .

It can be checked that W(A,B) consists only of the diagonal, so this factorization is infinites-
imally rigid. While M is not on the boundary because it has only 3 columns, it could be
expanded into a boundary instance by adding postive rows and columns per Lemma 4.5.

We apply the construction of Proposition 5.10 to get M ′ = A′B′ with

A′ =


0 1 2 1
1 0 2 1
2 1 0 1
1 2 0 2

 , B′ =


0 1 1 1
1 0 1 1
1 1 0 1
0 0 0 1

 .

It can be checked that modulo the diagonal, W(A′,B′) is the space of matrices supported on
entries (1, 4), (2, 4), (3, 4), so the factorization is partially infinitesimally rigid. M ′ is also not
on the boundary ofM4×4

4 but can be expanded into a boundary instance with the same zero
pattern. In the space of nonnegative factorizations of M ′ in a neighborhood of (A′, B′), the
last column of A′ has full dimensional freedom, while the other entries are fixed except for
the diagonal action. The variation of the last column of A′ varies the last column of B′ while
the other entries of B′ are also unchanged.

The geometric picture of nested polytopes, P ′ ⊆ ∆′ ⊆ Q′, for (A′, B′) is shown in Figure
3. The 3-simplex ∆′ shares a facet ∆ with P ′. Slicing along the affine span of ∆ recovers
the nested polygons P ⊆ ∆ ⊆ Q associated to (A,B). The facet ∆ of ∆′ is locked in place
by this lower dimensional configuration. On the other hand, the vertex of ∆′ opposite ∆ is
locally free to move in a 3-dimensional neighborhood of its position.

We note that in Figure 8 of [23] Mond, Smith and van Straten allude to the existence
of configurations like Example 5.7, but they do not ellaborate further on their properties or
construction.
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Question 5.12. Are there non-trivial boundary components of Mm×n
r for r ≥ 4 consisting

of matrices with non-isolated partially infinitesimally rigid factorizations that do not come
from the construction of Proposition 5.10 or its dual?

6 Symmetric matrices and completely positive rank

In this section we adapt our results to the case of symmetric matrices. Let M be an n× n
real nonnegative symmetric matrix. The completely positive rank of M , denoted cp-rankM ,
is the smallest r such that M = AAT for some nonnegative n× r matrix A [1]. For fixed r
and n we examine the set of symmetric matrices M with rank and completely positive rank
both equal to r, as a subset of the symmetric n× n matrices of rank r.

Let M have rank r, and A be a symmetric rank factor of M , meaning that M = AAT

and A is a n× r matrix. The set of all symmetric rank factors of M is

{AC | C ∈ O(r)}

where O(r) is the orthogonal group on Rr, which consists of the matrices C that satisfy
C−1 = CT . Fixing A, we can then identify O(r) with the set of rank factors of M by the
linear map C 7→ AC. Let

UA = {D ∈ Rr×r | AD ≥ 0}.

M has completely positive rank r if and only if O(r) ∩ UA is not empty.
Now we suppose that cp-rankM = r. To understand the rigidity of a nonnegative factor

A, we study C in a neighborhood of I ∈ O(r) that satisfy AC ≥ 0. The infinitesimal motions
of A consist of the tangent directions such that

aTi ȧj + ȧTi aj = 0 for (i, j) ∈ [n]× [n], (6.1)

ai + tȧi ≥ 0 for i ∈ [n] and t ∈ [0, ε) (6.2)

The tangent space of O(r) at I, denoted TI O(r), consists of all skew symmetric r×r matrices

D, which we identify with R(r
2) by the coordinates above the diagonal, dij with i < j. The

directions that satisfy Equations 6.1 are AD where D ∈ TI O(r). Let WA ⊆ TI O(r) be
the cone of tangent directions such that A(I + tD) is an infinitesimal motion. As in the
nonsymmetric case, WA is cutout by linear inequalities coming from the zero entries of A.
If row aTi has a zero in entry j, it imposes condition dTj ai ≥ 0 where dj is the jth column
of D. Unlike in the nonsymmetric case, a factor A of M has no trivial deformations, so we
have the following definitions.

Definition 6.1. A nonnegative factor A is locally rigid if it is an isolated solution to M =
AAT and A ≥ 0. A is infinitesimally rigid if it has no infinitesimal motions.

All of the theorems from Section 3 have analogous statements for symmetric matrices
and completely positive rank. The corresponding results follow.

Proposition 6.2. A is infinitesimally rigid if and only if W∨
A
∼= R(r

2).

Theorem 6.3. If A is an infinitesimally rigid nonnegative rank-r factor then
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• A has at least (r2 − r)/2 + 1 zeros and

• for every distinct pair i, j taken from 1, . . . , r, there must be a row of A with a zero in
position i and not in position j.

Proof. If W∨
A
∼= R(r

2), then it must have at least
(
r
2

)
+ 1 cone generators. The generators of

W∨
A are in bijection with the zeros in A.

For each coordinate dij with i < j there must be at least one generator of W∨
A with a

strictly positive value there, and one with a strictly negative value. Since A is nonnegative,
to get a positive value in coordinate dij requires A to have a row with zero in the jth entry
and a positive value in the ith entry. To get a negative value requires A to have a row with
zero in the ith entry and a positive value in the jth entry, since dji = −dij.

Corollary 6.4. If A is an infinitesimally rigid nonnegative rank-r factor with exactly (r2 −
r)/2 + 1 zeros, then M is strictly positive.

Proof. If A is infinitesimally rigid, then the dual cone W∨
A
∼= R(r2−r)/2. If A has only

(r2 − r)/2 + 1 zeros, the corresponding generating set of W∨
A is minimal, so the only linear

relation among the generators must be among all (r2 − r)/2.
If AAT has a zero in entry ij then rows ai and aj of A have zeros in complementary

positions so that aia
T
j = 0. Since the support of aj is contained in the set of columns for which

ai is zero, the outer product matrix aTi aj can be expressed as a nonnegative combination
of the dual vectors coming from ai. Similarly, the matrix −aTi aj can be expressed as a
nonnegative combination of the dual vectors coming from aj. Summing these gives a linear
relation among a strict subset of the generators, which is a contradiction.

Corollary 6.5. If A is an infinitesimally rigid nonnegative factor, then there is at least one
zero in every column of A.

Corollary 6.6. If M is strictly positive and A is an infinitesimally rigid nonnegative rank-r
factor of M , then there are at most r − 2 zeros in every row of A.

Proof. Since M is positive, no row of A can contain only zeros. If a row of A contains r− 1
zeros, then there is a column of A that does not contain any zero, because otherwise AAT

would have a zero entry. This contradicts Corollary 6.5.

Lemma 6.7. If A is an infinitesimally rigid nonnegative rank-r factor with (r2 − r)/2 + 1
zeros, then there are at most r − 1 zeros in every column of A.

Proof. As in the proof of Corollary 6.4, the only linear relation among the generators of
W∨

(A,B) must be among all (r2−r)/2+1 generators. If there were r zeros in the same column
of A, then there would be r generators of W∨

A contained in a r − 1 dimensional subspace,
implying a smaller linear relation which is impossible.

Lemma 6.8. Let A be an infinitesimally rigid nonnegative rank-r factorization with (r2 −
r)/2 + 1 zeros. Let α ⊆ [r] and suppose A has a k × |α| submatrix of zeros with columns α.
Then

k ≤ (r − |α|).
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Proof. As in the proof of Corollary 3.6, a generating set of size (r2 − r)/2 + 1 is minimal,
so the only linear relation among the generators must be among all of them. It can be
checked that the zeros of A described above correspond to k|α| generators of W∨

A supported
on entries ([r] \α)×α. The number of generators cannot exceed the number of entries they
are supported on, which gives the inequality

k|α| ≤ (r − |α|)|α|.

Let ZA be the matrix whose columns are the generators of W V
A and let c be the number

of columns of this matrix.

Proposition 6.9. Let M be a rank-r matrix. If AAT is a size-r completely positive factor-
ization of M that is locally rigid but not infinitesimally rigid, then K-rank(ZA) < min(c,

(
r
2

)
).

The proof of this proposition is analogous to the proof of Proposition 4.8. We remark
that most other conclusions of Sections 4 and 5 can also be extended to the symmetric case,
but we leave this to the enterprising reader.

Proposition 6.9 together with Proposition 6.2 gives Algorithm 2 for determining infinites-
imal and local rigidity of a nonnegative matrix factorization.

Algorithm 2 Local rigidity of a size-r completely positive factorization given by AAT

1: procedure LocalRigidityCPF(A, r)
2: Construct the matrix ZA. Let c be the number of columns of ZA.
3: if the Kruskal-rank of ZA is equal to min(c,

(
r
2

)
) then

4: construct the polyhedral cone W V
A spanned by the columns of ZA.

5: if W V
A is isomorphic to R(r

2) then
6: return AAT is infinitesimally and locally rigid.
7: else
8: return AAT is neither infinitesimally nor locally rigid.
9: end if

10: else
11: return AAT is not infinitesimally rigid; local rigidity cannot be determined.
12: end if
13: end procedure

A Infinitesimally rigid factorizations for 5× 5 matrices

of nonnegative rank four

In this appendix, we will present infinitesimally rigid factorizations for 5 × 5 matrices with
positive entries and of nonnegative rank four. In particular, we will show that for every zero
pattern with 13 zeros satisfying the conditions of Theorem 3.4, there exists an infinitesimally
rigid nonnegative factorization realizing this zero pattern.
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We consider zero patterns up to the action that permutes the rows of A, simultaneously
permutes the columns of A and the rows of B, permutes the rows of B and transposes AB.
As the first step, we use Macaulay2 [17] to construct an orbit representative under this action
for all zero patterns with 13 zeros satisfying the conditions of Theorem 3.4. There are 15
such orbit representatives.

Then for every zero pattern we construct random realizations by choosing non-zero entries
uniformly at random between 1 and 1000. Finally, we use Normaliz [3] to find nonnegative
factorizations that are infinitesimally rigid based on Definition 3.1. For each of the 15 zero
patterns, we are able to construct an infinitesimally rigid realization:


104184 229176 94392 336996 77040
94663 117528 485070 3404 7979
535318 168896 1169348 255210 182576
156494 310908 1119179 316225 460213
763917 337540 876372 1016103 574666

 =


0 0 396 108
0 0 4 555
0 470 0 812

455 0 0 926
194 761 550 0




0 260 681 695 985
847 0 978 543 366
217 522 0 851 191
169 208 874 0 13




210729 402419 94831 122655 193579
242132 124696 781275 579876 739205
618738 197370 434676 846486 1143228
50400 233301 221994 60009 34134
107007 33966 457653 315558 360201

 =


0 0 221 407
0 764 0 143
0 444 918 0

249 0 0 225
189 336 27 0




0 149 681 241 91
275 0 979 759 958
541 215 0 555 782
224 872 233 0 51

 .


573705 806520 167622 246500 531659
397096 39600 299176 63720 274120
131646 403260 30269 226915 264510
9114 85160 311182 827468 851798

147857 3200 351037 599025 697755

 =


0 0 425 921
0 472 0 80
0 1 391 163

862 0 98 0
640 199 0 0




0 5 361 894 927
743 0 603 135 525
93 825 0 580 538
580 495 182 0 329




30893 319912 149770 873 111428
383490 87990 5580 628440 587250
560076 1030324 331070 288045 350647
203830 305184 277512 264376 205933
90911 142936 500784 618842 609633

 =


0 0 356 9
0 870 0 30
0 302 469 731

403 0 0 374
852 190 147 0




0 0 516 566 511
422 73 0 719 675
73 878 416 0 313
545 816 186 97 0

 .


553924 99854 348351 183860 20114
401268 3372 802602 250881 155672
1091328 648606 538803 176341 151574
472277 506248 136080 591292 591056
377978 477454 470565 322776 461574

 =


0 0 113 634
0 671 0 562
0 71 759 576

697 0 0 270
346 520 267 0




401 724 0 736 848
0 0 774 131 232

896 850 255 0 178
714 6 504 290 0




292425 60900 31581 170931 7358
8056 89782 548546 684912 505520
98680 758632 1234092 742008 1123962
428876 6358 306000 865802 851174
888312 823270 758974 620872 1215638

 =


0 0 525 13
0 106 0 751
0 888 56 795

578 0 0 500
568 866 720 0




742 11 0 709 983
76 847 839 0 759
557 116 45 303 0
0 0 612 912 566

 .


348984 214425 353658 81504 608634
333621 42811 108265 141389 79520
457700 5980 467723 866662 841426
91308 220419 483054 706686 1353778
342940 384918 120318 550726 945556

 =


0 0 867 288
0 112 0 295

937 0 0 460
832 102 761 0
110 898 298 0




0 0 319 786 898
358 348 0 517 710
72 243 286 0 702
995 13 367 283 0




88076 294646 658787 902872 244559
2216 4216 596705 652698 250465

279360 180864 769506 1051380 391634
553284 826606 765406 293965 883775
696039 897917 148301 832169 169525

 =


0 0 454 713
0 8 0 711

288 0 0 926
239 998 232 0
541 37 830 0




970 628 0 699 257
277 527 733 0 824
194 649 146 547 0
0 0 831 918 343




948201 723609 958755 591858 397953
222448 218040 30429 348793 15825
329588 7189 623001 12012 469185
467424 160704 115092 835504 343912
1114797 932972 975775 997164 636096

 =


0 0 867 753
0 211 0 189

429 0 553 0
556 864 0 0
552 270 738 923




0 0 207 28 502
541 186 0 949 75
596 13 966 0 459
573 946 161 786 0



29




264293 89201 411390 21016 54492
255674 383544 693861 252463 211653
212205 6665 216806 6450 103802
469696 393840 450523 564374 956188
288927 197161 105742 300945 433801

 =


0 0 239 284
0 351 0 893
86 0 215 0
598 954 0 175
154 545 31 0




0 0 526 75 637
474 360 0 531 603
987 31 798 0 228
100 288 777 74 0




3230 104329 410573 875858 188790
22527 66939 204273 81606 13419
123988 34611 82056 713192 305348
596448 338171 559708 395192 624199
1460035 246567 270382 584688 1302924

 =


0 0 870 323
0 21 0 201

139 0 789 0
623 36 0 556
639 911 480 0




892 249 0 272 965
977 96 242 0 639
0 0 104 856 217
10 323 991 406 0




64244 119613 501370 37843 259408
85315 371265 69495 801995 33660
83956 5004 737712 957860 230056
46287 566084 451221 397664 269200
144598 34999 923447 1330101 293244

 =


0 0 523 41
0 510 0 565

772 0 0 556
64 656 417 0
853 13 77 901




0 0 867 576 298
0 718 0 550 66

111 228 949 0 496
151 9 123 923 0




310392 195156 317952 492156 169188
82320 581120 90160 709152 19024
519783 180720 1398418 74387 728134
70245 244363 505935 527965 176138
451143 501811 582768 158964 396949

 =


0 0 276 756
0 656 0 784

901 0 619 16
440 202 0 669
135 493 539 0




0 0 975 71 387
0 703 0 303 29

837 288 837 0 613
105 153 115 651 0




72200 697140 19076 191446 252354
341204 824131 90064 90804 450580
292600 86846 319858 425581 57573
493288 887466 592538 286784 604086
809126 281001 625050 719417 276676

 =


0 0 76 822
0 433 0 644

490 0 308 79
934 626 0 570
831 377 539 0




0 0 495 221 68
788 651 208 0 584
950 66 251 994 0
0 842 0 141 307




279265 274840 187355 655433 214052
270970 68600 734264 1018514 89856
341531 544696 235555 187012 948873
417526 121556 855865 841310 486784
15933 287113 730363 580464 439746

 =


0 0 236 707
0 702 0 686

849 0 507 136
684 725 0 470
47 914 326 0




339 109 235 0 576
0 0 787 588 128
0 865 0 132 907

395 100 265 883 0



We conjecture that the 15 nonnegative factorizations above are in fact globally rigid
based on the following evidence. For each of the 15 matrices above we ran the program by
Vandaele, Gillis, Glineur and Tuyttens [29] with the simulated annealing heuristic “sa” ten
times. Each run consisted of at most ten attempts and the target precision was 10−15. In
13 out of the 15 cases at least one out of ten runs would find a nonnegative factorization
of size four. Each time when a size-four nonnegative factorization was found, it was the
same as the original factorization. On average 6.3 runs were successful finding a size-four
nonnegative factorization. For the third and ninth matrix none of the runs found a size-four
nonnegative factorization. The algorithm was much slower for the eighth matrix than for
any other matrix in the list. Although only three runs found a nonnegative factorization of
target precision in this case, all other solutions looked similar to the original solution as well.
This suggests that the algorithm converges slowly for this matrix. In summary, in each of
the cases, either this program could not find a nonnegative factorization of target precision
or it would find the nonnegative factorization that we started with. If these matrices would
have other nonnegative factorizations, we find it unlikely that this would be the case.

Vandaele, Gillis, Glineur and Tuyttens discuss in [29, Section 2] that A and B positive
are known to increase the number of factorizations of AB and hence factoring AB is usually
easier. This suggests that matrices with small factorization spaces are the most difficult for
exact nonnegative matrix factorization algorithms. Hence one application of the 15 matrices
above could be as benchmark matrices for nonnegative matrix factorization algorithms.

We also constructed orbit representatives for all zero patterns with 13 zeros satisfying
the conditions of Theorem 3.4 and Lemma 3.9 for larger matrices such that every row of A
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contains a zero, and the number of columns of B is five or every column of B contains a
zero. The number of such zero patterns for each matrix size is listed in Table 1.

Table 1: Number of zero patterns with 13 zeros satisfying the conditions of Theorem 3.4
and Lemma 3.9 for different matrix sizes such that every row of A contains a zero, and the
number of columns of B is five or every column of B contains a zero.

5× 5 6× 5 6× 6 7× 5 7× 6 8× 5 9× 5
15 26 14 24 11 10 2

Differently from the 5 × 5 case, not all of these zero patterns automatically satisfy the
necessary condition in Lemma 3.10 which is more difficult to check than the necessary con-
ditions in Theorem 3.4 and Lemma 3.9. In the case of 6 × 5 matrices, one out of 26 zero
patterns fails the necessary condition in Lemma 3.10. It is

0 0 · ·
0 0 · ·
0 · · ·
· 0 · ·
· · 0 ·
· · · 0



· · 0 · ·
· · · 0 ·
0 0 · · ·
· · · · 0

 .

For the rest of the 25 zero patterns, Huanhuan Chen constructs infinitesimally rigid realiza-
tions in his Master’s thesis [5]. He also shows that for larger factorizations there does not
exist an infinitesimally rigid factorization realizing every pattern of r2−r+1 zeros satisfying
the conditions of Theorem 3.4 and Lemma 3.10. He gives a stronger necessary condition
for an infinitesimally rigid realization to exist and conjectures that this condition is also
sufficient.
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