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THE CONVERGENCE OF THE GENERALIZED LANCZOS
TRUST-REGION METHOD FOR THE TRUST-REGION

SUBPROBLEM∗

ZHONGXIAO JIA† AND FA WANG‡

Abstract. Solving the trust-region subproblem (TRS) plays a key role in numerical optimization
and many other applications. The generalized Lanczos trust-region (GLTR) method is a well-known
Lanczos type approach for solving a large-scale TRS. The method projects the original large-scale
TRS onto a k dimensional Krylov subspace, whose orthonormal basis is generated by the symmetric
Lanczos process, and computes an approximate solution from the underlying subspace. There have
been some a-priori error bounds for the optimal solution and the optimal objective value in the
literature, but no a-priori result exists on the convergence of Lagrangian multipliers involved in
projected TRS’s and the residual norm of approximate solution. In this paper, a general convergence
theory of the GLTR method is established, and a-priori bounds are derived for the errors of the
optimal Lagrangian multiplier, the optimal solution, the optimal objective value and the residual
norm of approximate solution. Numerical experiments demonstrate that our bounds are realistic
and predict the convergence rates of the three errors and residual norms accurately.

Key words. trust-region subproblem, GLTR method, a-priori bound, Lagrangian multiplier,
Chebyshev polynomial, eigenvalue problem, symmetric Lanczos process, Krylov subspace
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1. Introduction. Consider the solution of the trust-region subproblem (TRS)

(1.1) min
‖s‖≤∆

q(s) = gT s+
1

2
sTAs,

where A ∈ Rn×n is symmetric and nonsingular, the nonzero g ∈ Rn, ∆ > 0 is the
trust-region radius, and the norm ‖ · ‖ is the 2-norm of a matrix or vector. Problem
(1.1) arises from nonlinear numerical optimization [3, 21], where q(s) is a quadratic
model of min f(s) at the current approximate solution, A is Hessian and g is the
gradient of f at the current approximate solution, and many others, e.g., Tikhonov
regularization of ill-posed problems [23, 24], graph partitioning problems [14], the con-
strained eigenvalue problem [10], and the Levenberg–Marquardt algorithm for solving
nonlinear least squares problems [21].

The following results [3, 20] provide a theoretical basis for a TRS algorithm and
give necessary and sufficient conditions, called the optimal conditions, for the solution
of TRS (1.1).

Theorem 1.1. A vector sopt is a solution to (1.1) if and only if there exists the
optimal Lagrangian multiplier λopt ≥ 0 such that

‖sopt‖ 6 ∆,(1.2)

(A+ λoptI)sopt = −g,(1.3)

λopt(∆− ‖sopt‖) = 0,(1.4)

A+ λoptI � 0,(1.5)
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where ‖ · ‖ is the 2-norm of a matrix or vector, and the notation � 0 indicates that a
symmetric matrix is semi-positive definite.

TRS algorithms for solving (1.1) have been extensively studied for a few decades
and can be classified as the following four categories, in which most of the algorithms
in the first three categories are mentioned in [1].

• Accurate methods for dense problems. The Moré-Sorensen method [20] it-
eratively solves symmetric positive definite linear systems by the Cholesky
factorizations. It is highly efficient and accurate for small to medium sized
dense problems.
• Accurate methods for large sparse problems. Algorithms in [23, 24, 26] iter-

atively compute the smallest eigenvalue of the matrix ( α gT

g A
), where α is a

adjusted parameter. Another approach due to [22] solves TRS via semidef-
inite programming, and a modification of the Moré-Sorensen method using
Taylor series is presented in [9]. The generalized Lanczos trust-region(GLTR)
method [8] solves the TRS by a Lanczos type approach. Other accurate meth-
ods include subspace projection methods; see, e.g., [6, 13].
• Approximate methods. Steihaug and Toint independently propose a Trun-
cated Conjugate Gradient (TCG) method [27, 29], and Yuan [30] proves that
the function reduction obtained at the point produced by this method is at
least half of that obtained at the function minimizer when the function q(s) is
convex, i.e., A is symmetric positive definite. If A is symmetric indefinite, an
approximate solution must reach the trust-region boundary and TCG only
solves (1.1) approximately.
• Eigenvalue based methods. The method due to Gander, Golub and von Matt
[10] reduces TRS (1.1) to a single quadratic eigenvalue problem, which is
linearized to a standard eigenvalue problem of size 2n. Using a different
derivation, Adachi et al. [1] extend the method in [10] to a more general
TRS (1.6) and formulate it as a generalized eigenvalue problem of size 2n.
A solution to (1.1) can be determined by the rightmost eigenvalue and the
associated eigenvector of the resulting 2n×2nmatrix. The eigenvalue problem
is solved by the QR algorithm for A small or moderate and by iterative
projection methods for A large [25].

In applications, rather than simply using the 2-norm, some methods (see, e.g.,
[1, 8, 22, 26]) focus on the following more general TRS

(1.6) min
‖s‖B≤∆

q(s),

where B is symmetric positive definite and the norm ‖s‖B =
√
sTBs. In light of [23],

the matrix B is often constructed to impose a smoothness condition on a solution to
(1.6) for the ill-posed problem and to incorporate scaling of variables in optimization.
For instance, it is argued in [3] that a good choice is B = J−TJ−1 for some invertible
matrix J or the Hermitian polar factor [15] of A.

Notice that the problem (1.6) is mathematically equivalent to a standard TRS
(1.1) through the following substitutions

A← B− 1

2AB− 1

2 , g ← B− 1

2 g.

Therefore, we assume that B = I, the identity matrix, and just consider TRS (1.1)
without loss of generality when considering the convergence of the GLTR method.
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The GLTR method and other projection methods avoid the high overhead of
computing a series of Cholesky factorizations and have shown to be efficient for a
large-scale TRS; see, e.g., [2, 5, 8]. Let sopt be a solution to TRS (1.1) and sk be
the approximate solution from the underlying k + 1 dimensional Krylov subspace
Kk(g,A) = span{g,Ag, . . . , Akg} obtained by the GLTR method. By Theorem 1.1,
there is an optimal Lagrangian multiplier λk for each projected TRS problem onto
Kk(g,A). Then four central convergence problems are: how fast the three errors
|λopt−λk|, ‖sk− sopt‖, q(sk)− q(sopt) and the residual norm ‖(A+λkI)sk + g‖ of the
approximate solution λk, sk of (1.3) decrease as k increases. Regarding ‖sk − sopt‖
and q(sk) − q(sopt), some a-priori bounds have been derived in [31]. However, for
|λopt − λk| and ‖(A + λkI)sk + g‖, there have been no a-priori bounds to show how
they converge and tend to zero as k increases. The only known result on λk is that λk

increases monotonically with k and is bounded from above by λopt [18]. Therefore,
we always have |λopt − λk| = λopt − λk ≥ 0. The residual norm is important in both
theory and practice as it is computable and its size is commonly used to measure
the convergence of the GLTR method. We mention that a mixed bound is given for
|λopt − λk| in [32, Lemma 3.4]. However, it is easy to check that the mixed bound in
[32] does not exhibit any decreasing tendency and even can never be small unless the
symmetric Lanczos process breaks down, in which case the bound is trivially zero.

Remarkably, it has recently been shown that, under certain mild conditions, the
solution of (1.1) is mathematically equivalent to solving a certain matrix eigenvalue
problem of size 2n [1]. This equivalence provides us a new approach to efficiently
solve (1.1). Among others, such mathematical equivalence makes us realize that, at
iteration k, the GLTR method amounts to solving a certain eigenvalue problem of size
2(k+ 1) by projecting the 2n× 2n matrix eigenvalue problem onto a special 2(k+ 1)
dimensional subspace in R2n constructed by Kk(g,A) used in the GLTR method. At
iteration k, unlike the GLTR method, one can simultaneously obtain the optimal λk

and the solution sk to the projected TRS. Such key observation is our starting point to
study the convergence of the GLTR method. A note is that we are mainly concerned
with sin∠(sk, sopt) other than the error ‖sk − sopt‖. The sine is a standard measure
when considering the error of an eigenvector and its approximations in the context of
the matrix eigenvalue problem [28]. The authors of [1] measure the error of sk and
sopt by the sine of angle ∠(sk, sopt) in their experiments.

The importance of the contributions in this paper is, in turn, the establishment
of the two a-priori bounds for λopt − λk for the first time, that of the bound for
sin∠(sk, sopt), that of the bounds for the residual norm ‖(A + λkI)sk + g‖ for the
first time, and finally that of a new sharp bound for q(sk) − q(sopt). The bound for
q(sk) − q(sopt) is different from the two ones presented in [31], and its proof is also
simpler than those in [31]. The first a-priori bound for λopt−λk, though a considerable
overestimate, is the background for establishing the second much sharper one. With
the bounds for λopt − λk and sin∠(sk, sopt) or ‖sk − sopt‖, we are able to derive a-
priori bounds for ‖(A + λkI)sk + g‖. When establishing the first a-priori bound for
λopt − λk and the a-priori bound for sin∠(sk, sopt), we need to solve the problem
of the polynomial best uniform approximation to the rational function 1

(x−η)2 with

x ∈ [−1, 1] and η > 1. We will exploit a generating function of 1
(x−η)2 with Chebyshev

polynomials of the second kind [4] to handle this best uniform approximation problem
by obtaining a suboptimal approximation polynomial. Numerical results demonstrate
that our a-priori bounds predict the convergence rates of the three errors and residual
norms and estimate their values accurately.
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This paper is organized as follows. In section 2, we give some preliminaries
and introduce the equivalence of the solution of (1.1) and a certain 2n × 2n matrix
eigenvalue problem. We review the GLTR method in section 3. Section 4 is devoted
to a-priori bounds for λopt−λk and q(sk)−q(sopt). A-priori bounds for sin∠(sk, sopt)
and ‖(A + λkI)sk + g‖ are presented in section 5. In section 6, we report numerical
experiments to confirm that our bounds estimate the convergence rates and behavior
of the GLTR method accurately. Finally, we conclude the paper in section 7.

Throughout this paper, denote by the superscript T the transpose of a matrix or
vector, by ‖ · ‖ the 2-norm of a matrix or vector, by I the identity matrix with order
clear from the context, and by ei the ith column of I. All vectors are column vectors
and are typeset in lower case letters.

2. Preliminaries.

2.1. A solution to TRS (1.1). Suppose that A = SΛST is the eigendecompo-
sition of A, where S is orthogonal and Λ = diag(α1, α2, . . . , αn) with the αi being the
eigenvalues of A labeled as α1 ≥ α2 ≥ · · · ≥ αn.

If A + λoptI ≻ 0, then the solution sopt to TRS (1.1) is unique and sopt =
−(A + λoptI)

−1g. If (1.1) has no solution sopt with ‖sopt‖ = ∆, then A is positive
definite and sopt = −A−1g with ‖sopt‖ < ∆ and λopt = 0. All these correspond to
the so-called “easy case” [3, 8, 20, 21] or “nondegenerate case” [13].

If A is indefinite and

g ⊥ N (A− αnI),

the null space of A− αnI, then we have the following definition [3, 8, 21].
Definition 2.1 (Hard Case). The solution of TRS (1.1) is a hard case if g is

orthogonal to the eigenspace corresponding to the eigenvalue αn of A and the optimal
Lagrangian multiplier is λopt = −αn.

The hard case is also called the “degenerate case” [13]. In this case, (1.1) may
have multiple optimal solutions [21, p.87-88], which can be characterized as

sopt = −(A− αnI)
†g + ηun,

where un ∈ N (A − αnI) and ‖un‖ = 1, ‖(A − αnI)
†g‖ ≤ ∆, and the superscript †

denotes the Moore-Penrose generalized inverse. sopt with ‖sopt‖ = ∆ is unique if and
only if αn is a simple eigenvalue of A and the scalar η satisfies

η2 = ∆2 − ‖(A− αnI)
†g‖2 ≥ 0.

As we can see, in the hard case, we not only need to solve a singular system but
also need to compute the eigenspace of A associated with the smallest eigenvalue αn.
The hard case has been studied for years; see, e.g., [7, 8, 20, 21, 22]. An eigensolver
is proposed in [1] to detect and handle the hard case theoretically and numerically.

As has been addressed in [3], the hard case rarely occurs in practice, as it requires
that both A be indefinite and g be orthogonal to N (A − αnI). In the sequel, we are
only concerned with the easy case.

2.2. The equivalence of the TRS and a matrix eigenvalue problem.
Adachi et al. [1] prove that TRS (1.6) can be treated by solving a certain generalized
eigenvalue problem of order 2n. For B = I, the generalized eigenvalue problem in [1]
reduces to the standard eigenvalue problem of the augmented matrix

(2.1) M =

(
−A ggT

∆2

I −A

)
∈ R

2n×2n.
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Let µ1, µ2, . . . , µ2n be the eigenvalues of M labeled as

(2.2) Re(µ1) ≥ Re(µ2) ≥ · · · ≥ Re(µ2n),

where Re(·) is the real part of a scalar. The following result in [1] establishes a key
relationship between the TRS solution and the eigenpair of M .

Theorem 2.2 ([1]). Let (λopt, sopt) satisfy Theorem 1.1 with ‖sopt‖ = ∆. Then
the rightmost eigenvalue µ1 of M is real and simple, and µ1 = λopt. Let yT =
(yT1 , y

T
2 )

T be the unit length eigenvector of M associated with the eigenvalue µ1, i.e.,

(2.3) M

(
y1
y2

)
= µ1

(
y1
y2

)
,

∥∥∥∥
(

y1
y2

)∥∥∥∥ = 1,

and suppose that gT y2 6= 0. Then the unique TRS solution is

(2.4) sopt = −
∆2

gT y2
y1.

Remark 2.1. Adachi et al. [1] have proved that gT y2 = 0 corresponds to the hard
case, i.e., λopt = −αn and g ⊥ N (A− αnI). Therefore, in the easy case, gT y2 6= 0 is
guaranteed, and (2.4) holds.

3. The generalized Lanczos trust-region (GLTR) method [8]. For (1.1)
large, an effective approach is to iteratively solve a sequence of smaller projected
problems

(3.1) min
s∈Sk,‖s‖≤∆

q(s),

where Sk ⊂ Rn is some specially chosen k + 1 dimensional subspace, and we use the
solution sk to TRS (3.1) to approximate sopt.

A most commonly used Sk is the k + 1 dimensional Krylov subspace

(3.2) Sk = Kk(g,A)
.
= span{g,Ag,A2g, . . . , Akg}

generated by g andA. The GLTRmethod starts with the TCGmethod [27, 29]. When
A is positive definite and ‖A−1g‖ ≤ ∆, which corresponds to λopt = 0, the method
returns a converged approximate solution sk to sopt = −A−1g. In this case, the
convergence theory of the standard conjugate gradient method is directly applicable.
The GLTR method switches to the Lanczos method to accurately solve the projected
problem (3.1) whenever a negative curvature is present or the solution norm by the
TCG method exceeds the trust-region radius ∆, which corresponds to an indefinite
A or λopt > 0. It proceeds in such a way until sk converges to sopt.

In the sequel, without loss of generality we always assume that the TCG method
does not solve (3.1) exactly and one must use the Lanczos method starting from the
first iteration, so as to compute the solution sk to (3.1) with ‖sk‖ = ∆, meaning that
λk > 0 for k = 0, 1, . . ..

In the following, we describe the GLTR method. At iteration k, mathematically,
the GLTR method exploits the symmetric Lanczos process to generate an orthonormal
basis {qi}ki=0 of Sk defined by (3.2), which can be written in matrix form

AQk = QkTk + βk+1qk+1e
T
k+1,(3.3)

QT
k g = β0e1, β0 = ‖g‖,(3.4)

g = β0q0,(3.5)
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where Qk = (q0, q1, . . . , qk) is orthonormal and the matrix

(3.6) Tk = QT
kAQk =




δ0 β1

β1 δ1
. . .

. . .
. . .

. . .

. . . δk−1 βk

βk δk




∈ R
(k+1)×(k+1)

is symmetric tridiagonal, which is called the orthogonal projection matrix of A onto
Sk in the orthonormal basis {qi}ki=0.

We shall consider vectors of form

(3.7) s = Qkh ∈ Sk.
Let sk = Qkhk solve the projected problem

(3.8) min
s∈Sk,‖s‖≤∆

q(s) = gT s+
1

2
sTAs.

It then follows from (3.7) and the Lanczos process that hk solves the reduced TRS

(3.9) min
‖h‖≤∆

φ(h) = β0e
T
1 h+

1

2
hTTkh

and q(sk) = φ(hk).
From Theorem 1.1, the vector hk is a solution to (3.9) if and only if there exists

the optimal Lagrangian multiplier λk ≥ 0 such that

‖hk‖ 6 ∆,(3.10)

(Tk + λkI)hk = −β0e1,(3.11)

λk(∆− ‖hk‖) = 0,(3.12)

Tk + λkI � 0.(3.13)

As Tk is tridiagonal, we can use the Moré-Sorensen method to efficiently solve
(3.8) even if n is large and then obtain sk from sk = Qkhk. The resulting method is
the GLTR method for solving (1.1). It has been shown in [1] that TRS (3.9) is always
the easy case provided that the symmetric Lanczos process does not break down at
iteration k. Under the assumption that ‖sk‖ = ‖hk‖ = ∆, this means that we always
λk > 0 for all k ≤ kmax, where kmax is the first iteration at which the symmetric
Lanczos process breaks down, i.e., βkmax+1 = 0.

The authors of [8] prove that the residual norm of λk and sk as approximate
solutions of (1.3) satisfies

(3.14) ‖(A+ λkI)sk + g‖ = βk+1|eTk+1hk|,
from which it is known that if the symmetric Lanczos process breaks down at iteration
kmax for the first time, then skmax

= sopt and λkmax
= λopt. This result indicates that

we can efficiently measure the residual norm by exploiting the last entry of hk without
explicitly forming sk = Qkhk before a prescribed convergence tolerance is achieved.

In the next two sections we shall consider the convergence of the GLTR method,
and establish a-priori bounds for the errors λopt − λk, q(sk) − q(sopt), sin∠(sk, sopt)
and the residual norm ‖(A + λkI)sk + g‖. We will prove how they decrease as k
increases. We point out that, unlike ‖sk − sopt‖, which is concerned with in [31, 32],
we consider the error sin∠(sk, sopt).
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4. A-priori bounds for λopt − λk and q(sk) − q(sopt). We establish a-priori
bounds for λopt − λk in this section. It is known from [18] that λk increases mono-
tonically with k and is bounded from above by λopt. Precisely, suppose that the
symmetric Lanczos process breaks down at some kmax ≤ n− 1. Then for k ≤ kmax it
holds that

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λkmax
= λopt.

Under the assumption that ‖sk‖ = ‖hk‖ = ∆, we have λk > 0 for k = 0, 1, . . . , kmax,
but there has been no quantitative result on how fast λk converges to λopt.

Define the 2(k + 1)× 2(k + 1) matrix

(4.1) Mk = Q̃T
kMQ̃k

with M defined by (2.1) and

(4.2) Q̃k =

(
Qk

Qk

)
,

with the columns of the orthonormal Qk defined by (3.3). It is straightforward that

(4.3) Mk =

(
−Tk

β2

0
e1e

T
1

∆2

I −Tk

)

with Tk defined by (3.6) and β0 = ‖g‖.
Obviously, Q̃k is column orthonormal, and its columns span the 2(k + 1) dimen-

sional subspace

(4.4) S̃k =

(
Sk 0
0 Sk

)
⊂ R

2n.

Therefore, Mk is the orthogonal projection matrix of M onto S̃k in the orthonormal
basis {(qTi , 0)T }ki=0 and {(0, qTi )T }ki=0.

Let µ
(k)
i , i = 1, 2, . . . , 2(k+1), be the eigenvalues of Mk, which, similarly to (2.2),

are labeled as

Re(µ
(k)
1 ) ≥ Re(µ

(k)
2 ) ≥ · · · ≥ Re(µ

(k)
2(k+1)).

From Theorem 2.2 it is known that

(4.5) µ
(k)
1 = λk

is real and simple.

Let z(k) =

(
z
(k)
1

z
(k)
2

)
be the unit length eigenvector of Mk associated with µ

(k)
1 ,

i.e.,

(4.6) Mk

(
z
(k)
1

z
(k)
2

)
= µ

(k)
1

(
z
(k)
1

z
(k)
2

)
,

∥∥∥∥∥

(
z
(k)
1

z
(k)
2

)∥∥∥∥∥ = 1.

Then the vector

y(k) = Q̃k

(
z
(k)
1

z
(k)
2

)
=

(
Qk

Qk

)(
z
(k)
1

z
(k)
2

)
=

(
Qkz

(k)
1

Qkz
(k)
2

)
=

(
y
(k)
1

y
(k)
2

)
(4.7)



8 Z. JIA AND F. WANG

is the Ritz vector of A from the subspace S̃k and approximates the unit length eigen-
vector yT = (yT1 , y

T
2 )

T of M associated with its rightmost real eigenvalue µ1 = λopt.
From the structure (4.3) of Mk and the definition (4.6) of z(k), it is easy to show

that
(

z
(k)
2

z
(k)
1

)

is the left eigenvector of Mk corresponding to the real simple eigenvalue µ
(k)
1 = λk.

and from (4.6) it is straightforward to verify that

(4.8) z
(k)
2 = (Tk + λkI)

−1z
(k)
1 .

Therefore, by definition (cf. [28, p.186]), the spectral condition number of µ
(k)
1 is

(4.9) s(λk) =
1

2|(z(k)2 )T z
(k)
1 |

=
1

2(z
(k)
1 )T (Tk + λkI)−1z

(k)
1

.

Similarly, by the structure (2.1) of M and the definition (2.3) of y, the vector
(yT2 , y

T
1 )

T is the left eigenvector of M associated with the eigenvalue µ1. As a result,
the spectral condition number of µ1 is

(4.10) s(λopt) =
1

2|yT2 y1|
=

1

2yT1 (A+ λoptI)−1y1
.

By Theorem 2.2, the unique solution hk to (3.9) is

(4.11) hk = − ∆2

(β0e1)T z
(k)
2

z
(k)
1 ,

and the unique solution sk to TRS (3.8) is

(4.12) sk = Qkhk = − ∆2

(β0e1)T z
(k)
2

Qkz
(k)
1 = − ∆2

(β0e1)T z
(k)
2

y
(k)
1 .

Denote by ∠(u,Sk) the acute angle between a nonzero vector u and Sk. Then

(4.13) sin∠(u,Sk) =
‖(I − πk)u‖
‖u‖ ,

where πk is the orthogonal projector onto Sk. In terms of Theorem 2.2 and (4.5), we
have

(4.14) λopt − λk = µ1 − µ
(k)
1 ,

where µ1 is the rightmost eigenvalue of M .
Let π̃k = Q̃kQ̃

T
k be the orthogonal projector onto S̃k. Then π̃kMπ̃k is the restric-

tion of M to the subspace S̃k and its matrix representation is Mk in the orthonormal
basis {(qTi , 0)T }ki=0 and {(0, qTi )T }ki=0. The eigenvalues of π̃kMπ̃k restricted to S̃k are

the eigenvalues of Mk, and the eigenvectors are the Ritz vectors of M from S̃k; see
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[25] for details. Therefore, a direct application of Theorem 3.8 in [16] to our context
gives the following result.

Lemma 4.1. Let µ
(k)
1 = λk and µ1 = λopt be the rightmost eigenvalues of Mk and

M , respectively, and suppose that ‖sopt‖ = ‖sk‖ = ∆. Then for sin∠(y, S̃k) small it
holds that

(4.15) λopt − λk ≤ s(λk)γ̃k sin∠(y, S̃k) +O(sin2 ∠(y, S̃k)),

where s(λk) is defined by (4.9) and γ̃k = ‖π̃kM(I − π̃k)‖. 1

From (4.7) and (4.9), we obtain

s(λk) =
1

2|(y(k)2 )T y
(k)
1 |

,

which converges to s(λopt) defined by (4.10) when y(k) → y. This is indeed the case,
as will be shown in the next section. In the meantime, γ̃k ≤ ‖M‖. As a result,
by this lemma, the convergence problem of λk to λopt becomes to analyze how fast

sin∠(y, S̃k) decreases as k increases.
Notice that

(4.16) sin2 ∠(y, S̃k) =
∥∥∥∥(I − π̃k)

(
y1
y2

)∥∥∥∥
2

= ‖(I − πk)y1‖2 + ‖(I − πk)y2‖2.

Therefore, in order to bound λopt − λk and to show how it converges to zero as k
increases, we need to analyze ‖(I − πk)y1‖ and ‖(I − πk)y2‖ separately.

We first consider ‖(I − πk)y1‖. Throughout the paper, we denote by P̄k the set
of polynomials of degree not exceeding k + 1. We first present the following result.

Lemma 4.2. The distance ‖(I−πk)sopt‖ between sopt and Sk = Kk(g,A) satisfies

‖(I − πk)sopt‖ = min
pk∈P̄k,pk(0)=1

‖pk(A+ λoptI)sopt‖(4.17)

and

‖(I − πk)sopt‖ ≤ ‖sopt‖ǫ(k)1 ,(4.18)

where

ǫ
(k)
1 = min

p∈P̄k,p(0)=1
max
1≤i≤n

‖p(αi + λopt)‖(4.19)

with α1 ≥ αn−1 ≥ · · · ≥ αn being the eigenvalues of A. Moreover,

ǫ
(k)
1 ≤ 2

(√
κ− 1√
κ+ 1

)k+1

,(4.20)

where κ =
α1+λopt

αn+λopt
is the condition number of A+ λoptI.

1In Theorem 3.8 of [16], tan∠(y, S̃k) in the right-hand side of (4.15) is sin∠(y, S̃k), but it is

obvious that the sine and tangent can be replaced each other in the right-hand side when sin∠(y, S̃k)
becomes small.
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Proof. Theorem 1.1 has shown that sopt satisfies the linear system (A+λopt)sopt =
−g. Therefore, exploiting the shift invariance Kk(g,A) = Kk(g,A + λoptI) and the
eigendecomposition A = SΛST , we have

‖(I − πk)sopt‖ = min
s∈Kk(g,A+λoptI)

‖sopt − s‖

= min
q∈P̄k−1

‖sopt − q(A+ λoptI)g‖

= min
q∈P̄k−1

‖sopt − q(A+ λoptI)g‖

= min
q∈P̄k−1

‖sopt + q(A+ λoptI)(A+ λopt)sopt‖

= min
pk∈P̄k,pk(0)=1

‖pk(A+ λoptI)sopt‖

≤ ‖sopt‖ min
pk∈P̄k,pk(0)=1

‖pk(Λ + λoptI)‖

= ‖sopt‖ǫ(k)1

with the polynomial pk(λ) = 1 + λq(λ) ∈ P̄k and pk(0) = 1.
Note that A+λoptI is symmetric positive definite. Applying a standard estimate

(cf. the book [11, p.51, Theorem 3.1.1] to ǫ
(k)
1 , we obtain (4.20).

Relation (2.4) shows that y1 is the same as sopt up to a scaling. Therefore,
replacing sopt in (4.17) and (4.18) by y1 and exploiting (4.20), we have established
the following upper bound for ‖(I − πk)y1‖.

Theorem 4.3. Let yT = (yT1 , y
T
2 )

T be the unit length eigenvector of M associated
with its rightmost eigenvalue µ1. Then

‖(I − πk)y1‖ ≤ 2‖y1‖
(√

κ− 1√
κ+ 1

)k+1

,(4.21)

where κ =
α1+λopt

αn+λopt
.

As it will turn out, an estimation of ‖(I − πk)y2‖ is much more involved.
Theorem 4.4. With the notation previously, we have

‖(I − πk)y2‖ ≤
4(α1 + λopt)

(α1 − αn)2
‖y1‖ǫ(k)2 ,(4.22)

where α1 and αn are the largest and smallest eigenvalues of A, and

ǫ
(k)
2 = min

q∈P̄k−1

max
x∈[−1,1]

∣∣∣∣
1

(x− η)2
− q(x)

∣∣∣∣(4.23)

with

η =
α1 + αn + 2λopt

α1 − αn
=

κ+ 1

κ− 1
> 1,(4.24)

where κ =
α1+λopt

αn+λopt
.

Proof. Recall that A = SΛST is the eigendecomposition of A, where S is orthog-
onal and Λ = diag(α1, α2, . . . , αn) with α1 ≥ α2 ≥ · · · ≥ αn the eigenvalues.

From (A+ λoptI)sopt = −g and (2.4), we obtain

∆2

gT y2
(A+ λoptI)y1 = g.
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From (2.3), we have

(4.25) y2 = (A+ λoptI)
−1y1.

Making use of Kk(g,A) = Kk(g,A + λoptI), (4.25) and the orthogonality of S, we
then obtain

‖(I − πk)y2‖ = min
z∈Kk(g,A+λoptI)

‖y2 − z‖

= min
q∈P̄k−1

‖y2 − q(A+ λoptI)g‖

= min
q∈P̄k−1

‖(A+ λoptI)
−1y1 −

∆2

gT y2
(A+ λoptI)q(A+ λoptI)y1‖

= min
p∈P̄k−1

‖(A+ λoptI)[(A + λoptI)
−2 − p(A+ λoptI)]y1‖

≤ ‖A+ λoptI‖ min
q∈P̄k−1

‖[(A+ λoptI)
−2 − p(A+ λoptI)]y1‖

= ‖A+ λoptI‖ min
p∈P̄k−1

‖S[(Λ + λoptI)
−2 − p(Λ + λoptI)]S

T y1‖

≤ (α1 + λopt)‖y1‖ min
p∈P̄k−1

max
z∈[αn,α1]

∣∣∣∣
1

(z + λopt)2
− p(z)

∣∣∣∣ .

Consider the variable transformation

z =
α1 − αn

2
x+

αn + α1

2
,

which maps x ∈ [−1, 1] to z ∈ [αn, α1] in one-to-one correspondence. Then

min
p∈P̄k−1

max
z∈[αn,α1]

∣∣∣∣
1

(z + λopt)2
− p(z)

∣∣∣∣

= min
p∈P̄k−1

max
x∈[−1,1]

∣∣∣∣
4

(α1 − αn)2(x− η)2
− p(x)

∣∣∣∣

=
4

(α1 − αn)2
min

p∈P̄k−1

max
x∈[−1,1]

∣∣∣∣
1

(x − η)2
− (α1 − αn)

2

4
p(x)

∣∣∣∣

=
4

(α1 − αn)2
min

q∈P̄k−1

max
x∈[−1,1]

∣∣∣∣
1

(x− η)2
− q(x)

∣∣∣∣

=
4

(α1 − αn)2
ǫ
(k)
2 .(4.26)

ǫ
(k)
2 is the error of the best or optimal uniform polynomial approximation from

P̄k−1 to the rational function 1
(x−η)2 over the interval [−1, 1] with η > 1. To our best

knowledge, there seems no known explicit solution to such approximation problem.
However, recall from (4.16) that sin∠(y, S̃k) > ‖(I − π)y1‖. Therefore, it is enough

to prove that ǫ
(k)
2 is of the same order as bound (4.21) because this means that

sin∠(y, S̃k) is at least as small as bound (4.21) for ‖(I−π)y1‖. To this end, exploiting
Chebyshev polynomials of the second kind and one of its fundamental properties, we

will establish a desired bound for ǫ
(k)
2 , which is indeed as small as bound (4.21).

Theorem 4.5. The approximation error

ǫ
(k)
2 ≤

(
1 +

k + 2

| ln t|

)
4

1− t2

(√
κ− 1√
κ+ 1

)k+3

,(4.27)
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and

(4.28) ‖(I − πk)y2‖ ≤
16(α1 + λopt)‖y1‖
(α1 − αn)2(1− t2)

(
1 +

k + 2

| ln t|

)(√
κ− 1√
κ+ 1

)k+3

,

where t = η −
√
η2 − 1 and κ =

α1+λopt

αn+λopt
.

Proof. For any t ∈ (−1, 1) and x ∈ [−1, 1] there is the following generating
function [4, p.215]:

∞∑

j=0

(j + 1)tjUj(x) =
1− t2

(1 + t2 − 2tx)2
,(4.29)

where Uj(x) = sin(j arccosx) is the jth degree Chebyshev polynomial of the second
kind [4, p.212].

For t = η−
√
η2 − 1, it is easily justified that 1+ t2 = 2ηt. Therefore, the identity

(4.29) becomes

∞∑

j=0

(j + 1)tjUj(x) =
1− t2

4t2(x− η)2
,(4.30)

from which it follows that

1

(x− η)2
=

4t2

1− t2

∞∑

j=0

(j + 1)tjUj(x).

Taking the kth degree polynomial

pk(x) =
4t2

1− t2

k∑

j=0

(j + 1)tjUj(x) ∈ P̄k−1

and noting that − ln t = | ln t| for 0 < t < 1 and |Uj(x)| ≤ 1 for x ∈ [−1, 1], we have

ǫ
(k)
2 ≤ max

x∈[−1,1]

∣∣∣∣
1

(x− η)2
− pk(x)

∣∣∣∣

= max
x∈[−1,1]

∣∣∣∣∣∣
4t2

1− t2

∞∑

j=k+1

(j + 1)tjUj(x)

∣∣∣∣∣∣

≤ 4t2

1− t2

∞∑

j=k+1

(j + 1)tj

=
4t2

1− t2

∫ ∞

k+1

(z + 1)tzdz

=
4t2

1− t2

(
z + 1

ln t
tz
∣∣∣
∞

k+1
− tz

∣∣∣
∞

k+1

)

=

(
1− k + 2

ln t

)
4tk+3

1− t2
=

(
1 +

k + 2

| ln t|

)
4tk+3

1− t2
.(4.31)

From (4.24), it is straightforward to justify that

t = η −
√
η2 − 1 =

√
κ− 1√
κ+ 1

.(4.32)
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Therefore, from (4.22), (4.26) and (4.31) it follows that (4.27) and (4.28) hold.
Combining Lemma 4.1, (4.16), Theorem 4.3 and Theorem 4.5, by a simple ma-

nipulation, we achieve the following bounds for sin∠(y, S̃k) and λopt − λk.
Theorem 4.6. Suppose that ‖sopt‖ = ‖sk‖ = ∆. Then

(4.33) sin∠(y, S̃k) ≤ ck‖y1‖
(√

κ− 1√
κ+ 1

)k+1

and asymptotically

(4.34) λopt − λk ≤ cks(λk)γ̃k‖y1‖
(√

κ− 1√
κ+ 1

)k+1

,

where

(4.35) ck = 2 +
16(α1 + λopt)

(α1 − αn)2(1 − t2)

(
1 +

k + 2

| ln t|

)(√
κ− 1√
κ+ 1

)2

,

γ̃k = ‖π̃kM(I − π̃k)‖ with π̃k the orthogonal projector onto S̃k defined by (4.4), and
s(λk) and t are defined by (4.9) and (4.32).

A-priori bound (4.34), for the first time, proves that λopt−λk converges to zero as
k increases. As a matter of fact, based on this bound, we can further establish a much
sharper bound for λopt − λk. Before proceeding, we first derive the following result,
which will play a key role in establishing the sharper a-priori bound for λopt − λk.

Theorem 4.7. For k = 0, 1, . . . , kmax, the following a-priori bound holds:

(4.36) eT1 (Tkmax
+ λoptI)

−1e1 − eT1 (Tk + λoptI)
−1e1 ≤

4∆

β0

(√
κ− 1√
κ+ 1

)2(k+1)

,

where κ =
α1+λopt

αn+λopt
and β0 = ‖g‖.

Proof. Consider the symmetric positive definite linear system

(4.37) (Tkmax
+ λoptI)h = −β0e1

with β0 = ‖g‖, which is (3.11) for k = kmax and has the solution hkmax
. When taking

e1 as the starting vector, i.e., taking the zero vector as an initial guess to hkmax
, the

symmetric Lanczos process generates an orthonormal basis {ei}k+1
i=1 of the (k + 1)

dimensional Krylov subspace

Kk+1(e1, Tkmax
+ λoptI) = span{e1, (Tkmax

+ λoptI)e1, . . . , (Tkmax
+ λoptI)

ke1}

and the symmetric tridiagonal Tk + λoptI. Define Ek = (e1, e2, . . . , ek+1). Then
Tk + λoptI = ET

k (Tkmax
+ λoptI)Ek. Applying the symmetric Lanczos method to

solving (4.37), at iteration k ≤ kmax we obtain the projected problem

(Tk + λoptI)ỹ = −β0e1.

Write its solution as ỹk. Then the symmetric Lanczos method computes the approx-
imation h̃k = Ekỹk of hkmax

.
Define the error εk = hkmax

− h̃k and the residual rk = −β0e1− (Tkmax
+λoptI)h̃k

of (4.37). Note that the initial residual r0 = −β0e1. Then ‖r0‖2 = β2
0 and

(Tkmax
+ λoptI)εk = rk,
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from which and [19, Theorem 2.11] it follows that the square of (Tkmax
+ λoptI)-norm

error satisfies

‖εk‖2(Tkmax
+λoptI)

= εTk (Tkmax
+ λoptI)ε

T
k

= rTk (Tkmax
+ λoptI)

−1rk

= β2
0

(
eT1 (Tkmax

+ λoptI)
−1e1 − eT1 (Tk + λoptI)

−1e1
)
.

As a result, we obtain

(4.38) eT1 (Tkmax
+ λoptI)

−1e1 − eT1 (Tk + λoptI)
−1e1 =

‖εk‖2(Tkmax
+λoptI)

β2
0

.

Notice that the eigenvalues of Tkmax
are the exact eigenvalues of A, which means

that the smallest and largest eigenvalues of Tkmax
+ λoptI lie in [αn + λopt, α1 + λopt].

Since the symmetric Lanczos method is mathematically equivalent to the conjugate
gradient method at the same iteration when the same initial guess on hkmax

is used,
applying a standard estimate (cf. [11, Theorem 3.1.1] and [19, Theorem 2.30]) to
‖εk‖2(Tkmax

+λoptI)
gives rise to

‖εk‖2(Tkmax
+λoptI)

≤ 4

(√
κ− 1√
κ+ 1

)2(k+1)

‖ε0‖2(Tkmax
+λoptI)

.

Since r0 = −β0e1, the the squared initial error

‖ε0‖2(Tkmax
+λoptI)

= rT0 (Tkmax
+ λoptI)

−1r0 = β2
0e

T
1 (Tkmax

+ λoptI)
−1e1.

Exploiting β0‖(Tkmax
+ λoptI)

−1e1‖ = ‖hkmax
‖ = ∆, we obtain

β2
0e

T
1 (Tkmax

+ λoptI)
−1e1 ≤ β0‖e1‖∆ = β0∆.

Substituting the above three relations into (4.38) yields (4.36).
Theorem 4.8. Assume that the symmetric Lanczos process breaks down at iter-

ation kmax and ‖sopt‖ = ‖sk‖ = ∆ for k = 0, 1, . . . , kmax. Then for k suitably large
we have the asymptotic a-priori bound

λopt − λk ≤ ηk1
(
eT1 (Tkmax

+ λoptI)
−1e1 − eT1 (Tk + λoptI)

−1e1
)
+ ηk2 (q(sk)− q(sopt)) ,

(4.39)

where the factors

ηk1 =
β2
0

∆2 + β2
0e

T
1 (Tk + λoptI)−2e1

≤ β2
0(α1 + λopt)

2

β2
0 + (α1 + λopt)2∆2

,(4.40)

ηk2 =
2

∆2 + β2
0e

T
1 (Tk + λoptI)−2e1

≤ 2(α1 + λopt)
2

β2
0 + (α1 + λopt)2∆2

(4.41)

with β0 = ‖g‖.
Proof. From (3.11), we obtain

hk = −β0(Tk + λkI)
−1e1
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and ‖hk‖ = β0‖(Tk + λkI)
−1e1‖ = ∆. Therefore, by (3.9) we have q(sk) = φ(hk) and

q(sk) = −β2
0e

T
1 (Tk + λkI)

−1e1 +
1

2
β2
0e

T
1 (Tk + λkI)

−1Tk(Tk + λkI)
−1e1

= −β2
0e

T
1 (Tk + λkI)

−1e1 +
1

2
β2
0e

T
1 (Tk + λkI)

−1(Tk + λkI − λkI)(Tk + λkI)
−1e1

= −β2
0e

T
1 (Tk + λkI)

−1e1 +
1

2
β2
0e

T
1 (Tk + λkI)

−1e1 −
1

2
λkβ

2
0e

T
1 (Tk + λkI)

−2e1

= −1

2
β2
0e

T
1 (Tk + λkI)

−1e1 −
1

2
λkβ

2
0e

T
1 (Tk + λkI)

−2e1

= −1

2
β2
0e

T
1 (Tk + λkI)

−1e1 −
1

2
λk∆

2.

(4.42)

By assumption and (3.9), we have

skmax
= Qkmax

hkmax
= sopt, λkmax

= λopt, q(skmax
) = q(sopt) = φ(hkmax

)

with ‖hkmax
‖ = ∆, and the eigenvalues Tkmax

are the exact eigenvalues of A. Similarly
to the above derivation, we obtain

(4.43) q(sopt) = −
1

2
β2
0e

T
1 (Tkmax

+ λoptI)
−1e1 −

1

2
λopt∆

2.

Subtracting the two hand sides of (4.42) and (4.43) yields
(4.44)
(λopt−λk)∆

2 = β2
0

(
eT1 (Tk + λkI)

−1e1 − eT1 (Tkmax
+ λoptI)

−1e1
)
+2 (q(sk)− q(sopt)) .

Since ‖(Tk+λoptI)
−1‖ ≤ 1

αn+λopt
and (4.33) has proved that λopt−λk is nonneg-

ative and tends to zero as k increases, we must have (λopt−λk)‖(Tk +λoptI)
−1‖ < 1,

i.e., λopt − λk ≤ αn + λopt, for k suitably large. Precisely, by (4.34), a sufficient
condition is to choose k such that

cks(λk)γ̃k‖y1‖
(√

κ− 1√
κ+ 1

)k+1

≤ αn + λopt.

Moreover, since λk → λopt, by continuity argument, we have

eT1 (Tk+λkI)
−1e1−eT1 (Tkmax

+λoptI)
−1e1 → eT1 (Tk+λoptI)

−1e1−eT1 (Tkmax
+λoptI)

−1e1,

where the quantity in the right hand side has been shown by (4.38) to be strictly
negative for all k = 0, 1, . . . , kmax − 1. Therefore, eT1 (Tk + λkI)

−1e1 − eT1 (Tkmax
+

λoptI)
−1e1 must become nonpositive for k suitably large, that is, the first term in the

right hand side of (4.44) becomes nonpositive as k increases. As a result, from (4.44)
we obtain the inequality
(4.45)
(λopt−λk)∆

2 ≤ β2
0

(
eT1 (Tkmax

+ λoptI)
−1e1 − eT1 (Tk + λkI)

−1e1
)
+2 (q(sk)− q(sopt))

when k is suitably large.
Let us analyze eT1 (Tk + λkI)

−1e1. Since (λopt − λk)‖(Tk + λoptI)
−1‖ < 1 for k

suitably large, exploiting the series expansion of
(
(I − (λopt − λk)(Tk + λoptI)

−1)
)−1

,
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we obtain

(Tk + λkI)
−1 = (Tk + λoptI + (λk − λopt)I)

−1

=
(
(Tk + λoptI)(I − (λopt − λk)(Tk + λoptI)

−1)
)−1

=
(
(I − (λopt − λk)(Tk + λoptI)

−1)
)−1

(Tk + λoptI)
−1

=
(
I + (λopt − λk)(Tk + λoptI)

−1 +O
(
(λopt − λk)

2
))

(Tk + λoptI)
−1

= (Tk + λoptI)
−1 + (λopt − λk)(Tk + λoptI)

−2 +O((λopt − λk)
2).

Therefore, we have

e
T
1 (Tkmax

+ λoptI)
−1

e1 − e
T
1 (Tk + λkI)

−1
e1 = e

T
1 (Tkmax

+ λoptI)
−1

e1 − e
T
1 (Tk + λoptI)

−1
e1

(4.46)

− (λopt − λk)e
T
1 (Tk + λoptI)

−2
e1

−O((λopt − λk)
2),

which is nonnegative provided that k is suitably large. Substituting this relation
into (4.45) and dropping the nonnegative higher small term O((λopt − λk)

2) in the
resulting left-hand side give rise to

λopt − λk ≤ ηk1
(
eT1 (Tkmax

+ λoptI)
−1e1 − eT1 (Tk + λoptI)

−1e1)
)
+ ηk2 (q(sk)− q(sopt))

with ηk1 and ηk2 defined by (4.40) and (4.41), respectively, which proves (4.39).
Since Tk + λoptI is symmetric positive definite and its eigenvalues lie between

αn + λopt and α1 + λopt, the smallest and largest ones of A + λoptI, respectively, we
have 1

(α1+λopt)2
≤ eT1 (Tk+λoptI)

−2e1 ≤ 1
(αn+λopt)2

. As a result, from the forms of ηk1
and ηk2, it is straightforward to obtain

ηk1 ≤
β2
0(α1 + λopt)

2

β2
0 + (α1 + λopt)2∆2

, ηk2 ≤
2(α1 + λopt)

2

β2
0 + (α1 + λopt)2∆2

,

independent of iteration k.
Relation (4.39) shows that bounding λopt − λk amounts to bounding eT1 (Tkmax

+
λoptI)

−1e1 − eT1 (Tk + λoptI)
−1e1 and q(sk)− q(sopt) separately. We have established

an a-priori bound (4.36) for the former one. Now we investigate q(sk) − q(sopt).
Steihaug [27] has proved that the error q(sk)− q(sopt) of the optimal objective value
monotonically decreases with respect to k. Zhang et al. [31, Theorem 4.3] have
given the following result. Starting with it, we can derive a new a-priori bound for
q(sk)− q(sopt), whose proof is much shorter than those in [31].

Lemma 4.9 ([31]). Suppose ‖sopt‖ = ‖sk‖ = ∆. Then

(4.47) 0 ≤ q(sk)− q(sopt) ≤ 2(α1 + λopt)‖s̃− sopt‖2

for any nonzero s̃ ∈ Kk(g,A).
Theorem 4.10. Suppose ‖sopt‖ = ‖sk‖ = ∆. Then

0 ≤ q(sk)− q(sopt) ≤ 8(α1 + λopt)∆
2

(√
κ− 1√
κ+ 1

)2(k+1)

,(4.48)

where κ =
α1+λopt

αn+λopt
.
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Proof. Relation (4.47) has shown that

(4.49) q(sk)− q(sopt) ≤ 2(α1 + λopt) min
s̃∈Kk(g,A)

‖s̃− sopt‖2.

By definition, we have

(4.50) min
s̃∈Kk(g,A)

‖s̃− sopt‖2 = ‖(I − πk)sopt‖2,

where πk is the orthogonal projector onto Kk(g,A). From the above relation and
Lemma 4.2, it is immediate that

min
s̃∈Kk(g,A)

‖s̃− sopt‖2 ≤ 4‖sopt‖2
(√

κ− 1√
κ+ 1

)2(k+1)

= 4∆2

(√
κ− 1√
κ+ 1

)2(k+1)

.(4.51)

Substituting it into (4.49) yields (4.48).
By a comparison, we find that bound (4.48) is as sharp as (4.24a) and (4.26a) in

[31] but has a simpler form than the latter two, and its proof is also simpler.
Substituting bound (4.48) for q(sk) − q(sopt) into (4.39) and bound (4.36) into

(4.39) ultimately leads to the following a-priori bound for λopt − λk.
Theorem 4.11. Suppose ‖sopt‖ = ‖sk‖ = ∆. Then for k suitably large we have

(4.52) λopt − λk ≤
(
4ηk1∆

β0
+ 8(α1 + λopt)ηk2∆

2

)(√
κ− 1√
κ+ 1

)2(k+1)

with the factors ηk1 and ηk2 defined by (4.40) and (4.41), respectively.
This theorem clearly indicates that, except for the bounded factor, λopt − λk

converges at least as fast as
(√

κ−1√
κ+1

)2(k+1)

, and bound (4.52) is much sharper than

bound (4.34) and is roughly square of the latter.

5. A-priori bounds for sin∠(sk, sopt) and ‖(A + λkI)sk + g‖. Suppose that
‖sopt‖ = ‖sk‖ = ∆. Then sk/‖sopt‖ and sopt/‖sopt‖ have unit length. It is worthwhile
to notice that the measures sin∠(sk, sopt) and ‖sk − sopt‖/‖sopt‖ are equivalent once
they start to become fairly small. In fact, for ∠(sk, sopt) fairly small we have

‖sk − sopt‖2
‖sopt‖2

=
sTk sk
‖sopt‖2

+
sToptsopt

‖sopt‖2
− 2

sTk sopt
‖sopt‖2

= 1 + 1− 2 cos∠(sk, sopt)

= 4 sin2
∠(sk, sopt)

2
≈ sin2 ∠(sk, sopt).(5.1)

It is seen from (4.12) and (2.4) that sk and sopt are the same as y
(k)
1 and y1 up

to scaling, respectively. As a result, we have

sin∠(sk, sopt) = sin∠(y
(k)
1 , y1).(5.2)

We take two steps to estimate sin∠(sk, sopt). Firstly, we bound sin∠(y
(k)
1 , y1)

in terms of sin∠(y(k), y) with y and y(k) defined by (2.3) and (4.7), respectively.
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Secondly, we establish an a-priori bound for sin∠(y(k), y), showing how it converges
to zero as k increases. To this end, we need the following result [12, Lemma 2.3].

Lemma 5.1 ([12]). Let u =

(
u1

u2

)
and ũ =

(
ũ1

ũ2

)
where ui, ũi ∈ Cn for

i = 1, 2, and ‖u1‖ = ‖ũ1‖ = 1. Then

sin∠(u1, ũ1) ≤ min {‖u‖, ‖ũ‖} sin∠(u, ũ).

With this lemma, we can present the following bound.
Theorem 5.2. For the unit length eigenvector yT = (yT1 , y

T
2 )

T of M associated
with the eigenvalue λopt and y(k) defined by (4.7), we have

sin∠(sk, sopt) ≤
1

‖y1‖
sin∠(y(k), y).(5.3)

Proof. From (2.4) and (4.12), since

sin∠(sk, sopt) = sin∠(y
(k)
1 , y1) = sin∠

(
y
(k)
1

‖y(k)1 ‖
,

y1
‖y1‖

)

with the unit length vectors y
(k)
1 /‖y(k)1 ‖ and y1/‖y1‖, by definition (4.7) of y(k) and

Lemma 5.1 we obtain

sin∠(sk, sopt) = sin∠

(
y
(k)
1

‖y(k)1 ‖
,

y1
‖y1‖

)

≤ min

{
1

‖y1‖
,

1

‖y(k)1 ‖

}
sin∠

(
y(k)

‖y(k)1 ‖
,

y

‖y1‖

)

= min

{
1

‖y1‖
,

1

‖y(k)1 ‖

}
sin∠

(
y(k)

‖y(k)1 ‖
,

y

‖y1‖

)

≤ 1

‖y1‖
sin∠(y(k), y).(5.4)

Bound (5.3) indicates that how fast sin∠(sk, sopt) converges amounts to how fast
sin∠(y(k), y) tends to zero as k increases. In what follows, we derive an a-priori bound
for sin∠(y(k), y).

As has been seen, (µ1, y) and (µ
(k)
1 , z(k)) are simple eigenpairs of M and Mk,

respectively, and (µ
(k)
1 , y(k)) is the Ritz pair approximating the eigenpair (µ1, y) of

M . Let (y, Y⊥) be orthogonal. Then the columns of Y⊥ form an orthonormal basis of
the orthogonal complement of the subspace spanned by y. It follows from the relation
My = µ1y that

(5.5)

(
yT

Y T
⊥

)
M(y, Y⊥) =

(
µ1 fT

0 L

)
,

where fT = yTMY⊥ and L = Y T
⊥ MY⊥.

Because the right hand side of (5.5) is block triangular, the eigenvalues of M
consist of µ1 and the eigenvalues of L. Since µ1 is simple, L−µ1I is nonsingular. The
quantity

sep(µ1, L) = ‖(L− µ1I)
−1‖−1(5.6)
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is called the separation of µ1 and L, and sep(µ1, L) = σmin(L − µ1I), the smallest
singular value of L− µ1I [28].

Let the columns of Z
(k)
⊥ be an orthonormal basis of the orthogonal complement

of the subspace spanned by z(k) and (z(k), Z
(k)
⊥ ) be orthogonal. From (4.6) we have

Mkz
(k) = µ

(k)
1 z(k), from which it follows that

(5.7)

(
(z(k))T

(Z
(k)
⊥ )T

)
Mk(z

(k), Z
(k)
⊥ ) =

(
µ
(k)
1 fT

k

0 Ck

)
,

where fT
k = (z(k))TMkZ

(k)
⊥ and Ck = (Z

(k)
⊥ )TMkZ

(k)
⊥ . Note that the eigenvalues of

Ck are the Ritz values but µ
(k)
1 of M with respect to the subspace S̃k defined by (4.4).

As a result, by (4.5), µ
(k)
1 is a simple eigenvalue of Mk and sep(µ

(k)
1 , Ck) > 0. Since

µ1 − µ
(k)
1 = λopt − λk ≥ 0, λk → λopt and sep(µ1, Ck) ≥ sep(µ

(k)
1 , Ck) − |µ1 − µ

(k)
1 |,

we must have sep(µ1, Ck) > 0 for k suitably large.
In our notation, the following result is established in [17].

Lemma 5.3 ([17]). With the previous notation, let εk = sin∠(y, S̃k), assume that
sep(µ1, Ck) > 0. Then

sin∠(y(k), y) ≤
(
1 +

‖M‖√
1− ε2ksep(µ1, Ck)

)
εk.(5.8)

Combining (5.3) and (5.8) with (4.33) yields the following result immediately.
Theorem 5.4. For the unit length eigenvector yT = (yT1 , y

T
2 )

T of M associated
with its rightmost eigenvalue µ1, assume that sep(µ1, Ck) > 0. Then it holds that

sin∠(sk, sopt) ≤ ck

(
1 +

‖M‖√
1− ε2ksep(µ1, Ck)

)(√
κ− 1√
κ+ 1

)k+1

,(5.9)

where κ =
α1+λopt

αn+λopt
,

ck = 2 +
16(α1 + λopt)

(α1 − αn)2(1− t2)

(
1 +

k + 2

| ln t|

)(√
κ− 1√
κ+ 1

)2

and t =
√
κ−1√
κ+1

(cf. (4.35) and (4.32)).

This theorem indicates that sk converges to sopt at least as fast as
(√

κ−1√
κ+1

)k+1

.

Finally, we establish a-priori bounds for the residual norm ‖(A+ λkI)sk + g‖.
Theorem 5.5. Suppose ‖sopt‖ = ‖sk‖ = ∆. Then for k = 0, 1, . . . , kmax we have

(5.10) ‖(A+ λkI)sk + g‖ ≤ (λopt − λk)∆ + (α1 + λopt)‖sopt − sk‖

by dropping the higher order small term (λopt − λk)‖sopt − sk‖.
Proof. From (1.3), we have

0 = (A+ λoptI)sopt + g = (A+ λkI + (λopt − λk)I)(sk + sopt − sk) + g

= (A+ λkI)sk + g + (λopt − λk)sk

+ (A+ λkI)(sopt − sk) + (λopt − λk)(sopt − sk).
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Therefore, from ‖sk‖ = ∆, λopt − λk ≥ 0, and λopt ≥ 0, noting that ‖A + λoptI‖ =
α1 + λopt, we obtain

‖(A+ λkI)sk + g‖ = ‖(λopt − λk)sk + (A+ λoptI)(sopt − sk)‖
+ (λopt − λk)‖sopt − sk‖
≤ (λopt − λk)∆ + ‖A+ λoptI‖‖sopt − sk‖
+ (λopt − λk)‖sopt − sk‖

= (λopt − λk)∆ + (α1 + λopt)‖sopt − sk‖

by dropping the higher order small term (λopt − λk)‖sopt − sk‖.
Keep (5.1) in mind. By substituting bound (4.52) for λopt − λk and bound (5.9)

for sin∠(sk, sopt), which is approximately equal to ‖sopt−sk‖/‖sopt‖ for k sufficiently
large, into (5.10), we obtain an approximate a-priori bound for ‖(A + λkI)sk + g‖.
They illustrate that ‖(A+ λkI)sk + g‖ is dominated by ‖sk − sopt‖ and tends to zero

at least as fast as
(√

κ−1√
κ+1

)k+1

. Since the resulting bound is not rigorous, we do not

write it explicitly.
As a by-product, by exploiting some of the previous results, it is easy to establish

an a-priori bound for ‖sk−sopt‖, as shown below. With it, we will establish a rigorous
a-priori bound for ‖(A+ λkI)sk + g‖.

Theorem 5.6. Suppose ‖sopt‖ = ‖sk‖ = ∆. Then

‖sk − sopt‖ ≤ 4
√
κ∆

(√
κ− 1√
κ+ 1

)k+1

,(5.11)

where κ =
α1+λopt

αn+λopt
.

Proof. It follows from [31, Theorem 4.3] and (4.50) that

‖sk − sopt‖ ≤ 2
√
κ‖(I − πk)sopt‖,

where πk is the orthogonal projector onto Kk(g,A). Therefore, (5.11) follows from
the above relation and (4.51) directly.

This theorem is the same as (4.18b) in [31]. With it, by substituting bound (4.52)
for λopt−λk and bound (5.6) for ‖sk−sopt‖ into (5.10), it is straightforward to obtain
the following rigorous a-priori bound for ‖(A+ λkI)sk + g‖.

Theorem 5.7. Suppose ‖sopt‖ = ‖sk‖ = ∆, and let ‖rk‖ = ‖(A + λkI)sk + g‖.
Then for k suitably large we have

‖rk‖ ≤
(

4ηk1∆
2

β0
+ 8(α1 + λopt)ηk2∆

3

)(√
κ− 1√
κ+ 1

)2(k+1)

+ 4
√
κ∆(α1 + λopt)

(√
κ− 1√
κ+ 1

)k+1

(5.12)

with the factors ηk1 and ηk2 defined by (4.40) and (4.41), respectively.
Clearly, the second term of the right hand side in (5.12) dominates the bound

soon as k increases.
Summarizing the results obtained in these two sections, we conclude that the

convergence rates of λopt − λk and q(sk) − q(sopt) are the squares of sin∠(sk, sopt),
‖sk − sopt‖ and ‖(A+ λkI)sk + g‖. This means that the convergence of q(sk) and λk

uses roughly half of the iterations as needed for sk and ‖(A+ λkI)sk + g‖ when the
three errors and ‖(A+ λkI)sk + g‖ are reduced to about the same level.
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6. Numerical examples. In this section, we compare our a-priori bounds in
this paper with the four errors in the GLTR method: λopt−λk, sin∠(sk, sopt), q(sk)−
q(sopt) and ‖(A + λkI)sk + g‖, respectively. In order to give a full justification on
our a-priori bounds, we test TRS’s with A having different representative eigenvalue
distributions and various condition numbers κ’s.

All the experiments were performed on an Intel Core (TM) i7, CPU 3.6GHz, 8
GB RAM using MATLAB 2017A under the Microsoft Windows 10 64 bit.

Throughout this section, we always take n = 10000 and a fixed trust-region
radius ∆ = 1, and the vector g is a unit length vector generated by the Matlab built-
in function randn(n, 1). Since the uncomputable εk tends to zero as k increases, we
take εk = 0 in the denominator of the bound of Theorem 5.4. We exploit the Matlab
functions eigs and svds with the stopping tolerance 10−14 to compute λopt, sopt and
‖M‖, respectively, use them as the “exact” ones, and then compute q(sopt). To
maintain the numerical orthogonality of the Lanczos basis vectors, in finite precision
arithmetic, we use the symmetric Lanczos process with complete reorthogonalization.

When assessing our a-priori bounds, we should note that the bounds may be often
large overestimates of the true errors, but that there are cases where the actual errors
and their bounds become close to each other when k increases. However one cannot
say that a certain kind of bound is the sharpest in all cases. Possible overestimates of
our bounds are not surprising, since the bounds are established in the worst case and

the factors in front of
(√

κ−1√
κ+1

)k+1

or
(√

κ−1√
κ+1

)2(k+1)

are the largest possible. Our aim

consists in giving a-priori bounds which may yield sharp estimates of the asymptotic
convergence rates even if those factors in front of the bounds are large.

Example 1. This example is randomly generated, where the symmetric indefinite
sparse matrix is generated by the Matlab function

(6.1) A = sprandsym(n, density, rc),

where rc is a vector of A’s eigenvalues, and we take density = 0.01. We construct two
A’s by taking two different rc’s.

Example 1a. The elements of rc are evenly distributed among [−2, 2]:

rc(i) =





−2 + 4

n
(i− 1), i ≤ n

2

2− 4

n
(n− i), i >

n

2
.

.

Example 1b. We take the ith element rc(i) of rc as

rc(i) =




−e 2i

n , i ≤ n

2

e
2i−n

n , i >
n

2
.

Therefore, the eigenvalues of A lies in the union [−e,−1.0002]∪ [1.0002, e], and their
magnitudes monotonically increases at the rate e2/n at each subinterval.

In Tables 1–2 and Figures 1–2, we list the results and compare the a-priori bounds
with λopt − λk, sin∠(sk, sopt), q(sk)− q(sopt) and ‖(A+ λkI)sk + g‖, respectively.

Example 2. We take A to be diagonal with translated Chebyshev nodes on
the diagonal. This problem is tested in [31]. The zero nodes of the nth Chebyshev
polynomial in [−1, 1] are given by

tjn = cos
(2j − 1)π

2n
, 1 ≤ j ≤ n.
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Fig. 1. Example 1a. (a): λopt − λk and its bound (4.52); (b): sin∠(sk, sopt) and its bound
(5.9); (c): q(sk)− q(sopt) and its bound (4.48); (d): ‖(A + λkI)sk + g‖ and its bound (5.12).

Table 1
Example 1a.

Parameters in Example 1a, where t =
√
κ−1√
κ+1

(cf. (4.32)) in all the tables.

α1 αn κ t λopt q(sopt)

2.0000 −2.0000 18.1481 0.6198 2.2333 −1.4770

λopt − λk and its bound (4.52).

k λopt − λk bound

34 1.0658e − 13 2.6708e − 13

sin∠(sk, sopt) and its bound (5.9).

k sin∠(sk, sopt) bound

67 1.8249e − 14 5.4622e − 11

‖(A+ λkI)sk + g‖ and its bound (5.12).

k ‖(A+ λkI)sk + g‖ bound

66 1.8928e − 14 1.3984e − 12

q(sk)− q(sopt) and its bound (4.48).

k q(sk)− q(sopt) bound

34 3.3307e − 15 2.5219e − 13



THE CONVERGENCE OF THE GLTR METHOD 23

0 5 10 15 20 25 30 35 40

The number k of iterations

10-15

10-10

10-5

100

105

Er
ro

rs
 a

nd
 b

ou
nd

s

(a)

0 10 20 30 40 50 60 70 80

The number k of iterations

10-15

10-10

10-5

100

105

Er
ro

rs
 a

nd
 b

ou
nd

s

(b)

0 5 10 15 20 25 30 35 40

The number k of iterations

10-15

10-10

10-5

100

105

Er
ro

rs
 a

nd
 b

ou
nd

s

(c)

0 10 20 30 40 50 60 70 80

The number k of iterations

10-15

10-10

10-5

100

105

R
es

id
ua

l n
or

m
s 

an
d 

bo
un

ds

(d)

Fig. 2. Example 1b. (a): λopt − λk and its bound (4.52); (b): sin∠(sk, sopt) and its bound
(5.9); (c): q(sk)− q(sopt) and its bound (4.48); (d): ‖(A + λkI)sk + g‖ and its bound (5.12).

Table 2
Example 1b.

Parameters in Example 1b.

α1 αn κ t λopt q(sopt)

2.7183 −2.7183 29.0828 0.6872 2.9119 −1.7907

λopt − λk and its bound (4.52).

k λopt − λk bound

40 1.1013e − 13 4.3314e − 12

sin∠(sk, sopt) and its bound (5.9).

k sin∠(sk, sopt) bound

80 1.8667e − 14 9.6252e − 10

‖(A+ λkI)sk + g‖ and its bound (5.12).

k ‖(A+ λkI)sk + g‖ bound

78 2.0334e − 14 2.3683e − 11

q(sk)− q(sopt) and its bound (4.48).

k q(sk)− q(sopt) bound

40 4.4409e − 15 4.1472e − 12
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Given an interval [a, b], the linear transformation

y =

(
b− a

2

)(
x+

(
a+ b

b− a

))

maps x ∈ [−1, 1] to y ∈ [a, b]. The nth translated Chebyshev zero nodes on [a, b] are

t
[a,b]
jn =

(
b− a

2

)(
tjn +

(
a+ b

b − a

))
,

which monotonically decreases for j = 1, 2, . . . , n/2 and increases for j = n/2, . . . , n,

respectively, and cluster at [a, b] = [−5, 5] and A = diag{t[a,b]jn }, j = 1, 2, . . . , n.
In Figure 3 and Table 3, we draw and list the results.
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Fig. 3. Example 2. (a): λopt−λk and its bound (4.52); (b): sin∠(sk, sopt) and its bound (5.9);
(c): q(sk)− q(sopt) and its bound (4.48); (d): ‖(A+ λkI)sk + g‖ and its bound (5.12).

Example 3. We use the Strakoš matrix [19, p.16], which is used to test the
behavior of the symmetric Lanczos method for the eigenvalue problem. The matrix
A is diagonal with the eigenvalues

αi = α1 +

(
i− 1

n− 1

)
(αn − α1)ρ

n−i,

i = 1, 2, . . . , n. The parameter ρ controls the eigenvalue distribution. The large
eigenvalues of A are well separated for ρ < 1. We take α1 = 8, αn = −2 and ρ = 0.99.

In Figure 4 and Table 4, we depict and list the results.
Example 4. We take

(6.2) A = G+GT
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Table 3
Example 2.

Parameters in Example 2.

α1 αn κ t λopt q(sopt)

5.0000 −5.0000 34.9455 0.7106 5.2946 −2.9367

λopt − λk and its bound (4.52).

k λopt − λk bound

49 5.4197e − 14 2.4375e − 13

sin∠(sk, sopt) and its bound (5.9).

k sin∠(sk, sopt) bound

88 1.2208e − 13 7.7688e − 10

‖(A+ λkI)sk + g‖ and its bound (5.12).

k ‖(A+ λkI)sk + g‖ bound

88 1.3066e − 13 2.1418e − 11

q(sk)− q(sopt) and its bound (4.48).

k q(sk)− q(sopt) bound

48 3.1086e − 15 4.7124e − 13
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Fig. 4. Example 3. (a): λopt−λk and its bound (4.52); (b): sin∠(sk, sopt) and its bound (5.9);
(c): q(sk)− q(sopt) and its bound (4.48); (d): ‖(A+ λkI)sk + g‖ and its bound (5.12).
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Table 4
Example 3.

Parameters in Example 3.

α1 αn κ t λopt q(sopt)

8.0000 −2.0000 11.1518 0.5391 2.9850 −1.9893

λopt − λk and its bound (4.52).

k λopt − λk bound

25 2.0872e − 14 3.4477e − 12

sin∠(sk, sopt) and its bound (5.9).

k sin∠(sk, sopt) bound

49 1.0765e − 14 4.1268e − 11

‖(A+ λkI)sk + g‖ and its bound (5.12).

k ‖(A+ λkI)sk + g‖ bound

49 2.2856e − 14 1.0440e − 11

q(sk)− q(sopt) and its bound (4.48).

k q(sk)− q(sopt) bound

23 1.2879e − 14 3.9906e − 11
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Fig. 5. Example 4. (a): λopt−λk and its bound (4.52); (b): sin∠(sk, sopt) and its bound (5.9);
(c): q(sk)− q(sopt) and its bound (4.48); (d): ‖(A+ λkI)sk + g‖ and its bound (5.12).
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Table 5
Example 4.

Parameters in Example 4.

α1 αn κ t λopt q(sopt)

1.0000 −0.9997 6.9000 0.4485 1.3386 −1.1155

λopt − λk and its bound (4.52).

k λopt − λk bound

20 1.1702e − 13 2.4462e − 13

sin∠(sk, sopt) and its bound (5.9).

k sin∠(sk, sopt) bound

40 1.2388e − 14 8.4588e − 12

‖(A+ λkI)sk + g‖ and its bound (5.12).

k ‖(A+ λkI)sk + g‖ bound

40 1.0193e − 14 2.9026e − 13

q(sk)− q(sopt) and its bound (4.48).

k q(sk)− q(sopt) bound

20 3.7748e − 15 4.4463e − 14

with G generated by randn(n) and A := A/‖A‖. The eigenvalues of A exhibit normal
distribution characteristics. Figure 5 and Table 5 give the results.

We have observed from the figures and tables that, for all the test problems, (i)
the corresponding bounds predict the convergence rates of λopt − λk, sin∠(sk, sopt),
q(sk) − q(sopt) and ‖(A + λkI)sk + g‖ accurately and (ii) the bounds are very close
to their values in most of the cases, especially for λopt − λk and q(sk)− q(sopt).

The tables and figures also indicate that (i) the errors λopt−λk and q(sk)−q(sopt)
as well as their bounds use roughly half of the iterations needed for sin∠(sk, sopt)
and ‖(A + λkI)sk + g‖ as well as their bounds to achieve approximately the same
tolerance and (ii) the condition number κ affects the convergence of the GLTRmethod:
the bigger κ is, the more iterations the method needs to reduce each of λopt − λk,
sin∠(sk, sopt), q(sk)− q(sopt) and ‖(A+λkI)sk + g‖ to approximately the same level.

7. Conclusion. The GLTR method has been receiving high attention both theo-
retically and numerically. Some a-priori bounds have been obtained for q(sk)−q(sopt)
and ‖sk−sopt‖ in the literature, but there has been no quantitative analysis and result
on λopt − λk and ‖(A + λkI)sk + g‖. Starting with the mathematical equivalence of
the solution of TRS (1.1) and the eigenvalue problem of the augmented matrix M ,
we have established a-priori bounds for λopt − λk, sin∠(sk, sopt), q(sk)− q(sopt), and
the residual norm ‖(A + λkI)sk + g‖. The results prove how the three errors and
the residual norm decrease as the subspace dimension increases. Numerical results
have confirmed that our bounds are realistic and they accurately predict the true
convergence rates of the three errors and the residual norm in the GLTR method.
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