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Abstract

We study increasing stability in the inverse source problem for the Helmholtz equation and classical
Lame system from boundary data at multiple wave numbers. By using the Fourier transform with respect
to the wave numbers, explicit bounds for analytic continuation, Huygens’ principle and exact bounds for
initial boundary value problems, increasing (with larger wave numbers intervals) stability estimates are
obtained.

1 Introduction

We are interested in uniqueness and stability in the inverse source problems for elliptic equations and
systems when the source term, supported in a bounded domain Ω, is to be found from the data on ∂Ω.
One of important examples is recovery of acoustic sources from boundary measurements of the pressure.
This type of inverse source problems is also motivated by wide applications in antenna synthesis, biomedical
imaging and geophysics, in particular, to tsunami prediction. From the boundary data for one single linear
differential equation or system, it is not possible to find the source uniquely [15, Ch.4], but in case of family
of equations (like the Helmholtz equation for various wave numbers in (0,K)) one can regain uniqueness.
Then the crucial issue for applications is the stability of the source recovery. In general, a feature of inverse
problems for elliptic equations is a logarithmic type stability estimate which results in a robust recovery
of only few parameters describing the source and hence yields very low resolution numerically. For the
Helmholtz equation we will show increasing (getting nearly Lipschitz) stability when the Dirichlet data are
given on the whole boundary and K is getting large. Similar results are obtained for the time periodic
solutions of the more complicated dynamical elasticity system.

We will use mostly standard notation. ‖u‖(l) is the norm of a function u in the Sobolev space H l. Ω is
a bounded domain in R

3 with connected R
3 \ Ω̄ and the boundary ∂Ω ∈ C2. C denote generic constants

depending only on Ω and in the case of the elasticity system on the Lame parameters λ, µ and density ρ
which are assumed to be constant.

Let u(x, k) solve the scattering problem in R
3 with the Sommerfeld radiation condition

(∆ + k2)u = −f1 − ikf0 in R
3, (1.1)

lim r(∂ru− iku) = 0 as r = |x| → +∞, (1.2)

f0, f1 ∈ L2(Ω), f0 = f1 = 0 on R
3 \ Ω̄.

We are interested in uniqueness and stability of recovery of functions f0, f1 from the near field data

u = u0 on ∂Ω, when 0 < k < K. (1.3)

Theorem 1.1. Let 1 < K. There exists C such that

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C

(

ε20 +
M2

1

1 +K
4

3 |E0|
1

2

)

, (1.4)

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω) ≤ C

(

ε21 +
M2

2

1 +K
4

3 |E1|
1

2

)

(1.5)
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for all u ∈ H2(Ω) solving (1.1), (1.2). Here

ε20 =

∫ K

0

‖u(, ω)‖2(0)(∂Ω)dω,

ε21 =

∫ K

0

(

ω2‖u(, ω)‖2(0)(∂Ω) + ‖u(, ω)‖2(1)(∂Ω)
)

dω,

Ej = − ln εj , j = 0, 1 and M1 = ‖f0‖(1)(Ω) + ‖f1‖(0)(Ω), M2 = ‖f0‖(2)(Ω) + ‖f1‖(1)(Ω).

Next we consider the inverse scattering source problem for stationary elastic waves. Let the displacement
field u(x, k) solve the elasticity system

(µ∆+ (µ+ λ)∇div + ρk2)u = −f1 − ikf0 in R
3, (1.6)

with the following radiation condition

lim r(∂ru(x; p)− ic−1
p ku(x; p)) = 0, lim r(∂ru(x; s)− ic−1

s ku(x; s)) = 0 as r = |x| → +∞, (1.7)

where u = u(; p) + u(; s) is the Helmholtz decomposition of u into compression/pressure and shear waves,

cp = (λ+2µ)
1

2 ρ−
1

2 , cs = µ
1

2 ρ−
1

2 . Here λ, µ are (constant) Lame parameters satisfying an ellipticity condition
0 < λ + µ, 0 < µ and ρ is a constant positive density. We are interested in stability of recovery functions
f0, f1 from the near field data

u = u0 on ∂Ω, when 0 < k < K. (1.8)

.

Theorem 1.2. Let 1 < K. There exists C such that

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C

(

ε2 +
M2

2e

1 +K
4

3 |E| 12

)

, (1.9)

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω) ≤ C

(

ε2e +
M2

3

1 +K
4

3 |Ee|
1

2

)

(1.10)

for all u ∈ H2(Ω) solving (1.6), (1.7). Here

ε2 =

∫ K

0

‖u0(, ω)‖2(0)(∂Ω)dω,

ε2e =

∫ K

0

(

ω2‖u0(, ω)‖2(0)(∂Ω) + ‖u0(, ω)‖2(1)(∂Ω)
)

dω,

E = − ln ε, Ee = − ln εe, M2e = ‖f0‖(2)(Ω) + ‖f1‖(2)(Ω) and M3 = ‖f0‖(3)(Ω) + ‖f1‖(3)(Ω).

The stability bounds (1.4), (1.5), (1.9), (1.10) contain a Lipschitz stable parts Cǫ2 and conditional
logarithmic stable part. This logarithmic part is natural and necessary since we deal with elliptic equations
and systems. However with growing K logarithmic part is disappearing and the bounds become nearly
Lipschitz.

For the Helmholtz equation uniqueness and numerical results were obtained in [8]. First increasing sta-
bility results [2] handle more particular case and by quite different (direct spatial Fourier analysis) methods.
In [5] a temporal Fourier transform, sharp bounds of the analytic continuation to higher wave numbers, and
exact observability bounds for associated hyperbolic equations have been introduced to obtain increasing
stability bounds for the three dimensional Helmholtz equation. In [9] the methods and results of [5] are
extended to the more complicated case of the two dimensional Helmholtz equation. In these works one is
using the complete Cauchy data on ∂Ω instead of (1.3), (1.8) which are much more realistic: indeed, the
common measuring acoustical devise (microphone) registers only pressure u, while in seismic one typically
collects displacements u. In [21] a spherical Ω was considered and there is a result on increasing stability
from only u on ∂Ω, but the used norm of the data was not the standard norm, but it involved the operator
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of solution of the exterior Dirichlet problem. In the recent preprint [3] the results similar to [21] are obtained
for the elasticity system (1.6). Moreover, there is a very strong numerical evidence of improving resolution
of the inverse source problem for larger K given in [2], [5], [18] and other publications.

In this paper we consider an arbitrary domain Ω and obtain increasing stability bounds (1.4), (1.5),
(1.9), (1.10) which contain most natural Sobolev norms of the Dirichlet type data (1.3), (1.8). These results
are new even for the Helmholtz equation, since we only use the Dirichlet data on ∂Ω and reduce regularity
assumptions in (1.4). We also handle the classical linear elasticity system. As in [5], in the current work we
use the Fourier transform in time to reduce our inverse source problem to identification of the initial data
in the hyperbolic initial value problem by lateral Cauchy data (observability in control theory). We derive
our increasing stability estimates by using sharp bounds of analytic continuation of the data from (0,K)
onto (0,+∞) given in [5] and then subsequently utilized in [9], [21], [3]. A new idea which considerably
simplified the proof and hence the exposition is to use the Huygens’s principle and known Sakamoto type
energy bounds for the corresponding hyperbolic initial boundary value problem (backward in time) to avoid
a need in the complete Cauchy data on ∂Ω and in a direct use of the exact boundary controllability results.
Of course, the Huygens’ principle is valid only in odd spatial dimensions and for special constant coefficients.
This restricts extensions of this approach. However, we can handle two very important in applications cases
with a minimal amount of technicalities.

More is known about uniqueness and increasing stability in the Cauchy problem for elliptic equations and
for identification of the Schrödinger potential. Classic Carleman estimates imply some conditional Hölder
type stability estimates for solutions of the elliptic Cauchy problem. In 1960 F. John [19], [15] showed that
for the continuation of the Helmholtz equation from the unit disk onto any larger disk the stability estimate,
which is uniform with respect to the wave numbers, is still of logarithmic types. In the papers [11], [12] it
was demonstrated that in a certain sense stability is always improving for larger k under (pseudo) convexity
conditions on the geometry of the domain and of the coefficients of the elliptic equation. In [16] there are
first analytic and numerical results on improving stability without (pseudo)convexity conditions. Finally
in [14] it was shown that it is true for general second order elliptic equations disregard on any convexity
conditions.

Increasing stability for the Schrödinger potential from the complete set of the boundary data (the
Dirichlet-to Neumann map) was demonstrated in [13]. An extension of this result for the attenuation and
conductivity coefficients is obtained in [17].

The rest of this paper is organized as follows. In Section 2 we adjust and use the methods of [5], in
particular bounds of the analytic continuation of the needed norms of the Dirichlet data from (0,K) onto a
sector of the complex plane k = k1 + ik2, and use them and sharp bounds in [5] of the harmonic measure
of (0,K) in this sector to derive explicit bounds of the analytic continuation of this norms from (0,K) onto
the real axis. We use the Huygens’ principle and known sharp bounds of solutions of the initial boundary
value problems for the wave equation for a short derivation of analogues of exact observability bounds with
reduced data in Lemma 2.4. These results are crucial for the proof of Theorem 1.1. In Section 3 the proofs
of the preceding section are extended onto much more complicated case of the classical Lame system of
the elasticity theory. While the radiating fundamental solution is not so simple, it has some features which
we exploit by usimng integration by parts to adjust the proof of Lemma 2.1 to get needed bounds of the
analytic continuation in Lemma 3.1. In Lemma 3.2 we obtain some rates of decay of scattering solutions of
the elasticity system which are less precise than the corresponding result of Lemma 2.2 because we are not
aware of sharp regularity results available scalar transmission problems. The Huygens’ principle is also valid
for the initial value problem for the associated dynamical elasticity system. By using it and the versions
[4], [10] of sharp boundary regularity results of [20], [22] for the initial boundary value dynamical elastic
we obtain crucial bounds of the initial data by the lateral displacements. After that the proof for elasticity
system proceeds as in section 2 for the Helmholtz equation.

2 Increasing stability for acoustic waves

The well-known integral representation for (1.1), (1.2) yields

u(x, k) =
1

4π

∫

Ω

(f1(y) + ikf0(y))
eik|x−y|

|x− y| dy. (2.11)
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Due to (2.11),
∫ ∞

−∞

‖u(, ω)‖2(0)(∂Ω)dω = I0(k) +

∫

k<|ω|

‖u(, ω)‖2(0)(∂Ω)dω, (2.12)

∫ ∞

−∞

ω2‖u(, ω)‖2(0)(∂Ω)dω = I1(k) +

∫

k<|ω|

ω2‖u(, ω)‖2(0)(∂Ω)dω, (2.13)

∫ ∞

−∞

‖∇τu(, ω)‖2(0)(∂Ω)dω = I2(k) +

∫

k<|ω|

‖∇τu(, ω)‖2(0)(∂Ω)dω, (2.14)

where I0(k), I1(k) and I2(k) are defined as

I0(k) = 2

∫ k

0

∫

∂Ω

(
∫

(f1(y) + iωf0(y))
eiω|x−y|

|x− y| dy
)(

∫

(f1(y)− iωf0(y))
e−iω|x−y|

|x− y| dy

)

dΓ(x)dω, (2.15)

I1(k) = 2

∫ k

0

ω2

∫

∂Ω

(
∫

(f1(y) + iωf0(y))
eiω|x−y|

|x− y| dy
)(

∫

(f1(y)− iωf0(y))
e−iω|x−y|

|x− y| dy

)

dΓ(x)dω, (2.16)

I2(k) = 2

∫ k

0

∫

∂Ω

(
∫

(f1(y) + iωf0(y))∇τ,x

eiω|x−y|

|x− y| dy
)(

∫

(f1(y)− iωf0(y))∇τ,x

e−iω|x−y|

|x− y| dy

)

dΓ(x)dω,

(2.17)
∇τ is the tangential projection of the gradient and we used that u(x, ω) = u(x,−ω). Due to the definitions
of the following norms of the boundary data:

ε20 = I0(K), ε21 = I1(K) + I2(K). (2.18)

The truncation level k in (2.15),(2.16) and (2.17) is important to keep balance between the known data and
the unknown information when k ∈ [K,∞).

Since the integrands are entire analytic functions of ω, the integrals in (2.15),(2.16), (2.17) with respect
to ω can be taken over any path joining points 0 and k of the complex plane. Thus I1(k), I2(k) are entire
analytic functions of k = k1 + ik2. As in [5], we will need the following elementary estimates.

Lemma 2.1. Let suppf0, suppf1 ⊂ Ω and f1 ∈ H1(Ω), f0 ∈ H1(Ω). Then

|I0(k)| ≤ 8π|∂Ω|D
(

|k|‖f1‖2(0)(Ω) +
1

3
|k|3‖f0‖2(0)(Ω)

)

e2D|k2|, (2.19)

|I1(k)| ≤ 8π|∂Ω|D
(

1

3
|k|3‖f1‖2(0)(Ω) +

1

5
|k|5‖f0‖2(0)(Ω)

)

e2D|k2|, (2.20)

|I2(k)| ≤ 8π|∂Ω|D
(

|k|‖f1‖2(1)(Ω) +
1

3
|k|3‖f0‖2(1)(Ω)

)

e2D|k2|, (2.21)

where |∂Ω| is the area of ∂Ω and D = sup |x− y| over x, y ∈ Ω.

Proof. Using the parametrization ω = ks, s ∈ (0, 1) in the line integral and the elementary inequality
|eiω|x−y|| ≤ e|k2|D it is easy to derive that

|I0(k)| ≤ 2

∫ 1

0

|k|
(

∫

∂Ω

(
∫

Ω

(|f1(y)|+ |k|s|f0(y)|)
e|k2|D

|x− y|dy
)2

dΓ(x)

)

ds

≤ 4

∫ 1

0

|k|
∫

∂Ω

(
∫

Ω

(|f1(y)|2 + |k|2s2|f0(y)|2)
)

dy

(
∫

Ω

e2|k2|D

|x− y|2 dy
)

dΓ(x)ds,

where the Schwarz inequality is used for the integrals with respect to y. The polar coordinates r = |y − x|
(originated at x) with respect to y yield

|I0(k)| ≤ 4|k|
∫ 1

0

(
∫

Ω

(

|f1|2(y) + |k|2s2|f0|2
)

dy

)

ds

∫

∂Ω

(

4π

∫ D

0

e2|k2|Ddr

)

dΓ(x).
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Integrating with respect to s, x, and r, we complete the proof of (2.19).
The bound (2.20) is derived in [5], Lemma 2.1, in a similar way.
The bound (2.21) is also actually obtained in [5].
Indeed,

|I2(k)| ≤ 2|k|
∫ 1

0

∫

∂Ω

|∇τ

∫

Ω

(f1(y) + ksf0(y))
eiks|x−y|

|x− y| dy|2dΓ(x)ds ≤

2|k|
∫ 1

0

∫

∂Ω

|∇x

∫

Ω

(

f1(y) + ksf0(y)
eiks|x−y|

|x− y|

)

dy|2dΓ(x)ds.

Observing that ∇x
eiks|x−y|

|x−y| = −∇y
eiks|x−y|

|x−y| and integrating by parts with respect to y we reduce the proof

to the above proof of (2.19).

The following steps are needed to link the unknown values of I0(k), I1(k) and I2(k) for k ∈ [K,∞) to the
known values εj defined in (2.18).

Let S be the sector {k : −π
4 < arg k < π

4 } and µ(k) be the harmonic measure of the interval [0,K] in
S \ [0,K]. Observe that |k2| ≤ k1 when k ∈ S, so

|I0(k)e−2(D+1)k| ≤ C
(

|k1|‖f1‖2(0)(Ω) + |k1|3‖f0‖2(0)(Ω)
)

e−2k1 ≤ CM2
0 ,

with M0 = ‖f0‖(0)(Ω) + ‖f1‖(0)(Ω) and generic constants C. Noticing that

|I0(k)e−2(D+1)k| ≤ ε20 on [0,K],

we conclude that
|I0(k)e−2(D+1)k| ≤ Cε

2µ(k)
0 M2

0 , (2.22)

when K < k < +∞.
Similar arguments also yield

|I1(k)e−2(D+1)k| ≤ Cε2µ(k)M2
0 , (2.23)

|I2(k)e−2(D+1)k| ≤ Cε2µ(k)M2
1 . (2.24)

We need the following lower bound of the harmonic measure µ(k) given in [5], Lemma 2.2.

Lemma 2.2. If 0 < k < 2
1

4K, then
1

2
≤ µ(k). (2.25)

If 2
1

4K < k, then

1

π

(

(

k

K

)4

− 1

)− 1

2

≤ µ(k). (2.26)

We consider the hyperbolic initial value problem

∂2
tU −∆U = 0 on R

3 × (0,+∞), U(, 0) = f0, ∂tU(, 0) = −f1 on R
3. (2.27)

We define U(x, t) = 0 when t < 0. As shown in [5], section 4, the solution of (1.1) coincides with the Fourier
transform of U , namely

u(x, k) =
1√
2π

∫ +∞

−∞

U(x, t)eiktdt. (2.28)

To proceed, the estimate for remainders in (2.12), (2.13), (2.14) is used and summarized in the next
result proven as Lemma 4.1 in [5].
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Lemma 2.3. Let u be a solution to the forward problem (1.1), (1.2) with f1 ∈ H1(Ω) and f0 ∈ H2(Ω),
suppf0, suppf1 ⊂ Ω. Then

∫

k<|ω|

‖u(, ω)‖2(0)(∂Ω)dω ≤ Ck−2
(

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω)
)

, (2.29)

∫

k<|ω|

ω2‖u(, ω)‖2(0)(∂Ω)dω +

∫

k<|ω|

‖∇u(, ω)‖2(0)(∂Ω) ≤ Ck−2
(

‖f0‖2(2)(Ω) + ‖f1‖2(1)(Ω)
)

. (2.30)

Proof. We claim that

‖U‖2(1)(∂Ω× (0, D)) ≤ C
(

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω)
)

. (2.31)

Indeed, the initial value problem (2.27) can be viewed as the (strictly) hyperbolic transmission problem

∂2
tU

− −∆U− = 0 in Ω× (0,+∞), ∂2
tU

+ −∆U+ = 0 in (R3 \ Ω̄)× (0,+∞),

U− = −f0, ∂tU
− = f1 in Ω× {0}, U+ = −f0, ∂tU

+ = f1 in (R3 \ Ω̄)× {0},
U+ − U− = g0, ∂νU

+ − ∂νU
− = g1 on ∂Ω× (0,+∞),

with g0 = 0, g1 = 0. Then (2.31) follows from the generalization [12] of Sakamoto results [22] onto transmis-
sion problems.

Obviously, the following inequalities hold

∫

k<|ω|

‖u(, ω)‖2(0)(∂Ω)dω ≤ k−2

∫

k<|ω|

ω2‖u(, ω)‖2(0)(∂Ω)dω

≤ k−2

∫

R

ω2‖u(, ω)‖2(0)(∂Ω)dω = k−2

∫

R

‖∂tU(, t)‖2(0)(∂Ω)dt

by the Parseval’s identity. Since according to the Huygens’ principle U(, t) = 0 when D < t, the last
inequality combined with (2.31) implies the bound (2.29).

(2.30) is similarly derived in [5], Lemma 4.1.

The main novelty compared with [5] is the next result which follows almost immediately from the Huygens’
principle for the initial value problem and the known bounds for initial boundary value hyperbolic problems.

Lemma 2.4. Let U be a solution to (2.27) with f1 ∈ L2(Ω),f0 ∈ H1(Ω), suppf0, suppf1 ⊂ Ω. Then

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C‖U‖2(0)(∂Ω× (0, D)), (2.32)

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω) ≤ C
(

‖∂tU‖2(0)(∂Ω× (0, D)) + ‖U‖2(1)(∂Ω× (0, D))
)

. (2.33)

Proof. Since suppf0, suppf1 ⊂ Ω from the Huygens’ principle it follows that U = 0 on Ω × (D,+∞). Now
(2.32), (2.33) follow from the generalizations [20], Theorem 4.1, of Sakamoto energy estimates [22] for the
initial boundary value problem applied to the initial boundary value problem

∂2
tU −∆U = 0 on R

3 × (0, D), U(, D) = 0, ∂tU(, D) = 0 on Ω.

Finally, we are ready to prove the increasing stability estimate of Theorem 1.1.

Proof. Without loss of generality, we can assume that ε0 < 1 and π(D + 1)E
− 1

4

0 < 1, otherwise the bound
(1.4) is straightforward.

In (2.12),(2.13),(2.13) we let

k = K
2

3E
1

4

0 , when 2
1

4K
1

3 < E
1

4

0 , and k = K, when E
1

4

0 ≤ 2
1

4K
1

3 . (2.34)
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If 2
1

4K
1

3 < E
1

4

0 , then from (2.26), (2.23), and (2.34) we obtain

|I0(k)| ≤ e2(D+1)ke
− 2

π

(

( k
K )4−1

)− 1

2 E0CM2
0

≤ CM2
0 e

2(D+1)K
2

3 E
1

4

0
− 2

π (
K
k )

2
E0 = CM2

0 e
−2K

2

3
1

π
E

1

2

0

(

1−π(D+1)E
− 1

4

0

)

.

Using the assumption at the beginning of the proof and the elementary inequality e−y ≤ 6
y3 when 0 < y, we

conclude that

|I0(k)| ≤ CM2
0

1

K2E
3

2

0

(

1− π(D + 1)E
− 1

4

0

)3 . (2.35)

On the other hand, if E
1

4

0 ≤ 2
1

4K
1

3 , then k = K and from (2.34) we derive that

|I0(k)| ≤ 2ε20. (2.36)

Hence, using (2.12), (2.34), (2.35), and (2.36) we yield

∫

∂Ω

∫ +∞

−∞

|u(x, ω)|2dωdΓ(x) = I0(k) +

∫

∂Ω

∫

k<|ω|

|u((x, ω)|2dωdΓ(x)

≤ ε20 + CM2
0

1

K2E
3

2

0

+ C
‖f0‖2(2) + ‖f1‖2(1)

1 +K
4

3E
1

2

0

, (2.37)

where we used also (2.29).
By Lemma 2.4, we finally derive

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C‖U‖2(0)(∂Ω× (0, D)) ≤ C‖U‖2(0)(∂Ω× R) ≤

C

∫

∂Ω

∫ +∞

−∞

|u(x, ω)|2dωdΓ(x) ≤ C

(

ε20 +M2
1

1

K2E
3

2

0

+
‖f0‖2(1) + ‖f1‖2(0)

1 +K
4

3E
1

2

0

)

due to the Parseval’s identity and (2.37). Since

K
4

3E
1

2

0 < K2E
3

2

0 ,

when 1 < K, 1 < E0, the proof of (1.4) is complete.
(1.5) can be proved similarly when we use (2.33) instead of (2.32)

3 Increasing stability for elastic waves

The well-known integral representation for (1.6),(1.7) yields

u(x, k) =

∫

Ω

Φ(x− y; k)(f1(y) + ikf0(y))dy, (3.38)

where

Φ(x− y; k) =
eic

−1

s k|x−y|

4πc2s|x− y|I3 + k−2∇2
x

eic
−1

s k|x−y| − eic
−1

p k|x−y|

4π|x− y| ,

I3 is the 3× 3 identity matrix and ∇2Φ is the 3× 3 matrix (∂j∂mΦ), j,m = 1, 2, 3. Observe that

Φ(x − y; k) =
eic

−1

s k|x−y|

4πc2s|x− y|I3 + k−2∇2
x

eic
−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x − y|
4π|x− y| . (3.39)
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Due to (3.38),
∫ ∞

−∞

‖u(, ω)‖2(0)(∂Ω)dω = I0,e(k) +

∫

k<|ω|

‖u(, ω)‖2(0)(∂Ω)dω, (3.40)

∫ ∞

−∞

ω2‖u(, ω)‖2(0)(∂Ω)dω = I1,e(k) +

∫

k<|ω|

ω2‖u(, ω)‖2(0)(∂Ω)dω, (3.41)

∫ ∞

−∞

‖∇τu(, ω)‖2(0)(∂Ω)dω = I2,e(k) +

∫

k<|ω|

‖∇τu(, ω)‖2(0)(∂Ω)dω, (3.42)

where I1,e(k) and I2,e(k) are defined as
I0,e(k) =

2

∫ k

0

∫

∂Ω

(
∫

Ω

Φ(x− y;ω)(f1(y) + iωf0(y))dy

)(
∫

Ω

Φ(x− y;−ω)(f1(y)− iωf0(y))dy

)

dΓ(x)dω, (3.43)

I1,e(k) =

2

∫ k

0

ω2

∫

∂Ω

(
∫

Ω

Φ(x− y;ω)(f1(y) + iωf0(y))dy

)(
∫

Ω

Φ(x− y;−ω)(f1(y)− iωf0(y))dy

)

dΓ(x)dω, (3.44)

I2,e(k) =

2

∫ k

0

∫

∂Ω

(
∫

Ω

∇τ,xΦ(x− y;ω)(f1(y) + iωf0(y))dy

)(
∫

Ω

∇τ,xΦ(x− y;−ω)(f1(y)− iωf0(y))dy

)

dΓ(x)dω,

(3.45)
and we used that u(x, ω) = u(x,−ω).

Using (3.39) and the power series for the exponential function we can see that Φ is an entire analytic
function of k = k1 + ik2, so, as in section 2, I0,e(k), I1,e(k), I2,e(k) are entire analytic functions of k.

Lemma 3.1. Let suppf0, suppf1 ⊂ Ω and f1 ∈ H3(Ω), f0 ∈ H3(Ω). Then

|I0,e(k)| ≤ C
(

|k|‖f1‖2(2)(Ω) + |k|3‖f0‖2(2)(Ω)
)

e2Dc−1

s |k2|, (3.46)

|I1,e(k)| ≤ C
(

|k|3‖f1‖2(2)(Ω) + |k|5‖f0‖2(2)(Ω)
)

e2Dc−1

s |k2|, (3.47)

|I2,e(k)| ≤ C
(

|k|‖f1‖2(3)(Ω) + |k|3‖f0‖2(3)(Ω)
)

e2Dc−1

s |k2|, (3.48)

where D = sup |x− y| over x, y ∈ Ω.

Proof. It is easy to see that

∇2
x

eic
−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x− y|
4π|x− y| = ∇2

y

eic
−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x− y|
4π|x− y| .

Therefore, integrating by parts with respect to y in (3.38) we yield

u(x, k) =

∫

Ω

(
eic

−1k|x−y|

4πc2|x− y| (f1(y) + ikf0(y))−

k−2
eic

−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x− y|
4π|x− y| (∇divf1(y) + ik∇divf0(y)))dy. (3.49)

Observe that

|k−2
eic

−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x− y|
4π|x− y| | ≤ C

ec
−1

s |k2||x−y|

|x− y| , (3.50)

or
|eic−1

s k|x−y| − eic
−1

p k|x−y| − ik(c−1
s − c−1

p )|x− y|| ≤ C|k|2ec−1

s |k2||x−y||x− y|.
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Indeed, when 1 ≤ |k| the later bound is obvious, since cs < cp. When |k| < 1, then using the series for the
exponential function we conclude that the left hand side is

|
+∞
∑

m=2

((c−m
s − c−m

p )
(ik|x− y|)m

m!
| ≤ |k|2c−2

s |x− y|2
+∞
∑

m=2

c−(m−2)
s

(k|x− y|)m−2

(m− 2)!
≤ C|k|2.

Since C ≤ ec
−1

s |k2||x−y|, it completes the derivation of (3.50). Using (3.49) and (3.50) the proof of (3.46)
proceeds exactly as in the proof of Lemma 2.1.

To demonstrate (3.47) by using (3.44), (3.39), (3.38), (3.50) as in the proof of Lemma 2.1 we yield

|I1,e(k)| ≤ C

∫ 1

0

|k|3s2
(
∫

Ω

(

|f1|2(y) + |k|2s2|f0|2 + |∇divf1|2(y) + |k|2s2|∇divf0|2
)

dy

)

ds

∫

∂Ω

(

∫ D

0

e2c
−1

s |k2|Ddr

)

dΓ(x).

Integrating with respect to s, r we obtain (3.47).
(3.48) can be derived similarly to (3.46) as in Lemma 2.1, integrating by parts and using (3.49) and

(3.50).

Observe that |k2| ≤ k1 when k ∈ S, so

|I0,e(k)e−2(D+1)k| ≤ C
(

|k1|3‖f1‖2(2)(Ω) + |k1|5‖f0‖2(2)(Ω)
)

e−2k1 ≤ CM2
2,e.

Noticing that
|I0,e(k)e−2(D+1)k| ≤ ε2 on [0,K],

we conclude that
|I0,e(k)e−2(D+1)k| ≤ Cε2µ(k)M2

2,e, (3.51)

when K < k < +∞. Similar arguments also yield

|I1,e(k)e−2(D+1)k| ≤ Cε2µ(k)M2
3 , (3.52)

|I2,e(k)e−2(D+1)k| ≤ Cε2µ(k)M2
3 , (3.53)

when K < k < +∞.
We consider the dynamical initial value problem

ρ∂2
tU− µ∆U− (λ+ µ)∇divU = 0 on R

3 × (0,+∞), U(, 0) = f0, ∂tU(, 0) = −f1 on R
3. (3.54)

We define U(x, t) = 0 when t < 0. As above we claim that the solution of (1.6) coincides with the Fourier
transform of U, namely

u(x, k) =
1√
2π

∫ +∞

−∞

U(x, t)eiktdt. (3.55)

To demonstrate (3.55) and for the further proofs we recall the well-known [6], p. 711, integral represen-
tation of the solution to (3.54)

U(x, k) = V(−c2s∆f1 + (c2p − c2s)∇divf1)(x, t) + ∂tV(−c2s∆f0 + (c2p − c2s)∇divf0)(x, t)+

∂2
tV(f1)(x, t) + ∂3

tV(f0)(x, t), (3.56)

where

V(F)(x, t) =
1

c2p − c2s
(

∫

|x−y|<cst

cp − cs
cs

F(y)dy +

∫

cst<|x−y|<cpt

cpt− |x− y|
|x− y| F(y)dy),
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which is valid at least when f0 ∈ C3
0 (Ω), f1 ∈ C3

0 (Ω). (3.56) implies both the finite speed of the propagation
and the Huygens’ principle for U, in particular,

U(x, t) = 0 when cpt+D < |x− a| or when D < cst. (3.57)

Approximating the initial data by smooth functions one can extend (3.57) onto f0 ∈ H0(Ω), f1 ∈ H−1(Ω).
To show (3.55) let

u
∗(x, k) =

1√
2π

∫ ∞

0

U(x, t)eiktdt, when k > 0. (3.58)

Using (3.57) we conclude that

curlu
∗(x, k) =

1√
2π

∫ ∞

0

curlU(x, t)eiktdt, divu∗(x, k) =
1√
2π

∫ ∞

0

divU(x, t)eiktdt when k > 0. (3.59)

Applying curl and div to (1.6) we will have

µ∆curlu+ k2ρcurlu = −curl(f1 + ikf1), (λ+ 2µ)∆divu+ k2ρdivu = −div(f1 + ikf0) on R
3. (3.60)

In addition, from the integral representation of solutions to the Helmholtz equation it follows that

lim
r→∞

r(∂rcurlu− ikpcurlu) = 0, lim
r→∞

r(∂rdivu− iksdivu) = 0, r = |x|, (3.61)

provided k > 0. Applying curl and div to (3.54) we will have

ρ∂2
t curlU− µ∆curlU = 0 on R

3 × (0,+∞), curlU(, 0) = curlf0, ∂tcurlU(, 0) = −curlf1 on R
3, (3.62)

ρ∂2
t divU− divcurlU = 0 on R

3 × (0,+∞), divU(, 0) = divf0, ∂tdivU(, 0) = −divf1 on R
3. (3.63)

As shown in [5], (3.60), (3.61), (3.62), (3.63) imply that

curlu(x, k) =
1√
2π

∫ ∞

0

curlU(x, t)eiktdt, divu(x, k) =
1√
2π

∫ ∞

0

divU(x, t)eiktdt when k > 0.

Therefore from (3.59) we have

∇curl(u− u
∗)(x, k) = 0, div(u− u

∗)(x, k) = 0 on R
3

and hence
∆(u− u

∗)(x, k) = 0 on R
3 when 0 < k. (3.64)

Due to integral representations (2.11), (3.58) and the Huygense’ principle (3.57) the functions u(x, k),u∗(x, k)
are entire analytic with respect to k therefore (3.64) holds for all complex k. If 0 < k2 From the integral
representation (3.38) function u(x, k) decays exponentially as |x| goes to +∞. Using (3.58), (3.57) as in
[9], section 4, one can show that u

∗ also decays exponentially in |x| at fixed k, 0 < k2. By the Liouville’s
Theorem (3.64) and exponential decay imply that u(x, k) = u

∗(x, k) when 0 < k2. Using analyticity with
respect to k and passing to the limit (as k2 goes to zero) we obtain this equality and therefore (3.55) for any
real k.

Lemma 3.2. Let function u be a solution to the forward problem (1.6)-(1.7) with f1 ∈ H3(Ω) and f0 ∈ H4(Ω),
suppf1, suppf0 ⊂ Ω. Then

∫ ∞

k

‖ u(, ω) ‖2(0) (∂Ω)dω ≤ Ck−2
(

‖ f1 ‖2(1) (Ω)+ ‖ f0 ‖2(2) (Ω)
)

(3.65)

and
∫ ∞

k

(ω2 ‖ u(, ω) ‖2(0) (∂Ω)+ ‖ u(, ω) ‖2(1) (∂Ω))dω ≤ Ck−2(‖ f1 ‖2(2) (Ω)+ ‖ f0 ‖2(3) (Ω)
)

. (3.66)
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Proof. Let B be a ball of the radius (cpc
−1
s + 1)D centred at a point a ∈ Ω. Since the (maximal) speed of

the propagation for the dynamical elasticity system is cs, U(x, t) = 0 when cpt < |x− a| −D, in particular,
U = 0 on ∂B × (0, c−1

s D). Moreover, due to the Huygens’ principle, U = 0 on Ω × (c−1
s D,+∞). The

standard energy estimate for the initial value problem (3.54) in B× (0, c−1
s D) with U = 0 on ∂B× (0, c−1

s D)
gives

‖ ∂tU(, t) ‖2(0) (Ω)+ ‖ U(, t) ‖(1) (Ω) ≤ C(‖f0‖(1)(Ω) + ‖f1‖(0)(Ω)), 0 < t < c−1
s D.

Observe that ∂tU solves the elasticity system (3.54) and satisfies the initial conditions

∂tU = f1, ∂
2
tU = ρ−1(µ∆f0 + (λ+ µ)∇divf0) on R

3 × {0}.

Applying the same energy estimate we yield

‖ ∂2
tU(, t) ‖2(0) (Ω)+ ‖ ∂tU(, t) ‖(1) (Ω) ≤ C(‖f0‖(2)(Ω) + ‖f1‖(1)(Ω)), 0 < t < c−1

s D.

By Trace Theorems for Sobolev spaces we obtain

‖∂tU(, t)‖(0)(∂Ω) ≤ C‖∂tU(, t)‖(1)(Ω) ≤ C(‖f0‖(2)(Ω) + ‖f1‖(1)(Ω)), 0 < t < c−1
s D. (3.67)

Now,
∫ ∞

k

‖ u(, ω) ‖2(0) (∂Ω)dω ≤ k−2

∫ ∞

k

‖ ω2
u(, ω) ‖2(0) (∂Ω)dω ≤

k−2

∫ ∞

0

‖ ∂tU(, t)2 ‖2(0) (∂Ω)dt = k−2

∫ c−1

s D

0

‖ ∂tU(, t)2 ‖2(0) (∂Ω)dt ≤ C(‖f0‖2(2)(Ω) + ‖f1‖2(1)(Ω)).

due to the Huygens’ principle and (3.67).
This completes a proof of (3.65).
Now we will demonstrate (3.66).
As above, ∂2

tU solves the elasticity system (3.54) and satisfies the initial conditions

∂2
tU = ρ−1(µ∆f0 + (λ+ µ)∇divf0), ∂

3
tU = ρ−1(µ∆f1 + (λ + µ)∇divf1) on R

3 × {0},

so
‖ ∂2

tU(, t) ‖2(1) (Ω) ≤ C(‖f0‖2(3)(Ω) + ‖f1‖2(2)(Ω)),
and by Trace Theorems

‖∂2
tU(, t)‖(0)(∂Ω) ≤ C(‖f0‖(3)(Ω) + ‖f1‖(2)(Ω)), 0 < t < c−1

s D. (3.68)

Hence,
∫ ∞

k

ω2 ‖ u(, ω) ‖2(0) (∂Ω)dω ≤ k−2

∫ ∞

k

ω4 ‖ u(, ω) ‖2(0) (∂Ω)dω ≤

k−2

∫ ∞

0

‖ ∂2
tU(, t) ‖2(0) (∂Ω)dt = k−2

∫ c−1

s D

0

‖ ∂2
tU(, t) ‖2(0) (∂Ω)dt ≤ C(‖f0‖2(3)(Ω) + ‖f1‖2(2)(Ω)),

due to (3.68).
To complete the proof of Lemma 3.2 we apply the proof of (3.65) to ∂jU, j = 1, 2, 3 instead of U.
The proof is complete.

As above the next result follows almost immediately from the Huygens’ principle for the initial value
problem and the known bounds for initial boundary value hyperbolic problems.

Lemma 3.3. Let U be a solution to (3.54) with f1 ∈ L2(Ω), f0 ∈ H1(Ω), suppf0, suppf1 ⊂ Ω. Then there is
C such that

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C‖U‖2(0)(∂Ω× (0, c−1
s D)) (3.69)

and
‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω) ≤ C‖U‖2(1)(∂Ω× (0, c−1

s D)). (3.70)
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Proof. Since suppf0, suppf1 ⊂ Ω from the Huygens’ principle it follows that U = 0 on Ω× (c−1
s D,+∞). Now

(3.69), (3.70) follow from the generalizations [4], Theorem 1, [10],Theorem 1.1, Lemma 3.5, of Sakamoto
energy estimates [22] for the initial boundary value problem applied to the initial boundary value problem

ρ∂2
tU− µ∆U− (λ + µ)∇divU = 0 on Ω× (0, c−1

s D), U(, c−1
s D) = 0, ∂tU(, c−1

s D) = 0 on Ω.

Observe that the results in [10] claim that the solution is contained in the corresponding function spaces.
Since the operator mapping the initial data into the lateral boundary data is closed in these spaces, the
bounds (3.69), (3.70) follow from the Closed Graph Theorem.

Finally, we are ready to prove the increasing stability estimate of Theorem 1.2.

Proof. We start with a proof of (1.9).

Without loss of generality, we can assume that ε < 1 and 2π(D+ 1)E− 1

4 < 1, otherwise the bound (1.9)
is straightforward.

In (3.40) we let

k = K
2

3E
1

4 , when 2
1

4K
1

3 < E
1

4 , and k = K, when E
1

4 ≤ 2
1

4K
1

3 . (3.71)

If 2
1

4K
1

3 < E
1

4 , then from (3.51), (2.26), and (3.71) we obtain

|I0,e(k)| ≤ e2(D+1)ke
− 2

π

(

( k
K )

4
−1

)− 1

2 E
CM2

2,e

≤ CM2
2,ee

2(D+1)K
2

3 E
1

4 − 2

π (
K
k )

2
E = CM2

2,ee
−2K

2

3
1

π
E

1

2

(

1−π(D+1)E− 1

4

)

.

Using the assumption at the beginning of the proof and the elementary inequality e−y ≤ 6
y3 when 0 < y, we

conclude that

|I0,e(k)| ≤ CM2
2,e

1

K2E
3

2

(

1− π(D + 1)E− 1

4

)3 . (3.72)

On the other hand, if E
1

4 ≤ 2
1

4K
1

3 , then k = K and from (3.71) we derive that

|I0,e(k)| ≤ 2ε2. (3.73)

Hence, using (3.40), (3.72), (3.73), and (3.71) we yield

∫

∂Ω

∫ +∞

−∞

|u(x, ω)|2dωdΓ(x) = I0,e(k) +

∫

∂Ω

∫

k<|ω|

|u((x, ω)|2dωdΓ(x)

≤ ε2 + CM2
2,e

1

K2E
3

2

+ C
‖f0‖2(2) + ‖f1‖2(1)

1 +K
4

3E
1

2

, (3.74)

where we used (3.65) and (3.71).
By Lemma 3.3, we finally derive

‖f0‖2(0)(Ω) + ‖f1‖2(−1)(Ω) ≤ C‖U‖2(0)(∂Ω× (0, c−1
s D)) ≤ C‖U‖2(0)(∂Ω× R) =

C

∫

∂Ω

∫ +∞

−∞

|u(x, ω)|2dωdΓ(x) ≤ C

(

ε2 +M2
2,e

1

K2E
3

2

+
‖f0‖2(2) + ‖f1‖2(1)

1 +K
4

3E
1

2

)

due to the Parseval’s identity and (3.74). Since

K
4

3E
1

2 < K2E
3

2 ,

when 1 < K, 1 < E, the proof of (1.9) is complete.
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(1.10) can be derived similarly. As above,
∫ +∞

−∞

ω2‖u(, ω)‖2(0)(∂Ω)dω = I1,e(k) +

∫

k<|ω|

‖u((, ω)‖2(0)(∂Ω)dω

≤ ε2 + CM2
3

1

K2E
3

2

e

+ C
‖f0‖2(3) + ‖f1‖2(2)

1 +K
4

3E
1

2

e

. (3.75)

and
∫ +∞

−∞

‖u(, ω)‖(1)(∂Ω)2dω = I2,e(k) +

∫

k<|ω|

‖u((, ω)‖(1)(∂Ω)2dω

≤ ε2 + CM2
3

1

K2E
3

2

e

+ C
‖f0‖2(3) + ‖f1‖2(2)

1 +K
4

3E
1

2

e

. (3.76)

By using (3.70), we finally derive

‖f0‖2(1)(Ω) + ‖f1‖2(0)(Ω)) ≤ C(‖∂tU‖2(0)(∂Ω× R) + ‖∇τU‖2(0)(∂Ω× R))

= C

(
∫ +∞

−∞

ω2‖u(, ω)‖2(0)(∂Ω)dω +

∫ +∞

−∞

‖u(, ω)‖2(1)(∂Ω)dω
)

≤ C

(

ε2e +M2
3

1

K2E
3

2

e

+
‖f0‖2(3) + ‖f1‖2(2)

1 +K
4

3E
1

2

e

)

due to the Parseval’s identity and (3.75), (3.76). Since

K
4

3E
1

2

e < K2E
3

2

e ,

when 1 < K, 1 < Ee, the proof of is complete.

4 Conclusion

The next analytical issue is to obtain explicit constants C in the stability estimates of Theorem 1.1 for some
simple but important domains Ω, like a sphere or a cube. This seems to be quite realistic. Another possible
development is to get these estimates when (0,K) is replaced by (K∗,K) with, say, K∗ = K/2. One expects
the stability results to be extended onto more general scalar elliptic operators and elasticity systems satisfying
non trapping (pseudo convexity) conditions in Ω. One does not have the Huygens’ principle in the general
case, but the exact controllability theory for corresponding hyperbolic equations is developed in [23] and
there are certain results for the elasticity system, obtained by the multipliers method. The needed scattering
theory also available, although not so transparent and explicit as for the Helmholtz equation and the classical
elasticity system. In this more general case it is difficult to expect constants C to be explicit. By using
the sharp uniqueness of the continuation results for the isotropic dynamical Maxwell and elasticity systems
[7] one expects to obtain uniqueness in the inverse source problems for these systems. Applying available
exact observability for these systems and the method of this paper one anticipates increasing stability in the
inverse source problems. It is feasible and interesting to obtain similar results in the case of the data on a
part of ∂Ω. Some parts of the methods of [5] and of this paper can be useful, although in the place of nearly
Lipschitz stability bounds (1.4), (1.5), (1.9), (1.10) one probably should expect near Hölder type stability
originated from the stability estimates in the lateral Cauchy problem for hyperbolic equations [15] section
3.4. It is important to collect further numerical evidence of the increasing stability for more complicated
geometries and sources. Some very convincing numerical results are given in [5], [18].

One can look at the different inverse source problem which is the linearized inverse problem for the
Schrödinger potential: find f (supported in Ω ⊂ R

3) from
∫

Ω

f(y)
eki|x−y|

|x− y|
eki|z−y|

|z − y| dy

given for x, z ∈ Γ ⊂ ∂Ω, where one expects quite explicit increasing stability bounds for f for a large k.
Analytic study of this problem is started in [14], [17].
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