
ar
X

iv
:1

81
1.

03
90

5v
4 

 [
m

at
h.

A
P]

  2
7 

A
pr

 2
02

0

Honeycomb-lattice Minnaert bubbles∗
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Abstract

The ability to manipulate the propagation of waves on subwavelength scales is
important for many different physical applications. In this paper, we consider a
honeycomb lattice of subwavelength resonators and prove, for the first time, the ex-
istence of a Dirac dispersion cone at subwavelength scales. As shown in [H. Ammari
et al., A high-frequency homogenization approach near the Dirac points in bubbly
honeycomb crystals, arXiv:1812.06178], near the Dirac points, honeycomb crystals
of subwavelength resonators has a great potential to be used as near-zero materials.
Here, we perform the analysis for the example of bubbly crystals, which is a classic
example of subwavelength resonance, where the resonant frequency of a single bub-
ble is known as the Minnaert resonant frequency. Our first result is an asymptotic
formula for the quasi-periodic Minnaert resonant frequencies. We then prove the
linear dispersion relation of a Dirac cone. Our findings in this paper are numerically
illustrated in the case of circular bubbles, where the multipole expansion method
provides an efficient technique for computing the band structure.

Mathematics Subject Classification (MSC2000). 35R30, 35C20.

Keywords. Honeycomb lattice, Dirac cone, bubble, Minnaert resonance, subwave-
length bandgap.

1 Introduction

Subwavelength crystals are based on locally resonant structures with large material
contrasts, repeated periodically. They are a novel group of synthetic materials which
enables manipulation of waves on very small spatial scales, known as subwavelength
scales. In this setting, a crystal refers to a large structure with a periodically repeated
microstructure. Due to their small scales, subwavelength crystals are very useful in
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physical applications, especially situations where the operating wavelengths are very
large. They have been investigated both numerically and experimentally in [21, 22, 25,
26, 27, 28, 41].

Recently, there have been many discoveries involving materials that exhibit intriguing
wave propagation properties due to the presence of a Dirac cone in their band structures
[14, 16, 17, 19, 20, 24, 31, 36, 37]. A Dirac cone is a linear intersection of two curves
in the dispersion diagram, and is a consequence of non-trivial symmetry of the lattice.
Dirac cones have typically been studied in the context of electron bands in graphene,
where peculiar effects such as Klein tunnelling and Zitterbewegung have been observed.
Moreover, Dirac cones have been demonstrated in acoustic analogues of graphene, which
can give effective zero refractive index materials [31, 32, 33, 34]. Typically, by breaking
the symmetry of the lattice, the Dirac cone can be opened to a bandgap. This is a
fundamental mechanism to create topologically robust guiding of waves [16, 17, 18, 23,
37, 38].

In this work, the acoustic resonant structure is an inclusion embedded in a surround-
ing material with significantly higher density. Inspired by an air bubble in water, which
possesses a resonant frequency known as the Minnaert resonant frequency [2, 3, 29], we
think of the system as a periodic array of bubbles. Physically, such systems can be
stabilized (preserving the resonant behaviour) by replacing the liquid with a soft, elas-
tic medium [26, 27]. The high density contrast is crucial for the resonance to occur at
subwavelength scales. Due to its simplicity, the Minnaert bubble is an ideal component
for constructing subwavelength scale metamaterials, and has been studied, for instance,
in [2, 3, 6, 7, 8, 11]. In particular, it was proved in [6] that a bubbly crystal features a
bandgap opening in the subwavelength regime. Similarly, it is possible to create materi-
als with Dirac cones at subwavelength scales, resulting in small scale metamaterials with
Dirac singularities. Such materials have been experimentally and numerically studied in
[36, 37, 39]. General overviews of acoustic metamaterials are presented in [15, 28, 40].

The goal of this work is to study an acoustic analogue of graphene, composed of bub-
bles in a hexagonal honeycomb structure. Wave propagation in the crystal is modelled
by a high-contrast Helmholtz problem. The main objective is to rigorously prove the
existence of a Dirac cone in the subwavelength scale in a bubbly honeycomb crystal.

The mathematical analysis of the band structure of graphene was originally based
on a tight-binding model under certain nearest-neighbour approximations [30, 35], and
later generalized to a broad class of Schrödinger operators with honeycomb lattice po-
tentials [18, 19, 23, 24]. In this work, using layer potential theory and Gohberg-Sigal
theory, we demonstrate an original and powerful method for analysing metamaterials
with honeycomb structures. The method is well-suited for investigating wave propaga-
tion in media with discontinuous material parameters. Such materials arise naturally
when designing subwavelength metamaterials, but are mathematically challenging to
analyse. We consider a general shape of the scatterer, only assuming some natural sym-
metry assumptions. This generalizes previous works done with circular scatterers [31].
Moreover, we derive an original formula for the slope of the Dirac cone in a bubbly
honeycomb crystal and give explicitly the behaviour of the error term in terms of the
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contrast in the material parameters.
The paper is organised as follows. In Section 2, we define the geometry of the bubbly

honeycomb crystal and formulate the spectral resonance problem. We also introduce
some well-known results regarding the quasi-periodic Green’s function on the honeycomb
lattice. The computation of the Dirac cone is performed in Section 3 and Section 4.
In Section 3, we derive an asymptotic formula for the quasi-periodic Minnaert resonant
frequency in terms of the density contrast. In Section 4, we rigorously show the existence
of a Dirac dispersion cone. The two sections complement each other in the following way:
in Section 3 we compute explicit approximations of the band functions, but cannot prove
the existence of an exact Dirac cone. Conversely, in Section 4 we prove the existence of
a Dirac cone, but we cannot explicitly compute the slope and centre of the cone with
the method used there. Also, it is worth emphasizing that the high-contrast condition
is needed to guarantee the two-fold degeneracy found in a Dirac cone, which could fail
without this condition. Thus, having high-contrast parameters is not required due to
a limitation of the proof, but should be viewed as a method to create subwavelength
Dirac cones. In Section 5, we numerically compute the Dirac cones in the case of circular
bubbles using the multipole expansion method. The paper ends with some concluding
remarks in Section 6.

2 Problem statement and preliminaries

In this section, we formulate the resonance problem for the honeycomb crystal and briefly
describe the layer potential theory that will be used in the subsequent analysis.

2.1 Problem formulation

In order to formulate the problem under consideration, we start by describing the bubbly
honeycomb crystal depicted in Figure 1. We consider a two-dimensional, infinite crystal
in two dimensions. In possible physical realisations, this corresponds to a structure that
is invariant along the third spatial dimension. Define a hexagonal lattice Λ as the lattice
generated by the lattice vectors:

l1 = a

(√
3

2
,
1

2

)
, l2 = a

(√
3

2
,−1

2

)
.

Here, a denotes the lattice constant. Denote by Y a fundamental domain of the given
lattice. Here, we take

Y := {sl1 + tl2 | 0 ≤ s, t ≤ 1} .
We decompose the fundamental domain Y into two parts:

Y = Y1 ∪ Y2,

where
Y1 = {sl1 + tl2 | 0 ≤ s, t, and t+ s ≤ 1} , Y2 = Y \ Y1.
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Figure 1: Illustration of the bubbly honeycomb crystal and quantities in the fundamental
domain Y .

We denote the centres of Y , Y1, and Y2, respectively, by x0, x1, and x2, i.e.,

x0 =
l1 + l2

2
, x1 =

l1 + l2
3

, x2 =
2(l1 + l2)

3
.

We assume that the bubbles are static and placed in a periodic crystal. Physically,
this is achievable by placing the bubbles in a soft elastic medium [26, 27]. We will assume
that each bubble in the crystal has a three-fold rotational symmetry and that each pair
of adjacent bubbles has a two-fold rotational symmetry. More precisely, let R1 and R2

be the rotations by −2π
3 around x1 and x2, respectively, and let R0 be the rotation by

π around x0. These rotations can be written as

R1x = Rx+ l1, R2x = Rx+ 2l1, R0x = 2x0 − x,

where R is the rotation by −2π
3 around the origin. Assume that each fundamental

domain Yj , j = 1, 2 contains one bubble Dj , which is a connected domain of Hölder
class ∂Dj ∈ C1,s, 0 < s < 1, satisfying

R1D1 = D1, R2D2 = D2, R0D1 = D2.

Denote the pair of bubbles, the bubble dimer, by D = D1 ∪ D2. Moreover, the full
honeycomb crystal C is given by

C =
⋃

m∈Λ
D +m.

The dual lattice of Λ, denoted Λ∗, is generated by α1 and α2 satisfying αi · lj = 2πδij ,
for i, j = 1, 2. Then

α1 =
2π

a

(
1√
3
, 1

)
, α2 =

2π

a

(
1√
3
,−1

)
.

The Brillouin zone Y ∗ is defined as the torus Y ∗ := R
2/Λ∗ and can be represented

either as the unit cell
Y ∗ ≃ {sα1 + tα2 | 0 ≤ s, t ≤ 1} ,
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α1

α2

Y ∗

α∗
1

α∗
2

Figure 2: Different representations of the Brillouin zone, generating vectors α1, α2, and
the Dirac points α∗

1, α
∗
2.

or as the first Brillouin zone, which is the hexagon depicted in Figure 2. As usual, for
equivalence classes α, β ∈ Y ∗, with representatives α0, β0 ∈ R

2, we write α = β to denote
α0 = β0 + q for some q ∈ Λ∗. The points

α∗
1 =

2α1 + α2

3
, α∗

2 =
α1 + 2α2

3
,

in the Brillouin zone are called Dirac points. Observe that, since Λ∗ is invariant under
R, we have that R : Y ∗ → Y ∗ is a well-defined map. Moreover, we have

Rα∗
1 =

−α1 + α2

3
=

2α1 + α2

3
= α∗

1,

where the second equality follows due to the periodic nature of Y ∗. Similarly, Rα∗
2 = α∗

2.
Having defined the geometry, we now define the wave scattering problem in the

bubbly honeycomb crystal. We denote by

ρ(x) = ρ0χR2\C(x) + ρbχC(x), κ(x) = κ0χR2\C(x) + κbχC(x),

where ρ0, κ0 and ρb, κb denote the densities and bulk moduli outside and inside the
bubbles, respectively. Here, χA denotes the characteristic function of a set A ∈ R

2. For
a quasi-periodicity α ∈ Y ∗, we will study the α-quasi-periodic Floquet component u of
the total wave field. We therefore consider the following α-quasi-periodic acoustic wave
problem in Y :





∇ · 1

ρ(x)
∇u(x) + ω2

κ(x)
u(x) = 0 in R

2,

u(x+ l) = eiα·lu(x) for all l ∈ Λ.

(2.1)

The differential equation in (2.1) is the acoustic wave equation applied to time-harmonic
waves of frequency ω. The values of ω with positive real part such that there is a non-
zero solution to (2.1) are known as Bloch resonant frequencies, or, seen as functions of
α, as band functions. Since (2.1) correspond to the Floquet transform of a self-adjoint
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operator, it is well-known that the band functions are real (see, for example, [5, Chapter
5.2] for an introduction to Floquet theory with applications to scattering problems). Let

v :=

√
κ0
ρ0
, vb :=

√
κb
ρb
, k :=

ω

v
, kb :=

ω

vb
, δ :=

ρb
ρ0
.

The parameter δ describes the contrast in the density and will be the key asymptotic
parameter. We assume that ρb is small compared to ρ0 while the wave speeds are
comparable and of order 1, i.e.,

δ ≪ 1 and v, vb = O(1).

In the case of air bubbles in water, δ ≈ 10−3. The subwavelength frequency regime
corresponds to frequencies ω which are considerably smaller than the lattice constant a.
The motivation for studying systems of high-contrast bubbles is that such systems have
resonant frequencies ω satisfying ω → 0 as δ → 0. In this work we say that a frequency
ω is a subwavelength frequency if ω scales as ω = O(δ1/2).

With the notation as above, (2.1) reads





∆u+ k2u = 0 in R
2\C,

∆u+ k2bu = 0 in C,
u+ − u− = 0 on ∂C,

δ
∂u

∂ν

∣∣∣∣
+

− ∂u

∂ν

∣∣∣∣
−
= 0 on ∂C,

u(x+ l) = eiα·lu(x) for all l ∈ Λ.

(2.2)

Here, ∂
∂ν denotes the normal derivative on ∂C, and the subscripts + and − indicate the

limits from outside and inside of C, respectively.

2.2 Quasi-periodic Green’s function for the honeycomb lattice

In this section, we introduce the Green’s function and the layer potentials that will be
used in the sequel. A more detailed discussion can, for example, be found in [5, Chapter
2.12].

Define the α-quasi-periodic Green’s function Gα,k to satisfy

∆Gα,k + k2Gα,k =
∑

n∈Λ
δ(x− n)eiα·n.

If k 6= |α+ q| for all q ∈ Λ∗, it can be shown [5, 10] that Gα,k is given by

Gα,k(x) =
1

|Y |
∑

q∈Λ∗

ei(α+q)·x

k2 − |α+ q|2 .

From now on, we assume that the lattice constant a is chosen so that |Y | = 1.
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For a given bounded domain D in Y , with Lipschitz boundary ∂D, the single layer
potential of the density function ϕ ∈ L2(∂D) is defined by

Sα,k
D [ϕ](x) :=

∫

∂D
Gα,k(x− y)ϕ(y) dσ(y), x ∈ R

2.

The following jump relations are well-known [5, 10]:

∂

∂ν
Sα,k
D [ϕ]

∣∣∣∣
±
(x) =

(
±1

2
I + (K−α,k

D )∗
)
[ϕ](x), x ∈ ∂D, (2.3)

where the Neumann-Poincaré operator (K−α,k
D )∗ is defined by

(K−α,k
D )∗[ϕ](x) = p.v.

∫

∂D

∂

∂νx
Gα,k(x− y)ϕ(y) dσ(y), x ∈ ∂D.

From [5, Lemma 2.9], we know that Sα,ω
D : L2(∂D) → H1(∂D) is invertible when α 6= 0

and for ω small enough.
In the rest of this work, we will assume that α is bounded away from zero. For some

fixed α0 > 0, α0 ∈ R, we denote by Y ∗
0 = {α ∈ Y ∗ : |α| ≥ α0}. For α ∈ Y ∗

0 and k small
enough, we have k 6= |α + q| for all q ∈ Λ∗. Then, we can expand Gα,k with respect to
k as follows:

Gα,k = Gα,0 +
∞∑

j=1

k2jGα,0
j , where Gα,0

j (x) := −
∑

q∈Λ∗

ei(α+q)·x

|α+ q|2(j+1)
.

Using this expansion, we can expand the single layer potentials and the Neumann-
Poincaré operators as

Sα,k
D = Sα,0

D +

∞∑

j=1

k2jSα,0
D,j, where Sα,0

D,j[φ](x) :=

∫

∂D
Gα,0

j (x− y)φ(y) dσ(y),

and

(K−α,k
D )∗ = (K−α,0

D )∗+
∞∑

j=1

k2jKα,0
D,j, where Kα,0

D,j[φ](x) :=

∫

∂D

∂

∂νx
Gα,0

j (x−y)φ(y)dσ(y).

Since Gα,0
j is uniformly bounded for x ∈ R

2, α ∈ Y ∗
0 and j = 1, 2, .., the operators Sα,0

D,j

and Kα,0
D,j are bounded operators for all j, and we have that ‖Sα,0

D,j‖B(L2(∂D),H1(∂D)) and

‖Kα,0
D,j‖B(L2(∂D),L2(∂D)) are uniformly bounded for α ∈ Y ∗, j = 1, 2, ... Here, B(A,B)

denotes the space of bounded operators between the normed spaces A,B together with
corresponding operator norm. We therefore have asymptotic expansions

Sα,k
D = Sα,0

D + k2Sα,0
D,1 +O(k4), (K−α,k

D )∗ = (K−α,0
D )∗ + k2Kα,0

D,1 +O(k4), (2.4)

7



uniformly for α ∈ Y ∗
0 , where the error terms are with respect to corresponding operator

norm. For α ∈ Y ∗
0 , let ψi ∈ L2(∂D) be given by

ψi =
(
Sα,0
D

)−1
[χ∂Di

], i = 1, 2. (2.5)

In the following lemma, we collect some key properties of the layer potentials. The proof
is analogous to proofs of similar results, in slightly different settings, found for example
in [5].

Lemma 2.1. We assume α ∈ Y ∗
0 .

(i) We denote the L2(∂D)-adjoint of the Neumann-Poincaré operator by Kα,0
D . Then

ker

(
−1

2
I + (K−α,0

D )∗
)

= span{ψ1, ψ2}, ker

(
−1

2
I +Kα,0

D

)
= span{χ∂D1 , χ∂D2}.

(ii) For any φ ∈ L2(∂D) and for j = 1, 2, we have

∫

∂Dj

(
−1

2
I + (K−α,0

D )∗
)
[φ] dσ = 0. (2.6)

(iii) For any φ ∈ L2(∂D) and for j = 1, 2, we have

∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) = −

∫

Dj

Sα,0
D [φ](x) dx. (2.7)

Proof. To prove (i), we first observe that the jump relation (2.3) implies that span{ψ1, ψ2} ⊂
ker
(
−1

2I + (K−α,0
D )∗

)
. Conversely, if

(
−1

2I + (K−α,0
D )∗

)
[ψ] = 0, we define u(x) =

Sα,0
D [ψ] and conclude from the jump relations that




∆u = 0 in D,
∂u

∂ν
= 0 on ∂D.

It follows that u|Di
is constant, so u|∂D = a1χ∂D1 +a2χ∂D2 . Therefore ψ = a1ψ1+a2ψ2,

which proves ker
(
−1

2I + (K−α,0
D )∗

)
⊂ span{ψ1, ψ2}. The second equality of (i) follows

from the first, combined with the well-known Calderón identity Sα,0
D (K−α,0

D )∗ = Kα,0
D Sα,0

D

[5].
For the proof of (ii), we use the jump relation (2.3) and integration by parts. Then

∫

∂Dj

(
−1

2
I + (K−α,0

D )∗
)
[φ] dσ =

∫

∂Dj

∂Sα,0
D

∂ν

∣∣∣∣∣
−
[φ] dσ =

∫

Dj

∆Sα,0
D [φ] dx = 0.
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To prove (iii), we use (ii) to conclude that on one hand

∫

∂Dj

(
−1

2
I + (K−α,k

D )∗
)
[φ] dσ = k2

∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) +O(k4‖φ‖L2(∂D)).

On the other hand, as in the proof of (ii) we have

∫

∂Dj

(
−1

2
I + (K−α,k

D )∗
)
[φ]dσ = −k2

∫

Dj

Sα,k
D [φ]dx = −k2

∫

Dj

Sα,0
D [φ]dx+O(k3‖φ‖L2(∂D)),

where we have used the expansion (2.4). Combined, we have

∫

∂Dj

Kα,0
D,1[φ](y) dσ(y) = −

∫

Dj

Sα,0
D [φ](x) dx+O(k‖φ‖L2(∂D)),

and since the leading orders on the left-hand side and right-hand side are independent
of k, they must coincide.

Next, we derive asymptotic expansions for α near a Dirac point α∗. From [5], we
know that Gα,k(x)−Gα∗ ,k(x) is continuously differentiable in α for α ∈ Y ∗

0 , and bounded
for x ∈ Y and for k in a neighbourhood of 0. We therefore have the following asymptotic
expansion of Gα,k

Gα,k(x) = Gα∗,k(x) +
∑

q∈Λ∗

ei(α
∗+q)·x

k2 − |α∗ + q|2
(
ix · (α− α∗) + 2

(α∗ + q) · (α− α∗)
k2 − |α∗ + q|2

)

+O(|α− α∗|2), (2.8)

uniformly for k in a neighbourhood of 0 and for x ∈ Y . We define Gk
1 by

Gk
1(x) :=

∑

q∈Λ∗

ei(α
∗+q)·x

k2 − |α∗ + q|2
(
ix+

2(α∗ + q)

k2 − |α∗ + q|2
)
.

and the integral operators Sk
1 and Kk

1 as

Sk
1 [φ](x) :=

∫

∂D
Gk

1(x− y)φ(y) dσ(y), Kk
1 [φ](x) :=

∫

∂D

∂

∂νx
Gk

1(x− y)φ(y) dσ(y).

We then have the expansions

Sα,k
D = Sα∗,k

D + Sk
1 · (α− α∗) +O(|α− α∗|2), (2.9)

(K−α,k
D )∗ = (K−α∗,k

D )∗ +Kk
1 · (α− α∗) +O(|α− α∗|2), (2.10)

uniformly for k in a neighbourhood of 0, where the error terms are with respect to the
corresponding operator norm.
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2.3 Quasi-periodic capacitance matrix

Let V α
i , i = 1, 2, be the solution to





∆V α
i = 0 in R

2 \ C,
V α
i = δij on ∂Dj ,

V α
i (x+ l) = eiα·lV α

i (x) ∀l ∈ Λ.

The intuitive idea for defining these functions is as follows. In the asymptotic limit δ → 0,
the differential problem (2.2) decouples into a Neumann problem insideD and a Dirichlet
problem outside D. In the subwavelength limit ω → 0, this Neumann problem is solved
by constant functions, and thus the Dirichlet data will be constant on ∂D. Therefore,
outside D, a solution u to (2.2) can be approximated by a linear combination of V α

1

and V α
2 . The fact that u is approximately constant on D, and is thus (approximately)

determined by these constant values, turns the continuous spectral problem (2.2) into a
discrete eigenvalue problem in terms of the capacitance matrix Cα defined below. This
underlying idea is made precise in the proof of Theorem 3.2, in order to compute the
Bloch resonant frequencies.

We define the quasi-periodic capacitance coefficients (Cα
ij) by

Cα
ij :=

∫

Y \D
∇V α

i · ∇V α
j dx, i, j = 1, 2.

Here, quasi-periodic refers to the fact that (Cα
ij) depend on the quasi-periodicity α ∈ Y ∗.

In related work [3, 4], analogous quantities, without the quasi-periodic assumption of
V α
i , have been used to study the resonant frequencies of finite systems of resonators.

The quasi-periodic capacitance matrix Cα is defined as

Cα =

(
Cα
11 Cα

12

Cα
21 Cα

22

)
.

The following lemma gives an equivalent description of Cα
ij .

Lemma 2.2. For α ∈ Y ∗
0 , the quasi-periodic capacitance coefficients Cα

ij are given by

Cα
ij = −

∫

∂Di

ψj dσ, i, j = 1, 2, (2.11)

with ψj as defined in (2.5).

Proof. We will use the general fact that for quasi-periodic functions v1, v2 we have [5,
eq. (2.298)] ∫

∂Y

∂v1
∂ν

v2 dσ = 0. (2.12)
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With ψi as defined in (2.5), we have V α
i = Sα,0

D [ψi] outside C. Then, using integration
by parts, we have

Cα
ij = −

(∫

∂Y

∂V α
j

∂ν
V α
i dσ +

∫

∂Dj

∂V α
j

∂ν
V α
i dσ +

∫

∂Di

∂V α
j

∂ν
V α
i dσ

)
.

The first integral vanishes due to (2.12) while the second integral vanishes since V α
i = 0

on ∂Dj . Then, since V α
i = 1 on ∂Di,

Cα
ij = −

∫

∂Di

∂V α
j

∂ν
dσ.

From Lemma 2.1 we have
(
1
2I + (Kα,0

D )∗
)
[ψj ] = ψj . Then, using the jump relations

(2.3), we find the desired expression for Cα
ij.

3 High-contrast subwavelength bands

In this section, we investigate the asymptotic behaviour of the band structure in the
case of small δ. As we shall see, this asymptotic limit enables explicit, approximate,
computations of the band functions. The main results are given in Theorem 3.2 and in
equation (3.15). Throughout this section, we fix α∗ = α∗

1 = 2α1+α2
3 and consider α ∈ Y ∗

0 .
From [5, Theorem 5.13], we know that the solution to (2.2) can be represented using

the single layer potentials Sα,kb
D and Sα,k

D as follows:

u(x) =

{
Sα,kb
D [φ](x), x ∈ D,

Sα,k
D [ψ](x), x ∈ Y \D,

(3.1)

where, due to the jump conditions (2.3), the pair (φ,ψ) ∈ L2(∂D)× L2(∂D) satisfies





Sα,kb
D [φ]− Sα,k

D [ψ] = 0(
−1

2
I + (K−α,kb

D )∗
)
[φ]− δ

(
1

2
I + (K−α,k

D )∗
)
[ψ] = 0

on ∂D. (3.2)

We denote by

Aα,ω
δ :=

(
Sα,kb
D −Sα,k

D

−1
2I + (K−α,kb

D )∗ −δ
(
1
2I + (K−α,k

D )∗
)
)
. (3.3)

We emphasise that Aα,ω
δ is a function of ω, since k and kb depends on ω. With this

definition, (2.2) is equivalent to

Aα,ω
δ

(
φ
ψ

)
= 0. (3.4)
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It is well-known that the above integral equation has non-trivial solutions for some
discrete frequencies ω. These can be viewed as the characteristic values of the operator-
valued analytic function Aα,ω

δ (with respect to ω); see [5, 10] for the definition and
properties of characteristic values. The Bloch resonant frequencies ωα

j are precisely the
positive characteristic values. Moreover, from the original differential problem (2.2),
we observe that the characteristic values are symmetric around the origin: if ω is a
characteristic value, we have that −ω is also a characteristic value.

3.1 Asymptotic computation of the band structure

Here we compute the asymptotic band structure for a general α ∈ Y ∗
0 , not necessarily

close to a Dirac point.

Lemma 3.1. For α ∈ Y ∗
0 , there are precisely two Bloch resonant frequencies ωα

j =
ωα
j (δ), j = 1, 2, such that ωα

j (0) = 0 and ωα
j depends on δ continuously.

Proof. In order to prove the lemma, we will apply the Gohberg-Sigal theory (see, for
example, [5, 10, 42]). We will use the terminology and refer to the results presented in
[5, Chapter 1].

It is clear that ω = 0 is a characteristic value of Aα,ω
0 because

Aα,0
0 =

(
Sα,0
D −Sα,0

D

−1
2I + (K−α,0

D )∗ 0

)

has a non-trivial kernel of two dimensions, which is generated by

Ψ1 =

(
ψ1

ψ1

)
and Ψ2 =

(
ψ2

ψ2

)
, (3.5)

where ψ1 and ψ2 are defined in (2.5). From (2.4), we have that

(
−1

2
I + (K−α,kb

D )∗
)
[ψi](x) = ω2h(x, ω), x ∈ ∂D, i = 1, 2, (3.6)

for some function h which is holomorphic as a function of ω in a neighbourhood of 0.
Since ∫

Di

Sα,0
D [ψi](x) dx 6= 0, i = 1, 2,

it follows from (2.7) that h(x, 0) is not identically zero. Therefore, the rank of both
Ψ1 and Ψ2 is 2. Since Ψ1 and Ψ2 are linearly independent, the multiplicity of the
characteristic value ω = 0 is 4.

The Neumann-Poincaré operator (K−α,0
D )∗ : L2(∂D) → L2(∂D) is well-known to

be a compact operator [5], so −1
2I + (K−α,0

D )∗ is Fredholm of index zero. Since Sα,0
D is

invertible, also Aα,0
0 is Fredholm of index zero. Since (K−α,ω

D )∗ and Sα,ω
D are holomorphic

as functions of ω in a neighbourhood of 0, it follows that Aα,ω
0 is of Fredholm type.

12



Let V ⊂ C be a disk around 0 with a small enough radius, chosen such that Aα,ω
0 is

invertible on ∂V and ω = 0 is the only characteristic value in V . From [5, Lemma 1.11],
it follows that Aα,ω

0 is normal with respect to ∂V .
Now, we turn to the full operator Aα,ω

δ . It is clear that

Aα,ω
δ =Aα,ω

0 +

(
0 0

0 −δ
(
1
2I + (K−α,k

D )∗
)
)

:=Aα,ω
0 +A(1)(ω, δ),

where A(1)(ω, δ), as a function of ω, is holomorphic in V and continuous up to ∂V . For
small enough δ we have

∥∥∥(Aα,ω
0 )

−1
A(1)(ω, δ)

∥∥∥
B
(
(L2(∂D))2,(L2(∂D))2

) < 1, ω ∈ ∂V.

Hence, the generalization of Rouché’s theorem [5, Theorem 1.15] shows that Aα,ω
δ has

4 characteristic values inside V , for small enough δ. Since the characteristic values are
symmetric around the origin, is clear that two of these, namely ωα

1 and ωα
2 , have positive

real parts, while two characteristic values have negative real parts.
The fact that ωα

1 (δ) and ω
α
2 (δ) are continuous in δ can be deduced in a similar way:

if U ∈ C is a neighbourhood of ωα
i (δ1), i = 1, 2, we can write

Aα,ω
δ2

= Aα,ω
δ1

+ (δ1 − δ2)

(
0 0

0 1
2I + (K−α,k

D )∗

)
,

and from the generalization of Rouché’s theorem it follows that ωα
i (δ2) ∈ U when |δ1−δ2|

is small enough.

Theorem 3.2. The band functions ωα
j = ωα

j (δ), j = 1, 2 of Aα,ω
δ can be approximated

as

ωα
j =

√
δλαj
|D1|

vb +O(δ),

uniformly for α ∈ Y ∗
0 , where |D1| is the volume of one resonator and λαj , j = 1, 2 are

the eigenvalues of the quasi-periodic capacitance matrix Cα.

Proof. We seek solutions (φ,ψ) to the integral equation (3.4), normalized such that
‖φ‖L2(∂D) = 1 and ‖ψ‖L2(∂D) = 1. Using the asymptotic expansions (2.4), we find that
φ and ψ satisfy

Sα,0
D [φ]− Sα,0

D [ψ] = O(ω2),
(
−1

2
I + (K−α,0

D )∗ + k2bKα,0
D,1

)
[φ]− δ

(
1

2
I + (Kα,0

D )∗
)
[ψ] = O(ω4 + δ2), (3.7)

uniformly for α ∈ Y ∗
0 , where the error terms are with respect to the norm in L2(∂D).

Observe that Sα,0
D is invertible, and by the inverse mapping theorem together with the

13



fact that Y ∗
0 is a closed set we have that ‖(Sα,0

D )−1‖B(L2(∂D),H1(∂D)) is uniformly bounded
for α ∈ Y ∗

0 . Then, we get
ψ = φ+O(ω2),

uniformly for α ∈ Y ∗
0 . Inserting the above approximation into (3.7), we obtain that

(
−1

2
I + (K−α,0

D )∗ + k2bKα,0
D,1

)
[φ]− δ

(
1

2
I + (Kα,0

D )∗
)
[φ] = O(ω4 + δ2), (3.8)

uniformly for α ∈ Y ∗
0 . Recall that ker

(
−1

2I + (K−α,0
D )∗

)
is spanned by ψ1 and ψ2. Then

we write φ as
φ = aψ1 + bψ2 + ϕ, (3.9)

where ϕ is orthogonal to span{ψ1, ψ2} in L2(∂D). We then have from (3.8) that
(
−1

2
I + (K−α,0

D )∗
)
[ϕ] = O(ω2 + δ).

uniformly for α ∈ Y ∗
0 . Since

(
−1

2I + (K−α,0
D )∗

)
, restricted to the orthogonal complement

of span{ψ1, ψ2}, is invertible with bounded inverse, it follows that, in the L2(∂D)-norm,

ϕ = O(ω2 + δ),

uniformly for α ∈ Y ∗
0 . Moreover, find that |a| + |b| > 0. Now, we substitute (3.9) into

(3.8) and integrate around ∂Di for i = 1, 2. Then, using (2.7), we get

−ω
2|D1|
v2b

a+ δ(aCα
11 + bCα

12) = O(ω4 + δ2),

−ω
2|D1|
v2b

b+ δ(aCα
21 + bCα

22) = O(ω4 + δ2),

uniformly for α ∈ Y ∗
0 . Therefore, ω2|D|

δv2
b

approximates the eigenvalues of the quasi-

periodic capacitance matrix. This completes the proof.

3.2 Asymptotic band structure close to Dirac points

Theorem 3.2 gives an asymptotic formula of the band functions in terms of δ. In this
section, we will investigate the behaviour of this approximation for α close to the Dirac
points. For α ∈ Y ∗, we define two transformations Tα

1 and T2 of α-quasi-periodic
functions in Y by

(Tα
1 f)(x) :=

{
e−iα·l1f(R1x), x ∈ Y1,

e−2iα·l1f(R2x), x ∈ Y2,
(T2f)(x) := f(2x0 − x).

Observe that Tα
1 f is well-defined on ∂Y1 ∩ ∂Y2. For any α ∈ Y ∗, we have that T2f

is α-quasi-periodic, while at α = α∗ we have that Tα∗

1 f is α∗-quasi-periodic. We will
denote T1 := Tα∗

1 , and define τ := e2πi/3.
We remark that the quasi-periodic capacitance matrix Cα is Hermitian for any α.

At Dirac points, the following result holds.
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Lemma 3.3. At the Dirac points, the quasi-periodic capacitance matrix is a constant
multiple of the identity matrix.

Proof. Since T2V
α
1 = V α

2 , we have

Cα
11 =

∫

Y \D
∇V α

1 · ∇V α
1 dx =

∫

Y \D
∇T2V α

1 · ∇T2V α
1 dx = Cα

22.

Hence Cα
11 = Cα

22 for any α ∈ Y ∗
0 and in particular Cα∗

11 = Cα∗

22 . We can also check that

T1V
α∗

1 = τV α∗

1 , T1V
α∗

2 = τ2V α∗

2 .

Then, it follows that

Cα∗

12 =

∫

Y \D
∇V α∗

1 · ∇V α∗

2 dx =

∫

Y \D
∇T1V α∗

1 · ∇T1V α∗

2 dx = τCα∗

12 .

Therefore, we have Cα∗

12 = 0 and so, Cα∗

21 = 0.
Since the quasi-periodic capacitance matrix has a double eigenvalue at Dirac points,

we have that ωα∗

1 = ωα∗

2 +O(δ). The following proposition shows that in fact ωα∗

1 = ωα∗

2

and that this is a double characteristic value.

Proposition 3.4. At the Dirac point α = α∗ and for δ small enough, the first Bloch
resonant frequency ω∗ := ωα∗

1 is of multiplicity 2, i.e., Aα∗,ω∗

δ has a two dimensional
kernel.

Proof. From Lemma 3.1 we know that there are only two band functions (counted with
multiplicity) converging to 0 as δ → 0. Hence, for small enough δ, the dimension of

ker
(
Aα∗,ω∗

δ

)
is at most 2. Suppose that ω∗ is of multiplicity 1. Suppose also that

Aα∗,ω∗

δ

(
φ
ψ

)
= 0,

for a non-trivial pair (φ,ψ). Denote k∗ = ω∗/v and k∗b = ω∗/vb and let

u(x) =

{
Sα∗,k∗

b

D [φ](x), x ∈ D,

Sα∗,k∗

D [ψ](x), x ∈ Y \D.

We can easily check that T1u and T2u also satisfy (2.2). Then u, T1u, and T2u are
linearly dependent and so,

T1u = c1u, T2u = c2u,

for some non-zero constants c1 and c2. Here, we observe that

T 3
1 = I, T 2

2 = I, T1T2f = T2T1f.

Then, it follows that c1 ∈ {1, τ, τ2}, c2 = ±1, and

c1c2u = T1T2u = T2T1u = c̄1c2u.
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Y

Γ3

Y1 Y2

Γ2Γ1

Figure 3: Fundamental domain Y and the curves Γ1,Γ2 and Γ3 used in the proof of
Lemma 3.5.

Therefore, we get c1 = 1, i.e., T1u = u. However, taking the expression for φ in (3.9),
along with the representation (3.1), we find that u is constant on Di, i = 1, 2 up to an
error of order O(δ). This contradicts T1u = u, which completes the proof.

We define the curves Γ1,Γ2 and Γ3 illustrated in Figure 3 as

Γ1 := ∂Y1 ∩ ∂Y, Γ2 := ∂Y2 ∩ ∂Y, Γ3 := ∂Y1 ∩ ∂Y2.

In the sequel, we will occasionally need the following additional assumption on the bubble
geometry.

Assumption 3.1. D is symmetric with respect to Γ3, i.e. D satisfies R3D = D, where
R3 is the reflection across Γ3.

In the next lemma, and throughout the remainder of this work, we will use bracketed

subscripts to denote components of vectors; as an example we write α =
(

α(1)
α(2)

)
for

α ∈ Y ∗.

Lemma 3.5. The quasi-periodic capacitance matrix coefficients Cα
11 and Cα

12 are differ-
entiable with respect to α at α = α∗. Moreover,

∇αC
α
11

∣∣∣
α=α∗

= 0, ∇αC
α
12

∣∣∣
α=α∗

= c

(
1
−i

)
,

where c :=
∂Cα

12
∂α(1)

∣∣∣
α=α∗

. Under Assumption 3.1, we have c 6= 0.

Proof. For a small ǫ ∈ Y ∗, we have from (2.9)

(
Sα∗+ǫ,0
D

)−1
=
(
Sα∗,0
D

)−1
+
(
Sα∗,0
D

)−1 (
S0
1 · ǫ

) (
Sα∗,0
D

)−1
+O(|ǫ|2),

where the error term is with respect to the operator norm. Therefore, from (2.11) it
follows that the quasi-periodic capacitance coefficients are differentiable at α = α∗.

We have the relations

V R2α
1 (x) =

{
V α
1 (R1x), x ∈ Y1,

e−iα·l1V α
1 (R2x), x ∈ Y2,
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V R2α
2 (x) =

{
eiα·l1V α

2 (R1x), x ∈ Y1,

V α
2 (R2x), x ∈ Y2,

from which it follows that

Cα
11 = CRα

11 = CR2α
11 , CR2α

12 = eiα·l1Cα
12.

Differentiating these expressions, and applying Rα∗ = α∗, we arrive at

∇αC
α
11

∣∣∣
α=α∗

= 0, ∇αC
α
12

∣∣∣
α=α∗

= c

(
1
−i

)
,

where c =
∂Cα

12
∂α(1)

∣∣∣
α=α∗

. It only remains to show that c 6= 0 if D is symmetric with respect

to Γ3. Let V̂j :=
∂V α

j

∂α(1)

∣∣
α=α∗ , which satisfies





∆V̂j = 0 in Y \D,
V̂j = 0 on ∂D,

V̂j(x+ l) = eiα·lV̂j(x) + il(1)e
iα·lV α

j (x), l ∈ Λ,

where l =
(

l(1)
l(2)

)
. Then, using quasi-periodicity of V α

j and V̂j , we have

∂Cα
12

∂α(1)

∣∣∣
α=α∗

=

∫

Y \D

(
∇V α∗

1 · ∇V̂2 +∇V̂1 · ∇V α∗

2

)
dx

=

∫

∂Y

(
∂V α∗

1

∂ν
V̂2 + V̂1

∂V α∗

2

∂ν

)
dσ

= i

√
3a

2

∫

Γ2

(
∂V α∗

1

∂ν
V α∗

2 − V α∗

1

∂V α∗

2

∂ν

)
dσ, (3.10)

where we have used the fact that
√
3a
2 is the l(1)-component of the lattice vectors l1 and

l2. Using (2.12), we find that

∫

Γ1

∂V α∗

1

∂ν
V α∗

2 dσ = −
∫

Γ2

∂V α∗

1

∂ν
V α∗

2 dσ = −
∫

Γ2

∂(T2V
α∗

2 )

∂ν
T2V

α∗

1 dσ = −
∫

Γ1

V α∗

1

∂V α∗

2

∂ν
dσ.

(3.11)

Assume that
∂Cα

12
∂α(1)

∣∣∣
α=α∗

= 0. Then, from (3.10) and (3.11), we obtain that

∫

Γj

V α∗

1

∂V α∗

2

∂ν
dσ =

∫

Γj

∂V α∗

1

∂ν
V α∗

2 dσ = 0, (3.12)

for j = 1, 2. Let ν3 = (1, 0). Then it follows from (3.12) and Cα∗

12 = 0 that

∫

Γ3

(
∂V α∗

1

∂ν3
V α∗

2 − V α∗

1

∂V α∗

2

∂ν3

)
dσ =

∫

Y \D
∇V α∗

1 · ∇V α∗

2 dx = 0. (3.13)
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If we write α∗ =

(
α∗
(1)

α∗
(2)

)
, then

(
−α∗

(1)

α∗
(2)

)
= α∗ in Y ∗. Under Assumption 3.1, i.e. if D is

symmetric with respect to Γ3, we observe that V
α∗

1 (x) = V
(−α∗

(1)
,α∗

(2)
)

2 (R3x) = V α∗

2 (R3x).
From this, we have that

V α∗

1 = V α∗

2 ,
∂V α∗

2

∂ν3
= −∂V

α∗

1

∂ν3
on Γ3.

Together with (3.13), we get

2Re

∫

Γ3

V α∗

1

∂V α∗

1

∂ν3
dσ =

∫

Γ3

(
∂V α∗

1

∂ν3
V α∗

2 − V α∗

1

∂V α∗

2

∂ν3

)
dσ = 0. (3.14)

We recall that T1V
α∗

1 = τV α∗

1 and observe that Γ1 =
(
R1Γ3

)
∪
(
(R1)

2Γ3

)
. Using these

facts and (3.14), we get

Re

∫

Γ1

V α∗

1

∂V α∗

1

∂ν
dσ = 0,

so that ∫

Y2\D2

|∇V α∗

1 |2 dx = 0.

Combined with V α∗

1

∣∣∣
∂D2

= 0, this tells us that V α∗

1 = 0 in Y \D, which is a contradiction.

Therefore, we can conclude that
∂Cα

12
∂α(1)

∣∣∣
α=α∗

= c 6= 0.

Starting from the asymptotic formula for ωα
j in terms of δ, we can now ascertain the

asymptotic dependence for α close to α∗. From Lemma 3.5, we obtain that

Cα
11 = Cα∗

11 +O(|α − α∗|2), |Cα
12| =

∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣ |α− α∗|+O(|α− α∗|2).

Because Cα is Hermitian with identical diagonal elements, the eigenvalues are given by
λαj = Cα

11 ± |Cα
12|. For α close to α∗, we find the following asymptotic behaviour:

λαj = Cα∗

11 ±
∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣ |α− α∗|+O(|α− α∗|2).

Now, we conclude that λα
∗

1 = λα
∗

2 = Cα∗

11 and

ωα
j (δ) =

√
δCα∗

11

|D| vb


1±

∣∣∣ ∂C
α
12

∂α(1)

∣∣∣
α=α∗

∣∣∣
2Cα∗

11

|α− α∗|+O(|α − α∗|2)


+O(δ). (3.15)

Equation (3.15) gives the asymptotic band structure for small δ, and suggests that the
system has a Dirac cone. However, we do not know the behaviour of the error term
O(δ), so we can not conclude the existence of a Dirac cone from equation (3.15) alone.
This will be addressed in the following section.
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Remark 1. Theorem 3.2 shows that (ωα
j )

2 scales like O(δ) for small δ. In [3], it was
found the Minnaert resonant frequency ωM of a single bubble in free space scales ac-
cording to ω2

M lnωM = O(δ) in two dimensions. Thus, ωα
j has a different asymptotic

behaviour than ωM . The difference is explained by the quasi-periodic single layer poten-
tial not exhibiting a log-singularity as ω → 0.

4 Conical behaviour of subwavelength bands at Dirac points

In this section, we prove the main result of the paper, Theorem 4.1. In contrast to the
approximations in Section 3, we here prove the existence of an exact Dirac cone. How-
ever, unlike Section 3, the method utilized here does not enable explicit computations
of the slope and centre frequency of the cone. As before, let ω∗ be the Bloch resonant
frequency at α∗ = 2α1+α2

3 .

Theorem 4.1. For sufficiently small δ, the first and second band functions form a Dirac
cone at α∗, i.e.,

ωα
1 (δ) = ω∗ − λ|α− α∗|

[
1 +O(|α− α∗|)

]
, (4.1)

ωα
2 (δ) = ω∗ + λ|α− α∗|

[
1 +O(|α− α∗|)

]
, (4.2)

for some λ independent of α, where the error term O(|α − α∗|) is uniform in δ. As
δ → 0, we have the following asymptotic expansions of ω∗ and λ:

ω∗ =

√
δCα∗

11

|D| vb +O(δ), λ =
1

2

√
δ

|D|Cα∗

11

vb

∣∣∣∣
∂Cα

12

∂α(1)

∣∣∣
α=α∗

∣∣∣∣+O(δ).

Under Assumption 3.1, λ is non-zero for sufficiently small δ.

Unlike the method in Section 3, where the operator Aα,k
δ was asymptotically ex-

panded in terms of ω and δ, the idea is now to expand this operator for α close to α∗,
while keeping the dependence on ω and δ exact. In Section 4.1 we prove some preliminary
results, while the main proof of Theorem 4.1 is given in Section 4.2.

4.1 Preliminary lemmas

Here, we prove Lemmas 4.2, 4.3, 4.4 and 4.5 needed for the proof of Theorem 4.1. In
the following, we will interchangeably use T1, T2 and Tα

1 as operators on L2(∂D) and as

operators on
(
L2(∂D)

)2
(the latter defined by applying the operator coordinate-wise).

Lemma 4.2. For every ω,α and δ,

Tα
1 AR2α,ω

δ = Aα,ω
δ Tα

1 , (4.3)

and
T2Aα,ω

δ = Aα,ω
δ T2. (4.4)
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Proof. To prove (4.3), recall that RΛ∗ = Λ∗. Therefore, it follows that

GR2α,k(x−y) = 1

|Y |
∑

q∈Λ∗

ei(R
2α+q)·(x−y)

k2 − |R2α+ q|2 =
1

|Y |
∑

q∈Λ∗

eiR(R2α+q)·(Rx−Ry)

k2 − |R (R2α+ q) |2 = Gα,k(Rx−Ry).

Then, we can check that

Sα,k
D1

[ψ(R1y)](x) =

∫

∂D1

Gα,k(x− y)ψ(R1y) dσ(y)

=

∫

∂D1

GR2α,k(R1x−R1y)ψ(R1y) dσ(y)

= SR2α,k
D1

[ψ(y)](R1x)

=

{
SR2α,k
D1

[ψ(y)](R1x), x ∈ Y1,

e−iα·l1SR2α,k
D1

[ψ(y)](R2x), x ∈ Y2.

Similarly, we obtain that

Sα,k
D2

[ψ(R2y)](x) = SR2α,k
D2

[ψ(y)](R2x)

=

{
eiα·l1SR2α,k

D2
[ψ(y)](R1x), x ∈ Y1,

SR2α,k
D2

[ψ(y)](R2x), x ∈ Y2.

Thus, we get

Sα,k
D [Tα

1 ψ](x) = Tα
1 SR2α,k

D [ψ](x), x ∈ Y.

This proves (4.3). To prove (4.4), we use the fact that

Gα,k(x− y) = Gα,k
(
(2x0 − x)− (2x0 − y)

)
.

Considering this together with the definitions of Sα,k
D and (K−α,k

D )∗, we find these opera-
tors commute with T2, and hence Aα,ω

δ commutes with T2. This concludes the proof.

Lemma 4.3. There are two elements Φ1 and Φ2 in the kernel of Aα∗,ω∗

δ which satisfy

T1Φ1 = τΦ1, T1Φ2 = τ2Φ2, T2Φ1 = Φ2,

where τ = e2πi/3.

Proof. Let A be the kernel of Aα∗,ω∗

δ . By Lemma 4.2, T1 and T2 are operators from
A onto itself. Since T 3

1 = I and ker(T1 − I) is trivial in A by the same argument as in
the proof of Proposition 3.4, there is an element Φ ∈ A such that either T1Φ = τΦ or
T1Φ = τ2Φ. In the first case we let Φ1 := Φ and Φ2 := T2Φ1. We then have

T1Φ2 = T1(T2Φ1) = T2(T1Φ1) = τ2Φ2.
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In the second case we let Φ2 := Φ and Φ1 := T2Φ and similarly find that T1Φ1 = τΦ1.
This proves the claim

Using the expansions (2.9) and (2.10), we decompose Aα,ω
δ into

Aα,ω
δ = Aα∗,ω

δ +

(
Skb
1 −Sk

1

Kkb
1 −δKk

1

)
· (α− α∗) +O(|α− α∗|2)

:= Aα∗,ω
δ +Aω

δ,1 · (α− α∗) +O(|α− α∗|2), (4.5)

uniformly for δ in a neighbourhood of 0, with error term with respect to the operator
norm. Here, · means the standard inner product taken component-wise. As shown in the
proof of Lemma 3.1, ω∗ is a characteristic value of multiplicity 2, and from Proposition
3.4 we know that kerAα∗,ω∗

δ is two-dimensional. Consequently, ω∗ is a pole of order 1 of

(Aα∗,ω
δ )−1, and we can write

(Aα∗,ω
δ )−1 =

L

ω − ω∗ + Eω, (4.6)

where the operator L is from
(
L2(∂D)

)2
onto kerAα∗,ω∗

δ and Eω is analytic in ω.
Next, we investigate some properties of L. It is easy to check that L vanishes on the

range of Aα∗,ω∗

δ . By Lemma 4.2, we have

LT1 = T1L, LT2 = T2L.

We also have the following result.

Lemma 4.4. For every α ∈ Y ∗ in a neighbourhood of 0, it holds that

L(Aω∗

δ,1 · α)T1Φ = T1L(Aω∗

δ,1 · R2α)Φ,

for every Φ in the kernel of Aα∗,ω∗

δ .

Proof. By Lemma 4.2, we have

(Aα,ω
δ )−1Tα

1 = Tα
1 (AR2α,ω

δ )−1. (4.7)

Moreover, since R2α∗ = α∗, we get from Lemma 4.2 that

T1Aα∗,ω
δ = Aα∗,ω

δ T1. (4.8)

Using (4.5) and the Neumann series, we get, for fixed ω, δ,

(Aα,ω
δ )−1 = (Aα∗,ω

δ )−1 + (Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗)(Aα∗,ω
δ )−1 +O(|α− α∗|2), (4.9)

(AR2α,ω
δ )−1 = (Aα∗,ω

δ )−1 + (Aα∗,ω
δ )−1Aω

δ,1 · (R2α−R2α∗)(Aα∗,ω
δ )−1 +O(|α− α∗|2),

(4.10)
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where error terms are in the operator norm. We also expand Tα
1 as

Tα
1 = T1 + T̂1 · (α− α∗) +O(|α− α∗|2), (4.11)

where the error is in the operator norm and T̂1 is given by

(T̂1f)(x) :=

{
−iτ l1f(R1x), x ∈ Y1,

−2iτ2l1f(R2x), x ∈ Y2,

Substituting the asymptotic expansions (4.9), (4.10) and (4.11) into (4.7), and collecting
terms of order O(|α− α∗|), we get

(Aα∗,ω
δ )−1T̂1 · (α− α∗) + (Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)(Aα∗,ω

δ )−1T1

= T̂1 · (α− α∗)(Aα∗,ω
δ )−1 + T1(Aα∗,ω

δ )−1Aω
δ,1 · (R2α−R2α∗)(Aα∗,ω

δ )−1.

Applying Aα∗,ω
δ on the above identity from the right, and using (4.8), we obtain

(Aα∗,ω
δ )−1T̂1 · (α− α∗)Aα∗,ω

δ + (Aα∗,ω
δ )−1Aω

δ,1 · (α− α∗)T1

= T̂1 · (α− α∗) + T1(Aα∗,ω
δ )−1Aω

δ,1 · (R2α−R2α∗).

Integrating over a small contour around ω∗, we have

LT̂1 · (α− α∗)Aα∗,ω∗

δ + LAω∗

δ,1 · (α− α∗)T1 = T1LAω∗

δ,1 · (R2α−R2α∗).

On the kernel of Aα∗,ω∗

δ , the first term vanishes. Therefore, we get

LAω∗

δ,1 · (α− α∗)T1 = T1LAω∗

δ,1 · (R2α−R2α∗),

on the kernel of Aα∗,ω∗

δ . This completes the proof.

Lemma 4.5. For ω = O(
√
δ) with ω − ω∗ = µ

√
δ for a fixed µ 6= 0, we have

∥∥∥(Aα∗,ω
δ )−1(Aα∗,ω

δ −Aα,ω
δ )

∥∥∥
B
(
(L2(∂D))2,(L2(∂D))2

) = O(|α− α∗|),

uniformly for δ in a neighbourhood of 0.

Proof. We first observe, from (3.6), that
∥∥∥(Aα∗,ω

δ )−1
∥∥∥ = O(δ−1), (4.12)

where we use the shorthand ‖ · ‖ for the norm in B
((
L2(∂D)

)2
,
(
L2(∂D)

)2)
. We know

that L vanishes on the range of Aα∗,ω∗

δ and similarly, the adjoint L∗ vanishes on the

range of
(
Aα∗,ω∗

δ

)∗
. Therefore, L can be written as

L = 〈X1, ·〉Φ1 + 〈X2, ·〉Φ2 (4.13)
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for some X1,X2 ∈ ker
(
Aα∗,ω∗

δ

)∗
. Here, 〈·, ·〉 denotes the standard inner product in

(
L2(∂D)

)2
. Using Lemma 3.1 (i), it is straightforward to check that a basis for ker

(
Aα∗,ω∗

δ

)∗

is given by {(
0

χ∂D1

)
+O(δ),

(
0

χ∂D2

)
+O(δ)

}
,

where the error is with respect to the norm in
(
L2(∂D)

)2
. Therefore, from (4.12) and

(4.6) we have

Xi =
1√
δ

(
0
χi

)
+O(

√
δ), i = 1, 2, (4.14)

where χi(x) is a function that is constant for x ∈ ∂Dj , j = 1, 2 and satisfies ‖χi‖L2(∂D) =
O(1). Combining Lemma 2.1 (ii) with expansion (2.4), we find using (4.13) and (4.14)
that

‖LAα,ω
δ ‖ = O(

√
δ), (4.15)

uniformly for α ∈ Y ∗
0 . Since

∥∥∥Aα∗,ω
δ −Aα,ω

δ

∥∥∥ = O(|α − α∗|) uniformly for δ in a neigh-

bourhood of 0, we obtain that

∥∥∥(Aα∗,ω
δ )−1(Aα∗,ω

δ −Aα,ω
δ )

∥∥∥ =
1

µ
√
δ

∥∥∥L(Aα∗,ω
δ −Aα,ω

δ )
∥∥∥+O(|α− α∗|)

= O(|α− α∗|),

uniformly for δ in a neighbourhood of 0. This concludes the proof.

4.2 Proof of Theorem 4.1

Now, we are ready to prove our main result in this paper, namely Theorem 4.1. We first
observe that we only need to prove (4.1) and (4.2), the remaining statements then follow
from (3.15) and Lemma 3.5. Throughout the proof, we assume that δ is sufficiently small
so that Proposition 3.4 holds.

Let V ⊂ C be a neighbourhood of ω∗ containing only the two characteristic values
ωα
j (δ) for j = 1, 2, and satisfying |∂V | = O(

√
δ). Then the generalized argument prin-

ciple [5, Theorem 1.14] tells us that the characteristic values ωα
1 (δ) and ωα

2 (δ) of Aα,ω
δ

near α∗ satisfy

f(ωα
1 (δ)) + f(ωα

2 (δ)) =
tr

2πi

∫

∂V
(Aα,ω

δ )−1 d

dω
Aα,ω

δ f(ω) dω,

for any analytic function f(ω). As in the proof of [10, Theorem 3.9], we have

f(ωα
1 (δ)) + f(ωα

2 (δ)) = − tr

2πi

∞∑

p=1

∫

∂V

f(ω)

p

d

dω

[
(Aα∗,ω

δ )−1(Aα∗,ω
δ −Aα,ω

δ )
]p

dω.
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Integrating by parts, we find

f(ωα
1 (δ)) + f(ωα

2 (δ)) =
tr

2πi

∞∑

p=1

∫

∂V

df(ω)

dω

1

p

[
(Aα∗,ω

δ )−1(Aα∗,ω
δ −Aα,ω

δ )
]p

dω. (4.16)

Using (4.16) twice, with f(ω) = ω−ω∗ and f(ω) = (ω − ω∗)2, and using Lemma 4.5 we
have

ωα
1 (δ)− ω∗ + ωα

2 (δ) − ω∗ =
tr

2πi

∫

∂V
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗) dω +O(

√
δ|α− α∗|2),

(4.17)

(ωα
1 (δ) − ω∗)2 + (ωα

2 (δ) − ω∗)2 =
tr

2πi

∫

∂V
(ω − ω∗)

[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω

+O(δ|α − α∗|3), (4.18)

where we have used Cauchy’s theorem to conclude that the term corresponding to p = 1
vanishes in (4.18). Here, the error terms hold uniformly for δ in a neighbourhood of 0
and α ∈ Y ∗

0 . To finish the proof, it suffices to show that

tr

2πi

∫

∂V
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗) dω = 0, (4.19)

tr

2πi

∫

∂V
(ω − ω∗)

[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω = C|α− α∗|2, (4.20)

for some C which is constant in α and scales as O(δ) as δ → 0. Indeed, this together
with (4.17) and (4.18) would imply that

ωα
j (δ) = ω∗ ± λ|α− α∗|[1 +O(|α− α∗|)],

uniformly for δ in a neighbourhood of 0, where 2λ2 = C. The expression for λ then
follows from (3.15). We see that

1

2πi

∫

∂V
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗) dω = LAω∗

δ,1 · (α− α∗), (4.21)

is an operator that maps the kernel of Aα∗,ω∗

δ onto itself. Similarly, we get

1

2πi

∫

∂V
(ω − ω∗)

[
(Aα∗,ω

δ )−1Aω
δ,1 · (α− α∗)

]2
dω = [LAω∗

δ,1 · (α− α∗)]2. (4.22)

For α̃ =
(

α̃(1)

α̃(2)

)
in a neighbourhood of 0, let

Aω∗

δ,1 · α̃ = Aω∗

δ,11α̃(1) +Aω∗

δ,12α̃(2).

Suppose that

LAω
δ,11[Φ1] = aΦ1 + bΦ2,

LAω
δ,12[Φ1] = cΦ1 + dΦ2.
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From (4.15) we know that a, b, c and d scale as O(
√
δ) as δ → 0. Since

R2 =
1

2

(
−1 −

√
3√

3 −1

)

and T1Φ1 = τΦ1, we obtain

L(Aω∗

δ,1 · α̃)T1[Φ1] = τ
(
α̃(1)(aΦ1 + bΦ2) + α̃(2)(cΦ1 + dΦ2)

)

T1L(Aω∗

δ,1 · R2α̃)[Φ1] = T1

[
−α̃(1) −

√
3α̃(2)

2
(aΦ1 + bΦ2) +

√
3α̃(1) − α̃(2)

2
(cΦ1 + dΦ2)

]

=
−α̃(1) −

√
3α̃(2)

2
(aτΦ1 + bτ2Φ2) +

√
3α̃(1) − α̃(2)

2
(cτΦ1 + dτ2Φ2).

By Lemma 4.4, it follows that

2a = −a+
√
3c, 2b = −τb+

√
3τd, 2c = −

√
3a− c, 2d = −

√
3τb− τd.

Solving these equations, we obtain a = c = 0, d = −
√
3τ

2+τ b = −ib, which means

LAω∗

δ,11[Φ1] = bΦ2, LAω∗

δ,12[Φ1] = −ibΦ2.

Similarly, putting

LAω
δ,11[Φ2] = ãΦ1 + b̃Φ2,

LAω
δ,12[Φ2] = c̃Φ1 + d̃Φ2.

we carry out the same steps to conclude that

LAω∗

δ,11[Φ2] = ãΦ1, LAω∗

δ,12[Φ2] = iãΦ1,

where ã = O(
√
δ). Now, we arrive at

LAω∗

δ,1 · (α− α∗)[Φ1] = b
(
(α(1) − α∗

(1))− i(α(2) − α∗
(2))
)
Φ2,

LAω∗

δ,1 · (α− α∗)[Φ2] = ã
(
(α(1) − α∗

(1)) + i(α(2) − α∗
(2))
)
Φ1.

Therefore, we can conclude that

trLAω∗

δ,1 · (α − α∗) = 0,

tr [LAω∗

δ,1 · (α− α∗)]2 = 2ãb|α− α∗|2.

This, together with (4.21) and (4.22), proves equations (4.19) and (4.20), which com-
pletes the proof.
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Y ∗

M

Γ
K

Figure 4: Symmetry points in the reciprocal space, and the path along which the band
structure is numerically computed.

5 Numerical illustrations

We consider the bubbly honeycomb crystal as described in Section 2, and additionally
assume that the bubbles are circular with radius R. The center-to-center distance be-
tween adjacent bubbles is assumed to be one and the material parameters are such that
v = vb = 1. The lattice basis vectors are given by

l1 =
(
3,
√
3
)
, l2 =

(
3,−

√
3
)
,

and the reciprocal basis vectors are defined as

α1 = 2π

(
1

6
,

1

2
√
3

)
, α2 = 2π

(
1

6
,− 1

2
√
3

)
.

Using the same notation as in Section 2, this corresponds to a = 2
√
3. We also define

the symmetry points in the reciprocal space as follows:

Γ = (0, 0), K =
2α1 + α2

3
, M =

α1

2
.

We use the multipole expansion method to compute the band diagrams [6]. Because
D has two connected components D1 and D2, we can identify L2(∂D) = L2(∂D1) ×
L2(∂D2). This gives the following matrix expressions of Sα,k

D and (K−α,k
D )∗:

Sα,k
D [φ] =

(
Sα,k
D1

Sα,k
D2

Sα,k
D1

Sα,k
D2

)(
φ(1)
φ(2)

)
, (K−α,k

D )∗[φ] =

(
(K−α,k

D1
)∗ ∂

∂νS
α,k
D2

∂
∂νS

α,k
D1

(K−α,k
D2

)∗

)(
φ(1)
φ(2)

)
.

Here, φ ∈ L2(∂D) is represented by φ =
(

φ(1)

φ(2)

)
∈ L2(∂D1) × L2(∂D2). Using these

expressions, the integral operator Aα,ω
δ defined in equation (3.3) can be discretised with

the multipole expansion method as described in [6, Appendix C]. We consider the band
structure along the line MΓKM , illustrated in Figure 4, in the following numerical
examples:
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(i) (Dilute regime). We set R = 1/50 and δ = 1/9000. The band structure is given in
Figure 5. The left subfigure shows the first four bands. The right subfigure shows
the first two bands, which correspond to subwavelength curves and which cross at
K. Observe that the crossing is a linear dispersion which means that it signifies a
Dirac point.

(ii) (Non-dilute regime) We set R = 1/5 and δ = 1/1000. The band structure is given
in Figure 6. In this non-dilute regime, there is still a Dirac cone at the point K.
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Figure 5: (left) The band structure of a bubbly honeycomb phononic crystal with R =
1/50 and δ = 1/9000. The distance between the adjacent bubbles is one; (right) The
band structure upon zooming in on the subwavelength region.
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Figure 6: (left) The band structure of a bubbly honeycomb phononic crystal with R = 1/5
and δ = 1/1000. The distance between the adjacent bubbles is one; (right) The band
structure upon zooming in on the subwavelength region.
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6 Concluding remarks

In this paper, we have rigorously proven the existence of a Dirac cone in the subwave-
length regime in a bubbly phononic crystal with a honeycomb lattice structure. We
have illustrated our main results with different numerical experiments. In view of the
recent results in [1, 12, 13], our original approach in this work can be extended to plas-
monics. In future works, we plan to further study topological phenomena in bubbly
crystals. In particular, we will rigorously show the existence of localized edge states at
the surface of a topologically non-trivial bubbly crystal. Similar to [11], a high-frequency
homogenization of a bubbly honeycomb phononic crystal is performed in [9].
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