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Abstract: In this paper, a Nash-type fictitious game framework is introduced to handle time-
inconsistent linear-quadratic optimal control problems. The Nash-type game in this framework is
called fictitious as it is between the decision maker (called real player) and an auxiliary control variable
(called fictitious player) with the real player and fictitious player looking for time-consistent policy
and precomitted optimal policy, respectively. Namely, the fictitious-game framework is actually an
auxiliary-variable-based mechanism where the fictitious player is our particular design. Noting that
the real player’s cost functional is revised in accordance with that of fictitious player, the equilibrium
policy of real player is called an open-loop self-coordination control of original linear-quadratic prob-
lem. As a generalization, a time-inconsistent nonzero-sum stochastic linear-quadratic dynamic game
is investigated, where one player is to look for precommitted optimal policy and the other player is to
search time-consistent policy. Necessary and sufficient conditions are presented to ensure the existence
of open-loop equilibrium of the nonzero-sum game, which resort to a set of Riccati-like equations and
linear equations. By applying the developed theory of nonzero-sum game, open-loop self-coordination
control of the linear-quadratic optimal control is fully characterized, and multi-period mean-variance
portfolio selection is also investigated. Finally, numerical simulations are presented, which show the
efficiency of the proposed fictitious-game framework.

Key words: time inconsistency, stochastic linear-quadratic problem, dynamic game, precommitted
policy, time-consistent policy

1 Introduction

Dynamic programming is a fundamental and powerful approach to solving optimal control problems;
the basic idea is to consider a family of problems with different initial times and states, and to establish
relationships among these problems. Bellman’s principle of optimality is the core of this approach
which states using Bellman’s words [5] as “An optimal policy has the property that whatever the
initial state and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.” This property is termed as the time consistency
of optimal control. However, in many practical situations, the time-consistency fails quite often and
the corresponding optimal control problems are time-inconsistent.

Actually, there are several factors that ruin the time consistency of optimal control. The first one
is the nonlinear terms of conditional expectations of state/control that appear in the objective func-
tional. As there is no nonlinear version of the tower property of conditional expectation, the controller
at different time instants is facing with different objectives, which are not consistent with the global
objective. Therefore, the time inconsistency comes from the conflicts between global optimal control on
the lifetime horizon and local optimal control on the tail time horizon. Such a kind of time-inconsistent
problems are classified as mean-field optimal controls, which have gained considerable attention during
the last few years [33, 51]. Another factor is the non-exponential discounting in objective functional,
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which does not possess the property of group or separability any longer. Though exponential discount-
ing is of great importance to model people’s time preference [38], empirical researches over the last
half century have documented the inadequacy of constant discount rate. Among others, hyperbolic dis-
counting is a known anomaly and is often used to describe the case with a declining discount rate [18].
Further, it is hypothesized [42] that people are born with tendency to overvalue current consumption
and that more discounting occurs between the present and the near future than between periods in the
more distant future, namely, the discounting function in the objective functional is non-exponential.
The aforementioned two factors that ruin the time consistency reflect people’s risk preferences and time
preference in some nontraditional ways, both of which are of the phenomenon of “changing tastes” in
intertemporal choices [4], namely, today’s preference conflicts with tomorrow’s preference.

1.1 Existing methodologies on handling the time inconsistency

To handle the time inconsistency, there are several different approaches in existing literature and a rule
of selecting the preferred solution is called as a choice mechanism [4]. The first one is the precommitment
choice for which the initial policy is implemented on the lifetime horizon. This approach neglects the
time inconsistency, and the optimal policy is optimal only when viewed at the initial time. The second
mechanism is naive choice or myopic choice: at each time instant a naive agent embarks on the option
that currently seems best, namely, this agent sticks to the local objective and completely ignores the
global interest. However, the naive policy makes no sense of optimality, and simple example [4] shows
that it might be the worst one of all the policies viewed from the initial time instant.

1.1.1 Strotz’s time-consistent solution

Another mechanism is sophisticated/time-consistent choice proposed by Strotz [42]. In the viewpoint
of Strotz, the decision maker at different time instants is regarded as different selves, and the time
inconsistency suggests a conflict between different these selves. At any time instant the current self
takes account of future selves’ decisions, and the equilibrium of this intertemporal game is called a
sophisticated policy, or a time-consistent policy. Inspired by Strotz’s idea, hundreds of works have
sought to tackle practical problems in economics and finance; see, for example, [11, 12, 16, 17, 21, 26,
28, 32, 36] and the references therein. Moreover, accompanying the appearance of time-inconsistent
mean-field optimal control, recent years have witnessed the rapid progresses of extending Strotz’s
idea in the theoretical control community [7, 8, 23, 24, 31, 33, 37, 44, 45, 46, 47, 48, 49, 50, 51]; in
particular, the open-loop time-consistent control, feedback time-consistent strategy and mixed time-
consistent solution are elaborately studied. It should be noted that Strotz’s solution is essentially a
closed-loop time-consistent strategy. So far, the sophisticated policy and precommitted policy are two
extreme solutions; namely, the sophisticated policy recovers the time consistency and ignores the global
optimality, while the precomitted solution does not care about the time consistency and just pays
attention to the global optimality on the lifetime horizon.

1.1.2 Self-control of Thaler and Shefrin

Different from Strotz’s formulation and to balance the global optimality and time consistency, the
economists Thaler and Shefrin [43] introduce a two-dimensional self-control model: the individual at
any instant in time is assumed to be both a farsighted planner and a myopic doer. This division
into conflicting subselves is how psychologists think about self-control, and the notion of self-control is
paradoxical without it. The doer at each moment in time exists only for one period and is completely
selfish, or myopic [43], namely, the objective of each doer is independent of past and future variables
that are concerned. On the contrary, the planner is concerned with the lifetime objective, which is
derived from the objectives of all the doers. Interestingly, pointed out by [43] and due to the myopic
nature of the doers, the conflict between the planner and doers is fundamentally similar to the agency
relationship between the employer/principal and employees/agents of a firm. In fact, this two-self model
to understand the savings behavior of individuals and households is one of four Thaler’s contributions
in behavioral economics to win 2017 Nobel Prize [1]. For the recent progresses on self-control, we are
referred to [6, 13, 14, 19, 20, 22, 35] and references therein.

Actually, the idea of two-self model can be traced back to the work of Adam Smith [41] in 1759; and
[43] is the first systematic and formal treatment of a two-self economic man, which integrates economics
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with psychology. A key feature of this planner-doer modelling is that the planner is also allowed to
bear some influence on doers’ behavior. For this, the doers are given the discretion to either modify
their preferences or alter the incentives (rewards, punishments, etc). Specifically, through incorporating
the costly control of a “preference modification parameter” (selected by the planner) into the doers’
utilities, the behaviors of the planner and doers can be mutually influenced, and the planner’s utility
is simultaneously modified. By finding the equilibrium of this intrapersonal game, a balance between
the lifetime objective and myopic objectives is achieved. Noting that the planner does not actually
consume, the policy of this game selected by the doers is the one that is executed by the individual.

1.1.3 Two-tier game framework of Cui, Li and Shi

Note that the doers’ local objectives of standard self-control schemes are fully myopic, namely, there
are no conflicts among different local objectives. To meet the time-inconsistent stochastic decision
problems with conflicting non-myopic local objectives and non-expectation operators, Cui, Li and Shi
propose a two-tier planner-doer game framework [13] to reconcile the global and local interests, where
a sequential game among the doers is involved that significantly extends existing self-control schemes
[19, 20, 22, 35, 43]. Through commitment by punishment, the proposed mechanism of [13] revises the
original preference of each individual doer by adding a penalty term, while the expected total penalty
in turn modifies the planner’s preference. Then, both a sequential game among the doers in the lower
tier and a leader-follower game between the planner and doers in the upper tier are constructed. Given
any planned policy, the best-response policies of the doers form a Nash equilibrium of the low tier game
and are time-consistent on the lifetime horizon. Therefore, the two-tier game is indeed a game between
precommitted policy and time-consistent policy, and the doers’ equilibrium time-consistent policy of
this game is called a self-coordination policy of the original time-inconsistent decision problem.

Furthermore, the proposed self-coordination mechanism is applied to the dynamic mean-variance
portfolio selection, and an explicit self-coordination policy is obtained together with a detailed sensi-
tivity analysis [13]; this enable investors to understand the trade-off between global and local interests
and coordinate among various selves. To the best of the authors and within the realm of dynamic
games, the work [13] is the first to study the game between precommitted policy and time-consistent
policy, which clearly merits further investigations. The followings are some of questions that might be
studied.

i). There exist several notions on time-consistent equilibrium solution in existing literature, such as
the open-loop equilibrium control, closed-loop equilibrium strategy and mixed equivalent equa-
tions [23, 31, 51]. Note that the best-response time-consistent policy of the doers is closed-loop.
So, it is desirable to study other types of best-response time-consistent policy.

ii). If we go beyond, the game between the planner and doers can be settled within more general
framework of games between precommitted policy and time-consistent policy, whose study must
enrich the game theory. In particular, it is desirable to study the Nash-type games, namely, the
precommitted policy and time-consistent policy have equal status.

iii). Linear-quadratic (LQ, for short) optimal control is pioneered by Kalman in 1960s and is now a
classical yet fundamental problem in control theory. Though general time-inconsistent decision
problems has been considered in [13, 14], the pretty structure of LQ problem has not been fully
explored within the games between the precommitted policy and time-consistent policy.

1.2 Nash-type fictitious game framework

1.2.1 The framework

In this paper, a time-inconsistent LQ optimal control is studied via a method of Nash-type fictitious
game. Specifically, consider the system{

Xk+1 =
(
A0
kXk +B0

kvk
)

+
∑p
i=1

(
C0i
k Xk +D0i

k vk
)
wik,

Xt = x, k ∈ Tt, t ∈ T,
(1.1)
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where T = {0, . . . , N−1}, Tt = {t, . . . , N−1}, and A0
k, C

0i
k ∈ Rn×n, B0

k, D
0i
k ∈ Rn×m are deterministic.

Letting wk = (w1
k, . . . , w

p
k)T , the noise process {wk, k ∈ T} is assumed to be a vector-valued martingale

difference sequence defined on a probability space (Ω,F,P) with

Ek[wk] = 0, Ek[wkw
T
k ] = ∆k, k ∈ T, (1.2)

where ∆k = (δijk )p×p, k ∈ T, are assumed to be deterministic. Ek[ · ] in (1.2) is the conditional math-
ematical expectation E[ · |Fk] with respect to Fk = σ{wl, l = 0, 1, . . . , k − 1}, and F0 is understood as
{∅,Ω}. Let l2F(t;Rn) and l2F(Tt;Rm) be defined as

l2F(t;Rn) =
{
ζ ∈ Rn

∣∣ ζ is Ft-measurable,E|ζ|2 <∞
}
, (1.3)

l2F(Tt;Rm) =
{
ν = {νk, k ∈ Tt}

∣∣∣ νk ∈ Rm is Fk-measurable,E|νk|2 <∞, k ∈ Tt
}

; (1.4)

and x of (1.1) belongs to l2F(t;Rn). The objective functional is

J(t, x; v) =

N−1∑
k=t

Et
{
XT
k Q

0
t,kXk + (EtXk)T Q̄0

t,kEtXk + vTk R
0
t,kvk + (Etvk)T R̄0

t,kEtvk
}

+ Et
[
(XN )TG0

tXN

]
+ (EtXN )T Ḡ0

tEtXN , (1.5)

where Q0
t,k, Q̄

0
t,k, R

0
t,k, R̄

0
t,k, k ∈ Tt, G0

t , Ḡ
0
t are deterministic symmetric matrices of appropriate dimen-

sions. Then, the LQ problem is stated as follows.

Problem (LQ). Letting t ∈ T and x ∈ l2F(t;Rn), find a v∗ ∈ l2F(Tt;Rm) such that

J(t, x; v∗) = inf
u∈l2F(Tt;Rm)

J(t, x; v). (1.6)

Problem (LQ) is time-inconsistent as the objective functional (1.5) contains nonlinear terms of
conditional expectation and the weighting matrices of (1.5) depend on the initial time. u∗ of (1.6)
is called an open-loop precommitted optimal control, or simply precommitted solution/policy, for the
initial pair (t, x), which totally adheres to the global interest on the lifetime horizon Tt. Noting that u∗

neglects the time inconsistency, the following notion yet pays attention to the open-loop time-consistent
solution of Problem (LQ).

Definition 1.1. A control v ∈ l2F(Tt;Rm) is called an open-loop time-consistent equilibrium control
of Problem (LQ) for the initial pair (t, x), if for any k ∈ Tt and any v̄k ∈ l2F(k;Rm),

J
(
k,Xk; v|Tk

)
≤ J

(
k,Xk; (v̄k, v|Tk+1

)
)
. (1.7)

Here, v|Tk and v|Tk+1
are the restrictions of v on Tk and Tk+1, respectively; and Xk is given by{
Xk+1 =

(
A0
kXk +B0

kvk
)

+
∑p
i=1

(
C0i
k Xk +D0i

k vk
)
wik,

Xt = x, k ∈ Tt, t ∈ T.
(1.8)

Since Strotz’s work, time-consistent solutions have gained much attention in the areas of economics,
finance etc. It should be noted that time-consistent policy and precommitted optimal policy are two ex-
treme and irreconcilable solutions for time-inconsistent optimal control. More precisely, time-consistent
policy recovers the time consistency and ignores the global optimality, while the precomitted solution
does not care about the time consistency and just pays attention to the global optimality on the life-
time horizon. In this paper, we will extend the notion of time-consistent solution in order to strike a
balance between the time consistency and global optimality. The main idea is to introduce an auxiliary
fictitious player that plays games with the decision maker v in Definition 1.1 (this v is called a real
player throughout this paper).

The Nash-type fictitious game framework of this paper is divided into the following three steps.

Step 1. Introduce an auxiliary control variable u ∈ l2F(Tt;Rm), which is called a fictitious player
throughout this paper. The cost functional of u is J(t, x;u) with the internal state{

X̂k+1 =
(
A0
kX̂k +B0

kuk
)

+
∑p
i=1

(
C0i
k X̂k +D0i

k uk
)
wik,

X̂t = x, k ∈ Tt,
(1.9)
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namely,

J(t, x;u) =

N−1∑
k=t

Et
{
X̂T
k Q

0
t,kX̂k + (EtX̂k)T Q̄0

t,kEtX̂k + uTkR
0
t,kuk + (Etuk)T R̄0

t,kEtuk
}

+ Et
[
(X̂N )TG0

t X̂N

]
+ (EtX̂N )T Ḡ0

tEtX̂N .

Different from the real player (v of Definition 1.1), the fictitious player u would like to find a precom-
mitted optimal solution.

Step 2. Modify the cost functionals of v and u to

J̄(k, x̄;u|Tk , v|Tk) = J(k, x̄; v|Tk) + µk(uk − vk)TΨk(uk − vk), k ∈ Tt, (1.10)

Ĵ(t, x;u, v) = J(t, x;u) +

N−1∑
k=t

Et
[
µk(uk − vk)TΨk(uk − vk)

]
(1.11)

with Ψk ∈ Rm×m being symmetric and µk ∈ R, k ∈ Tt. Here, the inner states in J̄(k, x̄;u|Tk , v|Tk) and

Ĵ(t, x;u, v) are given, respectively, by (1.8) and (1.9).

Step 3. Solve the fictitious game:

Problem (LQ)g. Find (u∗, v∗) ∈ l2F(Tt;Rm)× l2F(Tt;Rm) such that

Ĵ(t, x;u∗, v∗) ≤ Ĵ(t, x;u, v∗), ∀u ∈ l2F(Tt,Rm), (1.12)

J̄(k,X∗k ;u∗|Tk , v∗|Tk) ≤ J̄(k,X∗k ;u∗|Tk , (vk, v∗|Tk+1
)), ∀k ∈ Tt, ∀vk ∈ l2F(k,Rm) (1.13)

hold with X∗k computed via{
X∗k+1 =

(
A0
kX
∗
k +B0

kv
∗
k

)
+
∑p
i=1

(
C0i
k X

∗
k +D0i

k v
∗
k

)
wik,

X∗t = x, k ∈ Tt.
(1.14)

Here, v∗ is called an open-loop self-coordination control of Problem (LQ) for the initial pair (t, x) and
{µkΨk, k ∈ Tt}.

Remark 1.2. {Ψk, k ∈ Tt} and {µk, k ∈ Tt} are called the punishment direction and punishment
intensity, respectively. Note that modifying the objective functionals (1.10) (1.11) of Step 2 is similar
to that of [13]. Actually, it is [13] that motivates the study of this paper, and the term “self-coordination
policy” is introduced firstly by [13] that is of closed loop indeed. As the formulation of this paper is
somewhat similar to that of [13], the “self-coordination” is borrowed here and the equilibrium policy
of real player is called an open-loop self-coordination control of Problem (LQ). Furthermore, Problem
(LQ)g is called a fictitious game as it is a game between a real player and a fictitious player.

1.2.2 Motivation

The Nash-type fictitious game framework can be viewed as an auxiliary-variable method. The v of
(1.1) is the real controller and its policy is the one that is actually performed, and the fictitious player
u is an auxiliary control variable with system equation (1.9). On the fictitious game of Problem (LQ)g,
the real player’s policy is obtained that is called an open-loop self-coordination control of Problem
(LQ). Namely, all the derivations from (1.9) to (1.14) are our particular design in order to obtain
the open-loop self-coordination control. Furthermore, the method of fictitious game differs from the
two-tier planner-doer game [13] in the following two points. Firstly, the two-tier game framework is a
self-control scheme, where the decision maker at any instant is assumed to have conflicting subselves—
planner and doer. On the contrary, there is only one real controller in the fictitious game framework,
and the fictitious player is an auxiliary variable. Secondly, the game of [13] is of lead-follower type,
where the planner is a leader and the doers are the followers. In contrast, the game between real player
and fictitious player of this paper is Nash-type, namely, the real player and fictitious player have equal
status.

Auxiliary-variable method is somewhat usual in controller design [15, 29]; in this case, some inter-
nal auxiliary variables are introduced by which the concerned controllers can be constructed. In the
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fictitious game framework, the fictitious player is an internal auxiliary control variable, and through
the fictitious game the real player’s policy is obtained. Furthermore, the best-response policies of real
player and fictitious player are time-consistent and globally optimal, respectively. In other words, the
fictitious game is indeed a game between a real time-consistent policy and a fictitious precommitted
policy, which shares some similarity with that of [13]. To the best of the authors, the work [13] is
the first to study the game between time-consistent policy and precommitted policy, where the con-
flicting subselves have hierarchical status. Under the idea of introducing auxiliary control variable, it
is possible to conduct a fictitious Nash-type game between time-consistent policy and precommitted
policy. Similarly to standard Nash equilibrium, the Nash-type equilibrium of fictitious game is also
non-cooperative, namely, if any one player stays at its equilibrium policy, the other player’s equilibrium
policy is optimal in the sense of (1.12) or (1.13).

Furthermore, on the status of precommitted policy and time-consistent policy in the fictitious game,
let us go back to the pioneer work [42] too. Though consistent planning is proposed firstly by [42], it
seems that no prejudice on precommitted policy is found in [42]. If the conflicts between the global
interest and local interests are recognized, it “may be solved either by (a) a strategy of precommitment,
or (b) a strategy of consistent planning”; this is noted in the Summary of [42]. More interestingly, in
the very recent year, Caliendo and Findley [9] present some positive results about that the precom-
mitted policy acts better than time-consistent policy: “In some prominent, well-studied examples with
intertemporal tradeoffs (like the choice between investing in a project now or later, doing an unpleasant
task now or procrastinating it until later, and eating a cake), we find that the commitment allocation
can multiself Pareto dominate the non-cooperative equilibrium allocation if the number of time-dated
selves exceeds a low threshold.” Here, the commitment allocation and non-cooperative equilibrium al-
location are the precommitted policy and time-consistent policy, respectively. Besides, commitment
mechanism is widely accepted in the fields such as decision science, economics and finance. To mention
a few, see, for example, [3, 10, 25, 27] and references therein. Namely, though nowadays consistent
planning has gained much attention in the control community, the above mentioned sample of papers
provides many positive evidences of studying precommittmed policy, which ought not to be ignored for
its practical values in some situations. Therefore, for the general study, it is reasonable to treat the
precommitted policy and time-consistent policy equally; this is the case of [42]. Hence, to balance the
global optimality and time consistency, an alternative way to that of [13] is conducting a Nash-type
game between time-consistent policy and precommitment policy. This is another motivation of the
fictitious game of this paper.

Additionally, concerned with standard nonzero sum games, Nash solution and Stackelberg solution
are two standard noncooperative equilibrium solutions in the sense that no player can achieve an
improvement if she attempts to deviate from her strategies. Nash solution ensures simultaneously that
at the same time each player will not benefit from changing their strategy, and Stackelberg solution is
in a sequential manner. Though it is established in [40] that the leader in the Stackelberg solution is
at least as good and possibly lower cost than in the Nash solution, yet nothing can be said about the
follower who may or may not do better than the Nash solution [39]. Hence, for the self-coordination
policy of [13] and open-loop self-coordination control of this paper, generally it is hard to say that one
acts better than the other one. Interestingly, according to the examples of Section 4, the scheme of [13]
looks for self-coordination policy between open-loop precommitted optimal control and open-loop time-
inconsistent equilibrium control, while to some extent this paper goes beyond open-loop precommitted
optimal control and open-loop time-consistent equilibrium control. Therefore, our formulation adds a
new dimension to handle time-inconsistent optimal control problems.

1.2.3 Generalization

Letting Xa
k = [X̂T

k XT
k ]T , we have

Xa
k+1 =

(
A0
k 0

0 A0
k

)
Xa
k +

(
B0
k

0

)
uk +

(
0
B0
k

)
vk

+

p∑
i=1

{(
C0i
k 0
0 C0i

k

)
Xa
k +

(
D0i
k

0

)
uk +

(
0
D0i
k

)
vk

}
wik,

Xa
t =

(
x
x

)
, k ∈ Tt.

(1.15)
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Noting X̂k = [I 0]Xa
k , Xk = [0 I]Xa

k , the inner states of Ĵ(t, x;u, v) and J̄(k, x̄;u|Tk , v|Tk) can be
replaced by {Xa

k , k ∈ Tt}. Hence, (1.11) (1.10) are expressed as

Ĵ(t, x;u, v) =

N−1∑
k=t

Et

{
(Xa

k )T
(
Q0
t,k 0

0 0

)
Xa
k + (EtXa

k )T
(
Q̄0
t,k 0

0 0

)
EtXa

k

+ uTk

(
R0
t,k + µkΨk −µkΨk

−µkΨk µkΨk

)
uk + (Etuk)T

(
R̄0
t,k 0

0 0

)
Etuk

}

+ Et

{
(Xa

N )T
(
G0
t 0

0 0

)
Xa
N + (EtXa

N )T
(
Ḡ0
t 0

0 0

)
EtXa

N

}
, (1.16)

and

J̄(k,Xa
k ;u|Tk , v|Tk) =

N−1∑
`=k

Ek

{
(Xa

` )T
(

0 0
0 Q0

k,`

)
Xa
` + (EkXa

` )T
(

0 0
0 Q̄0

k,`

)
EkXa

`

+ uT`

(
0 0
0 R0

k,`

)
u` + (Eku`)T

(
0 0
0 R̄0

k,`

)
Eku`

}

+ µku
T
k

(
Ψk −Ψk

−Ψk Ψk

)
uk + Ek

{
(Xa

N )T
(

0 0
0 G0

k

)
Xa
N

+ (EkXa
N )T

(
0 0
0 Ḡ0

k

)
EkXa

N

}
(1.17)

with uk = [uTk vTk ]T , k ∈ Tt. By the above notations, the game finding the open-loop self-coordination
control of Problem (LQ) is sublimed to solve a generalized time-inconsistent nonzero-sum LQ dynamic
game (Problem (GLQ) below). Namely, finding the open-loop self-coordination control is a motivation
to study the generalized time-inconsistent nonzero-sum LQ dynamic game.

Specifically, consider the system{
Xk+1 =

(
AkXk +B1

kuk +B2
kvk
)

+
∑p
i=1

(
CikXk +D1i

k uk +D2i
k vk

)
wik,

Xt = y ∈ Rñ, k ∈ Tt, t ∈ T.
(1.18)

Here, {Xk, k ∈ T̃t} , X, {uk, k ∈ Tt} , u and {vk, k ∈ Tt} , v with T̃t = {t, ..., N} are the state
process and control processes, respectively; the system matrices Ak, C

i
k ∈ Rñ×ñ, B1

k, D
1i
k ∈ Rñ×m1 ,

B2
k, D

2i
k ∈ Rñ×m2 of (1.18) are deterministic. In (1.18), y belongs to l2F(t;Rñ), which is defined as

l2F(t;Rñ) =
{
ζ ∈ Rñ

∣∣ ζ is Ft-measurable,E|ζ|2 <∞
}
. (1.19)

The cost functionals associated with (1.18) are

J1(t, y;u, v) =

N−1∑
k=t

Et

[(
Xk

uk

)T (
Q1
t,k (S1

t,k)T

S1
t,k R1

t,k

)(
Xk

uk

)

+

(
EtXk

Etuk

)T (
Q̄1
t,k (S̄1

t,k)T

S̄1
t,k R̄1

t,k

)(
EtXk

Etuk

)
+ 2(q1

t,k)TXk + 2(ρ1
t,k)Tuk

]
+ Et

[
(XN )TG1

tXN

]
+ (EtXN )T Ḡ1

tEtXN + 2(g1
t )TEtXN , (1.20)

and

J2(t, y;u, v) =

N−1∑
k=t

Et

[(
Xk

uk

)T (
Q2
t,k (S2

t,k)T

S2
t,k R2

t,k

)(
Xk

uk

)

+

(
EtXk

Etuk

)T (
Q̄2
t,k (S̄2

t,k)T

S̄2
t,k R̄2

t,k

)(
EtXk

Etuk

)
+ 2(q2

t,k)TXk + 2(ρ2
t,k)Tuk

]
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+ Et
[
(XN )TG2

tXN

]
+ (EtXN )T Ḡ2

tEtXN + 2(g2
t )TEtXN , (1.21)

where

uk =

(
uk
vk

)
, S1

t,k =

(
S

1(1)
t,k

S
1(2)
t,k

)
, S̄1

t,k =

(
S̄

1(1)
t,k

S̄
1(2)
t,k

)
, S2

t,k =

(
S

2(1)
t,k

S
2(2)
t,k

)
, S̄2

t,k =

(
S̄

2(1)
t,k

S̄
2(2)
t,k

)
,

R1
t,k =

(
R

1(11)
t,k R

1(12)
t,k

R
1(21)
t,k R

1(22)
t,k

)
, R̄1

t,k =

(
R̄

1(11)
t,k R̄

1(12)
t,k

R̄
1(21)
t,k R̄

1(22)
t,k

)
, R2

t,k =

(
R

2(11)
t,k R

2(12)
t,k

R
2(21)
t,k R

2(22)
t,k

)
,

R̄2
t,k =

(
R̄

2(11)
t,k R̄

2(12)
t,k

R̄
2(21)
t,k R̄

2(22)
t,k

)
, ρ1

t,k =

(
ρ

1(1)
t,k

ρ
1(2)
t,k

)
, ρ2
t,k =

(
ρ

2(1)
t,k

ρ
2(2)
t,k

)
, t ∈ T, k ∈ Tt.

The weighting matrices in (1.20) (1.21) are deterministic matrices; and Qjt,k, Q̄
j
t,k, R

j
t,k, R̄

j
t,k, G

j
t , Ḡ

j
t , j =

1, 2 are symmetric. Let

l2F(Tt;Rmi) =
{
ν = {νk, k ∈ Tt}

∣∣∣ νk ∈ Rmi is Fk-measurable,E|νk|2 <∞, k ∈ Tt
}
, i = 1, 2. (1.22)

As the weighting matrices depend on the initial time and the nonlinear terms of conditional expectation
appear in the cost functionals, the considered dynamic optimization problem associated with (1.18)
(1.20) (1.21) will be time-inconsistent.

Problem (GLQ). For the initial pair (t, y), find a pair (u∗, v∗) ∈ l2F(Tt;Rm1) × l2F(Tt;Rm2) such
that

J1(t, y;u∗, v∗) ≤ J1(t, y;u, v∗), ∀u ∈ l2F(Tt,Rm1), (1.23)

J2(k,X∗k ;u∗|Tk , v∗|Tk) ≤ J2(k,X∗k ;u∗|Tk , (vk, v∗|Tk+1
)), ∀k ∈ Tt, ∀vk ∈ l2F(k,Rm2), (1.24)

where {
X∗k+1 =

(
AkX

∗
k +B1

ku
∗
k +B2

kv
∗
k

)
+
∑p
i=1

(
CikX

∗
k +D1i

k u
∗
k +D2i

k v
∗
k

)
wik,

X∗t = y, k ∈ Tt.
(1.25)

(u∗, v∗) above is called an open-loop equilibrium of Problem (GLQ). By the inequalities (1.23) (1.24),
the best-response policies u∗ and v∗ are precommitted and time-consistent, respectively. Specifically,
in (1.23) u∗ is compared with all other elements in l2F(Tt,Rm1) which is global optimal on Tt, and
in contrast v∗ of (1.24) is called an equilibrium control and is local optimal in the sense that at any
time instant it is optimal pointwisely provided that future equilibrium policies are given. In Section
2, Problem (GLQ) is firstly studied and the obtained results are applied directly to Problem (LQ) to
obtain the open-loop self-coordination control.

1.3 Contents and findings

By discrete-time convex variation, the stationary conditions and convex conditions are obtained, which
together ensure the existence of open-loop equilibrium of Problem (GLQ). Then, several sets of Riccati-
like equations and linear equations are introduced, by which the stationary conditions and convex
conditions are equivalently characterized. Interestingly, the Riccati-like equations (2.14) and linear
equations (2.15) characterizing the convex conditions have nothing to do with the Riccati-like equations
(2.9) (2.10) that are for the stationary conditions. To the best of the authors, the result, b)-c) of
Theorem 2.2 that characterizes the convexity (Proposition 5.2), is the first one for mean-field LQ
problems, which is proved by using a technique of control shifting. Furthermore, sufficient conditions
(2.26) in terms of Riccati-like equations and linear equations are presented to characterize the open-loop
equilibrium of Problem (GLQ), which can be easily checked. Moreover, the uniqueness of open-loop
equilibrium is also studied. By applying the developed theory, open-loop self-coordination control of
Problem (LQ) is obtained.

As an example, dynamic multi-period mean-variance portfolio selection is investigated, which itself
is of much interest. By introducing a martingale difference sequence, the wealth equation becomes a
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special case of general linear stochastic system with multiplicative noises. Therefore, the developed
theory of Problem (LQ) can be applied directly to this portfolio selection problem. Firstly, the result
that is parallel to the general theory is presented on the open-loop self-coordination control, which
resort to a pair of Riccati-like equations with special structure. When the punishment matrices become
zero, the open-loop self-coordination control should be an open-loop time-consistent equilibrium con-
trol, and further the obtained Riccati-like equations should reduce to and coincide with the ones for
open-loop time-consistent equilibrium control. This is validated in Theorem 3.2 indeed. Moreover, a
term “sequently generic” is introduced, and one shows that given any nonnegative definite punishment
direction and any initial pair, Problem (MV) admits unique open-loop self-coordination control for
sequently generic punishment intensity.

Section 4 presents two examples to validate the theory developed. Numerical simulations indicate
a large body of diversity and the following points are manifested. When punishment intensity is small
enough, open-loop self-coordination control perform between open-loop precommitted optimal control
and open-loop time-consistent equilibrium control; at some late instants, open-loop self-coordination
control outperforms open-loop precommitted optimal control and open-loop time-consistent equilibrium
control. In particular, Example 4.2 shows: the scheme of [13] looks for self-coordination policy between
open-loop precommitted optimal control and open-loop time-inconsistent equilibrium control, while
to some extent this paper goes beyond open-loop precommitted optimal control and open-loop time-
consistent equilibrium control. Therefore, our formulation might be viewed as the supplement to that
of [13]. Furthermore, on the above technical contents, we have additional comments. Firstly, open-
loop self-coordination control relives the open-loop time-inconsistent equilibrium control if one lets the
punishment matrices be zero. On the other hand, by adjusting the punishment matrices, open-loop
self-coordination control provides many alternatives to handle the time inconsistency. Namely, the
necessity to study open-loop self-coordination controls is indicated.

Notation. For a matrix M , MT , M† and Ran(M) denote the transpose, the Moore-Penrose

inverse and the range, respectively, of M . Mentioned above, T = {0, ..., N − 1}, T̃ = {0, ..., N}, and
Tt = {t, ..., N−1} for t ∈ T. The spaces l2F(t;Rñ) and l2F(Ttt;Rmi) are given in (1.19) (1.22); and l2F(t;Rn)
and l2F(Ttt;Rm) are similarly defined. If a matrix M is nonnegative definite or positive definite, it will
be denoted as M � 0 and M � 0.

2 Main results

This section presents the main results of this paper, whose proofs are given in Section 5. As looking
for open-loop self-coordination control is a special case of solving Problem (GLQ), the results of this
section are stated mostly for Problem (GLQ).

Theorem 2.1. For the initial pair (t, y), the following statements are equivalent.

i) Problem (GLQ) admits an open-loop equilibrium.

ii) There exists a (u∗, v∗) ∈ l2F(Tt;Rm1)× l2F(Tt;Rm2) such that the stationary conditions

0 = S
1(1)
t,k X∗k + S̄

1(1)
t,k EtX∗k +R

1(11)
t,k u∗k + R̄

1(11)
t,k Etu∗k +R

1(12)
t,k v∗k + R̄

1(12)
t,k Etv∗k

+ (B1
k)TEkY ∗k+1 +

∑p
i=1(D1i

k )TEk(Y ∗k+1w
i
k) + ρ

1(1)
t,k , a.s., k ∈ Tt,

0 = S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + (B2

k)TEkZk,∗k+1

+
∑p
i=1(D2i

k )TEk(Zk,∗k+1w
i
k) + ρ

2(2)
k,k , a.s., k ∈ Tt,

(2.1)

and the convex conditions
inf

u∈l2F(Tt;Rm)
J̃1(t, 0;u) ≥ 0, a.s.,

inf
vk∈l2F(k;Rm)

J̃2(k, 0; vk) ≥ 0, a.s., ∀k ∈ Tt
(2.2)

are satisfied. Here, Y ∗k+1, Z
k,∗
k+1 are computed via the backward stochastic difference equations

9



(BS∆Es, for short)
Y ∗k = Q1

t,kX
∗
k + Q̄1

t,kEtX∗k +
(
S

1(1)
t,k

)T
u∗k +

(
S̄

1(1)
t,k

)TEtu∗k +
(
S

1(2)
t,k

)T
v∗k +

(
S̄

1(2)
t,k

)TEtv∗k
+ATk EkY ∗k+1 +

∑p
i=1(Cik)TEk(Y ∗k+1w

i
k) + q1

t,k,

Y ∗N = G1
tX
∗
N + Ḡ1

tEtX∗N + g1
t , k ∈ Tt,

(2.3)




Zk,∗` = Q2

k,`X
∗
` + Q̄2

k,`EkX∗` +
(
S

2(1)
k,`

)T
u∗` +

(
S̄

2(1)
k,`

)TEku∗` +
(
S

2(2)
k,`

)T
v∗`

+
(
S̄

2(2)
k,`

)TEkv∗` +AT` E`Z
k,∗
`+1 +

∑p
i=1(Ci`)

TE`(Zk,∗`+1w
i
`) + q2

k,`,

Zk,∗N = G2
kX
∗
N + Ḡ2

kEkX∗N + g2
k, ` ∈ Tk,

k ∈ Tt

(2.4)

with {
X∗k+1 =

(
AkX

∗
k +B1

ku
∗
k +B2

kv
∗
k

)
+
∑p
i=1

(
CikX

∗
k +D1i

k u
∗
k +D2i

k v
∗
k

)
wik,

X∗t = y, k ∈ Tt.

J̃1(t, 0;u), J̃2(k, 0; vk) of (2.2) are

J̃1(t, 0;u) =

N−1∑
k=t

Et
[
αTkQ

1
t,kαk + 2uTk S

1(1)
t,k αk + uTkR

1(11)
t,k uk + (Etαk)T Q̄1

t,kEtαk

+ 2(Etuk)T S̄
1(1)
t,k Etαk + (Etuk)T R̄

1(11)
t,k Etuk

]
+ Et[αTNG1

tαN ]

+ (EtαN )T Ḡ1
tEtαN , (2.5)

and

J̃2(k, 0; vk) = vTkR
2(22)
k,k vk +

N−1∑
`=k

Ek
[
βT` Q

2
k,`β` + (Ekβ`)T Q̄2

k,`Ekβ`
]

+ Ek[βTNG
2
kβN ] + (EkβN )T Ḡ2

kEkβN (2.6)

with {αk, k ∈ Tt}, {β`, ` ∈ Tk} given by the following stochastic difference equations (S∆Es, for
short) {

αk+1 =
(
Akαk +B1

kuk
)

+
∑p
i=1

(
Cikαk +D1i

k uk
)
wik,

αt = 0, k ∈ Tt,
(2.7)

and 
β`+1 = A`β` +

∑p
i=1 C

i
`β`w

i
`,

βk+1 = B2
kvk +

∑p
i=1D

2i
k vkw

i
k,

βk = 0, ` ∈ Tk+1.

(2.8)

Under i) or ii), (u∗, v∗) of ii) is an open-loop equilibrium of Problem (GLQ).

To characterize the stationary conditions (2.1), introduce the Riccati-like equations:



Pt,k = Q1
t,k +ATk Pt,k+1Ak +

∑p
i,j=1 δ

ij
k (Cik)TPt,k+1C

j
k

−
[
(H

1(1)
t,k )T (H

1(2)
t,k )T

]
W†

t,k

[
H

1(1)
t,k

Ĥ2(2)
k,k

]
,

Pt,k = Q1
t,k +ATkPt,k+1Ak +

∑p
i,j=1 δ

ij
k (Cik)TPt,k+1C

j
k

−
[
(H1(1)

t,k )T (H1(2)
t,k )T

]
W̃†

t,k

[
H1(1)
t,k

H2(2)
k,k

]
,

σt,k = −
[
(H1(1)

t,k )T (H1(2)
t,k )T

]
W̃†

t,k

[
h1
t,k

h2
k,k

]
+ATk σt,k+1 + q1

t,k,

Pt,N = G1
t ,Pt,N = G1

t , σt,N = g1
t , k ∈ Tt,

(2.9)
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



Tk,` = Q2
k,` + (A`)

TTk,`+1A` +
∑p
i,j=1 δ

ij
` (Ci`)

TTk,`+1C
j
`

−
[
(H

2(1)
k,` )T (H

2(2)
k,` )T

]
W†

t,`

[
H

1(1)
t,`

Ĥ2(2)
`,`

]
,

Tk,` = Q2
k,` + (A`)

TTk,`+1A` +
∑p
i,j=1 δ

ij
` (Ci`)

TTk,`+1C
j
`

−
[
(Ĥ2(1)

k,` )T (Ĥ2(2)
k,` )T

]
W†

t,`

[
H

1(1)
t,`

Ĥ2(2)
`,`

]
,

T̃k,` = (A`)
T T̃k,`+1A` −

[
(H2(1)

k,` )T (H2(2)
k,` )T

]
W̃†

t,`

[
H1(1)
t,`

H2(2)
`,`

]

+
[
(Ĥ2(1)

k,` )T (Ĥ2(2)
k,` )T

]
W†

t,`

[
H

1(1)
t,`

Ĥ2(2)
`,`

]
,

ξk,` = −
[
(H2(1)

k,` )T (H2(2)
k,` )T

]
W̃†

t,`

[
h1
t,`

h2
`,`

]
+AT` ξk,`+1 + q2

k,`,

Tk,N = G2
k, Tk,N = G2

k, T̃k,N = 0, ξk,N = g2
k, ` ∈ Tk,

k ∈ Tt,

(2.10)

where 

W1(1s)
t,k = R1(1s)

t,k + (B1
k)TPt,k+1B

s
k +

∑p
i,j=1 δ

ij
k (D1i

k )TPt,k+1D
sj
k ,

W2(2s)
k,k = R2(2s)

k,k + (B2
k)T (Tk,k+1 + T̃k,k+1)Bsk +

∑p
i,j=1 δ

ij
k (D2i

k )TTk,k+1D
sj
k ,

W
1(1s)
t,k = R

1(1s)
t,k + (B1

k)TPt,k+1B
s
k +

∑p
i,j=1 δ

ij
k (D1i

k )TPt,k+1D
sj
k ,

Ŵ2(2s)
k,k = R2(2s)

k,k + (B2
k)TTk,k+1B

s
k +

∑p
i,j=1 δ

ij
k (D2i

k )TTk,k+1D
sj
k ,

H1(s)
t,k = S1(s)

t,k + (Bsk)TPt,k+1Ak +
∑p
i,j=1 δ

ij
k (Dsj

k )TPt,k+1C
i
k,

H2(s)
k,` = S2(s)

k,` + (Bs` )
T (Tk,`+1 + T̃k,`+1)A` +

∑p
i,j=1 δ

ij
` (Dsj

` )TTk,`+1C
i
`,

Ĥ2(s)
k,` = S2(s)

k,` + (Bs` )
TTk,`+1A` +

∑p
i,j=1 δ

ij
` (Dsj

` )TTk,`+1C
i
`,

H
1(s)
t,k = S

1(s)
t,k + (Bsk)TPt,k+1Ak +

∑p
i,j=1 δ

ij
k (Dsj

k )TPt,k+1C
i
k,

H
2(s)
k,` = S

2(s)
k,` + (Bs` )

TTk,`+1A` +
∑p
i,j=1 δ

ij
` (Dsj

` )TTk,`+1C
i
`,

t ∈ T, k ∈ Tt, ` ∈ Tk, s = 1, 2,

(2.11)

and

Wt,k =

(
W

1(11)
t,k W

1(12)
t,k

Ŵ2(21)
k,k Ŵ2(22)

k,k

)
, W̃t,k =

(
W1(11)
t,k W1(12)

t,k

W2(21)
k,k W2(22)

k,k

)
, k ∈ Tt, (2.12)

h1
t,k = (B1

k)Tσt,k+1 + ρ
1(1)
t,k , h2

k,` = (B2
` )T ξk,`+1 + ρ

2(2)
`,` , k ∈ Tt, ` ∈ Tk. (2.13)

Furthermore, the following Riccati equations
Ut,k = Q1

t,k + (Ak)TUt,k+1Ak +
∑p
i,j=1 δ

ij
k (Cik)TUt,k+1C

j
k −MT

t,kO
†
t,kMt,k,

Ut,k = Q1
t,k + (Ak)TUt,k+1Ak +

∑p
i,j=1 δ

ij
k (Cik)TUt,k+1C

j
k −MT

t,kO
†
t,kMt,k,

Ut,N = G1
t , Ut,N = G1

t , k ∈ Tt,

(2.14)

and linear equations


Vk,` = Q2
k,` + (A`)

TVk,`+1A` +
∑p
i,j=1 δ

ij
` (Ci`)

TVk,`+1C
j
` ,

Vk,` = Q2
k,` + (A`)

TVk,`+1A` +
∑p
i,j=1 δ

ij
` (Ci`)

TVk,`+1C
j
` ,

Vk,N = G2
k, Vk,N = G2

k, ` ∈ Tk,
k ∈ Tt

(2.15)
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are introduced to characterize the convex conditions (2.2) with

Mt,k = S
1(1)
t,k + (B1

k)TUt,k+1Ak +
∑p
i,j=1 δ

ij
k (D1i

k )TUt,k+1C
j
k,

Mt,k = S1(1)
t,k + (B1

k)TUt,k+1Ak +
∑p
i,j=1 δ

ij
k (D1i

k )TUt,k+1C
j
k,

Ot,k = R
1(11)
t,k + (B1

k)TUt,k+1B
1
k +

∑p
i,j=1 δ

ij
k (D1i

k )TUt,k+1D
1j
k ,

Ot,k = R1(11)
t,k + (B1

k)TUt,k+1B
1
k +

∑p
i,j=1 δ

ij
k (D1i

k )TUt,k+1D
1j
k ,

Ok,k = R2(22)
k,k + (B2

k)TVk,k+1B
2
k +

∑p
i,j=1 δ

ij
k (D2i

k )TVk,k+1D
2j
k .

(2.16)

Throughout the paper and for a matrix Φ, Ran(Φ) and Ker(Φ) denote the range and kernel of Φ,
respectively.

Theorem 2.2. For the initial pair (t, y), the following statements are equivalent.

i) Problem (GLQ) admits an open-loop equilibrium.

ii) The following assertions hold.

a) The conditions

H̃t,k

(
EtX∗k
EtX∗k

)
+ ht,k ∈ Ran

(
W̃t,k

)
, (2.17)

Ht,k

(
X∗k − EtX∗k
X∗k − EtX∗k

)
∈ Ran

(
Wt,k

)
, k ∈ Tt (2.18)

are satisfied, where

X∗k+1 = AkX
∗
k +

[
B1
k B

2
k

] [
−W̃†

t,k

(
H̃t,k

(
EtX∗k
EtX∗k

)
+ ht,k

)
−W†

t,kHt,k

(
X∗k − EtX∗k
X∗k − EtX∗k

)]
+

p∑
i=1

{
CikX

∗
k +

[
D1i
k D2i

k

] [
−W̃†

t,k

(
H̃t,k

(
EtX∗k
EtX∗k

)
+ ht,k

)
−W†

t,kHt,k

(
X∗k − EtX∗k
X∗k − EtX∗k

)]}
wik,

X∗t = y, k ∈ Tt,

(2.19)

and

Ht,k =

(
H

1(1)
t,k 0

0 Ĥ2(2)
k,k

)
, H̃t,k =

(
H1(1)
t,k 0

0 H2(2)
k,k

)
, ht,k =

(
h1
t,k

h2
k,k

)
, k ∈ Tt. (2.20)

b) The solutions of (2.14) (2.15) have the property Ot,k � 0, Ot,k � 0 and Ok,k � 0, k ∈ Tt.
c) For any u ∈ l2F(Tt;Rm1), the conditions

Mt,k(αuk − Etαuk) ∈ Ran(Ot,k), a.s., (2.21)

Mt,kEtαuk ∈ Ran(Ot,k), k ∈ Tt (2.22)

are satisfied, where αu is given by{
αuk+1 =

(
Akα

u
k +B1

kη
u
k

)
+
∑p
i=1

(
Cikα

u
k +D1i

k η
u
k

)
wik,

αut = 0, k ∈ Tt
(2.23)

with

ηuk = uk −O†t,kMt,k(αuk − Etαuk)−O†t,kMt,kEtαuk , k ∈ Tt. (2.24)
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Under i) or ii), the open-loop equilibrium of Problem (GLQ) can be selected as(
u∗k
v∗k

)
= −W̃†

t,k

[
H̃t,k

(
EtX∗k
EtX∗k

)
+ ht,k

]
−W†

t,kHt,k

(
X∗k − EtX∗k
X∗k − EtX∗k

)
(2.25)

with X∗ given in (2.19).

Remark 2.3. The condition a) in Theorem 2.2 is characterizing the stationary conditions (2.1),
and b)-c) is equivalent to the convex conditions (2.2). To the best of the authors, b)-c) is the first result
about equivalently characterizing the convexity of mean-field LQ problems.

The following result is straightforward by following Theorem 2.2.

Theorem 2.4. If the conditions
Wt,kW

†
t,kHt,k = Ht,k, W̃t,kW̃

†
t,kH̃t,k = H̃t,k,

W̃t,kW̃
†
t,kht,k = ht,k, Ot,kO

†
t,kMt,k = Mt,k,

Ot,kO†t,kMt,k =Mt,k, Ot,k,Ot,k,Ot,k � 0, k ∈ Tt, t ∈ T
(2.26)

are satisfied, then for any initial pair (t, y)×Rñ, Problem (GLQ) admits an open-loop equilibrium that
is given in (2.25).

Theorem 2.5. If conditions in (2.26) are satisfied and Wt,k,W̃t,k are nonsigular k ∈ Tt, then
Problem (GLQ) admits unique open-loop equilibrium(

u∗k
v∗k

)
= −W̃−1

t,k

[
H̃t,k

(
EtX∗k
EtX∗k

)
+ ht,k

]
−W−1

t,kHt,k

(
X∗k − EtX∗k
X∗k − EtX∗k

)
with {

X∗k+1 =
(
AkX

∗
k +B1

ku
∗
k +B2

kv
∗
`

)
+
∑p
i=1

(
CikX

∗
k +D1i

k u
∗
k +D2i

k v
∗
k

)
wik,

X∗t = y, k ∈ Tt.

If all the weighting matrices in (1.20) (1.21) do not depend on the initial times, this corresponds to a
special case of Problem (GLQ), which is denoted as Problem (sGLQ) below. For Problem (sGLQ), the

corresponding Pt,k,Pt,k, Ut,k, Tk,`, Tk,`, T̃k,`, Vk,`, ξk,`, k ∈ Tt, ` ∈ Tk of (2.9) (2.10) (2.14) (2.15) are also

independent of the initial times, and are denoted, respectively, by Pk,Pk, Uk, Tk, Tk, T̃k, Vk, ξk, k ∈ Tt.
Furthermore, matrices in (2.11) (2.12) (2.13) (2.16) (2.20) do not depend on the initial times too. For
example, (2.10) (2.12) become

Tk = Q2
k + (Ak)TTk+1Ak +

∑p
i,j=1 δ

ij
k (Cik)TTk+1C

j
k

−
[
(H

2(1)
k )T (H

2(2)
k )T

]
W†

k

[
H

1(1)
k

Ĥ2(2)
k

]
,

Tk = Q2
k + (Ak)TTk+1Ak +

∑p
i,j=1 δ

ij
k (Cik)TTk+1C

j
k

−
[
(Ĥ2(1)

k )T (Ĥ2(2)
k )T

]
W†

k

[
H

1(1)
k

Ĥ2(2)
k

]
,

T̃k = (Ak)T T̃k+1Ak −
[
(H2(1)

k )T (H2(2)
k )T

]
W̃†

k

[
H1(1)
k

H2(2)
k

]

+
[
(Ĥ2(1)

k )T (Ĥ2(2)
k )T

]
W†

k

[
H

1(1)
k

Ĥ2(2)
k

]
,

ξk = −
[
(H2(1)

k )T (H2(2)
k )T

]
W̃†

k

[
h1
k

h2
k

]
+ATk ξk+1 + q2

k,

TN = G2, TN = G2, T̃N = 0, ξN = g2, k ∈ Tt,
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and

Wk =

(
W

1(11)
k W

1(12)
k

Ŵ2(21)
k Ŵ2(22)

k

)
, W̃k =

(
W1(11)
k W1(12)

k

W2(21)
k W2(22)

k

)
, k ∈ Tt.

Note that looking for open-loop self-coordination control of Problem (LQ) is a special case of solving
Problem (GLQ). Now consider Problem (LQ). Using the notations of (1.20) (1.21), the weighting
matrices of (1.16) (1.17) are

Q1
t,k =

(
Q0
t,k 0

0 0

)
, Q̄1

t,k =

(
Q̄0
t,k 0

0 0

)
, R1

t,k =

(
R0
t,k + µkΨk −µkΨk

−µkΨk µkΨk

)
,

R̄1
t,k =

(
R̄0
t,k 0

0 0

)
, G1

t =

(
G0
t 0

0 0

)
, Ḡ1

t =

(
Ḡ0
t 0

0 0

)
,

S1
t,k = 0, S̄1

t,k = 0, ρ1
t,k = 0, q1

t,k = g1
t = 0,

and

Q2
k,` =

(
0 0
0 Q0

k,`

)
, Q̄2

k,` =

(
0 0
0 Q̄0

k,`

)
,

R2
k,` =


(

µkΨk −µkΨk

−µkΨk R0
k,k + µkΨk

)
, ` = k,(

0 0
0 R0

k,`

)
, ` ∈ Tk+1,

R̄2
k,` =

(
0 0
0 R̄0

k,`

)
, G2

k =

(
0 0
0 G0

k

)
, Ḡ2

k =

(
0 0
0 Ḡ0

k

)
,

S2
k,` = 0, S̄2

k,` = 0, ρ2
k,` = 0, q2

k,` = g2
k = 0.

Combining (1.16) and (1.17), we can get results that are parallel to Theorem 2.2, Theorem 2.4 and The-
orem 2.5 to obtain the open-loop self-coordination control of Problem (LQ). Due to space limitations,
the results are not presented here.

3 Multi-period mean-variance portfolio selection

In this section, we find the open-loop self-coordination control of multi-period mean-variance portfolio
selection, which is a special example of Problem (LQ). Consider a capital market consisting of one
riskless asset and p0 risky assets over a finite time horizon N . Let sk(> 1) be a given deterministic
return of the riskless asset at time period k and ek = (e1

k, · · · , e
p0
k )T the vector of random returns of the

p0 risky assets at period k. We assume that vectors ek, k = 0, 1, · · · , N−1, are statistically independent
and the only information known about the random return vector ek is its first two moments: its mean
E(ek) = (Ee1

k,Ee2
k, · · · ,Ee

p0
k )T and its covariance Cov(ek) = E[(ek−Eek)(ek−Eek)T ]. Clearly, Cov(ek)

is nonnegative definite, i.e., Cov(ek) � 0.

Let Xk ∈ R be the wealth of the investor at the beginning of the k-th period, and let uik be the
amount invested in the i-th risky asset at period k, i = 1, 2, · · · , p0. Then, Xk−

∑p0
i=1 u

i
k is the amount

invested in the riskless asset at period k, and the wealth at the beginning of the (k + 1)-th period [30]
is given by

Xk+1 =

p0∑
i=1

eiku
i
k +

(
Xk −

p0∑
i=1

uik

)
sk = skXk + ΘT

k uk, (3.1)

where Θk is the excess return vector of risky assets [30] defined as Θk = (Θ1
k,Θ

2
k, · · · ,Θ

p0
k )T = (e1

k −
sk, e

2
k− sk, · · · , e

p0
k − sk)T . In this section, we consider the case where short-selling of stocks is allowed,

i.e., uik, i = 1, ..., k, take values in R. This leads to a multi-period mean-variance portfolio selection
formulation. For this problem, we let Fmk = σ(e`, ` = 0, 1, · · · , k − 1), k = 0, ..., N − 1.

To proceed, (3.1) is transformed into a linear system with multiplicative noises such that the general
theory of above section can work. Precisely, define wik = eik − sk − E(eik − sk),

Dmi
k = (0, · · · , 0, 1, 0, · · · , 0),
i = 1, · · · , p0, k ∈ T,

(3.2)
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where the i-th entry of Dmi
k is 1. Then, {wk = (w1

k, ..., w
p0
k )T , k ∈ T} is a martingale difference sequence

as ek, k = 0, .., N − 1, are statistically independent. Furthermore,

Ek[wkw
T
k ] = E[wkw

T
k ] = Cov(ek) , (δ

ij

k )p0×p0 ,

and (3.1) becomes {
Xk+1 = (skXk + (EΘk)Tuk) +

∑p0
i=1D

mi
k ukw

i
k,

Xt = z, k ∈ Tt.
(3.3)

Then, a time-inconsistent version of multi-period mean-variance problem [30] is formulated in the
following.

Problem (MV). For t ∈ T and z ∈ l2Fm(t;R), find a u∗ ∈ l2Fm(Tt;Rp0) such that

Jm(t, z;u∗) = inf
u∈l2Fm (Tt;Rp0 )

Jm(t, z;u).

Here,

Jm(t, z;u) = Et
[
(XN − EtXN )2

]
− λEtXN (3.4)

with λ > 0 the trade-off parameter between the mean and variance of the terminal wealth.

In what follows, we look for the open-loop self-coordination control of Problem (MV). From the
formulation of (1.16) (1.17) and using similar notations, introduce the following objective functionals
and system dynamics:

Ĵm(t, z;u, v) =

N−1∑
k=t

Et
[
uTk Υkuk

]
+ Et

[
(Xa

N )TG1Xa
N

]
+ (EtXa

N )T Ḡ1EtXa
N + 2(g1)TEtXa

N , (3.5)

J̄m(k,Xa
k ;u|Tk , v|Tk) = uTk Υkuk + Ek

[
(Xa

N )TG2Xa
N

]
+ (EkXa

N )T Ḡ2EkXa
N + 2(g2)TEkXa

N , (3.6)

and  Xa
k+1 = AkX

a
k +B1

kuk +B2
kvk +

∑p0
i=1

(
D1i
k uk +D2i

k vk
)
wik,

Xa
t =

(
z
z

)
, k ∈ Tt

(3.7)

with

uk =

(
uk
vk

)
, Υk = µk

(
Φk −Φk

−Φk Φk

)
� 0, G1 =

(
1 0
0 0

)
, Ḡ1 =

(
−1 0
0 0

)
, (3.8)

g1 =

(
−λ/2

0

)
, G2 =

(
0 0
0 1

)
, Ḡ2 =

(
0 0
0 −1

)
, g2 =

(
0
−λ/2

)
, (3.9)

Ak =

(
sk 0
0 sk

)
, B1

k =

(
(EΘk)T

0

)
, B2

k =

(
0

(EΘk)T

)
, (3.10)

D1i
k =

(
Dmi
k

0

)
, D2i

k =

(
0

Dmi
k

)
, i = 1, ..., p0. (3.11)

Here, µk ≥ 0,Φk � 0, k ∈ T. We then have the following two results, whose proofs are given in Section
5.

Theorem 3.1. Given {Υk, k ∈ T}, let the conditions

WkW
†
kHk = Hk, W̃kW̃

†

khk = hk, k ∈ T (3.12)

be satisfied, where 

Wk = Υk +

 P
(11)

k+1E
(
ΘkΘT

k

)
0

T
(21)

k+1Cov(Θk) T
(22)

k+1Cov(Θk)

 ,

W̃k = Υk +

 P
(11)

k+1Cov(Θk) 0

T
(21)

k+1Cov(Θk) T
(22)

k+1Cov(Θk)

 ,

Hk =

(
skP

(11)

k+1EΘk 0
0 0

)
∈ R2p0×4,

k ∈ T,

(3.13)
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hk =



(
−λ2EΘN−1

−λ2EΘN−1

)
, k = N − 1,(

−λ2 sN−1EΘN−2

−λ2 sN−1EΘN−2

)
, k = N − 2,(

−λ2 sk+1 · · · sN−1EΘk

−λ2 sk+1 · · · sN−1EΘk

)
, k ∈ {0, ..., N − 3},

(3.14)

and 

P
(11)

k = s2
kP

(11)

k+1

[
1− P (11)

k+1(EΘk)T
(
W
†
k

)(11)EΘk

]
,

T k = (Ak)TT k+1Ak −
[
(H

2(1)

k )T (H
2(2)

k )T
]
W
†
k

[
H

1(1)

k

0

]
,

H
1(s)

k = (Bsk)T

(
P

(11)

k+1 0
0 0

)
Ak, H

2(s)

k = (Bsk)TT k+1Ak, s = 1, 2,

P
(11)

N = 1, TN = G2, k ∈ T

(3.15)

with T
21

k+1 and T
(22)

k+1 being the (2, 1)-th and (2, 2)-th entries of T k+1, respectively. Then, for any
(t, z) ∈ T × R, Problem (MV) admits an open-loop self-coordination control for the initial pair (t, z)
and {Υk, k ∈ Tt}, which is selected as

v∗k = −
[
0 Ip0

] [
W
†
kH

(1)

k (Xa∗
k − EtXa∗

k ) + W̃
†

khk

]
, k ∈ Tt. (3.16)

Here, H
(1)

k is the first column block of Hk, i.e.,

H
(1)

k =

(
skP

(11)

k+1EΘk 0
0 0

)
∈ R2p0×2, k ∈ T,

and 
Xa∗
k+1 =

(
AkX

a∗
k +B1

ku
∗
k +B2

kv
∗
`

)
+
∑p0
i=1

(
D1i
k u
∗
k +D2i

k v
∗
k

)
wik,

Xa∗
t =

(
z
z

)
, k ∈ Tt

(3.17)

with Ak, B
1
k, B

2
k, D

1i
k , D

2i
k , k ∈ Tt given in (3.10) (3.11).

When the punishment matrices become zero, the open-loop self-coordination control should be an
open-loop time-consistent equilibrium control, and further the obtained Riccati-like equations (3.15)
should reduce to and coincide with the ones for open-loop time-consistent equilibrium control. This is
validated in Theorem 3.2 below.

Theorem 3.2. The following statements hold.

i) Let µk = 0, k ∈ T. Then, T
(21)

k+1 = 0, P
(11)

k > 0, T
(22)

k > 0, k ∈ T with T
(22)

k = s2
kT

(22)

k+1,

T
(22)

N = 1, k ∈ T.
(3.18)

ii) Let µk = 0, k ∈ T and EΘk ∈ Ran
[
Cov(Θk)

]
, k ∈ T. Then, for any initial pair (t, z) Prob-

lem (MV) admits an open-loop self-coordination control, which is an open-loop time-consistent
equilibrium control.

iii) Let EΘk ∈ Ran
[
Cov(Θk)

]
, k ∈ T. Define Ξk =

{
Φ|Φ = a1Cov(Θk) + a2EΘk(EΘk)T , a1, a2 ≥

0
}
, k ∈ T and let Φk ∈ Ξk, k ∈ T. Then, for any initial pair Problem (MV) admits an open-loop

self-coordination control.
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Given any Φk � 0, k ∈ T, denote

∣∣Wk

∣∣ =

∣∣∣∣∣∣ µkΦk + P
(11)

k+1E
(
ΘkΘT

k

)
−µkΦk

−µkΦk + T
(21)

k+1Cov(Θk) µkΦk + T
(22)

k+1Cov(Θk)

∣∣∣∣∣∣ ≡ p(µk).

The polynomial p(µk) is at most of order 2p0. Let Λ0
k = {µk |p(µk) = 0} and Λk = Λ0

k ∩ R+ with
R+ = (0,+∞). Note that Λk is related to the values of µk+1, ..., µN−1, k ∈ T. Clearly, p(µk) 6= 0 for
µk ∈ R+\Λk, and the Lebesgue measure m(Λk) = 0, k ∈ T. In this case, we call that Wk is nonsingular
for sequently generic {µk, k ∈ T}.

To be precise, a property is parameterized by {ak ∈ R+, k ∈ T}, and this property is called to
hold for sequently generic {ak, k ∈ T} if this property is satisfied for any {ak, k ∈ T} with aN−1 ∈
R+ \ ΛN−1, aN−2 ∈ R+ \ ΛN−2,..., and a0 ∈ R+ \ Λ0; here, for k ∈ T, m(Λk) = 0 and Λk is related to
the values of ak+1, ..., aN−1.

Theorem 3.3. Give any Φk � 0, k ∈ T. Then, for sequently generic {µk, k ∈ T} and any initial
pair (t, z), Problem (MV) admits unique open-loop self-coordination controls.

Remark 3.4. Clearly, EΘk ∈ Ran
[
Cov(Θk)

]
, k ∈ T holds if Cov(Θk) � 0, k ∈ T. Note that

Cov(Θk) � 0, k ∈ T is a common assumption in multi-period mean-variance portfolio selection [11] [13]
[30]. Moreover, letting µk = 0, k ∈ T, we recover the results on open-loop time-consistent control of
multi-period mean-variance portfolio selection [11] [32] [34].

4 Examples

In this section, two examples are presented to validate the theory developed above.

4.1 Two examples

Example 4.1. Consider a discrete-time stochastic LQ problem, whose system dynamics and cost
functional are given, respectively, by{

X0
k+1 = (A0

kX
0
k +B0

kuk) +D0
kukwk,

X0
t = x, t ∈ {0, 1, 2, 3}, k ∈ {t, ..., 3},

and

Je(t, x;u) =

3∑
k=t

Et
[
(X0

k)TQ0
kX

0
k + (EtX0

k)T Q̄0
kEtX0

k +R0
ku

2
k

]
+ Et

[
(X0

4 )TG0X0
4

]
+ (EtX0

4 )T Ḡ0EtX0
4 ,

where

A0
0 =

(
1 0.4

0.3 2

)
, A0

1 =

(
1.102 −0.24
0.53 1.89

)
, A0

2 =

(
1.89 0.49

0 1.75

)
,

A0
3 =

(
0.8 −0.4
0.2 0.7

)
, B0

0 =

(
1.2
−0.5

)
, B0

1 =

(
1
1

)
, B0

2 =

(
1.2
0.2

)
,

B0
3 =

(
1

0.3

)
, D0

0 =

(
1

0.3

)
, D0

1 =

(
1

0.4

)
, D0

2 =

(
0.45
0.25

)
,

D0
3 =

(
0.52

0

)
, Q0

0 =

(
0.55 0.25
0.25 0.6

)
, Q0

1 =

(
1 −0.325

−0.325 0.5

)
,

Q0
2 =

(
1.25 0.25
0.25 1.4

)
, Q0

3 =

(
0.5 0
0 0.375

)
, Q̄0

0 =

(
1 0.325

0.325 1.15

)
,

Q̄0
1 =

(
1.265 0.175
0.175 0.95

)
, Q̄0

2 =

(
1.25 0.325
0.325 0.9

)
, Q̄0

3 =

(
1 0
0 1.5

)
,
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R0
0 = 1.5, R0

1 = 1.4, R0
2 = 1.6, R0

3 = 2, G0 =

(
1 −0.1
−0.1 1

)
,

Ḡ0 =

(
0.5 0
0 0.5

)
,

and {wk, k = 0, 1, 2, 3} here is a scalar martingale difference with constant second-order conditional
moment Ek(w2

k) = 1, k = 0, 1, 2, 3. Letting the punishment matrices be

Υk = µ

(
1 1
1 1

)
, k ∈ {0, ..., 3},

find the open-loop self-coordination control for the initial pair (0, x) with x = [0.5 0.5]T .

Example 4.2. Consider a multi-period mean-variance portfolio selection problem. A capital market
consists of one riskless asset and three risky assets over a finite time horizon N = 4, and the parameters
of the model are as follows

z = 10, sk = 1.04, Ee1
k = 1.162, Ee2

k = 1.246, λ = 1,

Ee3
k = 1.228, k = 0, 1, 2, 3,

and the covariance of ek = (e1
k, e

2
k, e

3
k)T is

Cov(ek) =

 0.0146 0.0187 0.0145
0.0187 0.0854 0.0104
0.0145 0.0104 0.0289

 � 0, k = 0, 1, 2, 3.

For objective functional of the form (3.4), let the punishment matrices be

Υk = µ

(
I3 −I3
−I3 I3

)
, k ∈ {0, 1, 2, 3}

with I3 the identical matrix of order 3. Find the open-loop self-coordination control for the initial pair
(0, z).

4.2 Findings

For Example 4.1 and Example 4.2, we have a basket of policy candidates to handle the time inconsis-
tency, namely, precommitted optimal control, open-loop time-consistent equilibrium control, open-loop
self-coordination control, and self-coordination policy of [13]. Among these candidates, a question arises
naturally: Which one should we select to handle the time inconsistency?

The answer depends on whether or not we have the discretion to reconsider the problems in the
future. If we are not allowed to reconsider the problems in the future, precommitted optimal control is
our unique selection. On the other hand, if we are given the discretion to reconsider the problems at
any or some of intermediate time points, it might be reasonable to select the one as our policy, which
outperforms the others at that instant (where we lastly reconsider the problem).

In this section, the expected objective functionals will be calculated for intermediate time instants
and different policy candidates. For a specific µ, let v∗(µ), vm∗(µ) be the open-loop self-coordination
controls of Example 4.1 and Example 4.2, respectively, and

Vk(µ) = E
[
Je(k,X

0
k ; v∗(µ)|Tk)

]
(4.1)

and

V mk (µ) = E
[
Jm(k,Xm

k ; vm∗(µ)|Tk)
]

= E
[
(Xm

N − EkXm
N )2

]
− λEXm

N (4.2)

are the corresponding expected objective functionals at k ∈ {0, 1, 2, 3} with Tk = {k, ..., 3} here. In
(4.1)-(4.2), the internal states are computed via{

X0
k+1 = (A0

kX
0
k +B0

ku
∗
k) +D0

kv
∗
k(µ)wk,

X0
0 = x, k ∈ {0, ..., 3},
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and {
Xm
k+1 = skX

m
k + ΘT

k v
m∗
k (µ),

Xm
0 = z, k ∈ {0, 1, 2, 3}.

Let vpr be the precommitted optimal control of Example 4.1 and

V prk = E
[
Je(k,X

0
k ; vpr|Tk)

]
, k ∈ {0, 1, 2, 3}

with {
X0
k+1 = (A0

kX
0
k +B0

kv
pr
k ) +D0

kv
pr
k (µ)wk,

X0
0 = x, k ∈ {0, ..., 3}.

Then, the following facts are straightforward:

1. When µ = 0, the open-loop self-coordination control v∗(µ) becomes the open-loop time-consistent
control, namely,

V tck = Vk(0), k ∈ {0, 1, 2, 3},

where V tck denotes the expected objective functional under open-loop time-consistent control.

2. It holds that
V prk = E

[
Je(k, X̂

0
k ;u∗(0)|Tk)

]
.

Here, u∗(0) is a version of u∗ of fictitious game (1.12) (1.13) in Problem (LQ)g that corresponds

to Example 4.1 and µ = 0; and X̂0
k is computed via{

X̂0
k+1 = (A0

kX̂
0
k +B0

ku
∗(0)k) +D0

ku
∗
k(0)wk,

X̂0
0 = x, k ∈ {0, ..., 3}.

Furthermore, similar facts hold for V mprk , V mtck of Example 4.2, which are the expected objective func-
tionals under precommitted optimal control and open-loop time-consistent equilibrium control, respec-
tively; denote the expected objective functionals under self-coordination policy of [13] as

V mck (µ) = E
[
Jm(k,Xmc

k ;umc(µ)|Tk)
]

= E
[
(Xmc

N − EkXmc
N )2

]
− λEXmc

N , k ∈ {0, 1, 2, 3},

where {
Xmc
k+1 = skX

mc
k + ΘT

k v
mc
k (µ),

Xmc
0 = z, k ∈ {0, 1, 2, 3},

and vmck (µ) = Kmc
k (µ)Xmc

k + Lmck (µ), k = 0, 1, 2, 3 with Kmc
k , Lmck given in Theorem 3.1 of [13].

For Example 4.1 and Example 4.2, we have conducted simulations with µ valued in

Λe =
{
`× 10−5, `× 10−3, `

∣∣ ` = 0, 1, 2, ..., 105
}
.

The following tables present the minima and minimizers of Vk(µ), V mk (µ), V mck (µ), k ∈ {0, 1, 2, 3} over
µ ∈ Λe.

↑
30.0160 29.0124 26.8679 12.2209

minµV0(µ) minµV1(µ) minµV2(µ) minµV3(µ)

↓
µ∗0 µ∗1 µ∗2 µ∗3

0 0 0.38460 1.7760

Table 1. values of minµVk(µ) and µ∗k = arg minµVk(µ), k = 0, 1, 2, 3.
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↑
-14.8722 -22.1273 -27.0525 -34.3649

minµV
m
0 (µ) minµV

m
1 (µ) minµV

m
2 (µ) minµV

m
3 (µ)

↓
µm∗0 µm∗1 µm∗2 µm∗3

0.06424 0.16591 0.19802 0.22226

Table 2. values of minµV
m
k (µ) and µm∗k = arg minµV

m
k (µ), k = 0, 1, 2, 3.

↑
-20.6331 -20.9993 -21.9038 -24.1135

minµV
mc
0 (µ) minµV

mc
1 (µ) minµV

mc
2 (µ) minµV

mc
3 (µ)

↓
µmc∗0 µmc∗1 µmc∗2 µmc∗3

99953 6.13 2.163 105

Table 3. values of minµV
mc
k (µ) and µmc∗k = arg minµV

mc
k (µ), k = 0, 1, 2, 3.

In what follows, 16 pictures are presented to show the curves of expected objective functionals.
Several points need to be specialized:

1) Figures 1 is for Example 4.1 and Figures 2-4 correspond to Example 4.2.

2) Figure 4 shows the curves of minµ V
m
k (µ),minµ V

mc
k (µ), k ∈ {0, 1, 2, 3}.

3) In Figures 1-3, local curves are obtained by shrinking the interval scale of time.
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Figure 1: Curves and local curves of V prk , V tck , Vk(µ), k = 3.
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Figure 2: Curves and local curves of V mprk , V mtck , V mk (µ), k = 0, 1, 2, 3.
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Figure 3: Curves and local curves of V mprk , V mtck , V mck (µ), k = 1, 2, 3.
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Figure 4: Curves of minµ V
m
k (µ),minµ V

mc
k (µ), k = 0, 1, 2, 3.

Above figures indicate a large body of diversity and the following cases are manifested:

1) At some early instants, open-loop precommitted optimal control outperforms (with smaller ex-
pected objective functional) open-loop time-inconsistent equilibrium control; and at late instants,
open-loop time-inconsistent equilibrium control outperforms open-loop precommitted optimal
control: Figure 1.

2) At some late instants, open-loop self-coordination control outperforms open-loop precommitted
optimal control and open-loop time-consistent equilibrium control: Figures 1 (µ = 0.3846, 1.776),
Figure 2 (µ = 0.16591, 0.19802, 0.22226).

22



3) When µ is small enough, open-loop self-coordination control performs between open-loop precom-
mitted optimal control and open-loop time-consistent equilibrium control: Figure 2 (µ = 0.06424).

4) Comparison with [13]: Example 4.2

a) Self-coordination policy of [13] performs mostly between open-loop precommitted optimal
control and open-loop time-consistent equilibrium control (Figure 3), though the minima of
V mck (µ), k = 1, 2 are slightly smaller than those of open-loop precommitted optimal control.

At k = 3, open-loop precommitted optimal control outperforms all the self-coordination
policies of [13] over Λe: subfigures 3, 4 of Figure 3.

b) Concerned with the minima of expected objective functionals over µ ∈ Λe, open-loop self-
coordination control of this paper outperform self-coordination policy [13] at k = 1, 2, 3:
Figure 4.

Namely, we can select open-loop self-coordination controls such that at k = 1, 2, 3 they
outperform self-coordination policy of [13]; see the line (µ = 0.16591) of Figure 2, and
compare with those of Figure 3.

This, yet, is at a price that self-coordination policy of [13] outperforms open-loop self-
coordination control at k = 0.

c) To summarize and for the particular example (Example 4.2), self-coordination policy of
[13] performs mostly between open-loop precommitted optimal control and open-loop time-
inconsistent equilibrium control (this is also indicated in Page 102 of [13]); at a price at k = 0,
particular open-loop self-coordination controls can be selected such that at k = 1, 2, 3 they
outperform self-coordination policy of [13], and also outperform open-loop precommitted
optimal control and open-loop time-consistent equilibrium control.

Namely, the scheme of [13] looks for self-coordination policy between open-loop precom-
mitted optimal control and open-loop time-inconsistent equilibrium control, while to some
extent this paper goes beyond open-loop precommitted optimal control and open-loop time-
consistent equilibrium control. Therefore, our formulation might be viewed as some supple-
ment to that of [13], and adds a new dimension to handle time-inconsistent optimal control
problems.

The last words of this section go to the necessity to study open-loop self-coordination control.

5 Proofs

5.1 Proof of Theorem 2.1

The proof is based on the method of discrete-time convex variation.

i)⇒ii). Let (u∗, v∗) ∈ l2F(Tt;Rm1) × l2F(Tt;Rm2) be an open-loop equilibrium. For ε ∈ R and
u ∈ l2F(Tt,Rm1), let Xε satisfy the S∆E

Xε
k+1 =

(
AkX

ε
k +B1

k(u∗k + εuk) +B2
kv
∗
k

)
+
∑p
i=1

(
CikX

ε
k +D1i

k (u∗k + εuk) +D2i
k v
∗
k

)
wik,

Xε
t = y, k ∈ Tt.

(5.1)

From (1.25) and (5.1), we have
Xεk+1−X

∗
k+1

ε = Ak
Xεk−X

∗
k

ε +B1
kuk +

∑p
i=1

(
Cik

Xεk−X
∗
k

ε +D1i
k uk

)
wik,

Xεt−X
∗
t

ε = 0, k ∈ Tt.

Denote
Xεk−X

∗
k

ε by αk, then α = {αk, k ∈ Tt} satisfies (2.7). Obviously, Xε
k = X∗k + εαk, k ∈ Tt. Then,

we obtain

0 ≤ J1(t, y;u∗ + εu, v∗)− J1(t, y;u∗, v∗)
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= 2ε
{
Et
[
(X∗N )TG1

tαN
]

+ (EtαN )T Ḡ1
tEtX∗N + (g1

t )TEtαN
}

+ ε2
{
Et[αTNG1

tαN ] + (EtαN )T Ḡ1
tEtαN

}
+ ε

N−1∑
k=t

Et

{[ αk
uk
0

T
 Q1

t,k (S
1(1)
t,k )T (S

1(2)
t,k )T

S
1(1)
t,k R

1(11)
t,k R

1(12)
t,k

S
1(2)
t,k R

1(21)
t,k R

1(22)
t,k


 2X∗k + εαk

2u∗k + εuk
2v∗k



+

 Etαk
Etuk

0

T
 Q̄1

t,k (S̄
1(1)
t,k )T (S̄

1(2)
t,k )T

S̄
1(1)
t,k R̄

1(11)
t,k R̄

1(12)
t,k

S̄
1(2)
t,k R̄

1(21)
t,k R̄

1(22)
t,k


 2EtX∗k + εEtαk

2Etu∗k + εEtuk
2Etv∗k

]

+ 2(q1
t,k)Tαk + 2(ρ

1(1)
t,k )Tuk

}

= 2ε

{
Et
[
(G1

tX
∗
N + g1

t )TαN
]

+ (EtX∗N )T Ḡ1
tEtαN

+

N−1∑
k=t

Et
[(
Q1
t,kX

∗
k +

(
S

1(1)
t,k

)T
u∗k +

(
S

1(2)
t,k

)T
v∗k + q1

t,k

)T
αk

+
(
S

1(1)
t,k X∗k +R

1(11)
t,k u∗k +R

1(12)
t,k v∗k + ρ

1(1)
t,k

)T
uk

+
(
Q̄1
t,kEtX∗k +

(
S̄

1(1)
t,k

)TEtu∗k +
(
S̄

1(2)
t,k

)TEtv∗k)T Etαk

+
(
S̄

1(1)
t,k EtX∗k + R̄

1(11)
t,k Etu∗k + R̄

1(12)
t,k Etv∗k

)T
Etuk

]}

+ ε2

{
Et
[
αTNG

1
tα

t
N

]
+ (EtαN )T Ḡ1

tEtαN

+

N−1∑
k=t

Et
[
αTkQ

1
t,kαk + 2uTk S

1(1)
t,k αk + uTkR

1(11)
t,k uk

+ (Etαk)T Q̄1
t,kEtαk + 2(Etuk)T S̄

1(1)
t,k Etαk + (Etuk)T R̄

1(11)
t,k Etuk

]}
. (5.2)

Noting (2.3) and (2.7), we have

Et
[
(G1

tX
∗
N + g1

t )TαN
]

+ (EtX∗N )T Ḡ1
tEtαN +

N−1∑
k=t

Et
{(
Q1
t,kX

∗
k +

(
S

1(1)
t,k

)T
u∗k +

(
S

1(2)
t,k

)T
v∗k + q1

t,k

)T
αk

+
(
S

1(1)
t,k X∗k +R

1(11)
t,k u∗k +R

1(12)
t,k v∗k + ρ

1(1)
t,k

)T
uk +

(
Q̄1
t,kEtX∗k +

(
S̄

1(1)
t,k

)TEtu∗k +
(
S̄

1(2)
t,k

)TEtv∗k)T Etαk

+
(
S̄

1(1)
t,k EtX∗k + R̄

1(11)
t,k Etu∗k + R̄

1(12)
t,k Etv∗k

)T
Etuk

}
= Et

N−1∑
k=t

{[
Q1
t,k(X∗k − EtX∗k) +

(
S

1(1)
t,k

)T
(u∗k − Etu∗k) +

(
S

1(2)
t,k

)T
(v∗k − Etv∗k) +ATk (EkY ∗k+1 − EtY ∗k+1)

+

p∑
i=1

(Cik)T
(
Ek(Y ∗k+1w

i
k)− Et(Y ∗k+1w

i
k)
)
− (Y ∗k − EtY ∗k )

]T
(αk − Etαk) +

[
Q1
t,kEtX∗k

+
(
S1(1)
t,k

)TEtu∗k +
(
S1(2)
t,k

)TEtv∗k + q1
t,k +ATk EtY ∗k+1 +

p∑
i=1

(Cik)TEt(Y ∗k+1w
i
k)− EtY ∗k

]T
Etαk

+
[
S

1(1)
t,k (X∗k − EtX∗k) +R

1(11)
t,k (u∗k − Etu∗k) +R

1(12)
t,k (v∗k − Etv∗k) + (B1

k)T (Y ∗k+1 − EtY ∗k+1)

+

p∑
i=1

(D1i
k )T

(
Ek(Y ∗k+1w

i
k)− Et(Y ∗k+1w

i
k)
)]T

(uk − Etuk) +
[
S1(1)
t,k EtX∗k +R1(11)

t,k Etu∗k
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+R1(12)
t,k Etv∗k + ρ

1(11)
t,k + (B1

k)TEtY ∗k+1 +

p∑
i=1

(D1i
k )TEt(Y ∗k+1w

i
k)
]T

Etuk

}

= Et
N−1∑
t=k

{[
S

1(1)
t,k (X∗k − EtX∗k) +R

1(11)
t,k (u∗k − Etu∗k) +R

1(12)
t,k (v∗k − Etv∗k) + (B1

k)T (Y ∗k+1 − EtY ∗k+1)

+

p∑
i=1

(D1i
k )T

(
Ek(Y ∗k+1w

i
k)− Et(Y ∗k+1w

i
k)
)]T

(uk − Etuk) +
[
S1(1)
t,k EtX∗k +R1(11)

t,k Etu∗k

+R1(12)
t,k Etv∗k + ρ

1(11)
t,k + (B1

k)TEtY ∗k+1 +

p∑
i=1

(D1i
k )TEt(Y ∗k+1w

i
k)
]T

Etuk

}
.

Then, (5.2) becomes

J1(t, y;u∗ + εu, v∗)− J1(t, y;u∗, v∗)

= 2εEt
N−1∑
k=t

{[
S

1(1)
t,k (X∗k − EtX∗k) +R

1(11)
t,k (u∗k − Etu∗k) +R

1(12)
t,k (v∗k − Etv∗k) + (B1

k)T (Y ∗k+1 − EtY ∗k+1)

+

p∑
i=1

(D1i
k )T

(
Ek(Y ∗k+1w

i
k)− Et(Y ∗k+1w

i
k)
)]T

(uk − Etuk) +
[
S1(1)
t,k EtX∗k +R1(11)

t,k Etu∗k

+R1(12)
t,k Etv∗k + ρ

1(11)
t,k + (B1

k)TEtY ∗k+1 +

p∑
i=1

(D1i
k )TEt(Y ∗k+1w

i
k)
]T

Etuk

}
+ ε2J̃1(t, 0;u)

≥ 0. (5.3)

As (5.3) holds for any ε ∈ R and any u ∈ l2F(Tt,Rm1), we must have

inf
u∈l2F(Tt;Rm1 )

J̃1(t, 0;u) ≥ 0, a.s.,

and
0 = S

1(1)
t,k (X∗k − EtX∗k) +R

1(11)
t,k (u∗k − Etu∗k) +R

1(12)
t,k (v∗k − Etv∗k) + (B1

k)T (EkY ∗k+1 − EtY ∗k+1)

+
∑p
i=1(D1i

k )T
(
Ek(Y ∗k+1w

i
k)− Et(Y ∗k+1w

i
k)
)
,

0 = S1(1)
t,k EtX∗k +R1(11)

t,k Etu∗k +R1(12)
t,k Etv∗k + ρ

1(11)
t,k + (B1

k)TEtY ∗k+1 +
∑p
i=1(D1i

k )TEt(Y ∗k+1w
i
k),

k ∈ Tt,

which implies the first equation of (2.1).

On the other hand, for any λ ∈ R and vk ∈ l2F(k,Rm2), let Xλ satisfy the S∆E,

Xλ
`+1 =

(
A`X

λ
` +B1

`u
∗
` +B2

` v
∗
`

)
+
∑p
i=1

(
Ci`X

λ
` +D1i

` u
∗
` +D2i

` v
∗
`

)
wi`,

Xλ
k+1 =

(
AkX

λ
k +B1

ku
∗
k +B2

k(v∗k + λvk)
)

+
∑p
i=1

(
CikX

λ
k +D1i

k u
∗
k +D2i

k (v∗k + λvk)
)
wik,

Xλ
k = y, ` ∈ Tk+1.

(5.4)

From (1.25) and (5.4), we have
Xλ`+1−X

∗
`+1

λ = A`
Xλ` −X

∗
`

λ +
∑p
i=1 C

i
`
Xλ` −X

∗
`

λ wi`,
Xλk+1−X

∗
k+1

λ = B2
kvk +

∑p
i=1D

2i
k vkw

i
k,

Xλk−X
∗
k

λ = 0, ` ∈ Tk+1.

Denote
Xλ` −X

∗
`

λ by β`, then β = {β`, ` ∈ Tk} satisfies (2.8), and Xλ
` = X∗` + λβ`, ` ∈ Tk. Therefore, it

holds that

J2(k,X∗k ;u∗|Tk , (v∗k + λvk, v
∗|Tk+1

))− J2(k,X∗k ;u∗|Tk , v∗|Tk)
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= 2λEk

{
N−1∑
`=k

[(
Q2
k,`X

∗
` +

(
S

2(1)
k,`

)T
u∗` +

(
S

2(2)
k,`

)T
v∗` + q2

k,`

)T
β`

+
(
Q̄2
k,`EkX∗` +

(
S̄

2(1)
k,`

)TEku∗` +
(
S̄

2(2)
k,`

)TEkv∗`)TEkβ`]
+
(
S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + ρ

2(2)
k,k

)T
vk

+ (G2
kX
∗
N + g2

k)TβN + (EkX∗N )T Ḡ2
k(EkβN )

}

+ λ2

{
N−1∑
`=k

Ek
[
βT` Q

2
k,`β` + (Ekβ`)T Q̄2

k,`Ekβ`
]

+ Ek[βTNG
2
kβN ] + (EkβN )T Ḡ2

kEkβN + vTkR
2(22)
k,k vk

}
≥ 0. (5.5)

From (2.4) and (2.8), we have

Ek

{
N−1∑
`=k

[(
Q2
k,`X

∗
` +

(
S

2(1)
k,`

)T
u∗` +

(
S

2(2)
k,`

)T
v∗` + q2

k,`

)T
β` +

(
Q̄2
k,`EkX∗` +

(
S̄

2(1)
k,`

)TEku∗`
+
(
S̄

2(2)
k,`

)TEkv∗`)TEkβ`]+
(
S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + ρ

2(2)
k,k

)T
vk

+ (G2
kX
∗
N + g2

k)TβN + (EkX∗N )T Ḡ2
kEkβN

}

= Ek

{
N−1∑
`=k

[
Q2
k,`(X

∗
` − EkX∗` ) +

(
S

2(1)
k,`

)T
(u∗` − Eku∗` ) +

(
S

2(2)
k,`

)T
(v∗` − Ekv∗` ) +AT` (E`Zk,∗`+1 − EkZk,∗`+1)

+

p∑
i=1

(Ci`)
T
(
E`(Zk,∗`+1w

i
`)− Ek(Zk,∗`+1w

i
`)
)
− (Zk,∗` − EkZk,∗` )

]T
(β` − Ekβ`) +

[
Q2
k,`EkX∗`

+
(
S2(1)
k,`

)TEku∗` + q2
k,` +

(
S2(2)
k,`

)TEkv∗` +AT` EkZ
k,∗
`+1 +

p∑
i=1

(Ci`)
TEk(Zk,∗`+1w

i
`)− EkZk,∗`

]T
Ekβ`

}

+
(
S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + (B2

k)TEkZk,∗k+1 +

p∑
i=1

(D2i
k )TEk(Zk,∗k+1w

i
k) + ρ

2(2)
k,k

)T
vk

=
(
S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + (B2

k)TEkZk,∗k+1 +

p∑
i=1

(D2i
k )TEk(Zk,∗k+1w

i
k) + ρ

2(2)
k,k

)T
vk.

Hence, (5.5) becomes

J2(k,X∗k ;u∗|Tk , (v∗k + λvk, v
∗|Tk+1

))− J2(k,X∗k ;u∗|Tk , v∗|Tk)

= 2λ
(
S2(2)
k,k X

∗
k +R2(21)

k,k u∗k +R2(22)
k,k v∗k + (B2

k)TEkZk,∗k+1

+

p∑
i=1

(D2i
k )TEk(Zk,∗k+1w

i
k) + ρ

2(2)
k,k

)T
vk + λ2J̃2(k, 0; vk)

≥ 0,

which holds for any λ ∈ R and any vk ∈ l2F(k,Rm2). Therefore,

inf
v∈l2F(Tk;Rm2 )

J̃2(k, 0; vk) ≥ 0, a.s.,

and the second equation of (2.1) holds.

ii)⇒i). By reversing the proof of i)⇒ii), we can obtain the conclusion. �
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5.2 Proof of Theorem 2.2

Proposition 5.1. The following statements are equivalent.

i). There exists a (u∗, v∗) ∈ l2F(Tt;Rm1) × l2F(Tt;Rm2) such that the stationary conditions of (2.1)
hold.

ii). a) of Theorem 2.2 is satisfied.

Under the condition ii), the backward states Y ∗, Zk,∗ of (2.3) and (2.4) have the following expressions{
Y ∗k = Pt,k(X∗k − EtX∗k) + Pt,kEtX∗k + σt,k, k ∈ Tt,
Zk,∗` = Tk,`(X

∗
` − EkX∗` ) + Tk,`EkX∗` + T̃k,`EtX∗` + ξk,`, k ∈ Tt, ` ∈ Tk.

(5.6)

Proof. i)⇒ii). From (2.1), it holds that

0 = S1(1)
t,k EtX∗k +R1(11)

t,k Etu∗k +R1(12)
t,k Etv∗k + (B1

k)TEtY ∗k+1

+
∑p
i=1(D1i

k )TEt(Y ∗k+1w
i
k) + ρ

1(1)
t,k , k ∈ Tt,

0 = S2(2)
k,k EtX∗k +R2(21)

k,k Etu∗k +R2(22)
k,k Etv∗k + (B2

k)TEtZk,∗k+1

+
∑p
i=1(D2i

k )TEt(Zk,∗k+1w
i
k) + ρ

2(2)
k,k , k ∈ Tt,

(5.7)

and
0 = S

1(1)
t,k

(
X∗k − EtX∗k

)
+R

1(11)
t,k

(
u∗k − Etu∗k

)
+R

1(12)
t,k

(
v∗k − Etv∗k

)
+ (B1

k)T
(
EkY ∗k+1 − EtY ∗k+1

)
+
∑p
i=1(D1i

k )T
(
Ek(Y ∗k+1w

i
k))− Et(Y ∗k+1w

i
k)
)
, k ∈ Tt,

0 = S2(2)
k,k (X∗k − EtX∗k) +R2(21)

k,k (u∗k − Etu∗k) +R2(22)
k,k (v∗k − Etv∗k)

+ (B2
k)T (EkZk,∗k+1 − EtZk,∗k+1) +

∑p
i=1(D2i

k )T
(
Ek(Zk,∗k+1w

i
k)− Et(Zk,∗k+1w

i
k)
)
, k ∈ Tt.

(5.8)

Let us first consider the case k = N − 1. We have

EtY ∗N = G1
tAN−1EtX∗N−1 + G1

tB
1
N−1Etu∗N−1 + G1

tB
2
N−1Etv∗N−1 + g1

t ,

Et(Y ∗NwiN−1) = G1
t

∑p
j=1 δ

ij
N−1

(
CjN−1EtX∗N−1 +D1j

N−1Etu∗N−1 +D2j
N−1Etv∗N−1

)
.

(5.9)

Then, the first equations of (5.7)and (5.8) become

0 =
(
S1(1)
t,N−1 + (B1

N−1)TG1
tAN−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tC

j
N−1

)
EtX∗N−1

+
(
R1(11)
t,N−1 + (B1

N−1)TG1
tB

1
N−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tD

1j
N−1

)
Etu∗N−1

+
(
R1(12)
t,N−1 + (B1

N−1)TG1
tB

2
N−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tD

2j
N−1

)
Etv∗N−1

+ (B1
N−1)T g1

t + ρ
1(1)
t,N−1,

and

0 =
(
S

1(1)
t,N−1 + (B1

N−1)TG1
tAN−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tC

j
N−1

)(
X∗N−1 − EtX∗N−1

)
+
(
R

1(11)
t,N−1 + (B1

N−1)TG1
tB

1
N−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tD

1j
N−1

)(
u∗N−1 − Etu∗N−1

)
+
(
R

1(12)
t,N−1 + (B1

N−1)TG1
tB

2
N−1 +

∑p
i,j=1 δ

ij
N−1(D1i

N−1)TG1
tD

2j
N−1

)(
v∗N−1 − Etv∗N−1

)
.

Furthermore,

EtZN−1,∗
N = G2

N−1AN−1EtX∗N−1 + G2
N−1B

1
N−1Etu∗N−1 + G2

N−1B
2
N−1Etv∗N−1 + g2

N−1,

Et(ZN−1,∗
N wiN−1) = G2

N−1

p∑
j=1

δijN−1

(
CjN−1EtX

∗
N−1 +D1j

N−1Etu
∗
N−1 +D2j

N−1Etv
∗
N−1

)
.

Therefore, the second equations of (5.7) and (5.8) become

0 =
(
S2(2)
N−1,N−1 + (B2

N−1)TG2
N−1AN−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1C

j
N−1

)
EtX∗N−1

+
(
R2(21)
N−1,N−1 + (B2

N−1)TG2
N−1B

1
N−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1D

1j
N−1

)
Etu∗N−1

+
(
R2(22)
N−1,N−1 + (B2

N−1)TG2
N−1B

2
N−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1D

2j
N−1

)
Etv∗N−1

+ (B2
N−1)T g2

N−1 + ρ
2(2)
N−1,N−1.

(5.10)
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and

0 =
(
S2(2)
N−1,N−1 + (B2

N−1)TG2
N−1AN−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1C

j
N−1

)
(X∗N−1 − EtX∗N−1)

+
(
R2(21)
N−1,N−1 + (B2

N−1)TG2
N−1B

1
N−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1D

1j
N−1

)
(u∗N−1 − Etu∗N−1)

+
(
R2(22)
N−1,N−1 + (B2

N−1)TG2
N−1B

2
N−1 +

∑p
i,j=1 δ

ij
N−1(D2i

N−1)TG2
N−1D

2j
N−1

)
(v∗N−1 − Etv∗N−1).

(5.11)

With the notations of (2.11) (2.12), we have from above equations

0 = H̃t,N−1

(
EtX∗N−1

EtX∗N−1

)
+ W̃t,N−1

(
Etu∗N−1

Etv∗N−1

)
+ ht,N−1 (5.12)

and

0 = Ht,N−1

(
X∗N−1 − EtX∗N−1

X∗N−1 − EtX∗N−1

)
+ Wt,N−1

(
u∗N−1 − Etu∗N−1

v∗N−1 − Etv∗N−1

)
. (5.13)

Therefore, by a property of Moore-Penrose inverse (Lemma 3.1 of [2]), (2.17) (2.18) hold for k = N − 1
and we can select (

Etu∗N−1

Etv∗N−1

)
= −W̃†

t,N−1

[
H̃t,N−1

(
EtX∗N−1

EtX∗N−1

)
+ ht,N−1

]
,

and (
u∗N−1 − Etu∗N−1

v∗N−1 − Etv∗N−1

)
= −W†

t,N−1Ht,N−1

(
X∗N−1 − EtX∗N−1

X∗N−1 − EtX∗N−1

)
.

Hence, (2.25) holds for k = N − 1. Substituting (u∗N−1, v
∗
N−1) into (2.3) (2.4), we have

Y ∗N−1 = Pt,N−1(X∗N−1 − EtX∗N−1) + Pt,N−1EtX∗N−1 + σt,N−1,

Zr,∗N−1 = Tr,N−1(X∗N−1 − ErX∗N−1) + Tr,N−1ErX∗N−1 + T̃r,N−1EtX∗N−1 + ξr,N−1, ∀r ∈ {t, ..., N − 2}.

For k = N − 2 and by mimic the derivations between (5.9) and (5.11), we have

0 = H̃t,N−2

(
EtX∗N−2

EtX∗N−2

)
+ W̃t,N−2

(
Etu∗N−2

Etv∗N−2

)
+ ht,N−2 (5.14)

and

0 = Ht,N−2

(
X∗N−2 − EtX∗N−2

X∗N−2 − EtX∗N−2

)
+ Wt,N−2

(
u∗N−2 − Etu∗N−2

v∗N−2 − Etv∗N−2

)
. (5.15)

Therefore, (2.17) (2.18) hold for k = N − 2 and we can select(
Etu∗N−2

Etv∗N−2

)
= −W̃†

t,N−2

[
H̃t,N−2

(
EtX∗N−2

EtX∗N−2

)
+ ht,N−2

]
,

and (
u∗N−2 − Etu∗N−2

v∗N−2 − Etv∗N−2

)
= −W†

t,N−2Ht,N−2

(
X∗N−2 − EtX∗N−2

X∗N−2 − EtX∗N−2

)
.

Hence, Hence, (2.25) holds for k = N − 2. Substituting (u∗N−2, v
∗
N−2) into (2.3) (2.4), we have

Y ∗N−2 = Pt,N−2(X∗N−2 − EtX∗N−2) + Pt,N−2EtX∗N−2 + σt,N−2,

Zr,∗N−2 = Tr,N−2(X∗N−2 − ErX∗N−2) + Tr,N−2ErX∗N−2

+ T̃r,N−1EtX∗N−2 + ξr,N−2, ∀r ∈ {t, ..., N − 3}.
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By repeating the above procedure and the arguments of induction, we can get the expressions of the
backward states Y ∗, Zk,∗ and u∗, v∗.

ii)⇒i). Due to the property of Moore-Penrose inverse and by reversing the proof of i)⇒ii), we can
obtain the conclusion. �

We now study the convex condition (2.2). By adding to and subtracting

N−1∑
k=t

Et
[
(αk+1)TUt,k+1αk+1 − (αk)TUt,kαk + (Etαk+1)T Ūt,k+1Etαk+1 − (Etαk)T Ūt,kEtαk

]
from J̃1(t, 0;u) (with Ūt,k = Ut,k − Ut,k, k ∈ Tt), we have

J̃1(t, 0;u) =

N−1∑
k=t

Et
[
(αk − Etαk)TMT

t,kO
†
t,kMt,k(αk − Etαk) + 2(uk − Etuk)TMt,k(αk − Etαk)

+ (uk − Etuk)TOt,k(uk − Etuk) + (Etαk)TMT
t,kO

†
t,kMt,kEtαk

+ 2(Etuk)TMt,kEtαk + (Etuk)TOt,kEtuk
]
. (5.16)

Similarly,

J̃2(k, 0; vk) = vTk Ok,kvk. (5.17)

As Ot,k, Ot,k are symmetric, there exist orthogonal matrices Ft,k, Ft,k such that

Ot,k = (Ft,k)T
(

Σt,k 0
0 0

)
Ft,k,

Ot,k = (Ft,k)T
(

Γt,k 0
0 0

)
Ft,k.

In the above, Σt,k, Γt,k, are diagonal matrices, whose diagonal elements are the nonzero eigenvalues of
Ot,k,Ot,k, respectively. Let rank(Ot,k) = r1

k, rank(Ot,k) = r2
k. Then, we have

O†t,k = (Ft,k)T
(

Σ−1
t,k 0

0 0

)
Ft,k,

O†t,k = (Ft,k)T
(

Γ−1
t,k 0

0 0

)
Ft,k.

Moreover, Ft,k, Ft,k can be decomposed as Ft,k = [(F
(1)
t,k )T , (F

(2)
t,k )T ]T , Ft,k = [(F (1)

t,k )T , (F (2)
t,k )T ]T ,

respectively, where the lines of F
(2)
t,k , F (2)

t,k form the bases of Ker(Ot,k) and Ker(Ot,k), respectively. Let

Ot,kuk =

(
F

(1)
t,k uk

F
(2)
t,k uk

)
, Ot,kuk =

(
F (1)
t,k uk

F (2)
t,k uk

)
.

Hence, we have

J̃1(t, 0;u) =

N−1∑
k=t

Et
{[
F

(1)
t,k (uk − Etuk) + Σ−1

t,kF
(1)
t,kMt,k(αk − Etαk)

]T
Σt,k

[
F

(1)
t,k (uk − Etuk)

+ Σ−1
t,kF

(1)
t,kMt,k(αk − Etαk)

]
+
[
F (1)
t,k Etuk + Γ−1

t,kF
(1)
t,kMt,kEtαk

]T
Γt,k

[
F (1)
t,k Etuk

+ Γ−1
t,kF

(1)
t,kMt,kEtαk

]}
+ 2

N−1∑
k=t

Et
[(
F

(2)
t,kMt,k(αk − Etαk)

)T
F

(2)
t,k (uk − Etuk)

]
+ 2

N−1∑
k=t

Et
[(
F (2)
t,kMt,kEtαk

)T
F (2)
t,k Etuk

]
. (5.18)

Note that the space spanned by lines of F
(1)
t,k is Ran(Ot,k). Let

U1(Ran) =
{
u | u ∈ l2F(Tt;Rm1), uk − Etuk ∈ Ran(Ot,k), and Etuk = 0, k ∈ Tt

}
,

U1(Ker) =
{
u | u ∈ l2F(Tt;Rm1), uk − Etuk ∈ Ker(Ot,k), and Etuk = 0, k ∈ Tt

}
.
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Proposition 5.2. The following statements are equivalent.

i) The convex conditions of (2.2) hold.

ii) b) and c) of Theorem 2.2 are satisfied.

Proof. i)⇒ii). Note that u 7→ J̃1(t, 0;u) is convex. If u ∈ U1(Ran), we have Etαk = 0, k ∈ Tt, and

J̃1(t, 0;u) =

N−1∑
k=t

Et
{[
F

(1)
t,k uk + Σ−1

t,kF
(1)
t,kMt,kαk

]T
Σt,k[F

(1)
t,k uk + Σ−1

t,kF
(1)
t,kMt,kαk

]}
≥ 0. (5.19)

Introduce a set

Ũ1(Ran) =
{

(F
(1)
t,t ut, · · · , F

(1)
t,N−1uN−1)

∣∣u ∈ U1(Ran)
}
.

For k ∈ Tt, let f1
k , · · · , f

r1k
k be the lines of F

(1)
t,k , then (f1

k )T , · · · , (fr
1
k

k )T form a basis of Ran(Ot,k). For

any u ∈ U1(Ran) and k ∈ Tt, there exit λ1
k, · · · , λ

r1k
k ∈ R such that uk − Etuk = uk =

∑r1k
i=1 λ

i
k(f ik)T .

Then,

F
(1)
t,k uk =

r1k∑
i=1

λik

 f1
k
...

f
r1k
k

 (f ik)T =

 λ1
k
...

λ
r1k
k

 , λk.
For k ∈ Tt, uk is Fk-measurable and E|uk|2 <∞, this implies thatλk is Fk-measurable and E|λk|2 <∞.

Therefore, Ũ1(Ran) = l2F(t;Rr1t )× · · · × l2F(N − 1;Rr
1
N−1).

Introduce a bounded linear operator τ from U1(Ran) to Ũ1(Ran):

(τu)k = F
(1)
t,k uk + Σ−1

t,kF
(1)
t,kMt,k(αk − Etαk), k ∈ Tt.

We now prove that τ is a surjection. In fact, for any θ ∈ Ũ1(Ran), we have Etθk = 0, k ∈ Tt and let
ᾱk+1 =

(
Akᾱk +B1

k(F
(1)
t,k )T [θk − Σ−1

t,kF
(1)
t,kMt,k(ᾱk − Etᾱk)]

)
+
∑p
i=1

(
Cikᾱk +D1i

k (F
(1)
t,k )T [θk − Σ−1

t,kF
(1)
t,kMt,k(ᾱk − Etᾱk)]

)
wik,

ᾱt = 0, k ∈ Tt,

and

uk = (F
(1)
t,k )T [θk − Σ−1

t,kF
(1)
t,kMt,k(ᾱk − Etᾱk)], k ∈ Tt. (5.20)

Note that u in (5.20) is in U1(Ran). As F
(1)
t,k (F

(1)
t,k )T = Ir1k , from (5.20) we have

θk = (τu)k, k ∈ Tt.

Hence, τ is a surjection defined from U1(Ran) to Ũ1(Ran). From this, (5.19) and the procedure of
contradiction, we have Σt,k � 0, k ∈ Tt. This further implies Ot,k � 0, k ∈ Tt.

Let

U2(Ran) =

{
u

∣∣∣∣∣ u ∈ l2F(Tt;Rm1),Etuk ∈ Ran(Ot,k) and

uk − Etuk = −(F
(1)
t,k )TΣ−1

t,kF
(1)
t,kMt,k(αk − Etαk), k ∈ Tt

}
.

Note further that u 7→ J̃1(t, 0;u) is convex. If u ∈ U2(Ran), from (5.18) we have

J̃1(t, 0;u) =

N−1∑
k=t

Et
{[
F (1)
t,k Etuk + Γ−1

t,kF
(1)
t,kMt,kEtαk

]T
Γt,k

[
F (1)
t,k Etuk + Γ−1

t,kF
(1)
t,kMt,kEtαk

]}
≥ 0. (5.21)

Introduce a set

Ũ2(Ran) =
{

(F (1)
t,t Etut, · · · ,F

(1)
t,N−1EtuN−1)

∣∣u ∈ U2(Ran)
}
.
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For k ∈ Tt, let ν1
k , · · · , ν

r2k
k denote the lines of F (1)

t,k . For any u ∈ U2(Ran) and k ∈ Tt, there exit

χ1
k, · · · , χ

r2k
k ∈ R such that Etuk =

∑r2k
i=1 χ

i
k(νik)T . Then,

F (1)
t,k Etuk =

r2k∑
i=1

χik

 ν1
k
...

ν
r2k
k

 (νik)T =

 χ1
k
...

χ
r2k
k

 , χk
Therefore, Ũ2(Ran) = l2(t;Rr2t )×· · ·×l2(N−1;Rr

2
N−1) is a deterministic space. Furthermore, introduce

a bounded linear operator φ from U2(Ran) to Ũ2(Ran):

(φu)k = F (1)
t,k Etuk + Γ−1

t,kF
(1)
t,kMt,kEtαk, k ∈ Tt.

We now prove that φ is a surjection. In fact, for any ς ∈ Ũ2(Ran), let

α̃k+1 =
{
Akα̃k +B1

k

[
(F (1)

t,k )T (ςk − Γ−1
t,kF

(1)
t,kMt,kEtα̃k)

− (F
(1)
t,k )TΣ−1

t,kF
(1)
t,kMt,k(αk − Etαk)

]}
+
∑p
i=1

{
Cikα̃k +D1i

k

[
(F (1)

t,k )T (ςk − Γ−1
t,kF

(1)
t,kMt,kEtα̃k)

− (F
(1)
t,k )TΣ−1

t,kF
(1)
t,kMt,k(αk − Etαk)

]}
wik,

α̃t = 0, k ∈ Tt,

and

uk = (F (1)
t,k )T [ςk − Γ−1

t,kF
(1)
t,kMt,kEtα̃k]− (F

(1)
t,k )TΣ−1

t,kF
(1)
t,kMt,k(αk − Etαk), k ∈ Tt. (5.22)

Note that u in (5.22) is in U2(Ran). As F (1)
t,k (F (1)

t,k )T = Ir2k , from (5.22) we have

ςk = (φu)k, k ∈ Tt.

Hence φ is a surjection defined from U2(Ran) to Ũ2(Ran). From this, (5.21) and the procedure of
contradiction, we have Γt,k � 0, k ∈ Tt. This further implies Ot,k � 0, k ∈ Tt. Furthermore, from
(5.17), it is easy to get Ok,k � 0, k ∈ Tt.

We now prove c) of Theorem 2.2. Note that

ηuk = uk − (F
(1)
t,k )TΣ−1

t,kF
(1)
t,kM

1(1)
t,k (αuk − Etαuk)− (F (1)

t,k )TΓ−1
t,kF

(1)
t,kMt,kEtαuk , k ∈ Tt.

Then,

J̃1(t, 0; ηu) =

N−1∑
k=t

Et
{[
F

(1)
t,k (uk − Etuk)

]T
Σt,k

[
F

(1)
t,k (uk − Etuk)

]
+
[
F (1)
t,k Etuk

]T
Γt,k

[
F (1)
t,k Etuk

]}
+ 2

N−1∑
k=t

Et
[(
F

(2)
t,kMt,k(αuk − Etαuk)

)T
F

(2)
t,k (uk − Etuk)

]
+ 2

N−1∑
k=t

Et
[(
F (2)
t,kMt,kEtαuk

)T
F (2)
t,k Etuk

]
≥ 0. (5.23)

In the above, we must have(
(F

(2)
t,k )TF

(2)
t,kMt,k(αuk − Etαuk)

(F (2)
t,k )TF (2)

t,kMt,kEtαuk

)
= 0, a.s., k ∈ Tt. (5.24)

Otherwise, assume there exist k1 ∈ Tt and û such that(
a1

a2

)
=

(
a1

a2

)
(ω) ≡

(
(F

(2)
t,k1

)TF
(2)
t,k1

Mt,k1(αûk1 − Etαûk1)

(F (2)
t,k1

)TF (2)
t,k1
Mt,k1Etαûk1

)
(w) 6= 0, for ω ∈ Λ1
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with Λ1 ∈ Fk1 and its probability P(Λ1) > 0. If Et
(
|a1|2 + |a2|2

)
(ω) = 0, a.s., we must have

0 =

∫
Ω

Et
(
|a1|2 + |a2|2

)
P(dω) =

∫
Ω

(
|a1|2 + |a2|2

)
P(dω) ≥

∫
Λ1

(
|a1|2 + |a2|2

)
P(dω) > 0,

which is impossible. Hence, there exists Λ ∈ Ft with P(Λ) > 0 such that Et
(
|a1|2 + |a2|2

)
(ω) > 0, for

ω ∈ Λ. Introduce a new control

uk =

 ûk, k = t, ..., k1 − 1,
ûk1 + c1a1 + c2a2, k = k1,
0, k = k1 + 1, ..., N − 1,

(5.25)

where

c1 = c1(ω) =




−b1 + b3

2Et|a1|2
(ω) · I{

Et|a1|2>0,Et|a2|2>0
}(w)

+0 · I{
Et|a1|2=0,Et|a2|2>0

}(w)

−1 + b1 + b2 + b3 + b4
2Et|a1|2

(ω) · I{
Et|a1|2>0,Et|a2|2=0

}(ω)

, ω ∈ Λ,

0, ω ∈ Ω− Λ,

c2 = c2(ω) =




−1 + b2 + b4

2Et|a2|2
(ω) · I{

Et|a1|2>0,Et|a2|2>0
}(ω)

−1 + b1 + b2 + b3 + b4
2Et|a2|2

(ω) · I{
Et|a1|2=0,Et|a2|2>0

}(ω)

+0 · I{
Et|a1|2>0,Et|a2|2=0

}(w)

, ω ∈ Λ,

0, ω ∈ Ω− Λ

with I{·}(ω) be the indicator function. Then, under (5.25) and for ω ∈ Λ, we have

J̃1(t, 0; ηu)(ω) =
(
b1 + b2 + b3 + b4 + 2c1Et |a1|2 + 2c2Et |a2|2

)
(ω)

= −1, (5.26)

where

b1 =

k1∑
k=t

Et
{[
F

(1)
t,k (ûk − Etûk)

]T
Σt,k

[
F

(1)
t,k (ûk − Etûk)

]}
,

b2 =

k1∑
k=t

Et
{[
F (1)
t,k Etûk

]T
Γt,k

[
F (1)
t,k Etûk

]}
,

b3 = 2

k1∑
k=t

Et
[(
F

(2)
t,kMt,k(αûk − Etαûk)

)T
F

(2)
t,k (ûk − Etûk)

]
,

b4 = 2

k1∑
k=t

Et
[(
F (2)
t,kMt,kEtαûk

)T
F (2)
t,k Etûk

]
.

As P(Λ) > 0, (5.26) contradicts the convex condition (5.23). Hence, we have (5.24), and (2.21) (2.22)
follow.

ii)⇒i). From (5.23) and b), c) of Theorem 2.2, we have J̃1(t, 0; ηu) ≥ 0 and J̃2(k, 0; vk) ≥ 0 for any
u ∈ l2F(Tt;Rm1), vk ∈ l2F(k;Rm2), k ∈ Tt. Then, we need only to show{

ηu | u ∈ l2F(Tt;Rm1)
}

= l2F(Tt;Rm1). (5.27)

In fact, for any η̃ ∈ l2F(Tt;Rm1), let

uk = η̃k + (F
(1)
t,k )TΣ−1

t,kF
(1)
t,kM

1(1)
t,k (α̃k − Etα̃k) + (F (1)

t,k )TΓ−1
t,kF

(1)
t,kM

1(1)
t,k Etα̃k, k ∈ Tt,

where {
α̃k+1 =

(
Akα̃k +B1

kη̃k
)

+
∑p
i=1

(
Cikα̃k +D1i

k η̃k
)
wik,

α̃t = 0, k ∈ Tt.
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Thus ηu = η̃. Hence, (5.27) holds, which together with J̃1(t, 0; ηu) ≥ 0 implies

inf
u∈l2F(Tt;Rm)

J̃1(t, 0;u) = inf
u∈l2F(Tt;Rm)

J̃1(t, 0; ηu) ≥ 0.

This completes the proof. �

Proof of Theorem 2.2. This follows from Theorem 2.1, Proposition 5.1 and Proposition 5.2. �

Proof of Theorem 2.5. Following (5.12)-(5.15) and by deduction, we have that Problem (GLQ)

admits a unique open-loop equilibrium, as Wt,k,W̃t,k are nonsigular k ∈ Tt. The expression of open-
loop equilibrium follows easily form Theorem 2.2. This completes the proof. �

5.3 Proof of Theorem 3.1

Applying the general theory of Section 2 to Problem (MV), (2.9)-(2.13) (with t = 0) becomes to

P k = ATk P k+1Ak −
[
(H

1(1)

k )T (H
1(2)

k )T
]
W
†
k

 H
1(1)

k

Ĥ
2(2)

k

 ,
Pk = ATkPk+1Ak −

[
(H1(1)

k )T (H1(2)

k )T
]
W̃
†

k

[
H1(1)

k

H2(2)

k

]
,

σk = −
[
(H1(1)

k )T (H1(2)

k )T
]
W̃
†

k

[
h

1

k

h2
k

]
+ATk σk+1,

PN = G1,PN = 0, σN = g1, k ∈ T,

T k = (Ak)TT k+1Ak −
[
(H

2(1)

k )T (H
2(2)

k )T
]
W
†
k

 H
1(1)

k

Ĥ
2(2)

k

 ,
T k = (Ak)TT k+1Ak −

[
(Ĥ

2(1)

k )T (Ĥ
2(2)

k )T
]
W
†
k

 H
1(1)

k

Ĥ
2(2)

k

 ,
T̃ k = (Ak)T T̃ k+1Ak −

[
(H2(1)

k )T (H2(2)

k )T
]
W̃
†

k

[
H1(1)

k

H2(2)

k

]

+
[
(Ĥ

2(1)

k )T (Ĥ
2(2)

k )T
]
W
†
k

 H
1(1)

k

Ĥ
2(2)

k

 ,
ξk = −

[
(H2(1)

k )T (H2(2)

k )T
]
W̃
†

k

[
h

1

k

h
2

k

]
+ATk ξk+1,

T k,N = G2, T k,N = 0, T̃ k,N = 0, ξN = g2, k ∈ T,

where 

W1(1s)

k = Υ
(1s)
k + (B1

k)TPk+1B
s
k +

∑p0
i,j=1 δ

ij

k (D1i
k )TP k+1D

sj
k ,

W2(2s)

k = Υ
(2s)
k + (B2

k)T (T k+1 + T̃ k+1)Bsk +
∑p0
i,j=1 δ

ij

k (D2i
k )TT k+1D

sj
k ,

W
1(1s)

k = Υ
(1s)
k + (B1

k)TP k+1B
s
k +

∑p0
i,j=1 δ

ij

k (D1i
k )TP k+1D

sj
k ,

Ŵ
2(2s)

k = Υ
(2s)
k + (B2

k)TT k+1B
s
k +

∑p0
i,j=1 δ

ij

k (D2i
k )TT k+1D

sj
k ,

H1(s)

k = (Bsk)TPk+1Ak, H2(s)

k = (Bsk)T (T k+1 + T̃ k+1)Ak,

Ĥ
2(s)

k = (Bsk)TT k+1Ak, H
1(s)

k = (Bsk)TP k+1Ak,

H
2(s)

k = (Bsk)TT k+1Ak, k ∈ T, s = 1, 2,

and

Wk =

 W
1(11)

k W
1(12)

k

Ŵ
2(21)

k Ŵ
2(22)

k

 , W̃k =

(
W1(11)

k W1(12)

k

W2(21)

k W2(22)

k

)
,
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h
1

k = (B1
k)Tσk+1, h

2

k = (B2
k)T ξk+1, k ∈ T.

with Υ
(11)
k = Φk,Υ

(12)
k = −Φk,Υ

(21)
k = −Φk,Υ

(22)
k = Φk.

Noting PN = T N = T̃N = 0, simple calculations show

Pk = T k = T̃ k = 0, H1(s)

k = H2(s)

k = Ĥ
2(s)

k = 0, k ∈ T,

and

PN−1 =

(
s2
N−1 0
0 0

)
− s2

N−1

(
(EΘN−1)T 0

0 0

)
W
†
N−1

(
EΘN−1 0

0 0

)
=

(
P

(11)

N−1 0
0 0

)

for some P
(11)

N−1, which implies the form of P k:

P k =

(
P

(11)

k 0
0 0

)
, k ∈ T.

Therefore,

P
(11)

k = s2
kP

(11)

k+1

[
1− P (11)

k+1(EΘk)T
(
W
†
k

)(11)EΘk

]
, k ∈ T. (5.28)

Hence,

Wk = Υk +

 P
(11)

k+1E
(
ΘkΘT

k

)
0

T
(21)

k+1Cov(Θk) T
(22)

k+1Cov(Θk)

 ,

W̃k = Υk +

 P
(11)

k+1Cov(Θk) 0

T
(21)

k+1Cov(Θk) T
(22)

k+1Cov(Θk)

 .

Moreover,

σk =



(
−λ2
0

)
, k = N,(

−λ2 sN−1

0

)
, k = N − 1,(

−λ2 sk · · · sN−1

0

)
, k ∈ {0, ..., N − 2},

ξk =



(
0
−λ2

)
, k = N,(

0
−λ2 sN−1

)
, k = N − 1,(

0
−λ2 sk · · · sN−1

)
, k ∈ {0, ..., N − 2}.

Hence, we have (3.13) and (3.15). Furthermore, for Problem (MV) and under the parameters (3.8)-
(3.11), (2.14)-(2.16) becomes to

Uk = ATk Uk+1Ak −M
T

kO
†
kMk,

Uk = ATk Uk+1Ak −M
T

kO
†
kMk,

UN = G1, UN = 0, k ∈ T,

and 
V k = ATk V k+1Ak,

Vk = ATk Vk+1Ak ≡ 0,

V N = G2, VN = 0, ` ∈ T
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with 

Mk = (B1
k)TUk+1Ak,

Mk = (B1
k)TUk+1Ak,

Ok = Υ
(11)
k + (B1

k)TUk+1B
1
k +

∑p0
i,j=1 δ

ij

k (D1i
k )TUk+1D

1j
k ,

Ot,k = Υ
(11)
k + (B1

k)TUk+1B
1
k +

∑p0
i,j=1 δ

ij

k (D1i
k )TUk+1D

1j
k ,

Ok = Υ
(22)
k +

∑p0
i,j=1 δ

ij

k (D2i
k )TV k+1D

2j
k .

Introduce a new optimal control problem with the system dynamics{
θk+1 = Akθk +B1

kνk +
∑p0
i=1D

1i
k νkw

i
k,

θt = θ̄, k ∈ T,
(5.29)

and the objective functional

Jθ(t, θ̄; ν) =

N−1∑
k=t

E
[
νTk L

1
kνk
]

+ E[νTNG
1νN ] + (EνN )T Ḡ1EνN (5.30)

that is to be minimized within l2Fm(Tt;Rp0). Here, the parameters in (5.29)-(5.30) are from (3.8)-(3.11).
Clearly, this is a special example of the static mean-field LQ optimal control problem that is considered

in [34]. As Υ
(11)
k � 0, G1 � 0, G1 + Ḡ1 � 0, k ∈ T, we have from Theorem 4.3 of [34] that

OkO
†
kMk = Mk, OkO

†
kMk =Mk, Ok � 0, Ok � 0, k ∈ T.

As Υ
(22)
k , G2 � 0, we have Ok � 0, k ∈ T. This completes the proof by following Theorem 2.2 and using

the notations of (3.13)-(3.15). �

5.4 Proof of Theorem 3.2

i). Let T
(ij)

k be the (i, j)-th entry of T k, i, j = 1, 2, k ∈ T, then(
T

(11)

k T
(12)

k

T
(21)

k T
(22)

k

)
= s2

k

(
T

(11)

k+1 T
(12)

k+1

T
(21)

k+1 T
(22)

k+1

)
− sk

[
(H

2(1)

k )T (H
2(2)

k )T
]
W
†
k

(
P

(11)

k+1EΘk 0
0 0

)

with [
(H

2(1)

k )T (H
2(2)

k )T
]

= sk

[
T

(11)

k+1(EΘk)T T
(21)

k+1(EΘk)T

T
(12)

k+1(EΘk)T T
(22)

k+1(EΘk)T

]
.

Therefore, for k ∈ T,(
T

(11)

k T
(12)

k

T
(21)

k T
(22)

k

)
= −s2

k

(
P

(11)

k+1T
(11)

k+1(EΘk)T
(
W
†
k

)(11)EΘk + P
(11)

k+1T
(21)

k+1(EΘk)T
(
W
†
k

)(21)EΘk 0

P
(11)

k+1T
(12)

k+1(EΘk)T
(
W
†
k

)(11)EΘk + P
(11)

k+1T
(22)

k+1(EΘk)T
(
W
†
k

)(21)EΘk 0

)

+ s2
k

(
T

(11)

k+1 T
(12)

k+1

T
(21)

k+1 T
(22)

k+1

)
(5.31)

with
(
W
†
k

)(11)
,
(
W
†
k

)(21)
being the (1, 1)-th and (2, 1)-th blocks of W

†
k. Therefore, (3.18) holds with

the property T
(22)

k ≥ 1, k ∈ T. Also, as T
(12)

N = 0, we have T
(12)

k = 0, k ∈ T.

Note that µk = 0, k ∈ T. In this case,

Wk =

 P
(11)

k+1E
(
ΘkΘT

k

)
0

T
(21)

k+1Cov(Θk) T
(22)

k+1Cov(Θk)

 , k ∈ T.
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Checking the definition of Moore-Penrose inverse, we have

W
†
k =

 [
P

(11)

k+1E
(
ΘkΘT

k

)]†
0(

W
†
k

)(21) [
T

(22)

k+1Cov(Θk)
]†
 , (5.32)

where (
W
†
k

)(21)
= −

[
T

(22)

k+1Cov(Θk)
]†
T

(21)

k+1Cov(Θk)
[
P

(11)

k+1E
(
ΘkΘT

k

)]†
. (5.33)

From (5.31), (5.33), T
(12)

k = 0 and T
(21)

N = 0, it holds that T
(21)

k = 0, k ∈ T. Hence, we have proved
that Wk has the following form:

Wk =

 P
(11)

k+1E
(
ΘkΘT

k

)
0

0 T
(22)

k+1Cov(Θk)

 , k ∈ T. (5.34)

From (5.28), we have

P
(11)

k = s2
kP

(11)

k+1

[
1− (EΘk)T

[
E
(
ΘkΘT

k

)]†EΘk

]
. (5.35)

By (50) of [34], we know 1− (EΘk)T
[
E
(
ΘkΘT

k

)]†EΘk > 0. Therefore, P
(11)

k > 0 for k ∈ T.

ii). In this case, W̃k is of the following form

W̃k =

 P
(11)

k+1Cov(Θk) 0

0 T
(22)

k+1Cov(Θk)

 , k ∈ T. (5.36)

As EΘk ∈ Ran
[
Cov(Θk)

]
, k ∈ T, the condition (3.12) is satisfied. Hence, for any initial pair Problem

(MV) admit open-loop self-coordination controls of precommitted self and of sophisticated selves, which
coincide with the open-loop precommitted optimal control and open-loop time-consistent equilibrium
control, respectively.

iii). Let Ξck =
{
ζ
∣∣Cov(Θk)ζ = EΘk

}
6= ∅. For given ζ0 ∈ Ξck, there exists d ≥ 0 such that

Φkζ0 = dEΘk. (5.37)

Note that (3.12) is equivalent to

Ran(Hk) ⊂ Ran(Wk), hk ∈ Ran(W̃k), k ∈ T,

and that

Ran(Hk) =

{(
cP

(11)

k+1EΘk

0

)∣∣∣∣∣ c ∈ R

}
,

Ran(Wk) =


 L

(1)
k a+ L

(2)
k b+ P

(11)

k+1E
(
ΘkΘT

k

)
a

L
(3)
k a+ L

(4)
k b+ Cov(Θk)

[
T

(21)

k+1a+ T
(22)

k+1b
]
 ∣∣∣∣∣ a, b ∈ Rm

 ,

Ran(W̃k) =


 L

(1)
k a+ L

(2)
k b+ P

(11)

k+1Cov(Θk)a

L
(3)
k a+ L

(4)
k b+ Cov(Θk)

[
T

(21)

k+1a+ T
(22)

k+1b
]
 ∣∣∣∣∣ a, b ∈ Rm

 .

For ζ0 ∈ Ξk, we have Cov(Θk)ζ0 = EΘk and L
(i)
k ζ0 = diEΘk for some di ∈ R. Letting a = x1ζ0, b =

x2ζ0, the equation L
(1)
k a+ L

(2)
k b+ P

(11)

k+1E
(
ΘkΘT

k

)
a

L
(3)
k a+ L

(4)
k b+ Cov(Θk)

[
T

(21)

k+1a+ T
(22)

k+1b
]
 =

(
cP

(11)

k+1EΘk

0

)
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becomes to finding x1, x2 such that{
d1x1 + d2x2 + P

(11)

k+1(1 + EΘT
k ζ0)x1 = cP

(11)

k+1,

d3x1 + d4x2 + T
(21)

k+1x1 + T
(22)

k+1x2 = 0
(5.38)

holds for given c ∈ R. By some calculations, the determinant of coefficient matrix of (5.38) is

Det(d1, d2, d3, d4) =
[
d1 + P

(11)

k+1(1 + EΘT
k ζ0)

][
d4 + T

(22)

k+1

]
− d2

[
d3 + T

(21)

k+1

]
. (5.39)

If c = 0 or P
(11)

k+1 = 0, x1 and x2 of (5.38) can be both selected to be 0. For c 6= 0 and P
(11)

k+1 6= 0, we

have following derivation. As T
(22)

k+1 6= 0, let d1 = −d2 = −d3 = d4 and (5.39) becomes

Det(d1,−d1,−d1, d1) =
[
P

(11)

k+1(1 + EΘT
k ζ0) + T

(21)

k+1 + T
(22)

k+1

]
d1 + P

(11)

k+1(1 + EΘT
k ζ0)T

(22)

k+1. (5.40)

As 1 + EΘT
k ζ0 = 1 + ζTCov(Θk)ζ0 ≥ 1, we must have P

(11)

k+1(1 + EΘT
k ζ0)T

(22)

k+1 6= 0. Therefore, there
exists some d1 such that Det(d1,−d1,−d1, d1) 6= 0 and (5.38) is solvable.

Therefore, by selecting Υk, k ∈ Tt with (5.37) we can have Ran(Hk) ⊂ Ran(Wk), k ∈ T and

similarly hk ∈ Ran(W̃k), k ∈ T can be proved. This completes the proof. �

6 Conclusion

For a time-inconsistent LQ optimal control, a Nash-type fictitious game framework is introduced,
where the game is between the decision maker and an auxiliary control variable. The decision maker
and auxiliary control variable are called real player and fictitious player, which look for time-consistent
policy and precommitted optimal policy, respectively. The equilibrium policy of real player is called
an open-loop self-coordination control of the LQ problem. As a generalization, a time-inconsistent
nonzero-sum stochastic LQ dynamic game is studied, for which one player is to find the precommitted
policy and the other player is to find the time-consistent policy. Necessary and sufficient conditions are
derived to characterize the open-loop equilibrium of this nonzero-sum stochastic LQ dynamic game via
Riccati-like equations, and as a byproduct, result to ensure the existence of open-loop self-coordination
control of the original LQ optimal control is also obtained. To test the general theory, the mean-
variance portfolio selection is investigated. For future research, the closed-loop self-coordination should
be investigated.
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