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APPROXIMATE 1-NORM MINIMIZATION AND MINIMUM-RANK
STRUCTURED SPARSITY FOR VARIOUS GENERALIZED

INVERSES VIA LOCAL SEARCH∗

LUZE XU† , MARCIA FAMPA‡ , JON LEE
†

, AND GABRIEL PONTE
‡

Abstract. Fundamental in matrix algebra and its applications, a generalized inverse of a real
matrix A is a matrix H that satisfies the Moore-Penrose (M-P) property AHA = A. If H also
satisfies the additional useful M-P property, HAH = H, it is called a reflexive generalized inverse.
Reflexivity is equivalent to minimum rank, so we are particularly interested in reflexive generalized
inverses. We consider aspects of symmetry related to the calculation of a sparse reflexive generalized
inverse of A. As is common, and following Lee and Fampa (2018) for calculating sparse generalized
inverses, we use (vector) 1-norm minimization for inducing sparsity and for keeping the magnitude
of entries under control.

When A is symmetric, we may naturally desire a symmetric H; while generally such a restriction
on H may not lead to a 1-norm minimizing reflexive generalized inverse. We investigate a block
construction method to produce a symmetric reflexive generalized inverse that is structured and
has guaranteed sparsity. We provide a theoretically-efficient and practical local-search algorithm to
block-construct an approximate 1-norm minimizing symmetric reflexive generalized inverse.

Another aspect of symmetry that we consider relates to another M-P property: H is ah-symmetric
if AH is symmetric. The ah-symmetry property is the key one for solving least-squares problems
using H. Here we do not assume that A is symmetric, and we do not impose symmetry on H. We
investigate a column block construction method to produce an ah-symmetric reflexive generalized
inverse that is structured and has guaranteed sparsity. We provide a theoretically-efficient and
practical local-search algorithm to column block construct an approximate 1-norm minimizing ah-
symmetric reflexive generalized inverse.
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1. Introduction. Generalized inverses are essential tools in matrix algebra and
its applications. In particular, the Moore-Penrose (M-P) pseudoinverse can be used
to calculate the least-squares solution of an over-determined system of linear equa-
tions and the solution with minimum 2-norm of an under-determined system of lin-
ear equations. In both cases, if the system is Ax = b, then a solution is given by
x := A+b, where A+ is the M-P pseudoinverse. Considering our motivating use case
of a very large (rank deficient) matrix A and multiple right-hand sides b, we can
see the value of having at hand a sparse generalized inverse. We apply techniques
of sparse optimization, aiming at balancing the tradeoff between properties of the
M-P pseudoinverse and alternative sparser generalized inverses. Recently, [5, 3, 4]
used sparse-optimization techniques to give tractable right and left sparse pseudoin-
verses. Particularly relevant to what we present here, [9] (also see [10]) derived and
analyzed other tractable sparse generalized inverses based on relaxing some of the
“M-P properties”. [7] investigated one such kind of sparse generalized inverse, with
particular interest in rank-deficient matrices; these reduce to the sparse right (resp.,
left) pseudoinverses in [5, 3, 4], when the matrix has full row (resp., column) rank.

In what follows, for succinctness, we use vector-norm notation on matrices: we
write ‖H‖1 to mean ‖vec(H)‖1, and ‖H‖max to mean ‖vec(H)‖max (in both cases,
these are not the usual induced/operator matrix norms). We use I for an identity
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matrix and J for an all-ones matrix. Matrix dot product is indicated by 〈X,Y 〉 =
trace(X⊤Y ) :=

∑

ij xijyij . We use A[S, T ] for the submatrix of A with row indices S
and column indices T ; additionally, we use A[S, :] ( resp., A[:, T ]) for the submatrix
of A formed by the rows S (resp., columns T ). Finally, if A is symmetric and S = T ,
we use A[S] to represent the principal submatrix of A with row/column indices S.

When a real matrix A ∈ R
m×n is not square or is square but not invertible,

we consider “pseudoinverses” of A (see [15]). The most well-known pseudoinverse
is the M-P pseudoinverse (see [1, 6, 14]). If A = UΣV ⊤ is the real singular-value
decomposition of A (see [12], for example), where U ∈ R

m×m, V ∈ R
n×n are orthog-

onal matrices and Σ = diag(σ1, σ2, . . . , σp) ∈ R
m×n (p = min{m,n}) with singular

values σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, then the M-P pseudoinverse of A can be defined
as A+ := V Σ+U⊤, where Σ+ := diag(σ+

1 , σ
+
2 , . . . , σ

+
p ) ∈ R

n×m, σ+
i := 1/σi for all

σi 6= 0, and σ+
i := 0 for all σi = 0. The M-P pseudoinverse plays a very important

role in matrix theory and is widely-used in practice.
Following [7], we define different tractable sparse “generalized inverses”, based on

the following very-well-known fundamental characterization of the M-P pseudoinverse.

Theorem 1.1 (see [14]). For A ∈ R
m×n, the M-P pseudoinverse A+ is the unique

H ∈ R
n×m satisfying:

AHA = A(P1)

HAH = H(P2)

(AH)⊤ = AH(P3)

(HA)⊤ = HA(P4)

Following [16], a generalized inverse is any H satisfying P1. Because we are interested
in sparse H , P1 is important to enforce, otherwise the completely sparse zero-matrix
(which carries no information from A) always satisfies P2+P3+P4. A generalized
inverse is reflexive if it satisfies P2 (see [16]). Theorem 3.14 in [16] tells us two very
useful facts: (i) if H is a generalized inverse of A, then rank(H) ≥ rank(A), and
(ii) a generalized inverse H of A is reflexive if and only if rank(H) = rank(A). A
low-rank H can be viewed as being more interpretable/explainable model (say in
the context of the least-squares problem), so we naturally prefer reflexive generalized
inverses (which have the least rank possible among generalized inverses). As we have
said, we are interested in sparse generalized inverses. But structured sparsity of
H is even more valuable, as it can be viewed, in a different way, as being a more
interpretable/explainable model. Later, we will expand on this point, but essentially
we prefer nonzeros that are confined to a block of H having limited size.

As a convenient mnemonic, if H satisfies P3, we say that H is ah-symmetric,
and if H satisfies P4, we say that H is ha-symmetric. That is, ah-symmetric (resp.,
ha-symmetric) means that AH (resp., HA) is symmetric.

It is very important to know that not all of the M-P properties are required for
a generalized inverse to exactly solve key problems. For example, if H is an ah-
symmetric generalized inverse, then x̂ := Hb solves min{‖Ax− b‖2 : x ∈ R

n}; if H is
a ha-symmetric generalized inverse, then x̂ := Hb solves min{‖x‖2 : Ax = b, x ∈ R

n}
(see [9, 2]). This is an extremely important point for us, which we come to in §3.

It is hard to find a generalized inverse (i.e., a solution of P1) having the minimum
number of nonzeros, subject to various subsets of {P2, P3, P4} (but not all of them).
We let ‖H‖0 (resp., ‖x‖0) be the number of nonzeros in the matrix H (resp., vector
x). [4] established that min{‖H‖0 : P1} is NP-hard as follows: for full row-rank
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A ∈ R
m×n (m < n), we have min{‖H‖0 : AHA = A} = min{‖H‖0 : AH = I}, and

computing a minimizer can be done column-wise, as a collection of sparse optimization
problems min{‖x‖0 : Ax = ei}. These latter sparse optimization problems are known
to be NP-hard (see [13]) for a general right-hand side b 6= 0. But with A having full
row rank, we can reduce any general right-hand side b 6= 0, to a problem with b = ei,
by left-multiplying A and b by an appropriate square and invertible matrix. Using
the same idea, we can show the following hardness result.

Proposition 1.2. The following problems are NP-hard:

min{‖H‖0 : P1 + P2};(SGI12)

min{‖H‖0 : P1 + P3};(SGI13)

min{‖H‖0 : P1 + P2 + P3};(SGI123)

min{‖H‖0 : P1 + P4};(SGI14)

min{‖H‖0 : P1 + P2 + P4}.(SGI124)

Proof. For full row-rank A ∈ R
m×n (m < n), we have AHA = A ⇔ AH = I, and

thus HAH = H and (AH)⊤ = AH are also satisfied. Therefore, (SGI12), (SGI13),
(SGI123) are all equivalent to min{‖H‖0 : AH = I}, which is NP-hard. Similarly,
with full column-rank A, we have that (SGI14), (SGI124) are NP-hard.

We note that we have not been able to resolve the complexity of

min{‖H‖0 : P1 + P3 + P4}.(SGI134)

Because of Proposition 1.2, we take the standard approach of minimizing ‖H‖1
to induce sparsity, subject to P1 and various subsets of {P2, P3, P4} (but not all).

It is a very important point that minimizing ‖H‖1 (or any norm), serves to keep
the entries of H under control. This is very useful for applications, because it leads
to more reasonable models (e.g., in the least-squares application) and with better
numerics. Minimizing ‖H‖0 does not have any such property (as ‖ ·‖0 is not a norm).
Indeed, the cost of 10−8 and 108 are the same under ‖·‖0; but we can effectively round
entries on the order of 10−8 to 0 in H , while many entries on the order of 108 in H
will lead to unstable computations using H . It might seem that minimizing ‖H‖max

would more naturally keep entries of H under control, but there is a strong preference
for minimizing ‖ · ‖1 because it empirically induces sparsity, and it captures the lower
envelope of ‖ · ‖0 when the argument entries are in [−1, 1]. Moreover, ‖H‖max sees no
benefit for reducing entries of H that are not largest.

Considering the tractability of minimizing ‖H‖1, we see that P1, P3 and P4 are
linear constraints, which are easy to handle, while P2 is a non-convex quadratic, hence
rather nasty. But, as we have noted, P2 is very useful for a generalized inverse, as it
is equivalent to the rank of H being equal to the rank of A. Therefore, we are partic-
ularly interested in situations where, without solving a mathematical-programming
formulation via a generic method (like LP or non-convex quadratically-constrained
programming), we can construct a minimizer or approximate minimizer of ‖H‖1,
subject to P1, P2, and one or none of P3 and P4. In fact, our methods will do this
and more. Additionally, we will get structured sparsity for H .

[7] gave some results in this direction, when neither P3 nor P4 is enforced. In
particular, [7] gave a “block construction” of a generalized inverse H of rank-r A
that is always reflexive, is “somewhat-sparse”, having at most r2 nonzeros and all
confined to a choice of r rows and r columns (hence, structured). We note that any
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generalized inverse of A must have at least r nonzeros (because its rank is always at
least r). Therefore, for any choice of block, the construction of [7] has the number of
nonzeros within a factor of r of the minimum number of nonzeros.

[7] also demonstrated that there exists an easy-to-find block construction of a
1-norm minimizing reflexive generalized inverse, for rank-1 matrices and rank-2 non-
negative matrices. Finally, for general rank-rmatrices, [7] gave an efficient local-search
based approximation algorithm, that efficiently finds a generalized inverse following
the block construction, and that has its 1-norm within a factor of (almost) r2 of the
minimum 1-norm of any generalized inverse. In fact, experimentally, we see much bet-
ter performance for the local search than this guarantee (see [8]), while we establish
here that the guarantee of the local search is best possible; see §6.

In what follows, we follow two directions. One direction aims at finding a sparse
symmetric reflexive generalized inverse H for a symmetric matrix A. Because the
M-P pseudoinverse of a symmetric matrix is also symmetric, it is natural to ask for
a symmetric reflexive generalized inverse. [16, Section 3.3] demonstrates that if A
is symmetric, then it is not necessarily the case that a reflexive generalized inverse
is symmetric; but there always does exist a symmetric reflexive generalized inverse
(e.g., the M-P pseudoinverse). Proposition 1.3 below establishes that for a symmetric
matrix A, finding a symmetric generalized inverse with minimum number of nonzeros
is NP-hard. So we aim at construction of a symmetric reflexive generalized inverse
with minimum (or approximately minimum) 1-norm.

Proposition 1.3. For symmetric matrix A, the following problem is NP-hard.

(symSGI) min{‖H‖0 : P1, H⊤ = H}

Proof. We reduce min{‖H‖0 : P1} to an instance of (symSGI) as follows. Let

Ā :=

[

0 A
A⊤ 0

]

and H :=

[

X Z⊤

Z Y

]

; then ĀHĀ =

[

AY A⊤ AZA
A⊤Z⊤A⊤ A⊤XA

]

.

Thus Ā is symmetric, and (symSGI) for Ā is equivalent to

min{‖X‖0 + ‖Y ‖0 + 2‖Z‖0 : A⊤XA = 0, AY A⊤ = 0, AZA = A,X⊤ = X,Y ⊤ = Y }.

Clearly, the optimal solutions of (symSGI) for Ā all have X = 0, Y = 0, and
(X = 0, Y = 0, Z) is optimal to (symSGI) for Ā if and only if Z is optimal to
min{‖H‖0 : AHA = A}; thus (symSGI) is NP-hard.

Unfortunately, we do not know the complexity of min{‖H‖0 : P1 + P2, H⊤ = H}.
Our second direction aims at finding sparse ah-symmetric (or ha-symmetric) re-

flexive generalized inverses. Note that if A is symmetric, and we require that H is
a symmetric ah-symmetric (or ha-symmetric) reflexive generalized inverse, then H is
already the M-P pseudoinverse (see [16]). Therefore, there is no interest in enforc-
ing symmetry on H in this context. Proposition 1.2 (SGI123, SGI124) establishes
that finding an ah-symmetric (or ha-symmetric) reflexive generalized inverse with
minimum number of nonzeros is NP-hard even for the full row (or column) rank
matrix A. So we aim at construction of an ah-symmetric (or ha-symmetric) reflex-
ive generalized inverse with minimum (or approximately minimum) 1-norm. Unlike
the symmetric case, a 1-norm minimizing ah-symmetric (or ha-symmetric) reflexive
generalized inverse can be obtained by recasting the problem as a linear-optimization
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problem. However, the block construction method can be generalized to give an ah-
symmetric (or ha-symmetric) reflexive generalized inverse with a better guaranteed
sparsity in terms of the number of nonzeros.

In §2, we consider the situation where A is symmetric. We give a local-search
based (almost) r2-approximation algorithm for finding a 1-norm minimizing symmet-
ric reflexive generalized inverse. Along the way, we repair a proof of a key result from
[7], concerning the correctness of the approximation algorithm. In §3, we provide a
local-search based (almost) r-approximation algorithm for general rank r. With an
observation of the connection between ah-symmetric (reflexive) generalized inverses
and ha-symmetric (reflexive) generalized inverses, we can easily extend all the results
in §3 to the ha-symmetric case. In §4, we present results of numerical experiments
aimed at illustrating our results and confirming their applicability. Finally, in §5,
we make some brief concluding remarks. In the Appendix, we demonstrate that the
approximation ratios of all of the local searches that we discuss are essentially tight.
Furthermore, we investigate a more obvious local search than the one we give (based
directly on swaps seeking improvement in ‖H‖1), and we establish some of its good
and bad properties.

Before presenting our main results, we note that it is useful to consider relaxing
P2 completely, arriving at min{‖H‖1 : P1} = min{‖H‖1 : AHA = A}, which we
re-cast as a linear-optimization problem (P) and its dual (D):

(P)
minimize 〈J,H+〉+ 〈J,H−〉
subject to A(H+ −H−)A = A,

H+, H− ≥ 0;

(D)
maximize 〈A,W 〉
subject to −J ≤ A⊤WA⊤ ≤ J.

More compactly, we can recast (D) as: max{〈A,W 〉 : ‖A⊤WA⊤‖max ≤ 1}. In
what follows, our approach is always to construct a feasible solution to (P) such that
H := H+ −H− satisfies P2, and measure the quality of the solution to (P) against a
feasible solution that we construct for (D).

2. Symmetric results. We note that considerable effort has been made for
tuning hardware to efficiently handle sparse symmetric “matrix-vector multiplication”
(e.g., see [11] and the references therein). Considering that virtually any use of a
generalized inverseH would involve matrix-vector multiplication, it can be very useful
to prepare a sparse symmetric generalized inverse H from a symmetric A.

In this section, we assume that A ∈ R
n×n is symmetric, and we seek to obtain

an optimal solution to min{‖H‖1 : P1 + P2, H⊤ = H}. Using [7], we could first
seek a 1-norm minimizing reflexive generalized inverse H of A that is not necessarily
symmetric. If H is not symmetric, then the natural symmetrization (H +H⊤)/2 is a
symmetric generalized inverse with minimum 1-norm, because doing this symmetriza-
tion cannot increase the convex function ‖·‖1. However, symmetrization is very likely
to increase the rank and thus violate P2. Also, we next demonstrate that the extreme
solutions of min{‖H‖1 : P1, H⊤ = H} only have a guaranteed (sharp) bound of
r2 + r for the number of nonzeros, while the extreme solutions of min{‖H‖1 : P1}
have at most r2 nonzeros.

Proposition 2.1. Suppose that A ∈ R
n×n is symmetric and has rank r.



6 L. XU, M. FAMPA, J. LEE AND G. PONTE

(1) Extreme solutions of the LP for min{‖H‖1 : P1} have at most r2 nonzeros.
Furthermore, the bound is sharp for all n ≥ r ≥ 1.

(2) Extreme solutions of the LP for min{‖H‖1 : P1, H⊤ = H} have at most
r2 + r nonzeros. Furthermore, the bound is sharp for n− 2 ≥ r ≥ 3.

Proof. First, we claim that if rank(B) = p, then the extreme solutions of the LP
associated with

min{‖c ◦ x‖1 : x ∈ R
n, Bx = b}

have at most p nonzeros, where ◦ is the element-wise product. By reformulating the
problem as the LP

min{|c|⊤(x+ + x−) : Bx+ −Bx− = b, x+, x− ≥ 0},

we see that the extreme solutions (x+, x−) have at least 2n− p zeros because there
are only p linearly-independent equations, which implies that x := x+ − x− has at
most p nonzeros.

(1) Then we have min{‖H‖1 : P1} = min{‖vec(H)‖1 : (A⊗A)vec(H) = vec(A)},
with rank(A⊗A) = rank(A)2 = r2. To see that the bound is sharp, let Â be a random
r×r symmetric matrix (with iid entries taken from any absolutely continuous density),
and then take A to be all zero except for Â+ in the north-west corner. Then with
probability one: Â is dense, Â has rank r (and then Â+ = Â−1), and A has a unique
generalized inverse which is the M-P pseudoinverse A+, which is all zero except for
the dense r × r block Â in the north-west corner. Thus (1) holds.

(2) min{‖H‖1 : P1, H⊤ = H} is equivalent to an LP on the variable svec(H) :

(Psym) min{‖svec(J) ◦ svec(H)‖1 : (A⊗S A)svec(H) = svec(A)},

where ⊗S is the symmetric Kronecker product, and for any symmetric matrix S,
svec(S) ∈ R

1
2n(n+1) is defined as

svec(S) := (s11,
√
2s21, · · · ,

√
2sn1, s22,

√
2s32, · · · ,

√
2sn2, · · · , snn)⊤;

that is, we stack the columns of S from the main diagonal downwards, but multiplying
off-diagonal entries by

√
2 (see [17] for details). By [17, Theorem 3.6], we have that

A ⊗S A has 1
2r(r + 1) nonzero eigenvalues, thus rank(A ⊗S A) = 1

2r(r + 1). We

know that svec(H) has at most r2+r
2 nonzeros. Therefore, H has at most 2 times the

nonzeros of svec(H), thus (2) holds.
Next we construct a family of examples to show that the bound is sharp for

n − 2 = r ≥ 3. Then for any n − 2 ≥ r, we can take A to be all zero except for an
(r + 2)× (r + 2) block in the north-west corner. The dual of (Psym) is

(Dsym) max{svec(A)⊤svec(W ) : ‖(A⊗S A)svec(W )‖max ≤ svec(J)}.

We could also view (Dsym) as max{〈A,W 〉 : ‖AWA‖max ≤ 1, W⊤ = W}.

Let X =

[

r
2(r−1) − r(r−2)

2(r−1)2
1

2(r−1)1r−1
r

2(r−1)21r−1

]

∈ R
r×2, Y =

[

0 −1
−1r−1 0r−1

]

∈ R
r×2. Let

H0 = Ir − Jr, X
⊤(H0 +D) = Y ⊤, where D is all zero except D11 = r−1

r .

Let A0 = (H0 + XY ⊤ + Y X⊤)−1, and A =

[

Ir
X⊤

]

A0[Ir X ] ∈ R
(r+2)×(r+2),

rank(A) = rank(A0) = r. Let H =

[

H0 Y
Y ⊤ 0

]

, and W =

[

A−1
0 (H0 +D)A−1

0 0
0 0

]

.



LOCAL SEARCH AND GENERALIZED INVERSES 7

These two symmetric matrices H,W satisfy

AHA =

[

Ir
X⊤

]

A0[Ir X ]

[

H0 Y
Y ⊤ 0

] [

Ir
X⊤

]

A0[Ir X ]

=

[

Ir
X⊤

]

A0(H0 +XY ⊤ + Y X⊤)A0[Ir X ] =

[

Ir
X⊤

]

A0[Ir X ] = A,

〈A,W 〉 = trace((H0 +D)A−1
0 ) = trace((H0 +D)(H0 +XY ⊤ + Y X⊤))

= trace(H2
0 +DH0 + 2Y Y ⊤) = trace(H2

0 + 2Y Y ⊤)

= (r2 − r) + 2r = ‖H‖1 ,

AWA =

[

Ir
X⊤

]

A0[Ir X ]

[

A−1
0 (H0 +D)A−1

0 0
0 0

] [

Ir
X⊤

]

A0[Ir X ]

=

[

Ir
X⊤

]

(H0 +D)[Ir X ] =

[

H0 +D Y
Y ⊤ X⊤Y

]

⇒ ‖AWA‖max ≤ 1

(

because X⊤Y =

[

− 1
2 − r

2(r−1)

− r
2(r−1)

r(r−2)
2(r−1)2

]

and r ≥ 3

)

.

Therefore, by weak duality, H and W are optimal solutions for primal and dual, and

H has exactly r2+r nonzeros. Also, because svec(AWA) has exactly r2+r
2 entries with

value ±1 corresponding to the position where svec(H) is nonzero, by complementary
slackness, for any primal optimal solution H∗, svec(H∗) is zero in the positions where
svec(H) is nonzero. Then we can easily solve the equation (A⊗SA)svec(H

∗) = svec(A)
to obtain the unique solution svec(H). Therefore the primal problem has a unique
optimal extreme solution H with r2 + r nonzeros.

Remark 2.2. For the case n − 1 = r ≥ 3, we can only construct examples for
which the unique optimal extreme solution of the LP for min{‖H‖1 : P1, H⊤ = H}
has r2 + r − 1 nonzeros.

We seek to do better than what Proposition 2.1, part (2) provides. We want
fewer nonzeros, and we want block structure. To get these properties, we will give a
new recipe for constructing a symmetric reflexive generalized inverse that has at most
r2 nonzeros. Our symmetric block construction in the following theorem is the same
block construction as from [7], but only over the principal submatrices of A.

Theorem 2.3 (the proof follows from [7]). For a symmetric matrix A ∈ R
n×n,

let r := rank(A). Let Ã := A[S] be any r × r nonsingular principal submatrix of A.
Let H ∈ R

n×n be equal to zero, except its submatrix with row/column indices S is
equal to Ã−1. Then H is a symmetric reflexive generalized inverse of A.

Letting r := rank(A), when r = 1 or r = 2 and A is nonnegative, construction
of a 1-norm minimizing symmetric reflexive generalized inverse can be based on the
symmetric block construction over the r× r principal submatrices of A, choosing one
such that its inverse has minimum 1-norm (see https://arxiv.org/abs/1903.05744).

Generally, when rank(A) ≥ 2, we cannot construct a 1-norm minimizing sym-
metric reflexive generalized inverse based on the symmetric block construction. For
example, with

A :=





5 4 2
4 5 −2
2 −2 8



 ,

https://arxiv.org/abs/1903.05744
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we have a symmetric reflexive generalized inverse H := 1
81A (because A2 = 9A),

with ‖H‖1 = 34
81 . While the three symmetric reflexive generalized inverses based on

the symmetric block construction have 1-norm equal to 17
36 ,

17
36 , 2, all greater than

34
81 .

For general r := rank(A), we will efficiently find a symmetric reflexive generalized
inverse following our symmetric block construction that is within a factor of r2(1+ ǫ)
of the 1-norm of the symmetric reflexive generalized inverse having minimum 1-norm.
Before presenting the approximation result, we first establish a useful lemma.

Lemma 2.4. For a symmetric matrix A ∈ R
n×n, let r := rank(A). Let A[S] be a

r× r nonsingular principal submatrix of A with indices S, and let A[T ] be a principal
submatrix obtained by swapping an element of S with one from its complement. If
|det(A[T ])| ≤ (1 + ǫ) |det(A[S])|, then we have |det(A[S, T ])| ≤

√

(1 + ǫ) |det(A[S])|.
Proof. Without loss of generality, assume that S = {1, . . . , r} and T = {1, . . . , r−

1, r + 1}. Then matrix A is of the form




A[S] aT ∗
a⊤T d ∗
∗ ∗ ∗



 .

Because A[S] is a nonsingular principal submatrix of A, the linear system A[S]·x = aT
has a unique solution x. A[S, T ] is obtained by replacing column r of A[S] with
aT , thus det(A[S, T ]) = xr det(A[S]). On the other hand, because rank(A) = r =
rank(A[S]), the Schur complement d−a⊤TA[S]

−1aT = 0, which implies that d = x⊤aT .
Therefore, det(A[T ]) = xr det(A[S, T ]) = x2

r det(A[S]). We have

|det(A[S, T ])|2 = |det(A[S])| |det(A[T ])| ≤ (1 + ǫ) |det(A[S])|2 .

Definition 2.5. Let A be an arbitrary n × n, rank-r matrix. For S an ordered
subset of r elements from {1, . . . , n} and fixed ǫ ≥ 0, if | det(A[S])| > 0 cannot be
increased by a factor of more than 1 + ǫ by swapping an element of S with one from
its complement, then we say that A[S] is a (1 + ǫ)-local maximizer for the absolute
determinant on the set of r × r nonsingular principal submatrices of A.

Theorem 2.6. For a symmetric matrix A ∈ R
n×n, let r := rank(A). Choose

ǫ ≥ 0, and let Ã := A[S] be a (1 + ǫ)-local maximizer for the absolute determinant on
the set of r×r nonsingular principal submatrices of A. The n×n matrix H constructed
by Theorem 2.3 over Ã, is a symmetric reflexive generalized inverse (having at most
r2 nonzeros), satisfying ‖H‖1 ≤ r2(1+ǫ)‖Hr

opt‖1, where Hr
opt is a 1-norm minimizing

symmetric reflexive generalized inverse of A.

Proof. We prove a stronger result ‖H‖1 ≤ r2(1 + ǫ)‖Hopt‖1, where Hopt is an
optimal solution to (P), which implies ‖H‖1 ≤ r2(1 + ǫ)‖Hopt‖1 ≤ r2(1 + ǫ)||Hr

opt||1.
Without loss of generality, we assume that Ã is in the north-west corner of A. So

we take A to have the form

[

Ã B
B⊤ D

]

. Let M = sign(Ã−1), where sign(x) is defined

as x/|x|, if x 6= 0, and 0 otherwise. Now we choose

W :=

[

W̃ 0
0 0

]

:=

[

Ã−⊤MÃ−⊤ 0
0 0

]

.

The dual objective value 〈A,W 〉 = trace(A⊤W ) = trace(MÃ−⊤) = ‖Ã−1‖1 = ‖H‖1.
Also,

A⊤WA⊤ =

[

M MÃ−⊤B

B⊤Ã−⊤M B⊤Ã−⊤MÃ−⊤B

]

.



LOCAL SEARCH AND GENERALIZED INVERSES 9

Clearly ‖M‖max ≤ 1. Next, we consider γ̄ := MÃ−⊤γ = MÃ−1γ (Ã is symmetric),

where γ is an arbitrary column of B. By Cramer’s rule, where Ãi(γ) is Ã with column
i replaced by γ, we have

γ̄ = M
1

det(Ã)







det(Ã1(γ))
...

det(Ãr(γ))






.

And for j = 1, . . . , r, using Lemma 2.4, we have

|γ̄j | =
r
∑

i=1

sign(Ã−1
ji )

det(Ãi(γ))

det(Ã)
≤

r
∑

i=1

∣

∣

∣
det(Ãi(γ))

∣

∣

∣

∣

∣

∣
det(Ã)

∣

∣

∣

≤ r
√
1 + ǫ,

i.e.,
∥

∥

∥
MÃ−⊤B

∥

∥

∥

max
≤ r

√
1 + ǫ. Finally, we have

∥

∥

∥
B⊤Ã−⊤MÃ−⊤B

∥

∥

∥

max
≤ r2

∥

∥

∥
B⊤Ã−1

∥

∥

∥

max

∥

∥

∥
Ã−1B

∥

∥

∥

max
≤ r2(1 + ǫ).

Therefore,
∥

∥A⊤WA⊤
∥

∥

max
≤ r2(1+ ǫ); so then 1

r2(1+ǫ)W is dual feasible. By the weak

duality for linear optimization, we have 〈A, 1
r2(1+ǫ)W 〉 = 1

r2(1+ǫ) ‖H‖1 ≤ ‖Hopt‖1.

Remark 2.7. In Theorem 2.6, we could have required the stronger condition that
Ã is a global maximizer for the absolute determinant on the set of r × r nonsingular
principal submatrices of A. But we prefer our hypothesis, both because it is weaker
and because we can find an Ã satisfying our hypothesis by a simple finitely-terminating
local search. Moreover, if A is rational, and we choose ǫ positive and fixed, then our
local search is efficient:

Theorem 2.8. Let A be rational. We have an FPTAS (fully polynomial-time
approximation scheme; see [18]) for calculating a symmetric reflexive generalized in-
verse H of A that has ‖H‖1 within a factor of r2 of ‖Hr

opt‖1, where Hr
opt is a 1-norm

minimizing symmetric reflexive generalized inverse of A.

Proof. Following the proof in [7, Theorem 10], we have that the local search
reaches a (1 + ǫ)-local maximizer for the absolute determinant on the set of r × r
nonsingular principal submatrices of A in at most O(poly(size(A)))(1 + 1

ǫ ) iterations,
where size(A) is the number of bits in a binary encoding ofA. Along with Theorem 2.6,
we conclude that the local search is an FPTAS.

Remark 2.9. The general idea of our proof follows the scheme of [7, Theorem 9]
(the nonsymmetric situation). However, there is a mistake in the proof of [7, Theorem
9]. To construct a dual feasible solution, [7] chose W̃ := Ã−⊤(2I−J)Ã−⊤ and claimed
that 〈A,W 〉 = ‖H‖1. This claim does not generally hold for r > 2, but by instead
choosing W̃ := Ã−⊤MÃ−⊤ with M = sign(Ã−1) chosen as in our Theorem 2.6, [7,
Theorem 9] still holds as an r2(1 + ǫ)2-approximation algorithm.

3. ah-symmetric results. In this section, let A be an arbitrary m × n real
matrix. We seek to obtain a solution to min{‖H‖1 : P1+P2+P3} (that is, a 1-norm
minimizing ah-symmetric reflexive generalized inverse). As we have mentioned, ah-
symmetric generalized inverses play a key role in solving least square problems. We
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develop an approximation approach for this problem that has many benefits, which
we later summarize in Figure 1.

Note that if H is an ah-symmetric generalized inverse, then AH = AA+, where
A+ is the M-P pseudoinverse. Therefore, P2 (HAH = H) becomes a linear constraint
HAA+ = H , which implies that min{‖H‖1 : P1 + P2 + P3} can be cast as an
LP. However, the extreme solutions of this LP only have a guaranteed bound of
mr + (m − r)(n − r) for the number of nonzeros, while the extreme solutions of
min{‖H‖1 : P1 + P3} have at most mr nonzeros.

Proposition 3.1.
Suppose that A ∈ R

m×n has rank r.
(1) Extreme solutions of the LP for min{‖H‖1 : P1 + P3} have at most mr

nonzeros. Furthermore, the bound is sharp for all m ≥ n ≥ r ≥ 1.
(2) Extreme solutions of the LP for min{‖H‖1 : P1 + P2 + P3} have at most

mr + (m− r)(n− r) nonzeros.

Proof. We have min{‖H‖1 : P1 + P3} = min{‖H‖1 : AH = AA+} =

min{‖vec(H)‖1 : (Im ⊗A)vec(H) = vec(AA+)},

with rank(Im⊗A) = rank(Im)rank(A) = mr. To see that the bound is sharp, let Â be
a random dense r ×m matrix (with iid entries taken from any absolutely continuous
density), and then take A to be all zero except for Â+ in the western r columns. Then
with probability one: Â is dense, Â has rank r, and A has a unique generalized inverse
which is the M-P pseudoinverse A+, which is all zero except for the dense r×m block
Â in the northern r rows. Thus (1) holds.

As for min{‖H‖1 : P1 + P2 + P3}, it can be written as

min{‖vec(H)‖1 : (Im ⊗A)vec(H) = vec(AA+), [(AA+ ⊗ In)− Imn]vec(H) = 0},

with
rank

([

Im ⊗A
(AA+ ⊗ In)− Imn

])

= rank

([

Im ⊗A
(AA+ − Im)⊗ In

])

= rank

([

Im ⊗A
(AA+ − Im)⊗ (In −A+A)

])

= mr + (m− r)(n − r).

The second-to-last equation follows from the fact that (AA+−Im)⊗A+A = ((AA+−
Im)⊗A+)(Im ⊗A). Thus (2) holds.

Remark 3.2. with regard to Proposition 3.1, part (2), the bound mr+(m−r)(n−
r) is sharp for n = r2 and r ≥ 2 (an example will be given in the Appendix). This
implies that for large n, the best bound should be at least mr + (r2 − r)(m − r).

We seek to do better than what Proposition 3.1, part (2) provides (and what
Remark 3.2 indicates can actually be the case). We want fewer nonzeros, and we want
block structure. To get these properties, we give a new column block construction,
producing an ah-symmetric reflexive generalized inverse that has at mostmr nonzeros.

Theorem 3.3. For A ∈ R
m×n, let r := rank(A). For any T , an ordered subset

of r elements from {1, . . . , n}, let Â := A[:, T ] be the m × r submatrix of A formed
by columns T . If rank(Â) = r, let Ĥ := Â+ = (Â⊤Â)−1Â⊤. The n × m matrix H
with all rows equal to zero, except rows T , which are given by Ĥ, is an ah-symmetric
reflexive generalized inverse of A.
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Proof. Without loss of generality, assume that T := (1, 2, . . . , r), so we may write

A =
[

Â B̂
]

, H =

[

Ĥ
0

]

.

We have that H satisfies:
• P1, as AHA = [ÂĤÂ ÂĤB̂] = [Â B̂] = A, where ÂĤÂ = Â because ĤÂ

is the r × r identity matrix, and ÂĤB̂ = B̂ because, as A (and Â) has rank
r, the columns of B̂ are in the range of Â and ÂĤ is the projection matrix
on the range of Â.

• P2, as

HAH =

[

ĤÂĤ
0

]

=

[

Ĥ
0

]

= H,

where we again use the fact that ĤÂ is the r × r identity matrix.
• P3, as AH = ÂĤ = Â(Â⊤Â)−1Â⊤ is symmetric.

Remark 3.4. We have already mentioned that ifH is an ah-symmetric generalized
inverse, then AH = AA+. Therefore, P2 (HAH = H) becomes a linear constraint
HAA+ = H . In fact, rather than linearize using the M-P pseudoinverse A+, we can
take any column block ah-symmetric generalized inverse Ĥ of A, and linearize more
efficiently via HAĤ = H . The cost of calculating such an Ĥ is the cost of calculating
the M-P pseudoinverse of an m× r matrix, rather than the M-P pseudoinverse of the
m× n matrix A.

Similarly as before, we note that it is useful to consider relaxing P2, arriving at
min{‖H‖1 : P1+P3} = min{‖H‖1 : AHA = A, (AH)⊤ = AH}, which we re-cast as
a linear-optimization problem (Pah) and its dual (Dah):

(Pah)

minimize 〈J,H+〉+ 〈J,H−〉
subject to A(H+ −H−)A = A,

(H+ −H−)⊤A⊤ = A(H+ −H−),
H+, H− ≥ 0.

(Dah)
maximize 〈A,W 〉
subject to −J ≤ A⊤WA⊤ +A⊤(V ⊤ − V ) ≤ J

We can see (Dah) as: max{〈A,W 〉 : ‖A⊤WA⊤ +A⊤U‖max ≤ 1, U⊤ = −U}.
When rank(A) = 1, construction of a 1-norm minimizing ah-symmetric reflexive

generalized inverse can be based on the column block construction over a column â
that minimizes ‖â+‖1 (see https://arxiv.org/abs/1903.05744).

Generally, when rank(A) = 2, we cannot construct a 1-norm minimizing ah-
symmetric reflexive generalized inverse based on the column block construction. Even
under the condition that A is nonnegative, we have the following example:

A =





1 3 8
2 2 8
3 1 8



 .

Note that rank(A) = 2 because a3 = 2a1 + 2a2. We have an ah-symmetric reflexive
generalize inverse with 1-norm 9

8 ,

H :=





− 1
4 0 1

4
1
4 0 − 1

4
1
24

1
24

1
24



 .

https://arxiv.org/abs/1903.05744
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However, the three ah-symmetric reflexive generalized inverses based on our col-
umn block construction have 1-norm 31

24 ,
31
24 ,

7
6 , respectively. Nevertheless, under an

efficiently-checkable technical condition, when rank(A) = 2, construction of a 1-norm
minimizing ah-symmetric reflexive generalized inverse can be based on the column
block construction (see https://arxiv.org/abs/1903.05744).

For general r := rank(A), we will efficiently find an ah-symmetric reflexive gener-
alized inverse following our column block construction that is within a factor r(1+ǫ) of
the 1-norm of the ah-symmetric reflexive generalized inverse having minimum 1-norm.

Definition 3.5. Let A be an arbitrary m × n, rank-r matrix, and let S be an
ordered subset of r elements from {1, . . . ,m} such that these r rows of A are linearly
independent. For T an ordered subset of r elements from {1, . . . , n}, and fixed ǫ ≥ 0,
if | det(A[S, T ])| cannot be increased by a factor of more than 1 + ǫ by swapping an
element of T with one from its complement, then we say that A[S, T ] is a (1+ ǫ)-local
maximizer for the absolute determinant on the set of r × r nonsingular submatrices
of A[S, :].

Lemma 3.6. Let T be an ordered subset of r elements from {1, . . . , n} and Â :=
A[:, T ] be the m × r submatrix of an m × n matrix A formed by columns T , and
rank(Â) = r. There exists an m× n matrix W and a skew-symmetric m×m matrix
U such that

Â⊤WA⊤ + Â⊤U = E,

where E := sign(Â+). Furthermore, 〈A,W 〉 = ‖Â+‖1.

Proof. Suppose that Ã := A[S, T ] is the nonsingular r× r submatrix of Â formed
by rows S := {i1, i2, . . . , ir}. Let Ŵ be a r × r matrix and W be an m × n matrix
with all elements equal to zero, except the ones in rows S and columns T , which are
given by the respective elements in Ŵ . If we choose Ŵ and U to be

Ŵ := Ã−⊤EÂ(Â⊤Â)−1 = Ã−⊤E(Â⊤)+

and
U := ÂŴ⊤D −D⊤Ŵ Â⊤ +D⊤Ã−⊤E − E⊤Ã−1D ,

where D is a r × m matrix with all elements equal to zero, except D1i1 = D2i2 =
· · · = Drir = 1.

Because DÂ = Ã, we have

Â⊤U = Â⊤ÂŴ⊤D − Ã⊤Ŵ Â⊤ + E − Â⊤E⊤Ã−1D

= E − Ã⊤Ŵ Â⊤ + (Ŵ (Â⊤Â)− Ã−⊤EÂ)⊤D

= E − Ã⊤Ŵ Â⊤.

Hence, Â⊤WA⊤ + Â⊤U = Ã⊤Ŵ Â⊤ + Â⊤U = E. Furthermore,

〈A,W 〉 = trace(Ã⊤Ŵ ) = trace(E(Â⊤)+) = 〈Â+, E〉 = ‖Â+‖1 .

https://arxiv.org/abs/1903.05744
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Theorem 3.7. Let A be an arbitrary m × n, rank-r matrix, and let S be an
ordered subset of r elements from {1, . . . ,m} such that these r rows of A are linearly
independent. Choose ǫ ≥ 0, and let Ã := A[S, T ] be a (1 + ǫ)-local maximizer for the
absolute determinant on the set of r× r nonsingular submatrices of A[S, :]. Then the
n ×m matrix H constructed by Theorem 3.3 over Â := A[:, T ], is an ah-symmetric
reflexive generalized inverse of A satisfying ‖H‖1 ≤ r(1 + ǫ)‖Hr

opt‖1, where Hr
opt is a

1-norm minimizing ah-symmetric reflexive generalized inverse of A.

Proof. We prove a stronger result ‖H‖1 ≤ r(1 + ǫ)‖Hah
opt‖1, where Hah

opt is an

optimal solution of (Pah), which implies ‖H‖1 ≤ r(1 + ǫ)‖Hah
opt‖1 ≤ r(1 + ǫ)‖Hr

opt‖.
We will construct a dual feasible solution with objective value 1

r(1+ǫ)‖H‖1. By weak

duality for linear optimization, we will then have 1
r(1+ǫ)‖H‖1 ≤ ‖Hah

opt‖1.
By Lemma 3.6, we can choose W and a skew-symmetric matrix U such that

Â⊤WA⊤ + Â⊤U = E . and 〈A,W 〉 = ‖Â+‖1 = ‖H‖1 .
So it is sufficient to demonstrate that ‖A⊤WA⊤ + A⊤U‖max ≤ r(1 + ǫ), then

1
r(1+ǫ)W, 1

r(1+ǫ)U is dual feasible and 〈A, 1
r(1+ǫ)W 〉 = 1

r(1+ǫ)‖H‖1.
First, it is clear that ‖Â⊤WA⊤ + Â⊤U‖max = ‖E‖max = 1 ≤ r(1 + ǫ). Next, we

consider any column b̂ of B̂, because rank(Â) = r = rank(A), we know that b̂ = Âβ,
β ∈ R

r, which implies b̃ = Ãβ. By Cramer’s rule, where Ãi(b̃) is Ã with column i
replaced by b̃, we have

|βi| =
| det(Ãi(b̃))|
| det(Ã)|

≤ 1 + ǫ,

because Ã is a (1+ǫ)-local maximizer for the absolute determinant of A[S, :]. Therefore

‖b̂⊤WA⊤ + b̂⊤U‖max = ‖β⊤(Â⊤WA⊤ + Â⊤U)‖max

= ‖β⊤E‖max ≤
r
∑

i=1

|βi| ≤ r(1 + ǫ).

Remark 3.8. In Theorem 3.7, we could have required the stronger condition that
Ã is a global maximizer for the absolute determinant on the set of r × r nonsingular
submatrices of Aσ. But we prefer our hypothesis — the reasons are the same as in
Remark 2.7. And the local search is efficient:

Theorem 3.9. Let A be rational. We have an FPTAS for calculating an ah-
symmetric reflexive generalized inverse H of A that has ‖H‖1 within a factor of r
of ‖Hr

opt‖1, where Hr
opt is a 1-norm minimizing ah-symmetric reflexive generalized

inverse of A.

As we have mentioned, ah-symmetric generalized inverses have the key use for
solving least-squares problems. In Figure 1, we compare various possibilities for cal-
culating ah-symmetric generalized inverses, highlighting the excellent properties of
the solution produced by our local search.

Considering Figure 1, we dismiss methods based on minimizing the 0-norm as we
do not have nice computational methods for them, and they suffer from not being able
to control the magnitudes of entries. Concentrating now on tractable optimization
methods (that seek to keep the magnitude of entries under control), we have LP-based
methods and our local search.
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Fig. 1. Comparing options for ah-symmetric generalized inverses
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✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ guaranteed low rank (= rb)
✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ structuredc

✗ ✗ ✓ ✓ ✓d ✗e ✓ ✓ guaranteed sparsity (≤ rm nonzerosf)
✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓ induced sparsityg

✓ ✓ ✗h ✗i ✓ ✓ ✓ ✓ calculate efficiently

avia 1-norm pressure
bvia P2
cvia column block construction
dsee Proposition 3.1, part (1)
eno more than rm+ (m− r)(n− r) nonzeros: see Proposition 3.1, part (2)
fvia column block construction
gvia 1-norm or 0-norm pressure
hsee Proposition 1.2, SGI13
isee Proposition 1.2, SGI123

We can see some very important advantages of our local search: (i) comparing
just to LP-based methods, our local search has (block) structure, while the LP-based
methods have no guaranteed structure; (ii) comparing further to the LP based on
P1+P3, our local search has a low-rank guarantee, while the LP method does not.
(iii) instead comparing further to the LP based on P1+P2+P3, our local search has
a much better sparsity guarantee than the LP method.

Remark 3.10. H is a ha-symmetric (reflexive) generalized inverse of A if and
only if H⊤ is an ah-symmetric (reflexive) generalized inverse of A⊤. Following this
observation, we can extend all the results in section §3 to the ha-symmetric case.

4. Numerical experiments. Next, we report on some numerical results to
illustrate and confirm the applicability of our proposed approach for constructing
generalized inverses. For that, we have selected the ah-symmetric case and imple-
mented a local-search algorithm based on Theorems 3.3 and 3.7. For the purpose of
computations, the parameter ǫ in Theorem 3.7 was chosen to be zero.

The algorithm was coded in Matlab R2018a, and to evaluate its performance,
we also solved the linear programs LP:P1+P3 and LP:P1+P2+P3 for the smaller
instances, with Gurobi v.9.0.2. We ran our experiments on a 16-core machine (running
Windows Server 2016 Standard): two Intel Xeon CPU E5-2667 v4 processors running
at 3.20GHz, with 8 cores each, and 128 GB of memory.

The local-search algorithm implemented selects an m × r rank-r submatrix of a
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given matrix A and constructs a reflexive ah-symmetric generalized inverse of A, as
described in Theorem 3.3. Our test matrices were randomly generated with varied
dimensions and ranks. We used the Matlab function sprand, which generates a random
m×n dimensional matrix A with singular values given by a nonnegative input vector
rc. We generated dense matrices and selected the r nonzeros of rc as the decreasing
vector M × (ρ1, ρ2, . . . , ρr), where M = 2, and ρ = (1/M)(2/(r+1)).

Average results for our first experiment are reported in Table 1. We solved
LP:P1+P3 and LP:P1+P2+P3 for 5 instances of each dimension/rank indicated in
the first column of the table, limiting the computational time to solve each instance
to 2 hours (i.e., 7200 seconds). Our purpose is to demonstrate how fast the time to
solve these problems increases as we increase the dimension/rank of our test matrices.
In the third column of Table 1, we give the number of instances solved to optimality
within the time limit. The average times in the second column, only take into account
the instances solved to optimality. We note that for m,n, r = 200, 100, 50, we could
only solve one instance with each LP model. The results demonstrate that computing
ah-symmetric generalized inverses by solving the LP problems does not scale well and
is not a practical approach for instances of moderate size, even when the reflexive
property P2 is not imposed.

Time (sec) Instances solved
m,n, r LP:P1+P3 LP:P1+P2+P3 LP:P1+P3 LP:P1+P2+P3
40, 20, 10 1.76 1.98 5 5
80, 40, 20 41.39 40.19 5 5
120, 60, 30 384.34 390.34 5 5
160, 80, 40 4130.99 4248.34 4 3

200, 100, 50 4197.86 4707.34 1 1
Table 1

Computation of minimum 1-norm H with LP models

In Table 2, we compare the optimal solution of LP:P1+P2+P3 to the reflexive
ah-symmetric generalized inverse obtained by the local search, showing the 1-norm
(‖H‖1) and sparsity (‖H‖0, computed with tolerance 10−6). In this experiment we
use 30 instances of each dimension/rank indicated in the first column of the table, and
report the mean and standard deviation (in parenthesis) of the norms for each group.
The results confirm the advantage of the local search over the LP solution in obtaining
sparser matrices (via our column block construction), while keeping the magnitude of
the entries reasonably small (via our approximate 1-norm minimization).

‖H‖1 ‖H‖0
m,n, r Local Search LP:P1+P2+P3 Local Search LP:P1+P2+P3
40, 20, 10 62.73 ( 6.04) 54.54 ( 3.91) 387.43 ( 8.24) 547.73 ( 45.58)
80, 40, 20 191.22 (24.58) 147.68 (11.58) 1547.37 (17.54) 2373.53 ( 97.02)
120, 60, 30 354.39 (36.88) 263.53 (15.53) 3489.70 (38.51) 5434.53 (192.41)

Table 2

Comparison between local search and LP (Mean(Std Dev))

In Tables 3 and 4 we investigate the performance of the local search. In the second
column of these tables we show the relative decrease on the 1-norm of the reflexive
ah-symmetric generalized inverse, comparing the solution H obtained by the local
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search to the matrix H0 used to initialize the algorithm. We apply a phase-one local-
search algorithm to construct H0. In the two last columns of the tables we report the
total computational time and number of column swaps performed by the local search.
The time to compute the initial matrix H0 and to perform the local search are both
included.

In Table 3, we consider 30 instances of each dimension/rank, and we present
the mean and standard deviation for each group. We note that the local search is
effective in reducing the 1-norm of the initial matrix and is much faster than solving LP
problems of smaller dimensions, as can be observed from the results in Table 1. The
average number of column swaps and the standard deviation for the norm decrease
demonstrates that the algorithm is very stable, converging to similar solutions after
swapping about 60% of the columns in the matrix.

m,n, r ‖H0‖1−‖H‖1

‖H0‖1
Time (sec) Swaps

250, 125, 25 0.90 (0.08) 0.03 (0.01) 73.03 ( 11.11)
500, 250, 50 0.94 (0.06) 0.10 (0.03) 159.67 ( 20.84)

1000, 500, 100 0.91 (0.13) 0.84 (0.29) 293.33 (106.47)
Table 3

Performance of the local search - medium-size instances (30 of each dimension)(Mean(Std Dev))

In Table 4, we consider 5 instances of each dimension/rank, and present average
results. Our purpose with this last experiment is to show the scalability of the local
search. The algorithm is able to construct sparse reflexive ah-symmetric generalized
inverses for our test matrices with up to 10000 rows, 1000 columns and rank 100, in
less than 1.1 second on average.

m,n, r ‖H0‖1−‖H‖1

‖H0‖1
Time (sec) Swaps

5000, 500, 50 0.91 0.21 121.8
7500, 750, 75 0.89 0.65 172.4

10000, 1000, 100 0.89 1.09 204.8
Table 4

Performance of the local search - large-size instances (5 of each dimension)(Mean)

5. Conclusions and open questions. Generalized inverses have a wide variety
of uses in matrix algebra and its applications. Sparsity of a generalized inverse is
highly preferred for efficiency in its use; structured sparsity and low rank (=reflexivity)
are both preferred for explainability. (Approximate) 1-norm minimization is useful
for keeping entries under control and for inducing sparsity.

When the input matrix is symmetric, a symmetric generalized inverse is useful
in making matrix algebra more efficient. Ah-symmetric (resp., ha-symmetric) gen-
eralized inverses have the key use in solving least-squares (resp., minimum-norm)
problems. Reflexive generalized inverses have low rank (same as the input matrix),
and this is usually preferred in applications.

We have given local-search algorithms that efficiently produce: (i) symmetric
reflexive generalized inverses of symmetric matrices, (ii) reflexive ah-symmetric (ha-
symmetric) generalized inverses. Our algorithms produce generalized inverses with
guaranteed structured sparsity, with low rank (same as the input matrix), and with
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entries under control (by approximate 1-norm minimization). No other known meth-
ods have all of these nice properties.

Of course giving efficient algorithms to improve any of our approximation ratios
is a nice challenge. Even for special classes of matrices, this could be interesting.
It would be nice to resolve the complexity of min{‖H‖0 : P1 + P2, H⊤ = H} and
min{‖H‖0 : P1+P3+P4}. Finally, with respect to the results in §§6.2–6.3, we would
like to understand the behavior of 1-norm based local search for r + 1 < n < 2r.
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search based on the 1-norm of the inverse, for r× n matrices when n ≥ 2r (see §6.3).
Finally, we give a family of examples demonstrating that the bound in Proposi-

tion 3.1 part (2) is sharp for n = r2 and r ≥ 2 (see §6.4), and so in fact there are
LP solutions that are much worse than what our column block solution provides (i.e.,
mr + (r2 − r)(m − r) nonzeros vs. mr nonzeros).

6.1. Worst case for local search based on the determinant. We present
examples to demonstrate that the approximation ratios for the local search based on
the determinant are essentially best possible. We will first give a r × r nonsingular
matrix Ã, then construct a rank-r matrix A that has a local-maximizer Ã but has
another block B with ‖B‖1 close to ‖A‖1 divided by the approximation ratio.

Example 6.1. Let Ã−1 be a r× r Toeplitz matrix, δL, δU ≥ 0 and small, Ã−1 :=





























1 1 + δU 1 + 2δU
. . . 1 + (r − 2)δU 1 + (r − 1)δU

1 + δL 1 1 + δU 1 + 2δU
. . . 1 + (r − 2)δU

1 + 2δL 1 + δL 1 1 + δU
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

1 + (r − 2)δL
. . .

. . .
. . .

. . . 1 + δU

1 + (r − 1)δL 1 + (r − 2)δL
. . .

. . . 1 + δL 1





























.

If δL = δU , then Ã is symmetric. Note that rank(Ã−1) = r when δL, δU are not both
0. This is because by several subtractions of two rows or two columns, Ã−1 has the
same determinant as





























1 0 0
. . . 0 δU

δL −(δL + δU ) 0 0
. . . 0

2δL 0 −(δL + δU ) 0
. . .

. . .

. . . 0 0
. . .

. . .
. . .

(r − 2)δL
. . .

. . .
. . .

. . . 0

(r − 1)δL 0
. . .

. . . 0 −(δL + δU )





























which implies det(Ã−1) = [−(δL + δU )]
r−1 − (r − 1)δLδU [−(δL + δU )]

r−2. Now we
construct the rank-r m× n matrices as following:

(1) For [7, Theorem 9], we construct

A =





Ã b 0
c⊤ d 0
0 0 0



 ;

(2) For Theorem 2.6, we choose δL = δU and construct

A =





Ã b 0
b⊤ d 0
0 0 0



 ;
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(3) For Theorem 3.7, we construct

A =

[

Ã b 0
0 0 0

]

,

where b = Ã1, c⊤ = 1⊤Ã, d = 1⊤Ã1. If A is symmetric, then c⊤ = b⊤. In all cases,
Ã is clearly a local maximizer because the determinant does not change when swap b
(resp. c) with any column (resp. row) of Ã, and

‖Ã−1‖1 = r2 +
r3 − r

6
(δL + δU ).

Now, we compute the 1-norm of the reflexive generalized inverse, when we swap b with
column 1 of Ã, i.e., compute ‖(Ã1(b))

−1‖1. Let e1 be the unit vector with 1 in the first
entry and 0 otherwise, and let ãj be the jth column of Ã, then Ã1(b) = Ã+(b− ã1)e

⊤
1 .

By the Sherman-Morrison formula, we have

(Ã1(b))
−1 = Ã−1 − Ã−1(b − ã1)e

⊤
1 Ã

−1

1 + e⊤1 Ã
−1(b − ã1)

= Ã−1 − (1− e1)e
⊤
1 Ã

−1

1 + e⊤1 (1− e1)
= Ã−1 − (1− e1)e

⊤
1 Ã

−1.

Thus (Ã1(b))
−1 =

























1 1 + δU 1 + 2δU . . . 1 + (r − 2)δU 1 + (r − 1)δU
δL −δU −δU −δU . . . −δU

2δL δL − δU −2δU −2δU . . .
...

. . .
. . .

. . . . . . . . . . . .

(r − 2)δL
. . .

. . .
. . . . . . −(r − 2)δU

(r − 1)δL (r − 2)δL − δU
. . .

. . . δL − (r − 2)δU −(r − 1)δU

























.

(a) For Theorem 3.7, let δU = 0, then

‖(Ã1(b))
−1‖1 = r +

r3 − r

6
δL.

We have

lim
δL→0+

‖Ã−1‖1
‖(Ã1(b))−1‖1

= r.

(b) For [7, Theorem 9], we then swap row r+1 ([c⊤, d]) with row 1 in Ã1(b) to obtain

Ã1(c, b). By the Sherman-Morrison formula, we have

(Ã1(c, b))
−1 = Ã1(b)

−1
− Ã1(b)

−1
e1(1− e1)

⊤
.

Thus (Ã1(c, b))
−1 =























1 δU 2δU . . . (r − 2)δU (r − 1)δU
δL −(δL + δU ) −(δL + δU ) . . . . . . −(δL + δU )
2δL −(δL + δU ) −2(δL + δU ) . . . . . . −2(δL + δU )
...

...
...

. . . . . .
...

(r − 2)δL −(δL + δU ) −2(δL + δU )
...

. . . −(r − 2)(δL + δU )

(r − 1)δL −(δL + δU ) −2(δL + δU )
... −(r − 2)(δL + δU ) −(r − 1)(δL + δU ).
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Letting δU = 0, we have

‖(Ã1(c, b))
−1‖1 = 1+

r3 − r

3
δL, and then lim

δL→0+

‖Ã−1‖1
‖(Ã1(c, b))−1‖1

= r2.

(c) For Theorem 2.6, we choose δL = δU . Similarly, Ã1(b, b) is symmetric, and we
compute

‖(Ã1(b, b))
−1‖1 = 1 +

r3 − r

3
(δL + δU ), and then lim

δL→0+

‖Ã−1‖1
‖(Ã1(b, b))−1‖1

= r2.

6.2. Good case for local search based on the 1-norm of the inverse. Now
we consider the local search based on the 1-norm of the inverse. Here the local search
is to find a local minimizer on the 1-norm of the inverse, which is defined similarly
as the local-maximizer on the determinant. For example, for the general case, it is
defined as

Definition 6.2. Let A be an arbitrary m × n, rank-r matrix, and let S be an
ordered subset of r elements from {1, . . . ,m} and T an ordered subset of r elements
from {1, . . . , n}, and fixed ǫ ≥ 0, if ‖(A[S, T ])−1‖1 cannot be decreased by either either
swapping an element of S with one from its complement or swapping an element of
T with one from its complement, then we say that A[S, T ] is a local minimizer for the
1-norm of the inverse on the set of r × r nonsingular submatrices of A.

We prove an optimal approximation ratio 2r
r+1 for r by r + 1 rank-r matrices.

Theorem 6.3. For a full row rank matrix A ∈ R
r×(r+1), where r := rank(A). If

Ã is chosen to minimize the 1-norm of Ã−1 among all nonsingular r×r principal sub-
matrices, then the (r+1)×r matrix H constructed over Ã, is an ah-symmetric reflexive
generalized inverse of A, satisfying ‖H‖1 ≤ 2r

r+1‖Hopt‖1, where Hopt is an optimal so-
lution to min{‖H‖1 : P1 + P2 + P3} = min{‖H‖1 : P1} = min{‖H‖1 : AH = Ir}.

Proof. Without loss of generality, assume that A = [Ã b], b = Ax, and {i : xi 6=
0} = [s]. Let M := sign(Ã−1), and W :=

[

W̃ 0
]

:=
[

Ã−⊤MÃ−⊤ 0
]

. We have

A⊤WA⊤ =

[

M

b⊤Ã−⊤M

]

= A⊤Ã−⊤M.

If ‖x‖1 =
∑r

i=1 |xi| ≤ 1, then W is dual feasible, thus H is also an optimal solution.
We may assume that ‖x‖1 > 1.

Let Mi(b) := sign((Ãi(b))
−1) for i ∈ [s], where Ãi(b) is Ã with column i replaced

by b, and let

Wi(b) := W̃i(b)D
⊤ := (Ãi(b))

−⊤Mi(b)(Ãi(b))
−⊤D⊤,

whereD ∈ R
n×m with AD = Ãi(b). The dual objective value forWi(b) is 〈A,Wi(b)〉 =

trace(A⊤Wi(b)) = trace((Ãi(b))
⊤W̃i(b)) = 〈Mi(b), (Ãi(b))

−1〉 =
∥

∥

∥
(Ãi(b))

−1
∥

∥

∥

1
, i.e.,

〈A,Wi(b)〉 =
∥

∥

∥
(Ãi(b))

−1
∥

∥

∥

1
≥
∥

∥

∥
Ã−1

∥

∥

∥

1
. Also, we haveA⊤Wi(b)A

⊤ = A⊤Ãi(b)
−⊤Mi(b).

Now consider the dual solution W0 = λW +
∑s

i=1 λiWi(b) with λ, λi ≥ 0 and
λ +

∑s
i=1 λi = 1, which is a convex combination of W and Wi(b). We claim that

minλ,λk
‖A⊤W0A

⊤‖max ≤ 2s
s+1 ≤ 2r

r+1 , which implies that there exists W0 such that
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r+1
2r W0 is dual feasible. Clearly, 〈A,W0〉 ≥ (λ +

∑s
i=1 λi)‖Ã−1‖1 = ‖Ã−1‖1. Thus

‖Ã−1‖ ≤ 2r
r+1‖Hopt‖1. It remains to show that

min
λ,λk≥0: λ+

∑
s
k=1 λk=1

‖A⊤W0A
⊤‖max ≤ 2s

s+ 1
.

For simplicity, let N := Ã−1. By the Sherman-Morrison formula, we have

(Ãi(b))
−1 =

(

I − 1

xi
(x− ei)e

⊤
i

)

N.

Thus (Ãi(b))
−1
iℓ = 1

xi
Niℓ, and (Ãi(b))

−1
kℓ = 1

xi
[xiNkℓ − xkNiℓ], k 6= i.

[Mi(b)]il =
1

sign(xi)
Mil, and [Mi(b)]kℓ =

1
sign(xi)

sign(xiNkℓ − xkNiℓ), k 6= i.

Because ‖Ã−1‖1 ≤ ‖(Ãi(b))
−1‖, we have

‖N‖1 ≤
1

|xi|
‖Ni·‖1 +

∑

k 6=i

∑

ℓ

1

|xi|
|xiNkℓ − xkNiℓ|

⇒ |xi|‖N‖1 ≤ ‖Ni·‖1 +
∑

k 6=i

∑

ℓ

|xiNkℓ − xkNiℓ|

≤ ‖Ni·‖1 + |xi|
∑

k 6=i

‖Nk·‖1 + ‖Ni·‖1
∑

k 6=i

|xk|

⇒ 0 ≤ (1 +
∑

k 6=i

|xk| − |xi|)‖Ni·‖1 ⇒ 0 ≤ 1 +
∑

k 6=i

|xk| − |xi|.

Now, let M̄ := λM +
∑s

i=1 λi(I − 1
xi
(x− ei)e

⊤
i )

⊤Mi(b). Then

A⊤W0A
⊤ = A⊤Ã−⊤M̄ =

[

I
x⊤

]

M̄ =

[

M̄
x⊤M̄

]

.

For k = [r] \ [s], we have [M̄ ]kℓ = λMkℓ +
∑s

i=1 λi[Mi(b)]kℓ, thus ‖M̄kℓ‖ ≤ 1.
For k ∈ [s], we have

[M̄ ]kℓ = λMkℓ +
∑

i6=k: i∈[s]

λi[Mi(b)]kℓ + λk





[Mk(b)]kℓ
xk

−
∑

i6=k

xi

xk
[Mk(b)]iℓ





= λMkℓ +
∑

i6=k: i∈[s]

[

λi
1

sign(xi)
+ λk

xi

|xk|

]

sign(xiNkℓ − xkNiℓ) + λk
Mkℓ

|xk|

=

(

λ+
λk

|xk|

)

Mkℓ +
∑

i6=k: i∈[s]

[

λi

|xi|
+

λk

|xk|

]

xisign(xiNkℓ − xkNiℓ).

Therefore,

‖M̄‖max ≤ max







1,max
k∈[s]







λ+
λk

|xk|
+

∑

i6=k: i∈[s]

[

λi

|xi|
+

λk

|xk|

]

|xi|













= max







1,max
k∈[s]







λ+
1+

∑

i6=k: i∈[s] |xi|
|xk|

λk +
∑

i6=k: i∈[s]

λi













.
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Also

(x⊤M̄)ℓ =

r
∑

k=1

xk[M̄ ]kℓ =

s
∑

k=1

(

λ+
λk

|xk|

)

xkMkℓ.

Therefore

‖x⊤M̄‖max ≤
s
∑

k=1

|xk|λ+

s
∑

k=1

λk.

Next, we derive an upper bound for

t := min
λ,λk≥0:

λ+
s∑

k=1
λk=1

max







s
∑

k=1

|xk|λ+

s
∑

k=1

λk, λ+
1 +

∑

i6=k: i∈[s] |xi|
|xk|

λk +
∑

i6=k: i∈[s]

λi







= min
λ,λk≥0:

λ+
s∑

k=1
λk=1

max

{

(
s
∑

k=1

|xk| − 1)λ+ 1,
1 +

∑

i6=k: i∈[s] |xi| − |xk|
|xk|

λk + 1

}

.

Let y0 := (
s
∑

k=1

|xk| − 1) > 0, and yk :=
1+

∑
i6=k: i∈[s] |xi|−|xk|

|xk|
≥ 0, k ∈ [s].

If yk = 0 for some k ∈ [s], then λ = 0, λk = 1, λi = 0 for i 6= k, is a feasible solution,
and thus t ≤ 1. If yk > 0 for k ∈ [s], let 1

y := 1
y0

+
∑s

k=1
1
yk
. Then λ := y

y0
, λy := y

yk

is a feasible solution, thus t ≤ y + 1. Next, we seek an upper bound on y + 1, which
is equivalent to minx

1
y . Letting S :=

∑s
k=1 |xk|, we have

1

y
=

1

y0
+

s
∑

k=1

1

yk
=

1
s
∑

k=1

|xk| − 1
+

s
∑

k=1

|xk|2
|xk|(1 +

∑

i6=k |xi| − |xk|)

≥ (1 + S)2

S − 1 + S(1 + S)− 2
∑s

k=1 |xk|2
≥ (1 + S)2

S − 1 + S(1 + S)− 2S2

s

=
(1 + S)2

(1− 2
s )S

2 + 2S − 1
≥ s+ 1

s− 1

Therefore, minλ,λk≥0 ‖A⊤W0A
⊤‖max ≤ 1 + s−1

s+1 = 2s
s+1 .

Remark 6.4. Note that when A := [Â Â1], where Â = (J + rI)−1, the bound
2r
r+1 is reached.

6.3. Bad case for local search based on the 1-norm of the inverse. For
simplicity, we only consider full row rank matrix A in this subsection, but the result
can be extended to the symmetric case.

Theorem 6.5. There are no constant approximation ratio for local search based
on the 1-norm of the inverse for full row rank matrix A ∈ R

r×n, where r ≥ 2 and
n ≥ 2r.

Proof. Let A :=

[

1 0 k k
0 1 k −k

]

. So we have r = 2. Consider the block A(:
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, [1, 2]), it has ‖A(:, [1, 2])−1‖1 = 2. Note that

A(:, [1, 3])−1 =

[

1 −1
0 1

k

]

, A(:, [1, 4])−1 =

[

1 1
0 − 1

k

]

,

A(:, [2, 3])−1 =

[

−1 1
1
k 0

]

, A(:, [2, 4])−1 =

[

1 1
1
k 0

]

,

and we have ‖A(:, [1, 3])−1‖1 = ‖A(:, [1, 4])−1‖1 = ‖A(:, [2, 3])−1‖1 = ‖A(:, [2, 4])−1‖1 =
2+ 1

k > ‖A(:, [1, 2])−1‖1, which implies that A(:, [1, 2]) is a local-minimizer of ‖Ã−1‖1.
However, ‖(A(:, [3, 4]))−1‖1 = 2

k , thus the approximation ratio is at least k. Because k
is a parameter which can be sent to infinity, thus there is no constant approximation
ratio.

Now, let Ãn(a, b) be the n by n matrix with all entries equal to b except the
diagonal entries are equal to a, i.e. Ãn(a, b) := diag((a− b)1) + bJ . Note that

Ãn(a, b)1 = [a+ (n− 1)b]1, det(Ãn(a, b)) = [a+ (n− 1)b](a− b)n−1,

and

(Ãn(a, b))
−1 = Ãn

( −a− (n− 2)b

(b − a)(a+ (n− 1)b)
,

b

(b− a)(a+ (n− 1)b)

)

.

For r ≥ 3. Let Ã := Ãr(−1, 1), and A = [Ir kÃ] (k > 0). Note that rank(Ã) = r
because det(Ã) = (−2)r−1(r − 2) 6= 0. Consider the block Ir; it has ‖I−1

r ‖1 = r. If
we replace any column of Ir by a column of kÃ, then with some rearrangement of the
columns and rows, we obtain

B̃1 :=

[

Ir−1 k1
0 −k

]

or B̃2 :=





Ir−2 0 k1
0 1 −k
0 0 k



 .

We have

B̃−1
1 =

[

Ir−1 1
0 − 1

k

]

, and B̃−1
2 :=





Ir−2 0 −1
0 1 1
0 0 1

k



 ,

thus ‖B̃−1
1 ‖1 = ‖B̃−1

2 ‖1 = 2(r − 1) + 1
k > ‖I−1

r ‖1, which implies that Ir is a local-

minimizer of the 1-norm of the inverse. However, ‖(kÃ)−1‖1 = r
k , thus the approxi-

mation ratio is at least k. And k is a parameter which can be sent to infinity, thus
there is no constant approximation ratio.

6.4. Examples related to Proposition 3.1 part (2). For m > r, n = r2,
r ≥ 2, we construct a family of examples that the unique optimal extreme solution of
the LP for min{‖H‖1 : P1 + P2 + P3} have mr + (r2 − r)(m − r) = r2 + r2(m− r)
nonzeros. We consider the following optimization problem

(P123)
minimize ‖H‖1
subject to AHA = A

H(Im −AA+) = 0

From AHA = A and H(Im−AA+), we could infer AH = AH(I−AA+)+AHAA+ =
(AHA)A+ = AA+, thus (P123) is equivalent to min{‖H‖1 : P1+P2+P3}. And we
could derive the dual of (P123):

(D123)
maximize 〈A,W 〉
subject to −J ≤ A⊤WA⊤ + V (Im −AA+) ≤ J.
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Let X = Jr×(m−r), Y ∈ R
r×(r2−r), and the columns of Y consist of all possible

vectors y ∈ R
r with 2 nonzeros m+r

2m and m−r+1
2m . Let H0 = Ir, H1 ∈ R

(r2−r)×r, and
(H1)ij = 1 if Yji =

m+r
2m otherwise (H1)ij = 0. Then we have

Y ⊤(sign(H0) + sign(H0X)X⊤) = Y ⊤(Ir + Jr×(m−r)X
⊤) = Y ⊤(Ir + (m− r)Jr)

= sign(H1) +D1 + (m− r)J(r2−r)×r = sign(H1) +D1 + sign(H1X)X⊤,

where D1 ∈ R
(r2−r)×r, ‖D1‖max < 1, with

(D1)ij =







0, Yji =
m+r
2m ;

2m−2r+1
2m , Yji =

m−r+1
2m ;

m−r
2m , Yji = 0.

Let A0 = ((H0 + Y H1)(Ir + XX⊤))−1 and A =

[

Ir
X⊤

]

A0[Ir Y ] ∈ R
m×n, rank(A)

= rank(A0) = r. Let H =

[

H0

H1

]

[Ir X ] =

[

H0 Jr×(m−r)

H1 J(r2−r)×(m−r)

]

,

W =

[

A−⊤
0 W0A

−⊤
0 0

0 0

]

, W0 = (sign(H0) + sign(H0X)X⊤)(Ir +XX⊤)−1,

and

V =

[

sign(H0) sign(H0X)
sign(H1) +D1 sign(H1X)

]

:= sign(H) +D .

These matrices H,W, V satisfy

AA+ =

[

Ir
X⊤

]

(Ir +XX⊤)−1[Ir X ],

AHA =

[

Ir
X⊤

]

A0[Ir Y ]

[

H0

H1

]

[Ir X ]

[

Ir
X⊤

]

A0[Ir Y ]

=

[

Ir
X⊤

]

A0(H0 + Y H1)(Ir +XX⊤)A0[Ir Y ] =

[

Ir
X⊤

]

A0[Ir Y ] = A,

H(Im −AA+) = H

[

X
−Im−r

]

(Im−r +X⊤X)−1[X⊤ − Im−r]

=

[

H0

H1

]

[Ir X ]

[

X
−Im−r

]

(Im−r +X⊤X)−1[X⊤ − Im−r ] = 0,

A⊤WA⊤ + V (Im −AA+) =

[

Ir
Y ⊤

]

W0[Ir X ] + V (Im −AA+)

=

[

Ir
Y ⊤

]

(sign(H0) + sign(H0X)X⊤)(Ir +XX⊤)−1[Ir X ] + V (Im −AA+)

=

[

sign(H0) + sign(H0X)X⊤

sign(H1) +D1 + sign(H1X)X⊤

]

(Ir +XX⊤)−1[Ir X ] + V (Im −AA+)

= (sign(H) +D)AA+ + V (Im −AA+) = sign(H) +D,

〈A,W 〉 = 〈AHA,W 〉 = 〈H,A⊤WA⊤〉 = 〈H,A⊤WA⊤〉+ 〈H(Im −AA+), V 〉
= 〈H,A⊤WA⊤ + V (Im −AA+)〉 = 〈H, sign(H) +D〉 = ‖H‖1 .

Therefore by weak duality, H and W,V are optimal primal and dual solutions, and
H has exactly r2 + r2(m− r) nonzeros. Also, because vec(A⊤WA⊤ + V (Im −AA+))
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has exactly r2+ r2(m− r) entries with value ±1 corresponding to the positions where
vec(H) is nonzero, by complementary slackness we have that for any primal optimal
solution H∗, vec(H∗) is nonzero only in positions where vec(H) is nonzero. Then we
can easily solve the system of equations AHA = A,H(Im − AA+) = 0 to obtain the
unique solution vec(H). Therefore the primal problem has a unique optimal extreme
solution H with r2 + r2(m− r) nonzeros.
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