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ASYMPTOTICS FOR THE ELECTRIC FIELD CONCENTRATION

IN THE PERFECT CONDUCTIVITY PROBLEM

HAIGANG LI

Abstract. In the perfect conductivity problem of composite material, the
electric field concentrates in a narrow region in between two inclusions and
always becomes arbitrarily large when the distance between inclusions tends
to zero. To characterize such singular behavior, we capture the leading term of
the gradient and reveal that the blow-up rates are determined by their relative
convexity of the two adjacent inclusions. On the other hand, a blow-up factor,
which is a linear functional of boundary data, is found to determine the blow-
up will occur or not.

1. Introduction

1.1. Background. In composite materials, the inclusion are frequently located
very closely and even touching. Especially, in high-contrast fiber-reinforced com-
posites, it is a common phenomenon that high concentration of extreme electric
field or stress field occurs in the narrow regions between two adjacent inclusions.
The purpose of this paper is to investigate the asymptotic behavior of the elec-
tric field in the perfect conductivity problem when the distance between inclusions
tends to zero. The conductivity problem can be modeled by the following boundary
problem of the scalar equation with piecewise constant coefficients

{

div
(

ak(x)∇uk

)

= 0 in D,

uk = ϕ(x) on ∂D,
(1.1)

where D is a bounded open set in R
n, n ≥ 2, including two inclusions D1 and D2

with ε apart, ϕ ∈ C2(∂D) is given, and

ak(x) =

{

k ∈ [0, 1) ∪ (1,∞] in D1 ∪D2,

1 in Ω = D \D1 ∪D2.

The gradient of the potential u represents the electric field, ak(x) is the conductiv-
ity, which is a constant on the fibers, and a different constant on the matrix. When
the conductivity of inclusions degenerate into infinity, we call it as the perfect con-
ductivity problem. It is important from a practical point of view to know whether
|Du| can be arbitrarily large as the inclusions get closer to each other. Motivated
by the celebrated work of Babuška, Andersson, Smith, and Levin [5] where they
numerically analyzed the initiation and growth of damage in composite materials,
in which the inclusions are frequently spaced very closely and even touching, there
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have been many important works on the gradient estimates for solutions of ellip-
tic and parabolic equations and systems arising from composite materials; see, for
instance, [12, 15–17,21, 26–28,32, 33] and the references therein.

When k is away from 0 and ∞, the gradient of the solution of (1.1), |∇uk|, is
bounded independently of the distance ε. Bonnetier and Vogelius [12] first obtained
the W 1,∞ estimate of uk for two touching disks D1 and D2 in dimension two, which
improved a classical regularity result due to De Giorgi and Nash [14, 36], which
asserts that the H1 weak solution is in the Hölder class for L∞ coefficients. Of
course, the bound in [12] depends on the value of k. Li and Vogelius [33] and Li and
Nirenberg [32] extended such boundedness result to general divergence form second
order elliptic equations and systems with piecewise Hölder continuous coefficients,
and they proved that |∇uk| remains bounded when ε tends to zero.

Actually, this is a bi-parameter problem, including two independent parameters:
the contrast k and the distance ε. In order to study the role of ε played in such
kind of concentration phenomenon, we consider another limit case with k = +∞,
the perfect conductivity problem:



















∆u = 0 in Ω,

u = Ci on Di, i = 1, 2,
∫

∂Di

∂u
∂ν− = 0 i = 1, 2,

u = ϕ(x) on ∂D,

(1.2)

where C1 and C2 are some constants to be uniquely determined, ϕ ∈ C2(∂D), and
for x ∈ ∂Di

∂u

∂ν−
(x) := lim

t→0+

u(x)− u(x+ tν)

t
.

Here and throughout this paper ν is the outward unit normal to the domain. It
has been proved that the generic blow-up rate of |∇u| is ε−1/2 in two dimensions
[1, 3, 4, 34, 37, 38], (ε| log ε|)−1 in three dimensions [6, 24, 34], and ε−1 in higher
dimensions [6]. Similar results for Lamé system with partially inifinite coefficients
were established in [7–9], for p-Laplace equation in dimension two in [19]. More
earlier work for the blow-up rate of a special solution with two identical circular
inclusions was shown to be ε−1/2, see [13, 25, 35].

Bao, Li and Yin [6] introduced a linear functional Qε[ϕ] and obtained the optimal
bounds

ρn(ε)|Qε[ϕ]|
Cε

≤ ‖∇u‖L∞(Ω) ≤
Cρn(ε)|Qε[ϕ]|

ε
+ C‖ϕ‖C2(∂D),

where

ρn(ε) =

{√
ε for n = 2;

| log ε|−1 for n = 3.
(1.3)

If |Qε[ϕ]| has a strictly positive lower bound independent of ε, then these inequality
will show these blow-up rates are optimal. From the view of practical application in
engineering, it is desirous and more important to know how to capture the leading
term of such blow-up. Recently a better understanding of the stress concentration
has been obtained in [2,23] that an asymptotic behavior of ∇u has been character-
ized by the singular function qε associated with D1 and D2 in dimension two, and
the asymptotic behavior of the stress concentration factor is also considered in [23].
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Ammari, Ciraolo, Kang, Lee, Yun [2] extend the result in [23] to the case that inclu-
sions D1, D2 are strictly convex simply connected domain in R

2. For two adjacent
spherical inclusions in R

3 was studied by Kang, Lim and Yun [24] and Li, Wang
and Xu [31]. Bonnetier and Triki [11] derived the asymptotics of the eigenvalues
of the Poincaré variational problem as the distance between the inclusions tends to
zero. Here it is also worth mentioning that Berlyand, Gorb and Novikov [10] used
a network approximation to estimate the global stress in a composite with densely
packed spherical inclusions.

In this paper, we give an essentially complete description of the gradient asymp-
totic expansion for arbitrary convex inclusions in all dimensions. The method is
quite different with that used in [2,23,24]. Motivated by the decomposition in [30]
for the boundary estimates, we here decompose the solution u of (1.2) as follows

u(x) = (C1 − C2)v1(x) + vb(x), in Ω, (1.4)

where v1 and vb are, respectively, the solutions of










∆v1 = 0 in Ω,

v1 = 1 on ∂D1,

v1 = 0 on ∂D2 ∪ ∂D,

and











∆vb = 0 in Ω,

vb = C2 on ∂D1 ∪ ∂D2,

vb = ϕ(x) on ∂D.

(1.5)

It follows from (1.4) that

∇u = (C1 − C2)∇v1 +∇vb. (1.6)

This decomposition comes with a significant advantage: ∇v1 is a singular part with
an intuitive singularity ε−1, while ∇vb is a bounded part. Thus, the main reason
to cause the difference of the rate of the blow-up lies in the term |C1−C2|. It turns
out that it depends on the dimension n and the geometry of the inclusions. On the
other hand, the bounded term ∇vb is also important, because it is closely related
to the blow-up factor B0[ϕ], which decides whether the blow-up will occur or not.
For more details, see Proposition 1.10 below.

1.2. Notations and Main Results. We now proceed to state the main results of
this paper. To do so we need to make our notation and assumptions more precise.
We use x = (x′, xn) to denote a point in R

n, n ≥ 2, x′ = (x1, x2, · · · , xn−1). We
assume that ∂D is of C2,α, 0 < α < 1. Let D0

1 and D0
2 be a pair of (touching)

convex subdomains of D and far away from ∂D, such that

D0
1 ⊂ {(x′, xn) ∈ R

n|xn > 0}, D0
2 ⊂ {(x′, xn) ∈ R

n|xn < 0},
with xn = 0 as their common tangent plane, and

∂D0
1 ∩ ∂D0

2 = {(0′, 0)}, dist(D0
1 ∪D0

2, ∂D) > κ0,

where κ0 > 1 is a constant. We further assume that the C2,α norms of ∂Di (i = 1, 2)
are bounded by some constants. By translating D0

1 by a positive number ε along
xn-axis, while D0

2 is fixed, we obtain Dε
1, that is,

Dε
1 := D0

1 + (0′, ε).

When there is no possibility of confusion, we drop the superscripts and denote

D1 := Dε
1, D2 := D0

2, and Ω := D \D1 ∪D2.

We may assume that the points P1 ∈ ∂D1 and P2 ∈ ∂D2 satisfy

P1 = (0′, ε) , P2 = (0′, 0) .
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Fix a small universal constant R0 < 1 such that the portions of ∂Di near Pi can
be parameterized by (x′, ε+ h1(x

′)) and (x′, h2(x
′)), respectively, that is,

xn = ε+ h1(x
′), and xn = h2(x

′), for x′ ∈ B′
2R0

:=
{

x′ ∈ R
n−1

∣

∣

∣
|x′| < 2R0

}

.

Moreover, by the convexity assumptions on ∂Di, we further assume that functions
h1 and h2 satisfy

ε+ h1(x
′) > h2(x

′), for |x′| < 2R0, (1.7)

h1(0
′) = h2(0

′) = 0, ∇x′h1(0
′) = ∇x′h2(0

′) = 0, (1.8)

and for some constant κ1 > 0, and for any ξ ∈ R
n−1 \ {0′},

ξT∇2
x′h1(0

′)ξ ≥ κ1|ξ|2 > 0, ξT∇2
x′h2(0

′)ξ ≤ −κ1|ξ|2 < 0. (1.9)

and
‖h1‖C3,1(B′

2R0
) + ‖h2‖C3,1(B′

2R0
) ≤ C. (1.10)

More generally, after a rotation of the coordinates if necessary, we assume that

(h1 − h2)(x
′) =

n−1
∑

j=1

λj

2
x2
j +O(|x′|2+α), |x′| ≤ 2R0, (1.11)

where diag(λ1, · · · , λn−1) = ∇2
x′(h1 − h2)(0

′). For 0 ≤ r ≤ 2R0, let

Ωr :=
{

(x′, xn) ∈ R
n
∣

∣ h2(x
′) < xn < ε+ h1(x

′), |x′| < r
}

.

We introduce an auxiliary function v̄1 ∈ C2,α(Rn), such that v̄1 = 1 on ∂D1,
v̄1 = 0 on ∂D2 ∪ ∂D,

v̄1(x) =
xn − h2(x

′)

ε+ (h1 − h2)(x′)
, in Ω2R0 , (1.12)

and
‖v̄1‖C2,α(Rn\ΩR0)

≤ C. (1.13)

In view of (1.8)–(1.10), a direct calculation gives

∣

∣∂xj v̄1(x)
∣

∣ ≤ C|x′|
ε+ (h1 − h2)(x′)

, j = 1, 2, · · · , n− 1,

∂xn v̄1(x) =
1

ε+ (h1 − h2)(x′)
,

x ∈ Ω2R0 . (1.14)

Here and throughout this paper, unless otherwise stated, C denotes a constant,
whose values may vary from line to line, depending only on n, κ0, κ1, ‖∂Ω‖C2,α ,
‖∂D1‖C2,α and ‖∂D2‖C2,α , but not on ε. Also, we call a constant having such
dependence a universal constant.

Consider the following limit problem






















∆u0 = 0 in Ω0 := D \D0
1 ∪D0

2 ,

u0 = C0 on D0
1 ∪D0

2 ,
∫

∂D0
1

∂u0

∂ν− +
∫

∂D0
2

∂u0

∂ν− = 0

u0 = ϕ(x) on ∂D.

(1.15)

It will be shown later that u0 is the limit of u. We use u0 to define a linear functional
of ϕ, which determines whether ∇u blows up or not,

B0[ϕ] := −
∫

∂D0
1

∂u0

∂ν−
=

∫

∂D0
2

∂u0

∂ν−
. (1.16)
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This factor was first introduced by Gorb and Novikov in [19] for p-Laplace equation,
denoted by R0 . It turns out there that R0 is the key characteristic parameter of
the W 1,∞ blow-up of u, see also [18].

In the following, we use O(1) to denote some quantity satisfying |O(1)| ≤ C, for
some constant C independent of ε. We have the asymptotic expression of ∇u in
the narrow region between D1 and D2 as follows:

Theorem 1.1. For n = 2, 3, let D, D1, D2 be defined as the above and satisfy
(1.7)-(1.11), ϕ ∈ C2(∂D). Assume that u ∈ H1(D) ∩ C1(Ω) is the solution to
(1.2). Then for ϕ such that B0[ϕ] 6= 0, we have

(i) for n = 2,

∇u =
B0[ϕ]

√
ε

κ2
∇v̄1 +O(1)‖ϕ‖C2(∂D), in ΩR0 ; (1.17)

(ii) for n = 3,

∇u =
B0[ϕ]

κ3| log ε|
(

1 +O
(

| log ε|−1
)

)

∇v̄1 +O(1)‖ϕ‖C2(∂D), in ΩR0 , (1.18)

where

κn :=

{√
2π√
λ1

n = 2,
π√
λ1λ2

n = 3,
(1.19)

λ1 (or λ1 and λ2) is the relatively principal curvature of ∂D1 and ∂D2, defined in
(1.11).

Remark 1.2. We would like to point out that from (1.14) ∇v̄1 is explicit. So
the singularity of ∇u in the narrow region ΩR can be calculated provided B0[ϕ] is
known for a given ϕ. The computation of B0[ϕ] is an interesting numerical problem,
because there is no singularity in ∇u0. We leave it to the interested readers.

Remark 1.3. This blow-up factor B0[ϕ] is more natural than Qε[ϕ] defined in [6],
and it is much easier to check whether or not it equals zero, since ∇u0 is regular,
namely, always bounded. While in the definition of Qε[ϕ], the singular terms ∇v1
and ∇v2 are used. In fact, there may exist a boundary data ϕ such that B0[ϕ] = 0,
but it is easy to find another ϕ such that B0[ϕ] 6= 0 by a perturbation argument.

Remark 1.4. We would like to point out that from (1.14) our asymptotic formula
(1.17) and (1.18) are actually pointwise expressions near the origin. This is different
with the results in [18, 19], where the norm ‖∇u‖L∞(Ωδ) is considered.

From (1.19), one can see the constant κn depends on the curvature of ∂D0
1 and

∂D0
2 at the origin. For example, if the mean curvature λ1λ2 → 0, then the quatity

1
κ3

in (1.18) tends to zero as well. While, when ∂D0
1 and ∂D0

2 are relatively convex
of order m > 2, especially when there exist a constant λ > 0 such that

(h1 − h2)(x
′) = λ|x′|m, m > 2, for |x′| < R0, (1.20)

that is, their relative curvature vanishes. This will cause the blow-up rate to change.
In order to reveal the relation between the convexity and the blow-up rate for
particles with zero curvature at the point of the closest distance, we here restrict
our consideration only to this symmetric case (1.20). For more generalized m-
convex inclusions cases, the same assertions should also be true. For simplicity, we
also assume that

|∇x′h1|, |∇x′h2| ≤ C|x′|m−1, for |x′| < R0. (1.21)
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We define

ρmn (ε) =











ε1−
n−1
m for m > n− 1, n ≥ 3

| log ε|−1 for m = n− 1, n ≥ 3

ε1−
1
m for m ≥ 2, n = 2.

Theorem 1.5. Let D, D1, D2 be of C2,α and satisfy (1.20) and (1.21) with m ≥ 2
if n = 2, m ≥ n− 1 if n ≥ 3, ϕ ∈ C2(∂D). Assume that u ∈ H1(D)∩C1(Ω) is the
solution to (1.2). Then for ϕ such that B0[ϕ] 6= 0, we have

(i) if m ≥ 2(n− 1), n ≥ 2,

∇u =
B0[ϕ]ρ

m
n (ε)

Lλ
n−1
m

∇v̄1 +O(1)‖ϕ‖C2(∂D), in ΩR0 ; (1.22)

(ii) if n− 1 ≤ m < 2(n− 1) and n ≥ 3,

∇u = B0[ϕ]
ρmn (ε)

Lλ
n−1
m

(

1 +O
(

ρmn (ε)
)

)

∇v̄1 +O(1)‖ϕ‖C2(∂D), in ΩR0 , (1.23)

where L is a constant depending only on m and n.

Remark 1.6. In some sense Theorem 1.5 could be regard as an extension of an
2D asymptotic formula (21) in [22],

∇u = α0∇qε +O(1), (1.24)

where qε is a singular function in dimension two, with∇qε ∼ 1√
ε
. The conclusions in

Theorem 1.5 hold in dimensions two and three. Moreover, they show that the blow-

up rate of |∇u| at the origin is
ρm
n (ε)
ε , which depends on the space dimension and

the order of the convexity of the inclusions. Especially, in R
n, when the convexity

of inclusions is different, the blow-up rate is different. In this sense, when we use a
ball (with 2-convexity) to approximate an arbitrary convex inclusion, the error in
general will be large, unless its convexity is also of order 2.

1.3. The outline of the proof of Theorems 1.1 and 1.5. In this section we list
the strategy and main ingredients of the proof of Theorem 1.1 and 1.5. Without
loss of generality, we assume that ‖ϕ‖C2(∂D) = 1, by considering u/‖ϕ‖C2(∂D) if

‖ϕ‖C2(∂D) > 0. If ϕ
∣

∣

∂D
= 0 then u ≡ 0.

Using the trace embedding theorem and ‖u‖H1(Ω) ≤ C (independent of ε), we
have

|C1|+ |C2| ≤ C. (1.25)

In view of (1.4) and the third line of (1.2), the constants C1 −C2 is determined by
the following linear system

(C1 − C2)

∫

∂Di

∂v1
∂ν−

+

∫

∂Di

∂vb
∂ν−

= 0, i = 1, 2. (1.26)

If
∫

∂D1

∂v1
∂ν− 6= 0, then from (1.26),

C1 − C2 =
−
∫

∂D1

∂vb
∂ν−

∫

∂D1

∂v1
∂ν−

. (1.27)

In the following we estimate the two terms
∫

∂D1

∂v1
∂ν and

∫

∂D1

∂vb
∂ν− , respectively.

First, by the definition of v1 and integration by parts, we have
∫

∂D1

∂v1
∂ν−

=

∫

∂Ω

v1
∂v1
∂ν

=

∫

Ω

|∇v1|2.
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Theorem A. ( [29]) For n = 2, 3, assume D1, D2 are of Ck,1, k ≥ 3 and satisfy
(1.11). Then there exists a constant M , depending only on D0

1 , D
0
2 and Ω, such that

∫

Ω

|∇v1|2 −
( κn

ρn(ε)
+M

)

= O
(

En(ε)
)

, (1.28)

where

En(ε) =

{

ε
1
4− 1

2k n = 2,

ε
k−1
2k | log ε| n = 3.

For m-convexity inclusions with zero-curvature, in order to extend Theorem A
to all dimensions, we need the following proposition, which shows that ∇v̄1 is the
main singular part of ∇v1 in ΩR0 .

Proposition 1.7. For n ≥ 2, assume D1, D2 are of C2,α and satisfy

1

C
|x′|m ≤ (h1 − h2)(x

′) ≤ C|x′|m, m ≥ max{2, n− 1}, (1.29)

and (1.21). Let v1 ∈ H1(D) be the weak solution of (1.5). Then

‖∇(v1 − v̄1)‖L∞(Ω) ≤ C. (1.30)

Theorem 1.8. For n ≥ 2, assume D1, D2 are of C2,α, and satisfy (1.29) and
(1.20)-(1.21). Then there exists a constant M , depending only on D0

1 , D
0
2 and Ω,

such that
∫

Ω

|∇v1|2 =
Lλ

n−1
m

ρmn (ε)
+M +O

(

Em
n (ε)

)

, (1.31)

where L is a constant depending only on m and n, and

Em
n (ε) =











ε
1

4m if m ≥ 2, n = 2,

max{ε 1
n−1 , ε

1
4 | log ε|} if m = n− 1, n ≥ 3,

ε
n−1
4m if m > n− 1, n ≥ 3.

(1.32)

From (1.31), one can see that the energy aggregation of v1 depends on the local
geometry of the inclusions, such as λ, and the order of convexity m. The proof of
Theorem 1.8 will be given in Section 3.

On the other hand, since ∆vb = 0 in D with vb = C2 on ∂D1 ∪ ∂D2, it follows
from the standard elliptic theory that

Theorem 1.9. Suppose that 0 < ε < 1/2 sufficiently small. There are two positive
constants A,C, independent of ε, such that

|∇vb(x
′, xn)| ≤ C exp

(

− A

(ε+ |x′|m)1−1/m

)

‖vb‖L2(Ω), ∀ (x′, xn) ∈ ΩR0 .

(1.33)

Theorem 1.9 implies that

‖∇vb‖L∞(ΩR0)
≤ C. (1.34)

So that, combining with the classical elliptic theory,

‖∇vb‖L∞(Ω) ≤ C. (1.35)

Denote

Bε[ϕ] := −
∫

∂D1

∂vb
∂ν−

. (1.36)
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Substituting (1.31) and (1.35) into (1.27), we have

|C1 − C2| ≤ Cρmn (ε). (1.37)

By using (1.37), we prove, see Lemma 4.2 below, that
∣

∣

∣
Ci − C0

∣

∣

∣
≤ Cρmn (ε), i = 1, 2. (1.38)

This shows that u0 defined by (1.15) is the limit of u defined by (1.2). Furthermore,
as for the convergent rate of Bε[ϕ] to B0[ϕ], we have the following estimate.

Proposition 1.10. Let Bε[ϕ] and B0[ϕ] be defined by (1.36) and (1.16), respec-
tively. Then

(i) under the assumptions of Theorem 1.1, we have

Bε[ϕ]− B0[ϕ] = O
(

ρ2n(ε)
)

, n = 2, 3; (1.39)

(ii) under the assumptions of Theorem 1.5, we have

Bε[ϕ]− B0[ϕ] = O
(

ρmn (ε)
)

m ≥ max{2, n− 1}, n ≥ 2. (1.40)

This convergence rate is optimal because of (1.38). The proof of Proposition
1.10 will be given in Section 4. We are now in position to prove Theorems 1.1 and
1.5.

Proof of Theorem 1.1. By using (1.6), (1.30) and (1.34),

∇u = (C1 − C2)∇v̄1 +O(1), in ΩR0 .

It follows from Proposition 1.10 that

C1 − C2 =
−
∫

∂D1

∂vb
∂ν−

∫

∂D1

∂v1
∂ν−

=
Bε[ϕ]

∫

Ω |∇v1|2
.

Thus, using (1.28) and (1.40),

∇u(x) =(C1 − C2)∇v̄1(x) +O(1)

=
B0[ϕ] +O

(

ρn(ε)
)

κn

ρn(ε) +M +O
(

En(ε)
)∇v̄1(x) +O(1). (1.41)

In view of the definition of ρn(ε), (1.3), Theorem 1.1 follows easily from the above.
�

Proof of Theorem 1.5. Replacing (1.28) by (1.31) in (1.41), we have

∇u(x) =(C1 − C2)∇v̄1(x) + O(1)

=
B0[ϕ] +O

(

ρmn (ε)
)

Lλ
n−1
m

ρm
n (ε) +M +O

(

Em
n (ε)

)

∇v̄1(x) +O(1).

The proof is completed by a direct computation. �

The rest of this paper is organized as follows. We establish the pointwise upper
and lower bound estimates of |∇v1| in Section 2. The asymptotics of the energy of
v1 for m-convex inclusions is proved in Section 3. The proof of Theorem 1.9 and
Proposition 1.10 is given in Section 4.
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2. The gradient estimates of v1

This section is devoted to the estimates of |∇v1| for m-convexity inclusions with
zero-curvature.

Proof of Proposition 1.7. For simplicity, denote

w := v1 − v̄1.

By the definition of v1 in (1.5), and v1 = v̄1 on ∂D1 ∪ ∂D2 ∪ ∂D, we have
{

−∆w = ∆v̄1 in Ω,

w = 0 on ∂Ω.
(2.1)

In view of (1.12) and (1.13),

‖v̄1‖C2,α(Ω\ΩR0/3) ≤ C. (2.2)

Using the standard elliptic theory, we have

|w|+ |∇w| +
∣

∣∇2w
∣

∣ ≤ C, in Ω \ ΩR0/2. (2.3)

Thus, to show (1.30), we only need to prove

‖∇w‖L∞(ΩR0/2)
≤ C.

First, we claim that
∫

Ω

|∇w|2 ≤ C. (2.4)

Indeed, by the maximum principle, we have 0 < v1 < 1. Becuase v̄1 is also bounded,

‖w‖L∞(Ω) ≤ C. (2.5)

A direct computation yields,

|∆v̄1(x)| ≤
C

δ(x′)
, where δ(x′) = ε+ h1(x

′)− h2(x
′), x ∈ ΩR0 . (2.6)

Now multiplying the equation in (2.1) by w, integrating by parts, and making use
of (2.2), (2.5) and (2.6),

∫

Ω

|∇w|2 =

∫

Ω

w (∆v̄1) ≤ ‖w‖L∞(Ω)

(

∫

ΩR0

|∆v̄1|+ C

)

≤ C.

Thus, (2.4) is proved.
For 0 < t < s < R0, let η be a smooth cutoff function satisfying η(x′) = 1 if

|x′ − z′| < t, η(x′) = 0 if |x′ − z′| > s, 0 ≤ η(x′) ≤ 1 if t ≤ |x′ − z′| ≤ s, and
|∇x′η(x′)| ≤ 2

s−t . Multiplying the equation in (2.1) by wη2 and integrating by
parts leads to the following Caccioppolli’s type inequality

∫

Ωt(z′)

|∇w|2 ≤ C

(s− t)2

∫

Ωs(z′)

|w|2 + C(s− t)2
∫

Ωs(z′)

|∆v̄1|2 , (2.7)

where

Ωr(z
′) :=

{

(x′, xn) ∈ R
n
∣

∣ h2(x
′) < xn < ε+ h1(x

′), |x′ − z′| < r
}

.

The rest of the proof is divided into two steps. By an iteration technique devel-
oped in [8], we first have
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STEP 1. Proof of
∫

Ωδ(z′)

|∇w|2 dx ≤ Cδ(z′)n, for n ≥ 2, (2.8)

where

δ = δ(z′) := ε+ h1(z
′)− h2(z

′), for (z′, zn) ∈ ΩR0 .

We adapt the iteration technique developed in [8] and give a unified iteration
process. For 0 < s < |z′| ≤ R0/2, we note that by using Hölder inequality,
∫

Ωs(z′)

|w|2 =

∫

Ωs(z′)

(

∫ xn

h2(x′)

∂xnw
)2

≤Cδ(z′)2
∫

Ωs(z′)

|∇w|2, if 0 < s <
2|z′|
3

.

Substituting it into (2.7) and denoting

F (t) :=

∫

Ωt(z′)

|∇w|2,

we have

F (t) ≤
(

C0δ(z
′)

s− t

)2

F (s) + C(s− t)2
∫

Ωs(z′)

|∆v̄1|2 , ∀ 0 < t < s <
2|z′|
3

, (2.9)

where C0 is a fixed positive universal constant.

Let k =
[

max{ε1/m,|z′|}
4C0δ(z′)

]

and ti = δ+2C0i δ(z
′), i = 0, 1, 2, · · · , k. Taking s = ti+1

and t = ti in (2.9), and in view of (2.6),
∫

Ωti+1
(z′)

|∆v̄1|2 ≤
∫

|x′−z′|<ti+1

C

δ(x′)
dx′ ≤ Ctn−1

i+1

δ(z′)
≤ C(i + 1)n−1δ(z′)(n−2).

(2.10)
We obtain an iteration formula

F (ti) ≤
1

4
F (ti+1) + C(i+ 1)n−1δ(z′)n.

After k iterations, using (2.4),

F (t0) ≤ (
1

4
)kF (tk) + Cδ(z′)n

k
∑

l=1

(
1

4
)l−1ln−1 ≤ Cδ(z′)n.

This implies that (2.8).
STEP 2. Next, we use Sobolev embedding theorem and classical Lp estimates for
elliptic equations to prove (1.30).

By using the following scaling and translating of variables
{

x′ − z′ = δ(z′)y′,

xn = δ(z′)yn,

then Ωδ(z′)(z
′) becomes Q1, where for r ≤ 1,

Qr =

{

y ∈ R
n
∣

∣

∣

1

δ(z′)
h2(δ(z

′)y′ + z′) < yn <
ε

δ(z′)
+

1

δ(z′)
h1(δ(z

′)y′ + z′), |y′| < r

}

,

and the top and bottom boundaries respectively become

yn = ĥ1(y
′) :=

1

δ(z′)
(ε+ h1(δ(z

′) y′ + z′)) , |y′| < 1,
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and

yn = ĥ2(y
′) :=

1

δ(z′)
h2(δ(z

′) y′ + z′), |y′| < 1.

Then

ĥ1(0
′)− ĥ2(0

′) :=
1

δ(z′)
(ε+ h1(z

′)− h2(z
′)) = 1,

and by (1.8),

|∇x′ ĥ1(0
′)|+ |∇x′ ĥ2(0

′)| ≤ C|z′|m−1, |∇2
x′ ĥ1(0

′)|+ |∇2
x′ ĥ2(0

′)| ≤ C|z′|m−2.

Since R0 is small, ‖ĥ1‖C1,1((−1,1)n−1) and ‖ĥ2‖C1,1((−1,1)n−1) are small and Q1 is
essentially a unit square (or a unit cylinder for n = 3) as far as applications of the
Sobolev embedding theorem and classical Lp estimates for elliptic equations are
concerned. Let

V 1(y
′, yn) := v̄1(z

′+δ(z′)y′, δ(z′)yn), W (y′, yn) := w(z′+δ(z′)y′, δ(z′)yn), y ∈ Q′
1,

then by (2.1),

−∆W = ∆V 1, y ∈ Q1,

where
∣

∣∆V 1

∣

∣ = δ(z′)2 |∆v̄1| .
Since W = 0 on the top and bottom boundaries of Q1, using the Poincaré

inequality,

‖W‖H1(Q1)
≤ C ‖∇W‖L2(Q1)

.

By W 2,p estimates for elliptic equations (see e.g. [20]), the Sobolev embedding
theorems, and using the bootstrap argument, with p > n,

‖∇W‖L∞(Q1/2)
≤ C ‖W‖W 2,p(Q1/2)

≤ C
(

‖∇W‖L2(Q1)
+
∥

∥∆V 1

∥

∥

L∞(Q1)

)

.

It follows from ∇W = δ∇w and (2.6),(2.8) that

‖∇w‖L∞(Ωδ(z′)/2(z
′))

≤ C
(

δ(z′)−n/2 ‖∇w‖L2(Ωδ(z′)(z
′)) + δ(z′) ‖∆v̄1‖L∞(Ωδ(z′)(z

′))

)

≤ C. (2.11)

Proposition 1.7 is established. �

Remark 2.1. We point out that the estimate involving ∆v̄1 is very crucial in the

above proof, such as (2.10) and (2.11), for
∫

Ωti+1
(z′)

|∆v̄1|2 and δ(z′) ‖∆v̄1‖L∞(Ωδ(z′)(z
′)).

An immediate consequence of Proposition 1.7 is that

Corollary 2.2. Under the assumption as in Proposition 1.7,

1

C(ε+ (h1 − h2)(x′))
≤ |∇v1(x

′, xn)| ≤
C

ε+ (h1 − h2)(x′)
, (x′, xn) ∈ ΩR0 , (2.12)

and

‖∇v1‖L∞(Ω\ΩR0 )
≤ C. (2.13)
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3. Proof of Theorem 1.8

Define v01 to be the solution of the limiting problem










∆v01 = 0 in Ω0,

v01 = 1 on ∂D0
1 \ {0},

v01 = 0 on ∂D0
2 ∪ ∂D.

(3.1)

Similarly as v̄1, we construct an auxiliary function v̄01 , such that v̄01 = 1 on ∂D0
1\{0},

v̄01 = 0 on ∂D0
2 ∪ ∂D,

v̄01 =
xn − h2(x

′)

(h1 − h2)(x′)
in Ω0

R0
:=
{

(x′, xn)
∣

∣ h2(x
′) ≤ xn ≤ h1(x

′), |x′| ≤ R0

}

,

(3.2)
and ‖v̄01‖C2,α(Ω0\Ω0

R0
) ≤ C. It is easy to see that

∣

∣∂x′ v̄01(x)
∣

∣ ≤ C

|x′| , ∂xn v̄
0
1(x) =

1

(h1 − h2)(x′)
, x ∈ Ω0

R0
\ {0}. (3.3)

It follows from the proof of Proposition 1.7 that
∥

∥∇(v01 − v̄01)
∥

∥

L∞(Ω0)
≤ C. (3.4)

This shows that ∇v̄01 is also the main term of ∇v01 .

Lemma 3.1. Let v1 and v01 be defined by (1.5) and (3.1), respectively. Then

‖v1 − v01‖
L∞

(

Ω\
(

D1∪D2∪D0
1∪Ω

ε1/(2m)

)

) ≤ Cε1/2, i = 1, 2. (3.5)

Proof. We will first consider the difference v1 − v01 on the boundary of Ω \ (D1 ∪
D2 ∪D0

1 ∪Ωε1/(2m)), then use the maximum principle to obtain (3.5).
STEP 1. Obviously,

v1 − v01 = 0, on ∂D2 ∪ ∂D. (3.6)

In the following we only need to deal with the boundary ∂(D1 ∪D0
1). We divide it

into two parts: (a) ∂D0
1 \D1 and (b) ∂D1 \D0

1.
(a) When x ∈ ∂D0

1 \D1, we introduce a cylinder

Cr :=
{

x ∈ R
n
∣

∣ 2 min
|x′|=r

h2(x
′) ≤ xn ≤ ε+ 2 max

|x′|=r
h1(x

′), |x′| < r

}

, r ≤ R0.

(a1) For x ∈ ∂D0
1 ∩ (CR0 \ Cε1/(2m)), using v01 = 1 on ∂D0

1 and v1 = 1 on ∂D1, by
mean value theorem and estimate (2.12), we have, for some θε ∈ (0, 1)

|v1(x) − v01(x)| = |v1(x)− 1| = |v1(x′, h1(x
′))− v1(x

′, ε+ h1(x
′))|

= |∂xnv1(x
′, θεε+ h1(x

′))| · ε

≤ Cε

ε+ |x′|m ≤ Cε1/2.

(a2) For x ∈ ∂D0
1∩ (Ω\ΩR0), there exists yε ∈ ∂D1∩Ω \ ΩR0/2 such that |x−yε| <

Cε (note that v1(yε) = 1). By (2.13) and mean value theorem again, for some
θε ∈ (0, 1)

|v1(x)−v01(x)| = |v1(x)−1| = |v1(x)−v1(yε)| ≤ |∇v1((1−θε)x+θεyε)||x−yε| ≤ Cε.
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(b) When x ∈ ∂D1 \D0
1, since 0 < v1 < 1 in Ω and ∆v1 = 0 in Ω, it follows from

the boundary estimates of harmonic function that there exists yx ∈ Ω, |yx−x| ≤ Cε
such that v1(yx) = v01(x). Using (2.13) again,

|v1(x)− v01(x)| = |v1(x)− v1(yx)| ≤ ‖∇v1‖L∞(Ω\ΩR0 )
|x− yx| ≤ Cε.

Therefore,

|v1(x)− v01(x)| ≤ Cε1/2, for x ∈ ∂(D1 ∪D0
1) \ Cε1/(2m) . (3.7)

STEP 2. We consider the lateral boundary of Ω0
ε1/(2m) ,

S1/(2m) :=
{

(x′, xn)
∣

∣ h2(x
′) ≤ xn ≤ h1(x

′), |x′| = ε1/(2m)
}

,

By using (1.30) and (v1 − v̄1) = 0 on ∂D2, we have, for x ∈ S1/(2m),

|(v1 − v̄1)(x)| ≤ ‖∇(v1 − v̄1)‖L∞(S1/(2m))
|(h1 − h2)(x

′)| ≤ C|x′|m ≤ Cε1/2. (3.8)

Similarly, since (v01 − v̄01) = 0 on ∂D2, it follows from (3.4) and mean value theorem
that for x ∈ S1/(2m),

|(v01 − v̄01)(x)| ≤
∥

∥∇(v01 − v̄01)
∥

∥

L∞(S1/m−β)
|(h1 − h2)(x

′)| ≤ C|x′|m ≤ Cε1/2. (3.9)

Since v̄1 = v̄01 ≡ 0 on ∂D2, then for x ∈ S1/(2m),

|(v̄1 − v̄01)(x)| ≤
∥

∥∂xn(v̄1 − v̄01)
∥

∥

L∞(S1/(2m))
|(h1 − h2)(x

′)|

≤ C max
|x′|=ε1/(2m)

{

1

(h1 − h2)(x′)
− 1

ε+ (h1 − h2)(x′)

}

|x′|m

≤ Cε

|x′|m(ε+ |x′|m)
|x′|m ≤ Cε1/2. (3.10)

Thus, combining (3.8), (3.9) with (3.10), we have, for x ∈ S1/(2m),

|(v1 − v01)(x)| ≤ |(v1 − v̄1)(x)| + |(v̄1 − v̄01)(x)| + |(v̄01 − v01)(x)| ≤ Cε1/2. (3.11)

Finally, by (3.6), (3.7) and (3.11), and applying the maximum principle to (v1 −
v01) on Ω \

(

D1 ∪D2 ∪D0
1 ∪ Ωε1/(2m)

)

, we obtain (3.5). �

If ∂D1 and ∂D2 are assumed to be fo C2,α and satisfy (1.20) and (1.21), then
we have an improvement of Lemma 3.1 by interpolation.

Lemma 3.2. Assume that v1 and v01 are solution of (1.5) and (3.1), respectively.
If ∂D0

1 and ∂D0
2 are of C2,α and satisfy (1.20)–(1.21), then

|∇v1(x)| ≤ C|x′|−m, x ∈ ΩR0 \ Ωε1/(2m) ,

|∇v01(x)| ≤ C|x′|−m, x ∈ Ω0
R0

\ Ω0
ε1/(2m) ;

(3.12)

and

|∇(v1 − v01)(x)| ≤ Cε1/4|x′|−m, in Ω0
R0

\ Ω0
ε1/(2m) . (3.13)

Proof. For ε1/(2m) ≤ |z′| ≤ R0, we make use of the change of variable
{

x′ − z′ = |z′|my′,

xn = |z′|myn,



14 H.G. LI

to rescale Ω|z′|+|z′|m \Ω|z′| into an approximate unit-size cube (or cylinder) Q1, and

Ω0
|z′|+|z′|m \ Ω0

|z′| into Q0
1. Let

V1(y) = v1(z
′ + |z′|my′, |z′|myn), in Q1,

and

V 0
1 (y) = v01(z

′ + |z′|my′, |z′|myn), in Q0
1.

Since 0 < V1, V
0
1 < 1, using the standard elliptic theory, we have

|∇2V1| ≤ C, in Q1, and |∇2V 0
1 | ≤ C, in Q0

1.

Interpolating it with (3.5) yields

|∇(V1 − V 0
1 )| ≤ Cε

1
2 (1− 1

2 ) ≤ Cε1/4, in Q0
1.

Thus, rescaling it back to v1 − v01 , we have (3.13) holds.
By the way, we have

|∇v1(x)| ≤ C|z′|−m, x ∈ Ω|z′|+|z′|m \ Ω|z′|,

and

|∇v01(x)| ≤ C|z′|−m, x ∈ Ω0
|z′|+|z′|m \ Ω0

|z′|,

so (3.12) follows. �

Proof of Theorem 1.8. To prove (1.31), we divid the integral into two parts:
∫

Ω

|∇v1|2 =

∫

Ω\Ωεγ

|∇v1|2 +
∫

Ωεγ

|∇v1|2 =: I + II, (3.14)

where we take γ = 1
4m , for convenience.

STEP 1. We first prove

I =

∫

Ω\Ωεγ

|∇v1|2 =

∫

Ω0\Ω0
εγ

|∇v01 |2 +O
(

Em
n (ε)

)

, (3.15)

where Em
n (ε) is defined in (1.32). We divide term I further as follows:

I =

∫

Ω\ΩR0

|∇v1|2 +
∫

ΩR0\Ωεγ

|∇v1|2 =: I1 + I2.

First, for term I1, we claim that

I1 = M1 +O
(

ε1/4
)

, M1 :=

∫

Ω0\Ω0
R0

|∇v01 |2. (3.16)

Indeed, since

∆(v1 − v01) = 0, in Ω \
(

D1 ∪D0
1 ∪D2 ∪ΩR0/2

)

,

and

0 < v1, v
0
1 < 1, in Ω \

(

D1 ∪D0
1 ∪D2 ∪ΩR0/2

)

,

it follows that provided ∂D0
1, ∂D

0
2 and ∂Ω are of C2,α,

|∇2(v1 − v01)| ≤ |∇2v1|+ |∇2v01 | ≤ C, in Ω \
(

D1 ∪D0
1 ∪D2 ∪ ΩR0

)

,

where C is independent of ε. By using an interpolation with (3.5), we have

|∇(v1 − v01)| ≤ Cε1/2(1−
1
2 ) ≤ Cε1/4, in Ω \

(

D1 ∪D0
1 ∪D2 ∪ΩR0

)

.
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In view of the boundedness of |∇v1| in D0
1 \ (D1 ∪ ΩR0) and D1 \ D0

1, and |D0
1 \

(D1 ∪ ΩR0)| and |D1 \D0
1| are less than Cε,

I1 −M1

=

∫

Ω\
(

D1∪D0
1∪D2∪ΩR0

)
(|∇v1|2 − |∇v01 |2) +

∫

D0
1\(D1∪ΩR0 )

|∇v1|2 +
∫

D1\D0
1

|∇v01 |2

=2

∫

Ω\
(

D1∪D0
1∪D2∪ΩR0

)

∇v01∇(v1 − v01) +

∫

Ω\
(

D1∪D0
1∪D2∪ΩR0

)

|∇(v1 − v01)|2 +O(ε)

=O
(

ε1/4
)

.

Thus, (3.16) is proved.
For I2, we will prove that

I2 = I
(0)
2 + En,m(ε), I

(0)
2 :=

∫

Ω0
R0

\Ω0
εγ

|∇v01 |2. (3.17)

Indeed,

I2 − I
(0)
2 =

∫

(ΩR0\Ωεγ )\(Ω0
R0

\Ω0
εγ

)

|∇v1|2 +
∫

Ω0
R0

\Ω0
εγ

|∇(v1 − v01)|2

+ 2

∫

Ω0
R0

\Ω0
εγ

∇v01 · ∇(v1 − v01). (3.18)

For the first term in the right hand side of (3.18), because the thickness of (ΩR0 \
Ωεγ ) \ (Ω0

R0
\ Ω0

εγ ) is ε, using Lemma 3.2,
∫

(ΩR0\Ωεγ )\(Ω0
R0

\Ω0
εγ

)

|∇v1|2 ≤ Cε

∫

εγ<|x′|<R0

dx′

|x′|2m

≤ Cε1+(n−2m−1)γ ≤ Cε
1
2+

n−1
4m ≤ CEn,m(ε).

For the second and third terms, for any εγ ≤ |z′| ≤ R0, γ = 1
4m , if ∂D0

1 and ∂D0
2

are of C2,α, then by Lemma 3.2,
∫

Ω0
R0

\Ω0
εγ

|∇(v1 − v01)|2 ≤Cε1/2
∫

Ω0
R0

\Ω0
εγ

|x′|−2mdx′dxn

≤Cε1/2
∫

εγ<|x′|<R0

dx′

|x′|m ≤ Cε1/4En,m(ε),

and
∣

∣

∣

∣

∣

2

∫

Ω0
R0

\Ω0
εγ

∇v01 · ∇(v1 − v01)

∣

∣

∣

∣

∣

≤ Cε1/4
∫

εγ<|x′|<R0

dx′

|x′|m ≤ CEn,m(ε).

Thus, (3.17) holds, so does (3.15) with (3.16).
STEP 2. Next, we use the explicit functions v̄01 and v̄1 to approximate v01 and v1,
respectively.

Denote

M2 := 2

∫

Ω0
R0

∇v̄01 · ∇(v01 − v̄01) +

∫

Ω0
R0

(

|∇(v01 − v̄01)|2 + |∂x′ v̄01 |2
)

,
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which is a constant, depending on R0 but not on ε. Using (3.3) and (3.4), a similar
argument as in Step 1 yields

I
(0)
2 =

∫

Ω0
R0

\Ω0
εγ

|∇v̄01 |2 + 2

∫

Ω0
R0

\Ω0
εγ

∇v̄01 · ∇(v01 − v̄01) +

∫

Ω0
R0

\Ω0
εγ

|∇(v01 − v̄01)|2

=

∫

Ω0
R0

\Ω0
εγ

|∂xn v̄
0
1 |2 +M2 +O(ε

n−1
4m ).

For term II in (3.14),

II =

∫

Ωεγ

|∇v1|2 =

∫

Ωεγ

|∇v̄1|2 + 2

∫

Ωεγ

∇v̄1 · ∇(v1 − v̄1) +

∫

Ωεγ

|∇(v1 − v̄1)|2.

(3.19)

By Proposition 1.7, we have

2

∫

Ωεγ

∇v̄1 · ∇(v1 − v̄1) +

∫

Ωεγ

|∇(v1 − v̄1)|2 = O
(

ε
n−1
4m

)

.

Recalling the assumption (1.20)-(1.21) and (1.12), we have

|∂x′ v̄1(x)| ≤
C|x′|m−1

ε+ |x′|m , ∂xn v̄1(x) =
1

ε+ (h1 − h2)(x′)
, x ∈ Ωεγ . (3.20)

Therefore
∫

Ωεγ

|∂x′ v̄1|2 ≤ C

∫

|x′|<εγ

|x′|2m−2

ε+ |x′|m dx′ ≤ C

∫

|x′|<εγ
|x′|m−2dx′ = O

(

ε
n+m−3

4m

)

.

Since m ≥ 2, then n+m− 3 ≥ n− 1. Hence, it follows from (3.19) and m ≥ 2 that

II =

∫

Ωεγ

|∂xn v̄1|2 +O
(

ε
n−1
4m

)

.

Now combining Step 1 with the above, using γ = 1/(4m), we obtain
∫

Ω

|∇v1|2 =

∫

Ωεγ

|∂xn v̄1|2 +
∫

Ω0
R0

\Ω0
εγ

|∂xn v̄
0
1 |2 +M1 +M2 +O

(

Em
n (ε)

)

. (3.21)

STEP 3. Next, we will calculate the first two terms in the right hand side of
(3.21). It follows from (3.3) and (3.20) that

∫

Ωεγ

|∂xn v̄1|2 +
∫

Ω0
R0

\Ω0
εγ

|∂xn v̄
0
1 |2

=

∫

R0>|x′|>εγ

dx′

(h1 − h2)(x′)
+

∫

|x′|<εγ

dx′

ε+ (h1 − h2)(x′)

=

∫

εγ<|x′|<R0

dx′

λ|x′|m +

∫

|x′|<εγ

dx′

ε+ λ|x′|m

=

∫

|x′|<R0

dx′

ε+ λ|x′|m +O
(

ε
1
2+

n−1
4m

)

, (3.22)

we here used that
∣

∣

∣

∣

∣

∫

εγ<|x′|<R0

( 1

λ|x′|m − 1

ε+ λ|x′|m
)

dx′

∣

∣

∣

∣

∣

≤Cε

∫

εγ<|x′|<R0

dx′

|x′|2m

≤Cε1+(n−2m−1)γ ≤ Cε
1
2+

n−1
4m .
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Finally, we calculate the first term in the line of (3.22).
(i) For n = 2, we have

2

∫ R0

0

dx1

ε+ λxm
1

=
Lm,2

ε1−
1
mλ

1
m

+M
(1)
3 +O

(

ε
1

4m

)

,

where

Lm,2 :=

∫ +∞

0

1

1 + ym
dy, M

(1)
3 :=

2

λ

m− 1

Rm−1
0

, m ≥ 2.

Therefore, from (3.21),
∫

Ω

|∇v1|2 =
Lm,2

ε1−
1
mλ

1
m

+M +O
(

ε
1

4m

)

, M = M1 +M2 +M
(1)
3 .

(ii) For n ≥ 3, m = n− 1, for the first term of (3.22),
∫

|x′|<R0

dx′

ε+ λ|x′|m =
ωn−1

λ

∫ R0(
λ
ε )

1/m

0

rm−1dr

1 + rm

=
Lm,n

λ| log ε| +M
(2)
3 +O(ε

1
m ),

(3.23)

where

Lm,n :=
ωn−1

m
, M

(2)
3 :=

ωn−1

λ
(logR0 +

1

m
logλ).

Therefore, from (3.21),
∫

Ω

|∇v1|2 =
Lm,n

λ| log ε| +M +O(ε
1

n−1 ) +O
(

En−1
n (ε)

)

,

where
M = M1 +M2 +M

(2)
3 .

(iii) For n ≥ 3, m > n− 1
∫

|x′|<R0

dx′

ε+ λ|x′|m =
ωn−1

λ
n−1
m ε1−

n−1
m

∫ R0(
λ
ε )1/m

0

rn−2dr

1 + rm

=
Lm,n

λ
n−1
m ε1−

n−1
m

+M
(3)
3 +O(ε2−

n−1
m ),

where

Lm,n := ωn−1

∫ +∞

0

rn−2dr

1 + rm
, M

(3)
3 :=

ωn−1

λ
Rn−1−m

0 .

Therefore, from (3.21),
∫

Ω

|∇v1|2 =
Lm,n

λ
n−1
m ε1−

n−1
m

+M +O(ε
1

4m ),

where
M = M1 +M2 +M

(3)
3 .

It is not difficult to prove that these M are some constants independent of R0.
If not, suppose that there exist M(R0) and M(R̃0), both independent of ε, such
that (1.31) holds, then

M(R0)−M(R̃0) → 0, as ε → 0,

which implies that M(R0) = M(R̃0). �
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4. The proof of Theorem 1.9 and Proposition 1.10

4.1. Estimates for |∇vb|.

Proof of Theorem 1.9. First, by the trace theorem, we have |C2| ≤ C. Recall that
vb satisfies that











∆(vb − C2) = 0 in Ω,

vb − C2 = 0 on ∂D1 ∪ ∂D2,

vb − C2 = ϕ(x) − C2 on ∂D.

(4.1)

For any 0 < t < s < R0, we introduce a cutoff function η ∈ C∞(ΩR0) satisfying
0 ≤ η ≤ 1, η = 1 in Ωt(z

′), η = 0 in ΩR0 \ Ωs(z
′), and |∇η| ≤ 2

s−t . Multiplying

η2(vb −C2) on the both sides of the equation in (4.1) and applying the integration
by parts, we have

∫

Ωs(z′)

|∇(vb − C2)|2η2dx ≤ C

(s− t)2

∫

Ωs(z′)

|vb − C2|2dx.

Since vb − C2 = 0 on ∂D2, by Hölder inequality, we have
∫

Ωs(z′)

|vb − C2|2 ≤ Cδ(z′)2
∫

Ωs(z′)

|∇vb|2dx.

Thus, we have

∫

Ωt(z′)

|∇vb|2dx ≤ C

(

δ(z′)

s− t

)2 ∫

Ωs(z′)

|∇vb|2dx (4.2)

For simplicity, denote

F (t) :=

∫

Ωt(z′)

|∇vb|2dx,

then (4.2) can be written as

F (t) ≤
(

C0δ(z
′)

s− t

)2

F (s),

here we fix the universal constant C0. Let t0 = δ, ti+1 = ti + 2C0δ, then we have
the following iteration formula

F (ti) ≤
1

4
F (ti+1).

After k =
[

δ(z′)1/m

2C0δ(z′)

]

times, we have

F (t0) ≤ (
1

4
)k
∫

Ω|z′|(z
′)

|∇vb|2dx ≤ C(
1

4
)

[

1

2C0δ(z′)1−1/m

]

.

So that
∫

Ωδ(z′)(z
′)

|∇vb|2dx ≤ C exp(− 1

2C0δ(z′)1−1/m
).

A similar procedure as Step 2 in the proof of Proposition 1.7 yields (1.33). �
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4.2. Proof of Propostion 1.10. We recall the decomposition as in [6]

u(x) = C1v1(x) + C2v2(x) + v0(x), in Ω, (4.3)

where v1 is defined in (1.5), v2 and v0 are, respectively, the solutions of










∆v2 = 0 in Ω,

v2 = 1 on ∂D2,

v2 = 0 on ∂D1 ∪ ∂D,

and











∆v0 = 0 in Ω,

v0 = 0 on ∂D1 ∪ ∂D2,

v0 = ϕ(x) on ∂D.

(4.4)

Then (v1 + v2) satisfies










∆(v1 + v2) = 0, in Ω,

v1 + v2 = 1, on ∂D1 ∪ ∂D2,

v1 + v2 = 0, on ∂D.

(4.5)

We decompose u0 into

u0 = C0u
1
0 + u0

0, in Ω0,

where u1
0, u

0
0 ∈ C1(Ω) are, respectively, the solutions of











∆u1
0 = 0, in Ω0,

u1
0 = 1, on ∂D0

1 ∪ ∂D0
2,

u1
0 = 0, on ∂D,

and











∆u0
0 = 0, in Ω0,

u0
0 = 0, on ∂D0

1 ∪ ∂D0
2,

u0
0 = ϕ, on ∂D.

(4.6)

To prove Proposition 1.10, we need the following lemmas.

Lemma 4.1.
∣

∣

∣

∣

∣

∫

∂Di

∂(v1 + v2)

∂ν−
−
∫

∂D0
i

∂u1
0

∂ν−

∣

∣

∣

∣

∣

≤ Cε1
−

, i = 1, 2, (4.7)

and
∣

∣

∣

∣

∣

∫

∂Di

∂v0
∂ν−

−
∫

∂D0
i

∂u0
0

∂ν−

∣

∣

∣

∣

∣

≤ Cε1
−

, i = 1, 2, (4.8)

where ε1
−

means ε1−η for any small positive constant η.

Proof. We only prove (4.7) with i = 1 for instance, the others are the same. It
follows from Theorem 1.9 with ϕ(x) = C2 = 1 that

|∇(v1 + v2)| ≤ C, in Ω. (4.9)

Because of the same reason,

|∇u1
0| ≤ C, in Ω0. (4.10)

Letting

φ1 := (v1 + v2)− u1
0,

then ∆φ1 = 0 in V = D \ D1 ∪D0
1 ∪D2, and φ1 = 0 on ∂D. It is obvious that

(v1 + v2) = u1
0 = 1 on ∂D2, that is, φ1 = 0 on ∂D2. On ∂D0

1 \D1, by using mean
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value theorem and (4.9), we have

|φ1|
∣

∣

∣

∂D0
1\D1

= |(v1 + v2)− u1
0|
∣

∣

∣

∂D0
1\D1

= |(v1 + v2)− 1|
∣

∣

∣

∂D0
1\D1

= |(v1 + v2)(x
′, xd)− (v1 + v2)(x

′, xd + ε)|
∣

∣

∣

∂D0
1\D1

≤ |∇(v1 + v2)(ξ)|ε ≤ Cε,

for some ξ ∈ Ω; similarly, using (4.10),

|φ1|
∣

∣

∣

∂D1\D0
1

= |(v1 + v2)− u1
0|
∣

∣

∣

∂D1\D0
1

= |1− u1
0|
∣

∣

∣

∂D1\D0
1

= |u1
0(x

′, xd − ε)− u1
0(x

′, xd)|
∣

∣

∣

∂D1\D0
1

= |∇u1
0(ξ)|ε ≤ Cε,

for some another ξ ∈ Ω0. Applying the maximum principle to φ1 on V , we have

|φ1| ≤ Cε, on V. (4.11)

Denote

Ω+ := V ∩ {x ∈ Ω|xd > 0}, (∂D)+ := {x ∈ ∂D|xd > 0}, and γ = {xd = 0} ∩ Ω.

Since (v1+ v2) and u1
0 are harmonic in Ω+ \D1 and Ω+ \D0

1, respectively, by using
integration by parts,

0 =

∫

Ω+\D1

∆(v1 + v2) =

∫

∂D1

∂(v1 + v2)

∂ν−
+

∫

(∂D)+

∂(v1 + v2)

∂ν
+

∫

γ

∂(v1 + v2)

∂ν
,

and

0 =

∫

Ω+\D0
1

∆u1
0 =

∫

∂D0
1

∂u1
0

∂ν−
+

∫

(∂D)+

∂u1
0

∂ν
+

∫

γ

∂u1
0

∂ν
.

Thus,
∫

∂D0
1

∂u1
0

∂ν−
−
∫

∂D1

∂(v1 + v2)

∂ν−
=

∫

(∂D)+

∂φ1

∂ν
+

∫

γ

∂φ1

∂ν
.

First, using the standard boundary gradient estimates for φ1 and (4.11), we have
∣

∣

∣

∫

(∂D)+

∂φ1

∂ν

∣

∣

∣
≤ Cε.

Divide γ into three pieces: γ = γ1 ∪ γ2 ∪ γ3, where

γ1 := {(x′, 0) | |x′| ≤ A

2| log ε|}, γ2 := {(x′, 0) | A

2| log ε| < |x′| < R0},

γ3 := γ \ (γ1 ∪ γ2),

the constant A is determined in (1.33). Write
∫

γ

∂φ1

∂ν
=

∫

γ1

+

∫

γ2

+

∫

γ3

∂φ1

∂ν
:= I + II + III.

For (y′, 0) ∈ γ1, by Theorem 1.9,

|∇(v1 + v2)|, |∇u1
0| ≤ C exp(− A

(ε+ |x′|m)1−
1
m

), in ΩR0 .

Hence

|I| ≤ Cε.
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For (y′, 0) ∈ γ2, there exists a r > 1
C |y′|m for some C > 1 such that Br(y

′, 0) ⊂ V .
It then follows from the standard gradient estimates for harmonic function and
(4.11) that

|∇φ1(y
′, 0)| ≤ Cε

|y′|m ,

and

|II| ≤ Cε

∫

A
2| log ε|

<|y′|<R0

1

|y′|m dS ≤ C











ε| log ε|m−n+1 for m > n− 1, n ≥ 3,

ε log | log ε| for m = n− 1, n ≥ 3,

ε| log ε|m−1 for m ≥ 2, n = 2.

For (y′, 0) ∈ γ3, there is a universal constant r > 0 such that Br(x) ⊂ V for all
x ∈ γ3. So we have from (4.19) that for any x ∈ γ3,

|∇φ1| ≤
Cε

r
≤ Cε,

and

|III| ≤ Cε.

Thus, we have (4.7) with i = 1. �

Lemma 4.2. Let C1 and C2 be defined in (1.2) and C0 be in (1.15). We have
∣

∣

∣

∣

C1 + C2

2
− C0

∣

∣

∣

∣

≤ C
(

ρmn (ε)
)

. (4.12)

As a consequence, combining it with (1.37), we have

|Ci − C0| ≤
∣

∣

∣

∣

Ci −
C1 + C2

2

∣

∣

∣

∣

+

∣

∣

∣

∣

C1 + C2

2
− C0

∣

∣

∣

∣

≤ C
(

ρmn (ε)
)

, i = 1, 2. (4.13)

Proof. In view of the decomposition (4.3), the third line of (1.2), we have

C1

∫

∂Di

∂v1
∂ν−

+ C2

∫

∂Di

∂v2
∂ν−

+

∫

∂Di

∂v0
∂ν−

= 0, i = 1, 2. (4.14)

Let

aij =

∫

∂Di

∂vj
∂ν−

, bi = −
∫

∂Di

∂v0
∂ν−

.

That is,
{

a11C1 + a12C2 = b1,

a21C1 + a22C2 = b2.

So that

(a11 + a21)C1 + (a12 + a22)C2 = b1 + b2.

Since a12 = a21, it follows that

(a11 + a21)(C1 + C2) + (a22 − a11)C2 = b1 + b2.

Similarly,

(a12 + a22)(C1 + C2)− (a22 − a11)C1 = b1 + b2.

Adding these two equations together and dividing by two yields

(a11 + a21 + a12 + a22)
C1 + C2

2
+ (a22 − a11)

(C2 − C1)

2
= b1 + b2.



22 H.G. LI

That is,
(
∫

∂D1

∂(v1 + v2)

∂ν−
+

∫

∂D2

∂(v1 + v2)

∂ν−

)

C1 + C2

2

=

(

−
∫

∂D1

∂v0
∂ν−

−
∫

∂D2

∂v0
∂ν−

)

+

(
∫

Ω

|∇v1|2 −
∫

Ω

|∇v2|2
)

(C2 − C1)

2
. (4.15)

Recalling that v̄2 = 1− v̄1 in ΩR, we have |∇v̄1| = |∇v̄2|. By (1.30) and (2.12),
∣

∣

∣

∣

∫

ΩR

|∇v1|2 −
∫

ΩR

|∇v2|2
∣

∣

∣

∣

=

∣

∣

∣

∣

∫

ΩR

|∇(v1 − v̄1) +∇v̄1|2 −
∫

ΩR

|∇(v2 − v̄2) +∇v̄2|2
∣

∣

∣

∣

≤
2
∑

i=1

∣

∣

∣

∣

∫

ΩR

|∇(vi − v̄i)|2 + 2∇v̄i∇(vi − v̄i)

∣

∣

∣

∣

≤ C.

Hence,
∣

∣

∣

∣

∫

Ω

|∇v2|2 −
∫

Ω

|∇v1|2
∣

∣

∣

∣

≤ C.

By using Lemma 4.1 and (1.37), (4.15) can be written as
(

∫

∂D0
1

∂u1
0

∂ν−
+

∫

∂D0
2

∂u1
0

∂ν−
+O(ε1

−

)

)

C1 + C2

2

=−
∫

∂D0
1

∂u0
0

∂ν−
−
∫

∂D0
2

∂u0
0

∂ν−
+O(ε1

−

) +O(ρmn (ε)). (4.16)

On the other hand, from the third line of (1.15), we have

C0

(

∫

∂D0
1

∂u1
0

∂ν−
+

∫

∂D0
2

∂u1
0

∂ν−

)

+

(

∫

∂D0
1

∂u0
0

∂ν−
+

∫

∂D0
2

∂u0
0

∂ν−

)

= 0. (4.17)

Comparing it with (4.16), and in view of |Ci| ≤ C, we have
(

∫

∂D0
1

∂u1
0

∂ν−
+

∫

∂D0
2

∂u1
0

∂ν−

)

(C1 + C2

2
− C0

)

= O
(

ρmn (ε)
)

Using the integration by parts and recalling the definition of u1
0, we have

0 <

∫

∂D0
1

∂u1
0

∂ν−
+

∫

∂D0
2

∂u1
0

∂ν−
=

∫

Ω0

|∇u1
0|2 ≤ C.

The proof of (4.12) is finished. �

Proof of Proposition 1.10. Let

φ(x) := C2 − C0 − (vb(x)− u0(x)),

then ∆φ = 0 in V = D \D1 ∪D0
1 ∪D2. It is easy to see that φ = 0 on ∂D2 and

from Lemma 4.2

|φ|
∣

∣

∣

∂D
= |C2 − C0| ≤ Cρmn (ε).
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On ∂D0
1 \D1, by mean value theorem, (1.34) and (4.13), we have

|φ(x)|
∣

∣

∣

∂D0
1\D1

= |C2 − vb(x)|
∣

∣

∣

∂D0
1\D1

= |∂xnvb(x
′, ξn)|ε ≤ Cε, (4.18)

where ξn ∈ (0, ε). Similarly,

|φ|
∣

∣

∣

∂D1\D0
1

= |C0 − u0|
∣

∣

∣

∂D1\D0
1

= |∇u0(ξ)|ε ≤ Cε,

for some ξ ∈ D1 \D0
1. We now apply the maximum principle to φ on V ,

|φ| ≤ Cρmn (ε), on V. (4.19)

Similarly as in the proof of Lemma 4.1, since vb and u0 are harmonic in Ω+ \D1

and Ω+ \D0
1, respectively, by using integration by parts, we have

Bε[ϕ] = −
∫

∂D1

∂vb
∂ν−

=

∫

(∂D)+

∂vb
∂ν

+

∫

γ

∂xnvb,

and

B0[ϕ] = −
∫

∂D0
1

∂u0

∂ν−
=

∫

(∂D)+

∂u0

∂ν
+

∫

γ

∂xnu0.

Thus,

B0[ϕ]− Bε[ϕ] =

∫

∂D0
1

∂u0

∂ν−
−
∫

∂D1

∂vb
∂ν−

=

∫

(∂D)+

∂φ

∂ν
+

∫

γ

∂xnφ.

First, as before, using the standard boundary gradient estimates for φ and (4.19),
we have

∣

∣

∣

∫

(∂D)+

∂φ

∂ν

∣

∣

∣
≤ Cρmn (ε).

Next, similarly in the proof of Lemma 4.1, we divide γ into three pieces: γ =
γ1 ∪ γ2 ∪ γ3, with a minor modification, where

γ1 := {(x′, 0) | |x′| ≤ ε
n−1

m(m−n+1) }, γ2 := {(x′, 0) | ε
n−1

m(m−n+1) < |x′| < R0},
γ3 := γ \ (γ1 ∪ γ2).

Write
∫

γ

∂xnφ =

∫

γ1

+

∫

γ2

+

∫

γ3

∂xnφ := I + II + III.

As in the proof of Lemma 4.1, replacing (4.11) by (4.19), it is easy to see that

|III| ≤ Cρmn (ε).

Now consider term II. On ΩR0
0
, since φ = 0 on ∂D2 and φ = ε∂xnvb(x

′, ξn) on

∂D0
1 \ D1 from (4.18), then we choose φ̄ = ε∂xnvb(x

′, ξn)v̄01 to approximate φ in
ΩR0

0
, where v̄01 is defined in (3.2). Thus, φ − φ̄ = 0 on ∂Ω0

R0
\ Ω. Let wφ = φ − φ̄.

Since ‖vb‖C3 ≤ C by theoerem 1.1 in [28], it follows from the proof of Proposition
1.7, we have ‖∇wφ‖ ≤ Cε. From the definition of v̄01 , (3.2), and (3.3), we have, for
(y′, 0) ∈ γ2,

|∂xn v̄
1
0(y

′, 0)| ≤ C

|y′|m , and |∂xn φ̄(y
′, 0)| ≤ Cε

|y′|m + Cε.

Hence
∣

∣

∣

∫

γ2

∂xn φ̄
∣

∣

∣
≤
∫

γ2

Cε

|y′|m + Cε ≤ Cρmn (ε).
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Together with
∣

∣

∣

∫

γ2
∂xnwφ

∣

∣

∣
≤ Cε, yields

|II| ≤ Cρmn (ε).

For (y′, 0) ∈ γ1, by Theorem 1.9,

|∇vb|, |∇u0| ≤ C exp(− A

(ε+ |x′|m)1−
1
m

), in Ω0
R.

Hence
|I| ≤ Cε.

Thus, the proof of Propostion 1.10 is completed. �
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infinite coefficients in dimensions greater than two. Adv. Math. 305 (2017), 298-338.

[10] L. Berlyand; Y. Gorb; A. Novikov, Discrete network approximation for highly-packed com-
posites with irregular geometry in three dimensions. Multiscale methods in science and engi-
neering, 21-57, Lect. Notes Comput. Sci. Eng., 44, Springer, Berlin, 2005.

[11] E. Bonnetier; F. Triki, On the spectrum of the Poincaré variational problem for two close-to-
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