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FAST SOLUTION METHODS FOR CONVEX QUADRATIC
OPTIMIZATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

SPYRIDON POUGKAKIOTIS∗, JOHN W. PEARSON† , SANTOLO LEVEQUE‡ , AND

JACEK GONDZIO§

Abstract. In this paper, we present numerical methods suitable for solving convex quadratic
Fractional Differential Equation (FDE) constrained optimization problems, with box constraints
on the state and/or control variables. We develop an Alternating Direction Method of Multipli-
ers (ADMM) framework, which uses preconditioned Krylov subspace solvers for the resulting sub-
problems. The latter allows us to tackle a range of Partial Differential Equation (PDE) optimization
problems with box constraints, posed on space-time domains, that were previously out of the reach
of state-of-the-art preconditioners. In particular, by making use of the powerful Generalized Locally
Toeplitz (GLT) sequences theory, we show that any existing GLT structure present in the problem
matrices is preserved by ADMM, and we propose some preconditioning methodologies that could
be used within the solver, to demonstrate the generality of the approach. Focussing on convex qua-
dratic programs with time-dependent 2-dimensional FDE constraints, we derive multilevel circulant
preconditioners, which may be embedded within Krylov subspace methods, for solving the ADMM
sub-problems. Discretized versions of FDEs involve large dense linear systems. In order to overcome
this difficulty, we design a recursive linear algebra, which is based on the Fast Fourier Transform
(FFT). We manage to keep the storage requirements linear, with respect to the grid size N , while en-
suring an order N logN computational complexity per iteration of the Krylov solver. We implement
the proposed method, and demonstrate its scalability, generality, and efficiency, through a series of
experiments over different setups of the FDE optimization problem.

1. Introduction. Optimization problems with Differential Equations (Partial
(PDEs) or Ordinary (ODEs)) as constraints have received a great deal of attention
within the applied mathematics and engineering communities, due in particular to
their wide applicability across many fields of science. In addition to classical differen-
tial equation constraints, one may also use Fractional Differential Equations (FDEs)
in order to model processes that could not otherwise be modeled using integer deriv-
atives. In fact, there is a wide and increasing use of FDEs in the literature. Among
other processes, FDEs have been used to model viscoelasticity (e.g. [43]), chaotic sys-
tems (e.g. [76]), turbulent flow, or anomalous diffusion (e.g. [7]). In particular, since
the fractional operator is non-local, problems with non-local properties can frequently
be modeled accurately using FDEs (see [62] for an extended review).

Availability of closed form solutions for FDEs is rare, and hence various numerical
schemes for solving them have been developed and analyzed in the literature (see [50,
51, 52] for finite difference, and [19, 31] for finite element methods). Such numerical
schemes produce dense matrices, making the solution or even the storage of FDE-
constrained optimization problems extremely difficult for fine grids. Naturally, this
behavior is even more severe in the case of multidimensional FDEs. In light of the
previous, employing standard (black-box) direct approaches for solving such problems
requires O(N3) operations and O(N2) storage, where N is the number of grid points.
Iterative methods with general purpose preconditioners also suffer from similar issues.

Various specialized solution methods have been proposed in the literature, aim-
ing at lowering the computational and storage cost of solving such problems (see for
instance [17, 23, 24, 40, 53, 77]). One popular and effective approach is to employ
tensor product solvers. Such specialized methods have been proposed for solving
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high-dimensional FDE-constrained inverse problems with great success, even for very
fine discretizations (see for example [23, 40] and the references therein). While these
solvers are highly scalable (with respect to the grid size), to date they have been tai-
lored solely to problems with specific cost functionals and without additional algebraic
constraints. Another popular approach is based on the observation that multidimen-
sional FDEs possess a multilevel Toeplitz -like structure. It is well known that such
matrices can be very well approximated by banded multilevel Toeplitz (see for exam-
ple [25, 53]) or multilevel circulant matrices (see [14, 15, 32, 44, 45]). The former are
usually sparse and can be inverted using specially designed multigrid or factorization
methods, while the latter can be inverted or applied to a vector in only O(N logN)
operations using the Fast Fourier Transform (FFT) (e.g. [75]). The idea is to apply a
Krylov subspace solver, supported by a banded Toeplitz or circulant preconditioner,
in order to solve the optimality conditions of the problem. One is able to redesign
the underlying linear algebra, in order to achieve an O(N logN) iteration complex-
ity for the Krylov solver, with O(N) overall storage requirements (see for example
[44, 45, 46]). While such solution methods are certainly more general (although usu-
ally slower), when compared to tensor product solvers, they remain rather sensitive
in terms of the underlying structure. In particular, to the authors’ knowledge, no
such method has been proposed for the solution of more general FDE optimization
problems, for instance those which include box constraints on the state and control
variables. We highlight that a time-independent problem, with box constraints on the
control, is studied in [29], and the authors attempt to solve it using a Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L–BFGS) method.

In this paper, we present an optimization method suitable for solving convex
quadratic PDE-constrained optimization problems with box constraints on the state
and control variables. In particular, we assume that we are given an arbitrary PDE
constrained inverse problem, an associated discretization method, and that the result-
ing sequences of discrete matrices belong to the class of Generalized Locally Toeplitz
(GLT) sequences (we refer the reader to [34, 35, 70] for a comprehensive overview
of the powerful GLT theory). Then, we propose the use of an Alternating Direction
Method of Multipliers (ADMM) for solving the discretized optimization problems.
We employ ADMM in order to separate the equality from the inequality constraints.
As a consequence of this choice, we show that the linear systems required to be solved
during the iterations of ADMM preserve the GLT structure of the initial problem ma-
trices. Using this structure, we present and analyze some general methodologies for
efficiently preconditioning such linear systems, and solving them using an appropriate
Krylov subspace method. The Krylov subspace method is in turn, under certain mild
assumptions, expected to converge in a number of iterations independent of the grid
size. Subsequently, we focus on a certain class of convex quadratic optimization prob-
lems with FDE constraints. In particular, we consider time-dependent 2-dimensional
FDEs, and we precondition the associated discretized matrices using multilevel cir-
culant preconditioners. We manage to keep the storage requirements linear, with
respect to the grid size N , while ensuring an order N logN computational complexity
per iteration of the Krylov solver inside ADMM. We implement the proposed method,
and demonstrate its robustness and efficiency, through a series of experiments over
different setups of the FDE optimization problem.

This paper is structured as follows. In Section 2, we provide the relevant theo-
retical background as well as the notation used throughout the paper. Subsequently,
in Section 3 we present the proposed ADMM framework, as well as possible precon-
ditioning strategies that could be used to accelerate the solution of the ADMM sub-
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problems, given the assumption that the associated matrices possess a GLT structure.
In Section 4 we present the FDE-constrained optimization problem under considera-
tion. Then, in Section 5, we propose the use of a multilevel circulant preconditioner
for approximating multilevel Toeplitz matrices arising from the discretization of the
FDE under consideration, while demonstrating that such a preconditioner is effective
for the problem at hand. In Section 6, we discuss the implementation details of the
proposed approach and present some numerical results. Finally, in Section 7, we state
our conclusions.

2. Notation and Theoretical Background. In this section, we introduce
some notation and provide the theoretical background that will be used in the rest of
this manuscript. Firstly, we introduce the notion of d-indices which will allow us to
compactly represent multilevel matrices. For brevity of presentation, we only discuss
the crucial notions that will be used in this paper. A more complete presentation of
the notation and theory of this section can be found in [34, 35]. A reader familiar
with the theory of GLT sequences can skip directly to Section 3.

Definition 2.1. A multi-index i of size d (d-index) is a row vector in Zd with
components i1, . . . , id. Using this notation, we define the following notions:

• 0,1,2, . . ., are the row vectors of all zeros, ones, twos, etc.
• N(i) =

∏d
j=1 ij and we write i→∞ to indicate that min(i)→∞.

• Given two d-indices h, k, we write h ≤ k to express that hj ≤ kj, for all
j ∈ {1, . . . , d}. The d-index range h, . . . ,k is a set of cardinality N(k−h+1)
given by {j ∈ Zd : h ≤ j ≤ k}. The latter set is assumed to be ordered under
the lexicographical ordering, that is:[

. . .
[
[(j1, . . . , jd)]jd=hd,...,kd

]
jd−1=hd−1,...,kd−1

. . .

]
j1=h1,...,k1

.

• Let a d-index m ∈ Nd, and define x = [xi]
m
i=1 (X = [xi,j ]

m
i,j=1, respectively).

Then x (X, respectively) is a vector of size N(m) (a matrix of size N(m)×
N(m), respectively).

• Any operation involving d-indices that has no meaning in the vector space Zd
will be interpreted in a componentwise sense.

A matrix A of size N is a d-level matrix with level orders n1, . . . , nd if N = n1n2 · · ·nd
and it is partitioned into n2

1 square blocks of size N
n1

, each of which is partitioned into

n2
2 blocks of size N

n1n2
, and so on until the last n2

d blocks of size 1. Then, A can be
written as A = [Aij ]

n
i,j=1, where Aij = Ai1j1;...;idjd , for i, j = 1, . . . ,n.

Next, we define the notion of a matrix-sequence, which is a fundamental element
for studying the asymptotic spectral behavior of structured matrices arising from some
discretization of a physical process. In the rest of this manuscript, given an arbitrary
matrix A, σ(A) denotes the set of singular values of the matrix, while λ(A) denotes
the set of eigenvalues of the matrix A (given that they exist).

Definition 2.2. A matrix-sequence is a sequence of the form {An}n, where n
varies over some infinite subset of N, An is a square matrix of size dn, and dn →∞
as n→∞. In particular, a d-level matrix sequence is a sequence of the form {An}n,
where An is a matrix of size N(n)×N(n), n varies over some infinite subset of N,
and n = n(n) ∈ Nd is such that n→∞, as n→∞. Given a d-level matrix-sequence
{An}n, we say that it is sparsely unbounded (and denote that as s.u.) if:

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , N(n)} : σi(An) > M}
N(n)

= 0,
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where #S denotes the cardinality of a set S. Similarly, we say that {An}n is sparsely
vanishing (and denote that as s.v.) if:

lim
M→∞

lim sup
n→∞

#{i ∈ {1, . . . , N(n)} : σi(An) < 1/M}
N(n)

= 0,

where we assume that 1/∞ = 0.

An important notion is that of clustering. In order to define it we let, for every
z ∈ C and any ε > 0, D(z, ε) represent the disk with center z and radius ε. If S ⊆ C
and ε > 0, D(S, ε) denotes the ε-expansion of S, defined as D(S, ε) =

⋃
z∈S D(z, ε).

Definition 2.3. Let {An}n be a sequence of matrices, with An of size dn × dn,
and let S ⊆ C be a non-empty subset of C. We say that {An}n is strongly clustered
at S (in the sense of eigenvalues) if ∀ ε > 0 we have:

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = O(1),

and weakly clustered at S if ∀ ε > 0,

#{j ∈ {1, . . . , dn} : λj(An) /∈ D(S, ε)} = o(dn).

Clustering in the sense of singular values is defined analogously.

Let fm, f : D ⊆ Rd 7→ C be measurable functions, with respect to the Lebesgue
measure µd in Rd. We say that fm → f in measure if, for every ε > 0, lim

m→∞
µd
(
{|fm−

f | > ε}
)

= 0. Furthermore, fm → f a.e. (almost everywhere) if µd
(
{fm 9 f}

)
= 0.

Lemma 2.4. Let fm, gm, f, g : D ⊆ Rd 7→ C be measurable functions.
1. If fm → f in measure, then |fm| → |f | in measure.
2. If fm → f in measure and gm → g in measure, then αfm + βgm → αf + βg

in measure for all α, β ∈ C.
3. If fm → f in measure, gm → g in measure, and µd(D) <∞, then fmgm → fg

in measure.

Proof. This is stated in [34, Lemma 2.3] and proved in [4, Corollary 2.2.6].

Let Cc(C) (Cc(R), respectively) be the space of complex-(real-)valued continuous
functions defined on C (or R) with compact support. Given a field K (= C or R) and
a measurable function g : D ⊂ Rd 7→ K, with 0 < µd(D) <∞, define the functional:

φg : Cc(K) 7→ C, φg(F ) =
1

µd(D)

∫
D

F (g(x)) dx.

Definition 2.5. Let {An}n be a matrix-sequence, with An of size dn × dn. We
say that {An}n has an asymptotic eigenvalue (spectral) distribution described by a
functional φ : Cc(C) 7→ C, and we write {An}n ∼λ φ, if:

lim
n→∞

1

dn

dn∑
j=1

F (λj(An)) = φ(F ), ∀ F ∈ Cc(C).

If φ = φf for some measurable function f : D ⊂ Rd 7→ C, where 0 < µd(D) <∞, we
say that {An}n has an asymptotic spectral distribution described by f and we write
{An}n ∼λ f . Then, f is referred to as the eigenvalue (spectral) symbol of {An}n.
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We can define the asymptotic singular value distribution of a matrix sequence similarly
to Definition 2.5 (see [33, Definition 2.1]). In that case, we write {An}n ∼σ f .

Below we define two important classes of matrix sequences, namely diagonal sam-
pling and Toeplitz matrix-sequences.

Definition 2.6. Let a function v : [0, 1]d 7→ C be given. The n-th diagonal
sampling matrix generated by v is denoted by Dn(v) and is defined by the following
N(n)×N(n) diagonal matrix:

Dn(v) = diag
i=1,...,n

v

(
i

n

)
.

Definition 2.7. Given a d-index n ∈ Nd, a matrix of the form [ai−j ]
n
i,j=1 ∈

CN(n)×N(n) is called a d-level Toeplitz matrix. Unilevel Toeplitz matrices (d = 1) are
also defined as matrices that are constant along all of their diagonals.

A characterization of Toeplitz matrix-sequences is given by the following Theorem,
the proof of which can be found in [35, Sections 3.1, 3.5]. Before that, let us define

a useful matrix. Given an arbitrary n ∈ N and k ∈ Z, define the n × n matrix J
(k)
n

such that [J
(k)
n ]ij = 1 if i − j = k and [J

(k)
n ]ij = 0 otherwise. Given two d-indices

n ∈ Nd and k ∈ Zd, we define J
(k)
n = J

(k1)
n1 ⊗ J

(k2)
n2 ⊗ · · · ⊗ J

(kd)
nd , where ⊗ denotes the

Kronecker product between two matrices.

Theorem 2.8. Let a function f : [−π, π]d 7→ C belonging to L1([−π, π]d) be
given, with Fourier coefficients denoted by:

fk =
1

(2π)d

∫
[−π,π]d

f(θ)e−i〈k,θ〉 dθ, k ∈ Zd,

where 〈k,θ〉 =
∑d
i=1 kiθi. The n-th (d-level) Toeplitz matrix associated with f is

defined as:

Tn(f) = [fi−j ]
n
i,j=1 =

n−1∑
k=−(n−1)

fkJ
(k)
n .

Every d-level matrix sequence of the form {Tn(f)}n, with {n = n(n)}n ⊆ Nd such that
n→∞ as n→∞, is called a (d-level) Toeplitz sequence generated by f , which in turn
is referred to as the generating function of {Tn(f)}n. Furthermore, {Tn(f)}n ∼σ f.
If moreover f is real, then {Tn(f)}n ∼λ f.

A special type of Toeplitz matrices are the circulant matrices, as defined below.

Definition 2.9. A matrix of the form
[
a(i−j) mod n

]n
i,j=1

∈ CN(n)×N(n), for

some d-index n ∈ Nd, is called a multilevel (d-level) circulant matrix.

Given an arbitrary n ∈ N, define the n × n matrix Cn such that [Cn]ij = 1 if (i −
j) mod n = 1 and [Cn]ij = 0 otherwise. Then, for n ∈ Nd and k ∈ Zd, let Ckn =
Ck1n1
⊗ Ck2n2

⊗ . . . ⊗ Ckdnd , where Ckini is the previously defined matrix Cn raised to the
power ki. Let Fn denote the unitary discrete Fourier transform of order n. For
any n ∈ Nd let Fn = Fn1 ⊗ . . . ⊗ Fnd . Below we provide a Theorem characterizing
multilevel circulant matrices; its proof can be found in [35, Section 3.4].

Theorem 2.10. The d-level circulant matrix admits the following expression:

[
a(i−j) mod n

]n
i,j=1

=

n−1∑
k=0

akC
k
n,
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where Ckn is as defined earlier. Furthermore, letting any r ∈ Nd and c−r, . . . , cr ∈ C,
we have that any linear combination of the form

∑r
d=−r ckC

k
n is a d-level circulant

matrix. Then,
r∑

k=−r

ckC
k
n = F ∗n

(
diag

j=0,...,n−1
c

(
2πj

n

))
Fn,

where c(θ) =
∑r
k=−r cke

i〈k,θ〉, and Fn is the multilevel discrete Fourier transform.

Moreover,
∑r
k=−r ckC

k
n is a normal matrix the spectrum of which is given by:

λ

( r∑
k=−r

ckC
k
n

)
=

{
c

(
2πj

n

)
: j = 0, . . . ,n− 1

}
.

Let Cn be the set of all d-level circulant matrices of size N(n)×N(n). In light of Theo-
rem 2.10 we can see that the set Cn, together with matrix addition and multiplication,
is a commutative ring. For more about circulant matrices see [18].

A very important notion of the theory of GLT sequences is that of the approx-
imating class of sequences, which will be denoted as a.c.s.. In particular, it is very
common in practice to approximate a “difficult” matrix-sequence by an “easier” se-
quence of matrix-sequences, which has the same asymptotic singular value or eigen-
value distribution. For example, such an “easier” sequence can be used to construct
effective preconditioners inside a suitable Krylov subspace method. For the rest of
this manuscript, given a matrix X, we denote its spectral norm by ‖X‖.

Definition 2.11. Let {An}n be a matrix-sequence, with An of size dn × dn, and
let {{Bn,m}n}m be a sequence of matrix-sequences, with Bn,m of size dn × dn. We
say that {{Bn,m}n}m is an approximating class of sequences (a.c.s.) for {An}n if for
every m, there exists nm such that, for all n ≥ nm, we can write:

An = Bn,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m), and ω(m) depend only on m, and are such that:

lim
m→∞

c(m) = lim
m→∞

ωm = 0.

In that case, we write {Bn,m}n
a.c.s.−−−→ {An}n.

Below, we provide a result, as reported in [35, Theorem 2.9], which will be very useful
when constructing suitable preconditioners later in this paper.

Theorem 2.12. Let two matrix-sequences {An}n, {A′n}n be given, with An, A
′
n

of size dn × dn, and suppose that {Bn,m}n
a.c.s.−−−→ {An}n and {B′n,m}n

a.c.s.−−−→ {A′n}n.
The following properties hold:

1. {B∗n,m}n
a.c.s.−−−→ {A∗n}n.

2. {c1Bn,m + c2B
′
n,m}n

a.c.s.−−−→ {c1An + c2A
′
n}n, for all c1, c2 ∈ C.

3. If {An}n and {A′n}n are s.u., then {Bn,mB′n,m}n
a.c.s.−−−→ {AnA′n}n.

4. Suppose {An}n is s.v.. If {Bn,m}n
a.c.s.−−−→ {An}n then {B†n,m}n

a.c.s.−−−→ {A†n}n.

All the previous definitions are used to define the notion of Locally Toeplitz (LT)
sequences, which in turn are generalized to define the notion of GLT sequences. We
briefly define this class of matrix-sequences here, and refer the reader to [34, 35] for a
complete derivation of this class, and a vast amount of results concerning sequences
belonging in the GLT class. This theory was originally developed in [70].
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Definition 2.13. Let m, n ∈ N, v : [0, 1] 7→ C, and f ∈ L1([−π, π]). The 1-level
locally Toeplitz operator is defined as the following n× n matrix:

LTmn (v, f) =

(
Dm(v)⊗ Tbn/mc(f)

)
⊕On mod m,

where Dm(v) is a diagonal sampling matrix generated by v, Tbn/mc(f) a Toeplitz

matrix generated by f , and On mod m a zero matrix. Let also m, n ∈ Nd, v : [0, 1]d 7→
C, and f ∈ L1([−π, π]d). The d-level locally Toeplitz operator is recursively defined
as the following N(n)×N(n) matrix:

LTmn (v, f1 ⊗ . . .⊗ fd) = LTm1,...,md
n1,...,nd

(
v(x1, . . . , xd), f1 ⊗ . . .⊗ fd

)
.

Definition 2.13 allows us to recall the notion of a multilevel locally Toeplitz sequence.

Definition 2.14. Let {An}n be a d-level matrix-sequence, let v : [0, 1]d 7→ C be
Riemann-integrable and let f ∈ L1([−π, π]d). We say that {An}n is a (d-level) locally
Toeplitz sequence with symbol v ⊗ f , and we write {An}n ∼LT v ⊗ f , if:

{LTmn (v, f)}n
a.c.s.−−−→ {An}n, as m→∞.

We are now able to define generalized locally Toeplitz sequences.

Definition 2.15. Let a d-level matrix-sequence {An}n, and a measurable func-
tion κ : [0, 1]d × [−π, π]d 7→ C be given. Suppose that ∀ ε > 0 there exists a finite

number of d-level LT sequences {A(i,ε)
n }n ∼LT vi,ε ⊗ fi,ε, i = 1, . . . , Nε, such that as

ε→ 0:
Nε∑
i=1

vi,ε ⊗ fi,ε → κ in measure, and
{ Nε∑
i=1

A(i,ε)
n

}
n

a.c.s.−−−→ {An}n.

Then {An}n is a d-level GLT sequence with symbol κ, and we write {An}n ∼GLT κ.

The GLT class contains a wide range of matrix-sequences arising from various
discretization methods of numerous differential equations. In the following Theorem
we present some important properties of GLT sequences that will be used later in this
paper. This is only a subset of the properties of multilevel GLT sequences, and the
reader is referred to [34, 35] for a detailed derivation of all the results presented in
this section. Given a measurable function κ, we denote its complex conjugate by κ̄.

Theorem 2.16. Let {An}n and {Bn}n be two d-level matrix-sequences and κ, ξ :
[0, 1]d × [−π, π]d 7→ C two measurable functions. Assume that {An}n is a GLT se-
quence with symbol κ, while {Bn}n a GLT sequence with symbol ξ. Then:

1. If An are Hermitian then {An}n ∼λ κ.
2. {A∗n}n ∼GLT κ̄.
3. {c1An + c2Bn}n ∼GLT c1κ+ c2ξ, for all c1, c2 ∈ C.
4. {AnBn}n ∼GLT κξ.
5. If κ 6= 0 almost everywhere, then {A†n}n ∼GLT κ−1.
6. Let a sequence of d-level matrix-sequences {Bn,m}n ∼GLT κm. Then, we

have that {Bn,m}n
a.c.s.−−−→ {An}n if and only if κm → κ in measure.

7. If {An}n ∼GLT κ and each An is Hermitian, then {f(An)}n ∼GLT f(κ) for
every continuous function f : C 7→ C.
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3. A Structure Preserving Method. In this section, we will derive an opti-
mization method suitable for solving convex quadratic optimization problems, with
linear constraints arising from the discretization of some continuous process. The
assumption on the constraints is that the generated (multilevel) matrix-sequence is a
GLT sequence. Let us consider the following generic Differential Equation (DE):

Dy(x, t) = g(x, t),

where D denotes some linear differential operator associated with the DE, x is a
(d − 1)-dimensional spatial variable and t ≥ 0 is the time variable. Since analytical
solutions are not readily available for various differential operators, we discretize the
previous equation given an arbitrary numerical method, and instead solve a sequence
of linear systems of the form:

(3.1) {Dnyn}n = {gn}n,

with size dn × dn and dn = N(n), such that n→∞ as n→∞.
Concerning the objective of the studied model, we assume that it may be sum-

marized by a convex functional J1(y(x, t)). Usually, such a functional measures the
misfit between the state y(x, t) and some desired state ȳ(x, t), and we will focus our
attention on this class of (inverse) problems. In other words, we expect that the dis-
cretized version of this functional will be of the form 1

2 (y − ȳ)∗J1(y − ȳ), with J1 a
symmetric positive (semi-)definite matrix. As is common in such problems, the linear
systems in (3.1) usually admit more than one solution and hence a regularization
functional is usually employed to guarantee that the chosen solution will have some
desired properties, depending on the initial DE under consideration. In other words,
we introduce a control variable u(x, t) which is linked to the state variable as follows:

Dy(x, t) + u(x, t) = g(x, t).

The size of the control is measured using some convex functional J2(u(x, t)).
Finally, we allow further restrictions on the state and control variables in the

form of inequality constraints (which depend on the problem under consideration).
By combining all the previous, we obtain the following generic model that is studied
in this paper:

min
y,u

J(y(x, t),u(x, t)) = J1(y(x, t)) + J2(u(x, t))

s.t. Dy(x, t) + u(x, t) = g(x, t),

ya(x, t) ≤ y(x, t) ≤ yb(x, t), ua(x, t) ≤ u(x, t) ≤ ub(x, t).

(3.2)

The problem is considered on a given compact space-time domain Ω×(0, T ), for some
T > 0, where Ω ⊂ Rd−1 has boundary ∂Ω. The algebraic inequality constraints are
assumed to hold a.e. on Ω× (0, T ). We further note that the restrictions ya, yb, ua,
and ub may take the form of constants, or functions in spatial and/or temporal vari-
ables. The boundary conditions are not specified since they do not affect the analysis
in this section. Notice that problem (3.2) includes the case of equality-constrained
optimization, by allowing unbounded restriction functions.

We discretize problem (3.2), using an arbitrary numerical method, to find an
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approximate solution by solving a sequence of optimization problems of the form:

min
yn,un

(
1

2
(yn − ȳn)∗J1n(yn − ȳn) +

1

2
u∗nJ2nun

)
s.t. Dnyn + un = gn,

yan ≤ yn ≤ ybn , uan ≤ un ≤ ubn ,

(3.3)

in which the associated matrices are of size dn × dn, where dn = N(n) and dn →∞
as n → ∞. Notice that we only assume J1n and J2n to be symmetric positive semi-
definite. Hence, the presented methodology is applicable to a wide range of convex
quadratic programming problems. An entry nj of the multi-index n corresponds to
the number of discretization points along dimension j, with j ∈ {1, . . . , d}, where nd
corresponds to the time dimension. Below, we summarize our assumptions for the
associated matrices in problem (3.3).

Assumption 1. Given the sequence of problems in (3.3), we assume that:
• The sequence {Dn}n is a d-level matrix sequence with spectral norm uniformly

bounded with respect to n, i.e. there exists a constant CD such that ‖Dn‖ ≤
CD for all n. Furthermore, there exists a measurable function κ : [0, 1]d ×
[−π, π]d 7→ C, which is the symbol of {Dn}n, so that {Dn}n ∼GLT κ.
• The sequences {J1n}n and {J2n}n are two d-level matrix sequences, with

uniformly bounded spectral norms with respect to n. Furthermore, there exist
two measurable functions ξ1, ξ2 : [0, 1]d × [−π, π]d 7→ R, such that ξ1 ≥ 0,
ξ2 ≥ 0, {J1n}n ∼GLT ξ1, and {J2n}n ∼GLT ξ2.

We note that a wide range of numerical discretizations of DEs satisfy this assumption
(see [34, 35] for a plethora of applications). Notice also that the requirement that
ξ1 and ξ2 are real and non-negative follows from the positive semi-definiteness of
J1n and J2n . Towards the end of this section we discuss how one could still apply
the presented methodology successfully without requiring the GLT structure of the
discretized objective function (i.e. by requiring only boundedness and convexity).

Before presenting the proposed optimization method for solving problems of the
form (3.3), we note a negative result concerning a large class of optimization methods.
More specifically, problems like (3.3) are often solved using an Interior Point Method
(IPM), or some Active-Set (AS) type of method. However, such problems are usually
highly structured, and this structure must be exploited, given that the problem size
increases indefinitely as one refines the discretization. Obviously, any AS method
would fail in maintaining the structure, as only a subset of the constraints of (3.3)
is considered at each AS iteration and hence the structure of the AS sub-problems
will be unknown. In fact, any optimization method whose sub-problems arise by
projecting the variables of the problem in a subspace would face this issue.

On the other hand, IPMs deal with the inequality constraints by introducing loga-
rithmic barriers in the objective (see for example [38]). Then, at every IPM iteration,
one forms the optimality conditions of the barrier sub-problem, and approximately
solves them using Newton’s method. If we assume that there exists a symbol f which
describes the asymptotic eigenvalue distribution of the sequence of Hessian matrices
of the logarithmic barrier, we arrive at a contradiction. Indeed, the sequence of Hes-
sian matrices arising from the logarithmic barriers introduced by IPM are not s.u..
This in turns contradicts the assumption that f is the symbol of this matrix sequence,
since if an arbitrary matrix sequence is such that {Ln}n ∼σ f , for some measurable
function f , then {Ln}n must be s.u. (see [34, Section 9–S1]). In particular, any GLT
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sequence is s.u., and hence the sequence of Hessian matrices of the logarithmic barrier
functions cannot be a GLT sequence. As a consequence, the system matrix of the
optimality conditions of each barrier sub-problem, within the IPM, will not be in the
GLT class.

3.1. Alternating Direction Method of Multipliers. In order to overcome
the previous issues, we propose the use of an alternating direction method of mul-
tipliers (see [5, Section 5] and the references therein), which separates the equality
from the inequality constraints, thus allowing us to preserve the structure found in
the matrices associated with (3.3). We should mention here that while ADMM al-
lows us to retain the underlying structure of the problem, it comes at a cost. It is
well-known (see e.g. [5]) that ADMM leads to relatively slow convergence and hence
is not suitable for finding very accurate solutions. Nevertheless, a 4-digit accurate
solution can generally be found in reasonable CPU time. Furthermore, the linear
system solved at each ADMM iteration does not change, and hence, if a suitable pre-
conditioner exploiting the problem structure is found, it only needs to be computed
once. Finally, linear convergence can also be shown, under certain assumptions on
the problem under consideration (such as strong convexity, see [20]).

We begin by rewriting problem (3.3), after introducing some auxiliary variables
zyn , zun of size N(n):

min
yn,un,zyn ,zun

(
1

2
(yn − ȳn)∗J1n(yn − ȳn) +

1

2
u∗nJ2nun

)
s.t. Dnyn + un = gn,

yn = zyn , un = zun ,

yan ≤ zyn ≤ ybn , uan ≤ zun ≤ ubn .

(3.4)

Next, we define the augmented Lagrangian function corresponding to (3.4):

Lδ(yn, un, zyn ,zun , pn , wyn , wun) =
1

2
(yn − ȳn)∗J1n(yn − ȳn) +

1

2
u∗nJ2nun

+ p∗n(Dnyn + un − gn) + w∗yn(yn − zyn) + w∗un
(un − zun)

+
1

2δ

(
‖Dnyn + un − gn‖22 + ‖yn − zyn‖22 + ‖un − zun‖22

)
,

(3.5)

where pn, wyn , and wun are the dual variables corresponding to each of the equality
constraints of (3.4). An ADMM applied to model (3.4) is given in Algorithm 3.1. We
omit specific details of the algorithm. The reader is referred to [5] for a basic proof of
convergence of Algorithm 3.1, as well as a detailed overview of ADMM. For a conver-
gence proof for the case where complex variables and matrices are allowed, the reader
is referred to [49]. Linear convergence of a generalization of this algorithm, under
certain assumptions, can be found in [20] and the references therein. We should note
that the step-length ρ in (3.6c) and (3.6d) plays an important role in the convergence
behavior of ADMM, and in fact, convergence of Algorithm 3.1 is guaranteed for any

ρ ∈ (0,
√

5+1
2 ) (see [36]).

One can easily observe that the most challenging step of Algorithm 3.1, is that
of solving (3.6a). The optimality conditions of (3.6a), at iteration j, read as follows:[

J1n + 1
δ (D∗nDn + In) 1

δD
∗
n

1
δDn J2n + 2

δ In

] [
yn
un

]
=

[
η1

η2

]
,(3.7)
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Algorithm 3.1 (2-Block) Standard ADMM

Input: Let y0
n, u

0
n, z

0
yn , z

0
un
, p0
n, w

0
yn , w

0
un
∈ CN(n), δ > 0, ρ ∈ (0,

√
5+1
2 ).

for (j = 0, 1, . . . ) do

(yj+1
n , uj+1

n ) = arg min
yn,un

{
Lδ(yn, un, zjyn , z

j
un
, pjn, w

j
yn , w

j
un

)
}

(3.6a)

(zj+1
yn , zj+1

un
) = arg min

zy∈[ya,yb], zu∈[ua,ub]

{
Lδ(yj+1

n , uj+1
n , zyn , zun , p

j
n, w

j
yn , w

j
un

)
}

(3.6b)

pj+1
n = pjn +

ρ

δ
(Dny

j+1
n + uj+1

n − gn)(3.6c)

(wj+1
yn , wj+1

un
) =

(
wjyn +

ρ

δ
(yj+1
n − zj+1

yn ), wjun
+
ρ

δ
(uj+1
n − zj+1

un
)
)(3.6d)

end for

where

η1 = J1n ȳn −D∗npjn − wjyn +
1

δ
(D∗ngn + zjyn), η2 = −pjn − wjun

+
1

δ
(gn + zjun

).

Solving (3.7) directly is not a good idea in our case, since its coefficient matrix
is not expected to be cheap or convenient to work with. Instead, we can merge steps
(3.6a) and (3.6c) to obtain a more flexible saddle point system. More specifically, to
take (3.6c) into account, we substitute pn = pjn + ρ

δ (Dnyn + un − gn) into (3.7), and
the optimality conditions of (3.6a) and (3.6c) can then be written as:ρ(J1n + 1

δ In) 0 D∗n
0 ρ(J2n + 1

δ In) In
Dn In − δρIn

ynun
pn

 =

ρ(J1n ȳn − wjyn + 1
δ z
j
yn) + (1− ρ)D∗np

j
n

ρ(−wjun
+ 1

δ z
j
un

) + (1− ρ)pjn
gn − δ

ρp
j
n

 .
(3.8)

At this point, we have to decide how to solve (3.8). For simplicity of exposition, we
present here only one way of solving system (3.8), by forming the normal equations
and then employing the Preconditioned Conjugate Gradient method (PCG) to solve
the resulting positive definite system, assuming that its (2, 2) block will be easily
invertible. We note that the developments in this section hold for any Schur com-
plement of the matrix in (3.8) (the choice of which Schur complement to use heavily
depends on the problem under consideration). The case where neither the (1, 1) nor
the (2, 2) block is easily invertible, will be treated at the end of this section. Pivoting
the second and then the third block equation of this system, yields:

un =

(
ρ

(
J2n +

1

δ
In

))−1 (
−pn − ρwjun

+
ρ

δ
zjun

+ (1− ρ)pjn

)
,

pn =

((
ρJ2n +

ρ

δ
In

)−1

+
δ

ρ
In

)−1

(Dnyn + r) ,

r =− gn +
δ

ρ
pjn −

(
ρ

(
J2n +

1

δ
In

))−1(
ρ

(
−wjun

+
1

δ
zjun

)
+ (1− ρ)pjn

)
,
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and the resulting normal equations read as follows:

Snyn :=

(
ρ

(
J1n +

1

δ
In

)
+D∗n

((
ρJ2n +

ρ

δ
In

)−1

+
δ

ρ
In

)−1

Dn

)
yn =

ρ

(
J1n ȳn − wjyn +

1

δ
zjyn

)
+ (1− ρ)D∗np

j
n −D∗n

((
ρJ2n +

ρ

δ
In

)−1

+
δ

ρ
In

)−1

r.

(3.9)

Finally, we should mention that problem (3.6b) of Algorithm 3.1 is trivial, as it admits
a closed form solution. More specifically, we perform the optimization by ignoring the
box constraints and then projecting the solution onto the box.

In what follows, using Assumption 1, we present some results concerning the
asymptotic behavior of the matrix sequence {Sn}n, by making use of the Theorems
presented in the previous section. The latter is produced by refining an arbitrary
discretization applied to (3.2) (assuming it satisfies Assumption 1), employing ADMM
to the discretized problem, and forming a certain Schur complement of the joint
optimality conditions of (3.6a) and (3.6c). The solution of (3.9) delivers the solution
to (3.8), and the remaining ADMM sub-problems can be trivially solved in O(N(n))
operations. Following practical applications, we assume δ and ρ to be Θ(1) and
constant along the iterations of ADMM (usually δ ∈ [0.01, 100] and ρ ∈ [1, 1.618]) .

Theorem 3.1. Given Assumption 1, and the sequence {Sn}n, with Sn given in
(3.9), we have that there exists a measurable function τ : [0, 1]d × [−π, π]d 7→ R such
that τ ≥ 0, τ 6= 0 a.e., and {Sn}n ∼GLT τ . Moreover, Sn are Hermitian positive
definite, {Sn}n ∼λ τ , and {S−1

n }n ∼λ τ−1.

Proof. Let Assumption 1 hold. Then, we have that there exist three measurable
functions κ, ξ1, ξ2 : [0, 1]d× [−π, π]d 7→ C, such that ξ1 ≥ 0, ξ2 ≥ 0, {J1n}n ∼GLT ξ1,
{J2n}n ∼GLT ξ2, and {Dn}n ∼GLT κ. Furthermore, we can notice that, for any
constant C > 0, {CIn}n ∼GLT C, where C can be considered as a positive constant
function (e.g. as a constant on the domain [−π, π]d, generating a diagonal Toeplitz
matrix). This, combined with Theorem 2.16 (conditions (2.)–(4.)), yields that:

{M1n}n :=

{
ρ

(
J1n +

1

δ
In

)}
n

∼GLT ρ(ξ1 + δ−1),

{M2n}n :=

{(
ρ

(
J2n +

1

δ
In

))−1

+
δ

ρ
In

}
n

∼GLT
(
ρ(ξ2 + δ−1)

)−1
+
δ

ρ
.

Similarly, from Theorem 2.16 (conditions (2.)–(5.)), we have that:{
M1n +D∗nM

−1
2n
Dn

}
n

∼GLT ρ(ξ1 + δ−1) + |κ|2
((
ρ(ξ2 + δ−1)

)−1
+
δ

ρ

)−1

,

where we used that κ̄κ = |κ|2. Setting τ = ρ(ξ1 +δ−1)+ |κ|2
((
ρ(ξ2 +δ−1)

)−1
+ δ
ρ

)−1

and noticing that τ > 0 completes the proof.

Subsequently we present some possible approaches that could allow one to take
advantage of the structure preserving property of ADMM. In particular, three pos-
sible ways of exploiting the preserved structure are discussed here. However, other
approaches could be possible. For this analysis, we will make use of the following
proposition:
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Proposition 3.2. Let Assumption 1 hold. Then, there exist sequences of d-level
matrix-sequences {{D̃n,m}n}m, {{J̃1n,m}n}m, {{J̃2n,m}n}m, with uniformly bounded
spectral norms with respect to n and m, and sequences of measurable functions {κm}m,
{ξ1m}m, and {ξ2m}m such that κm, ξ1m , ξ2m : [0, 1]d × [−π, π]d 7→ C, ξ1m , ξ2m are
real a.e., non-negative, and:

• {D̃n,m}n
a.c.s.−−−→ {Dn}n, {D̃n,m}n ∼GLT κm, with κm → κ in measure,

• {J̃1n,m}n
a.c.s.−−−→ {J1n}n, {J̃1n,m}n ∼GLT ξ1m , with ξ1m → ξ1 in measure,

• {J̃2n,m}n
a.c.s.−−−→ {J2n}n, {J̃2n,m}n ∼GLT ξ2m , with ξ2m → ξ2 in measure.

Proof. The proof can be found in [34, Theorem 8.6] for the unilevel case and [35,
Theorem 5.6] for the multilevel case.

For the rest of this section we will assume that we have such sequences of d-level GLT
sequences available, satisfying the conditions stated in Proposition 3.2. We further
assume that these approximate sequences are comprised of matrices that are easy to
compute and invert (whenever possible).

3.2. Schur complement approximations. In what follows we present various
Schur complement approximations that could potentially serve as preconditioners
inside PCG, for solving systems of the form of (3.9) (or any other Schur complement
of system (3.8)). The viability of each of the following approaches depends on the
structure of the problem, as well as the choice of the discretization. We note that
the different approaches are presented for completeness, as well as an indicator of the
generality of the proposed methodology. In particular, as the convergence behavior
of ADMM does not depend on the choice of preconditioner (assuming that the PCG
converges to a desired accuracy), we will only make use of one of the following Schur
complement approximations when presenting computational results.

3.2.1. A Schur complement block approximation. Given three sequences
of GLT sequences {{D̃n,m}n}m, {{J̃1n,m}n}m, {{J̃2n,m}n}m, satisfying the conditions
of Proposition 3.2, we define the following approximation for the matrix in (3.9):

(3.10) S̃n,m = ρ

(
J̃1n,m +

1

δ
In

)
+ D̃∗n,m

((
ρJ̃2n,m +

ρ

δ
In

)−1

+
δ

ρ
In

)−1

D̃n,m.

Theorem 3.3. Let Assumption 1 hold, and assume that we have available the
sequences {{D̃n,m}n}m, {{J̃1n,m}n}m, and {{J̃2n,m}n}m, satisfying the conditions of

Proposition 3.2. By defining S̃n,m as in (3.10), we have:

• {S̃n,m}n
a.c.s.−−−→ {Sn}n, {S̃n,m}n ∼GLT τm, and τm → τ in measure, where τ

is given in Theorem 3.1 and:

(3.11) τm = ρ(ξ1m + δ−1) + |κm|2
((
ρ(ξ2m + δ−1)

)−1
+
δ

ρ

)−1

.

• The sequence {S̃−1
n,mSn}n is weakly clustered at 1.

• For any n, m, the eigenvalues of S̃−1
n,mSn lie in the interval

[
1
Cs
, Cs

]
, where

Cs is a positive constant uniformly bounded with respect to n and m.

Proof. For the first condition, by Proposition 3.2 as well as Theorem 2.12 (condi-

tions (1.)–(4.)), we get that {S̃n,m}n
a.c.s.−−−→ {Sn}n. Using Proposition 3.2 again, this

time combined with Theorem 2.16 (conditions (2.)–(5.)) and Lemma 2.4, yields that
τm is given by (3.11), and τm → τ in measure.
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For the second condition, we firstly note that the sequence under consideration
is Hermitian and positive definite by Assumption 1. Then, using that {S̃n,m}n

a.c.s.−−−→
{Sn}n implies that, for every m, there exists nm such that for all n ≥ nm:

(3.12) Sn = S̃n,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)dn, ‖Nn,m‖ ≤ ω(m),

where nm, c(m) and ω(m) depend only on m and are such that:

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

By assumption, it is easy to see that any S̃n,m has a spectral norm uniformly bounded

in n and m. Furthermore, since δ = Θ(1) and ρ = Θ(1), we observe that ‖S̃−1
n,m‖ is

also uniformly bounded in n. Hence, by multiplying both sides of (3.12) by S̃−1
n,m:

S̃−1
n,mSn = In + R̃n,m + Ñn,m,

where R̃n,m = S̃−1
n,mRn,m (thus rank(R̃n,m) ≤ rank(Rn,m) ≤ c(m)dn) and Ñn,m =

S̃−1
n,mNn,m (and hence ‖Ñn,m‖ ≤ Cω(m), for some constant C > 0, independent of
m and n). This, along with the definition of a weak cluster in Definition 2.3, proves
the second condition.

For the third condition, let us take some constant C† of O(1), such that:

max
{
‖Dn‖, ‖D̃n,m‖, ‖J1n‖, ‖J2n‖, ‖J̃1n,m‖, ‖J̃2n,m‖

}
≤ C†, ∀ n, m.

We know that such a constant exists by Assumption 1. Then, we have that λmin(Sn) ≥
ρ
δ and λmax(Sn) ≤ ρC† + ρ

δ + ρ
δC

2
† , for any n. The exact same bounds hold also for

S̃n,m, for every n and m. Using these bounds, we can easily show that:

λmin(S̃−1
n,mSn) ≥ 1

C2
† + δC† + 1

, λmax(S̃−1
n,mSn) ≤ C2

† + δC† + 1,

for all n, m. Upon noticing that δ = Θ(1) and ρ = Θ(1), there exists a constant
Cs = C2

† +δC†+1 uniformly bounded with respect to n, satisfying the third condition
of the Theorem.

Remark 3.1. Notice that in order to obtain a strong clustering at 1, we would
have to employ some extra assumptions. In particular, we would have to require that
the sequences given in Assumption 1 are strongly clustered in the essential range of
their symbols, which in turn are required to be different from zero a.e.. Furthermore,
we would have to assume that the condition in (3.12) is such that c(m)dn = O(1).

Remark 3.2. While Assumption 1 holds for a wide range of problems, and one is
able to find easily computable sequences satisfying the conditions in Proposition 3.2, it
is not often the case that the preconditioner in (3.10) is easy to compute or invert. If
this is the case, then Theorem 3.3 guarantees that such a preconditioner will provide a
weak cluster of the eigenvalues of the preconditioned matrix at 1. We note that while
this is not optimal, it is expected to be good enough. This is because of the penalty
parameter introduced by ADMM (i.e. δ = Θ(1)), which (along with the assumption
that the involved matrices are uniformly bounded in n) guarantees that the normal
equations matrix will be relatively well-conditioned, and hence PCG will converge in
a number of iterations independent of the grid size (however, possibly depending on
the conditioning of the problem matrix as well as the problem parameters).
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The use of the preconditioner in (3.10) becomes more obvious in the following
example. If the d-level approximating matrix sequences {{D̃n,m}n}m, {{J̃1n,m}n}m,
and {{J̃2n,m}n}m satisfy the conditions of Proposition 3.2, and belong to the set of
d-level circulant matrices of size N(n) × N(n), i.e. Cn, then the preconditioner in
(3.10) will be cheap to form and store, using the fast Fourier transform (requiring
O
(
N(n) log(N(n))

)
operations and O

(
N(n)

)
memory). This is because Cn is a com-

mutative ring under standard matrix addition and multiplication (see Theorem 2.10).

3.2.2. A matching Schur complement approximation. As mentioned ear-
lier, many approximating sequences based on the GLT theory would not allow for
an easy computation or storage of the preconditioner in (3.10). While the numerical
results of this paper will not focus on this case, we present an alternative to the pre-
conditioner in (3.10), which could allow one to use various GLT approximations for
the blocks of the matrix in (3.8), and form an easily computable Schur complement
approximation for a matrix of the form of (3.9).

In what follows, we define a Schur complement approximation based on the match-
ing strategy, which was proposed in [59] and has been applied in a wide range of
applications (e.g. [23, 58, 60]). While this approach can be very general, it is partic-
ularly effective under some additional assumptions imposed on problem (3.3). More
specifically, we study the properties of this approximation using the GLT theory, and
give certain assumptions under which such an approach would be optimal.

Given three sequences {{D̃n,m}n}m, {{J̃1n,m}n}m, {{J̃2n,m}n}m, satisfying the
conditions of Proposition 3.2, we define the following matrix:

D̂n,m = D̃∗n,m + ρ
1
2

(
J̃1n,m +

1

δ
In

) 1
2
((

ρJ̃2n,m +
ρ

δ
In

)−1

+
δ

ρ
In

) 1
2

,

using which we can define an approximation for the matrix in (3.9) as

(3.13) Ŝn,m = D̂n,m

((
ρJ̃2n,m +

ρ

δ
In

)−1

+
δ

ρ
In

)−1

D̂∗n,m.

For simplicity of exposition let us define the following matrices:

M1n = ρ

(
J1n +

1

δ
In

)
, M̃1n = ρ

(
J̃1n,m +

1

δ
In

)
,

M2n =

(
ρ

(
J2n +

1

δ
In

))−1

+
δ

ρ
In, M̃2n =

(
ρ

(
J̃2n,m +

1

δ
In

))−1

+
δ

ρ
In.

Under Assumption 1, we have that {M1n}n ∼GLT ρ(ξ1 +δ−1), {M2n}n ∼GLT (ρ(ξ2 +
δ−1))−1+ δ

ρ ), and M̃1n ∼GLT ρ(ξ1m+δ−1) with ξ1m → ξ1 in measure, while M̃2n ∼GLT
(ρ(ξ2m + δ−1))−1 + δ

ρ ), where ξ2m → ξ2 in measure. Further, notice that all four
previous matrix-sequences are comprised of Hermitian and positive definite matrices,
each of which admits a square root.

Lemma 3.4. Let n ∈ Nd be a d-index and {An}n be a multilevel matrix-sequence
with An being Hermitian positive definite of size N(n)×N(n) and {An}n ∼GLT χ,
where χ is a measurable function χ : [0, 1]d × [−π, π]d 7→ R such that χ ≥ 0 and

χ 6= 0 a.e.. Then, the matrices An (A−1
n , respectively) admit a square root A

1
2
n (A

− 1
2

n ,

respectively), such that {A
1
2
n}n ∼GLT χ

1
2 ({A−

1
2

n }n ∼GLT χ−
1
2 , respectively).
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Proof. Let the function f : (0,∞) 7→ (0,∞), be defined as f(x) = x
1
2 . Then, from

Theorem 2.16 (condition (7.)), we have that {f(An)}n ∼GLT f(χ), where f(An) is
interpreted as a matrix function applied to the eigenvalues of matrix An.

Theorem 3.5. Let Assumption 1 hold, and assume that we have available the
sequences {{D̃n,m}n}m, {{J̃1n,m}n}m, and {{J̃2n,m}n}m, satisfying the conditions of

Proposition 3.2. By defining Ŝn,m as in (3.13), we have:

• {Ŝn,m}n
a.c.s.−−−→ {Sn + En}n, where

{En}n :=

{
M

1
2

1n
M
− 1

2
2n

Dn +D∗nM
− 1

2
2n

M
1
2

1n

}
n

∼GLT ε,

with
ε := ρ(ξ1 + δ−1)

1
2 ((ξ2 + δ−1)−1 + δ)−

1
2 (κ+ κ̄).

Furthermore, {Ŝn,m}n ∼GLT τm+εm and τm+εm → τ+ε in measure, where
τ is defined in Theorem 3.1, and τm, εm, ε are measurable functions having

the same domain as τ . If Ẽn,m := M̃
1
2

1n,m
M̃
− 1

2
2n,m

D̃n,m + D̃∗n,mM̃
− 1

2
2n,m

M̃
1
2

1n,m

is positive semi-definite for all m and n, then the sequence of preconditioned
normal equations’ matrices is such that:

{Ŝ−1
n,mSn}n ∼GLT τ(τm + εm)−1 → τ(τ + ε)−1, as m→∞,

and there exist positive constants C†1 , C†2 , independent of n, m, such that

λ(Ŝ−1
n,mSn) ∈ [C†1 , C†2 ], for all n, m.

• If the matrix sequences {J1n}n, {J2n}n, and {Dn}n are such that J1n and
J2n are scaled identities or zero matrices, while Dn +D∗n is Hermitian posi-
tive semi-definite, then the matrix-sequence {Ŝ−1

n,mSn}n is weakly clustered at

[ 1
2 , 1]. If furthermore the matrix-sequence {D̃−1

n,mDn}n is strongly clustered

at 1, then the matrix-sequence {Ŝ−1
n,mSn}n is strongly clustered at [ 1

2 , 1].

Proof. Firstly, notice that from (3.13) we obtain the following expression:

Ŝn,m = S̃n,m + M̃
1
2

1n
M̃
− 1

2
2n

D̃n + D̃∗nM̃
− 1

2
2n

M̃
1
2

1n
,

where S̃n,m is defined as in (3.10). Then, the first part of the Theorem can be proved
by employing Lemma 3.4 and by performing a similar analysis to that of the proof of
the first and third conditions of Theorem 3.3. For brevity, the latter is omitted.

We proceed by proving the second condition. Notice that if J1n and J2n are
scaled identities or zero matrices (the latter being mostly of theoretical interest),
then we can represent them exactly, that is J̃1n,m = J1n and J̃2n,m = J2n , for all
m and n. The latter implies that M1n , M2n are scaled identities and we can write
Mn = M1n = 1

cs
M2n , for some positive constant cs. We define the following matrix:

S̄n =
1

cs
(D∗n +

√
csMn)M−1

n (Dn +
√
csMn).

Following exactly the developments in [60, Theorem 4.1] (since D + D∗ � 0), we
can consider the generalized eigenproblem S̄−1

n Snx = µx, and show that λ(S̄−1
n Sn) ∈

[ 1
2 , 1], where Sn is defined as in (3.9), µ is an arbitrary eigenvalue of the preconditioned

matrix S̄−1
n Sn and x the corresponding eigenvector.

Let us now notice that by Assumption 1, the matrix-sequence {S̄n}n is a GLT
sequence. In particular, it is easy to see that {Sn + En}n ≡ {S̄n}n and hence its
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symbol is τ + ε, where ε is defined in the first condition of this Theorem. Again, from
the first condition of this Theorem, we have that the preconditioner defined in (3.13)

is such that {Ŝn,m}n
a.c.s.−−−→ {Sn + En}n ≡ {S̄n}n, and {Ŝn,m}n ∼GLT τm + εm with

τm + εm → τ + ε in measure. Then, from Theorem 2.12 we know that {Ŝ−1
n,m}n

a.c.s.−−−→
{S̄−1
n }n. Using Definition 2.11, we have that for all n ≥ nm, we can write:

(3.14) S̄−1
n = Ŝ−1

n,m +Rn,m +Nn,m, rank(Rn,m) ≤ c(m)N(n), ‖Nn,m‖ ≤ ω(m),

where nm, c(m) and ω(m) depend only on m and are such that:

lim
m→∞

c(m) = lim
m→∞

ω(m) = 0.

In view of the previous, we can analyze the sequence {S̄−1
n Sn− Ŝ−1

n,mSn}n as follows:

S̄−1
n Sn − Ŝ−1

n,mSn = (S̄−1
n − Ŝ−1

n,m)Sn = (Rn,m +Nn,m)Sn,

where rank(Rn,mSn) ≤ rank(Rn,m) ≤ c(m)N(n) and ‖Nn,mSn‖ ≤ ω(m)‖Sn‖ =

Θ(ω(m)). In other words, we have that {S̄−1
n Sn − Ŝ−1

n,mSn}n is weakly clustered at

zero. Furthermore, as λ(S̄−1
n Sn) ∈ [ 1

2 , 1], we conclude that {Ŝ−1
n,mSn}n is weakly

clustered at [ 1
2 , 1].

Finally, if we assume that {D̃−1
n,mDn}n is strongly clustered at 1, and by noting

that Mn is a scaled identity (and hence M̃n,m = Mn, for all n, m), we can conclude
that (3.14) holds for Rn,m such that rank(Rn,m) = O(1). By employing a similar

methodology as before, this yields that {Ŝ−1
n,mSn}n is strongly clustered at [ 1

2 , 1].

Remark 3.3. Let us now briefly discuss the applicability of the preconditioner in
(3.13). Firstly, it is important to notice that such a preconditioner is generally only
sensible when the approximating matrices J̃1n,m and J̃2n,m are diagonal, circulant or
zero. If this is not the case, we discuss a remedy in Section 3.3.2. In many applications
of interest, the preconditioner D̃n,m has a diagonal times a multilevel banded Toeplitz
structure (e.g. [17, 53]). The application of the preconditioner in (3.13) consists in a
single (LU or, if applicable, Cholesky) factorization of D̂n,m at the beginning of the
optimization, and subsequently two backward solves for every ADMM iteration. Such
an approach should be feasible, in terms of memory and computational requirements,
as long as the problem dimensions are not very large and the bandwidth of the matrix
D̃n,m is small. For high-dimensional problems, one could employ an incomplete or
specialized factorization (e.g. [17]), possibly assisted by suitable low-rank updates, if
necessary. In some cases, replacing the factorization with a specialized iterative solver
(such as a multigrid method as in [53]) could be beneficial. However, it is important to
note that factorization (complete or incomplete) needs to be computed only once. An
alternative employing low-rank approximations of the associated matrices is discussed
in the following Remark. The suitability of each of the aforementioned approaches
depends heavily on the problem under consideration.

Remark 3.4. As mentioned earlier, the proposed preconditioner in (3.13) allows
one to use a variety of approximations for the blocks of the matrix in (3.8), based on
the GLT theory, under certain conditions (which hold for a wide class of problems,
such as the problem considered in Section 4). In fact, this preconditioner can be
seen as an approximation of the preconditioner in (3.10), which in turn has limited
applicability unless the approximating blocks have a multilevel circulant structure.



18 S. POUGKAKIOTIS, J. W. PEARSON, S. LEVEQUE, AND J. GONDZIO

The limitations of preconditioner (3.13) depend on the problem under considera-
tion. In particular, if the assumptions of the second condition of Theorem 3.5 hold,
then it can serve as a basis for constructing easily computable optimal preconditioners.
Furthermore, if the aforementioned assumptions hold for the problem under considera-
tion, one might be able to use a tensor product approach with low-rank approximations
of the matrices in (3.8) to solve problem (3.3). Such solvers can be extremely effec-
tive, allowing one to solve high-dimensional problems, however they tend to require
that various features of the problem (e.g. initial conditions, desired state, boundary
conditions, discrete solutions) are approximated in a low-rank format, which is not
always the case. The proposed approach would allow one to create a rather general
tensor product solver for inverse problems measuring the discrepancy of the state vari-
able y from a desired state ȳ as well as the size of the control u in the L2-norm, where
the structure of the problem allows this. Such solvers have been proposed in [23, 40]
for the equality constrained case, and hence the proposed methodology could allow one
to further generalize these approaches. Additionally, many low-rank tensor product
solvers in the literature require that the objective function has a scaled identity Hes-
sian. This can be alleviated here, by making use of the generalized ADMM presented
in Section 3.3.2, alongside the preconditioner in (3.13).

3.2.3. Element-wise Schur complement approximation. In the context of
finite element methods, a popular preconditioner is the so-called element-wise (also
known as additive or element-by-element) Schur complement approximation. As this
approach has been analyzed multiple times, we only mention it here as a viable al-
ternative for preconditioning the normal equations in (3.9) and refer the interested
reader to the available literature. In particular, such preconditioners have been an-
alyzed using the GLT theory in [27, 28]. An analysis for general problems can be
found in [55] and the references therein. These preconditioners can be very effective
(in fact optimal under reasonable and general assumptions). Furthermore, they can
efficiently be implemented in a parallel environment, allowing one to solve huge-scale
problem instances (see e.g. [26, 28]).

3.3. General quadratic objective function. As we stressed earlier, it could
be the case that both J1n and J2n are general positive semi-definite matrices, whose
inverses (if they exist) are expensive to compute. As a consequence, the normal equa-
tions could be prohibitively expensive to form. In order to tackle such problems, we
propose two alternatives. The former simply avoids forming the normal equations and
solves (3.8) instead, using an appropriate Krylov subspace method. The latter ap-
proach generalizes the algorithmic framework in Algorithm 3.1, allowing us to simplify
the resulting sub-problems. Then, the simplified sub-problems can be solved using
PCG alongside any of the previously presented Schur complement approximations.

3.3.1. A saddle point approximation. In many applications, forming a Schur
complement of system (3.8) would be very costly. Instead, one could solve system
(3.8), which can be seen as a regularized saddle point system. Among many other
iterative methods, one could employ preconditioned MINRES to solve systems of this
form. The aforementioned method allows only the use of a positive definite precondi-
tioner, hence, many block preconditioners for (3.8) are not applicable. For instance,
block-triangular preconditioners, motivated by the work in [41, 54], would generally
require a non-symmetric solver such as GMRES [64]. However, block-diagonal pre-
conditioners have been shown to be very effective and efficient in practice for systems
of the form of (3.8) (see for example [2, 57, 69]). To that end, we can define the
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following positive definite block-diagonal preconditioner:

(3.15) K̃n,m =

ρ(J̃1n,m + 1
δ In) 0 0

0 ρ(J̃2n,m + 1
δ In) 0

0 0 S̃n,m

 ,
where S̃n,m can be defined as in (3.10) or as in (3.13) (and indeed any other suit-
able Schur complement approximation), assuming that we have available two sparse
sequences of d-level GLT sequences {{J̃1n,m}n}m and {{J̃2n,m}n}m, satisfying the
conditions of Proposition 3.2. We note that preconditioners similar to (3.15) have
been analyzed multiple times in the literature and hence such an analysis is omitted
here (see for example [2, 57, 61, 68, 69]). It is important to notice that the quality of
the preconditioner in (3.15) depends heavily on the quality of the Schur complement
approximation, as well as on the approximations of the (1, 1) and (2, 2) blocks of the
matrix in (3.8), which can be computed by making use of the GLT theory.

3.3.2. Generalized ADMM. Instead of solving the saddle point system in
(3.8), one could derive the following generalized ADMM algorithm, as described in Al-
gorithm 3.2. The following methodology is presented for completeness and is focused
on the case where all the associated matrices as well as state and control variables
are real. One could apply it to the complex case, however, in that case the theory
derived in [20] to support such methods, would no longer hold.

Algorithm 3.2 (2-Block) Generalized ADMM

Input: Let y0
n, u

0
n, z

0
yn , z

0
un
, p0
n, w

0
yn , w

0
un
∈ RN(n), δ > 0, ρ ∈ (0, 1], Ry � 0, Ru � 0.

for (j = 0, 1, . . . ) do

(yj+1
n , uj+1

n ) = arg min
yn,un

{
Lδ(yn, un, zjyn , z

j
un
, pjn, w

j
yn , w

j
un

)

+
1

2
(yn − yjn)TRy(yn − yjn) + (un − ujn)TRu(un − ujn)

}
(3.16a)

(zj+1
yn , zj+1

un
) = arg min

zy∈[ya,yb], zu∈[ua,ub]

{
Lδ(yj+1

n , uj+1
n , zyn , zun , p

j
n, w

j
yn , w

j
un

)
}

(3.16b)

pj+1
n = pjn +

ρ

δ
(Dny

j+1
n + uj+1

n − gn)(3.16c)

(wj+1
yn , wj+1

un
) =

(
wjyn +

ρ

δ
(yj+1
n − zj+1

yn ), wjun
+
ρ

δ
(uj+1
n − zj+1

un
)
)(3.16d)

end for

There are two major differences between Algorithm 3.1 and Algorithm 3.2. In
the latter method, we have added an extra proximal term in problem (3.6a), which
belongs to the class of Bregman distances, and indeed is produced by the Bregman
function ‖ · ‖R, where R = Ry ⊕ Ru, Ry � 0, and Ru � 0. For a detailed derivation
of proximal methods using Bregman distances, the reader is referred to [30] and the
references therein. The second difference is that, in the general case, Algorithm 3.2
requires that the step-size ρ lies in a smaller interval than that allowed in Algorithm
3.1. In fact, the allowed values for ρ depend on the choice of Ry and Ru. We refer
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the reader to [20] for a more general derivation of methods similar to Algorithm 3.2,
in which a precise condition is given for the maximum allowed values of ρ, so that the
method converges globally. Furthermore, the authors in [20] prove linear convergence
of the method under different sets of conditions, one of which requires that J1n � 0
and J2n � 0.

In light of the previous discussion, we can choose:

Ryn = cyIn − J1n , Run = cuIn − J2n ,

where cy, cu > 0 are such that Ryn � 0, Run � 0. With these choices of Ryn and
Run , the optimality conditions of (3.16a) and (3.16c) involve the coefficient matrix:

(3.17)

ρ(cy + 1
δ )In 0 D∗n

0 ρ(cu + 1
δ )In In

Dn In − δρIn

 .
As one can easily observe, the normal equations operator of (3.17) can be efficiently ap-
plied to a vector, and all the previously presented Schur complement approximations
can be used within PCG to accelerate the solution of the new simplified sub-problems.
Furthermore, notice that this way we can ensure that the (1, 1) and (2, 2) blocks of
the matrix in (3.17) are scaled identities, and hence the preconditioner in (3.13) can
be particularly effective (see Theorem 3.5).

We should note at this point that similar methodologies can be employed to
enforce certain structure on the associated matrices of problem (3.4). While this can
be very effective in some cases, by making the ADMM sub-problems easy to solve, it
should be used with caution. On the one hand ρ is required, in general, to take values
in the interval (0, 1]. In practice, the larger the value of ρ, the faster the convergence
of ADMM. More importantly, if the constants cy and cu are large, we essentially
regularize the problem strongly (i.e. we force a large δ, in the case of Algorithm
3.1). This means that tuning δ in Algorithm 3.2 will not allow us to accelerate the
algorithm significantly (which is not the case for Algorithm 3.1).

4. The FDE-Constrained Optimization Model. In this section, we present
the FDE-constrained optimization problem studied hereon and provide details as to
the FDE discretization used. We then highlight some important properties of the
resulting discretized matrices.

We define the Caputo derivative of a function f(t) defined on t ∈ [t0, t1], of real
order α such that n− 1 < α < n with n ∈ N, as follows:

D
C α
t0 t f(t) =

1

Γ(n− α)

∫ t

t0

dnf(s)

dsn
ds

(t− s)α−n+1
,

assuming convergence of the above [21, 51, 62]. We also define the left-sided and
right-sided Riemann–Liouville derivatives of a function f(x) defined on x ∈ [x0, x1],
of real order β such that n− 1 < β < n with n ∈ N, as

D
RL β
x0 x f(x) =

1

Γ(n− β)

dn

dxn

∫ x

x0

f(s) ds

(x− s)β−n+1
,

D
RL β
x x1

f(x) =
(−1)n

Γ(n− β)

dn

dxn

∫ x1

x

f(s) ds

(s− x)β−n+1
,
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respectively. From this, we define the symmetric Riesz derivative as follows [62, 65]:

(4.1) D
R β

x f(x) =
−1

2 cos(βπ2 )

(
D

RL β
x0 x f(x) + D

RL β
x x1

f(x)

)
.

We highlight that Caputo derivatives are frequently used for discretization of
FDEs in time, given initial conditions, with Riemann–Liouville derivatives correspond-
ingly considered for spatial derivatives, given boundary conditions. We consider the
minimization problem:

miny,u J(y(x, t),u(x, t))

s.t.
(
D

C α
0 t − D

R β1
x1
− D

R β2
x2

)
y(x, t) + u(x, t) = g(x, t),

ya(x, t) ≤ y(x, t) ≤ yb(x, t), ua(x, t) ≤ u(x, t) ≤ ub(x, t),

(4.2)

where the fractional differential equation and additional algebraic constraints are given
on the space-time domain Ω× (0, T ), where Ω ⊂ R2 has boundary ∂Ω, and the spatial
coordinates are given by x = [x1, x2]T . We impose the initial condition y(x, 0) = 0 at
t = 0, and the Dirichlet condition y = 0 on ∂Ω × (0, T ). We assume that the orders
of differentiation satisfy 0 < α < 1, 1 < β1 < 2, 1 < β2 < 2.

The cost functional J(y,u) measures the misfit between the state variable y and
a given desired state ȳ in some given norm, and also measures the ‘size’ of the control
variable u. In this paper we consider the cost functional J(y,u) corresponding to
L2-norms measuring both terms:

(4.3) J(y,u) =
1

2

∫ T

0

∫
Ω

(y − ȳ)2 dxdt+
γ

2

∫ T

0

∫
Ω

u2 dxdt.

Here γ > 0 denotes a regularization parameter on the control variable. We note that
other variants for J(y,u) are possible, including measuring the state misfit and/or
the control variable in other norms, as well as alternative weightings within the cost
functionals. We also emphasize that it is perfectly reasonable to consider such prob-
lems involving FDEs in one or three spatial dimensions (or indeed higher dimensions),
rather than in two dimensions as in (4.2), and the methodology in this paper could
be readily tailored to such problems.

Upon discretization, we consider the non-shifted Grünwald–Letnikov formula [23,
62, 65, 66] to approximate the Caputo derivative in time:

(4.4) D
C α
t0 t y(t) =

1

hαt

nt−1∑
k=0

gαk y(t− kht) +O(ht),

where ht is the step-size in time, and gαk = Γ(k−α)
Γ(−α)Γ(k+1) may be computed recursively

via gαk = (1 − α+1
k )gαk−1, k = 1, 2, ..., ν, with gα0 = 1 and ν ∈ N. This leads to the

Caputo derivative matrix for all grid points in the time variable:

(4.5) C α
nt =

1

hαt



gα0 0 · · · · · · 0

gα1 gα0
. . .

...
...

. . .
. . .

. . .
...

... gα1 gα0 0
gαnt−1 · · · · · · gα1 gα0


.
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For the (left-sided) spatial derivative we use the p-shifted Grünwald–Letnikov formula
[3, 50, 52, 62], with shift parameter p = 1, to minimize the local truncation error:

(4.6) D
RL β
x0 x y(x) =

1

hβx

n∑
k=0

gβk y(x− (k − 1)hx) +O(hx),

where hx is the step-size in space, leading to the matrix

L β,l
n =

1

hβx



gβ1 gβ0 0 · · · 0

gβ2 gβ1 gβ0
. . .

...
...

. . .
. . .

. . . 0
... gβ2 gβ1 gβ0
gβn · · · · · · gβ2 gβ1


,

whereby using the formula (4.1) leads to the following Riemann–Liouville derivative
matrix for the symmetrized Riesz derivative:

(4.7) L β
n =

−1

2 cos(βπ2 )

(
L β,l
n + (L β,l

n )T
)
.

Using all the previous definitions, we can write the discretized version of the FDE
constraint within (4.2) as

(4.8) Dnyn + un = gn,

where yn, un, gn represent the discretized variants of y, u, g, n = [nx, ny, nt] is a
3-index containing the grid sizes along each dimension, and

(4.9) Dn = C α
nt ⊗ Inx1 ·nx2 − Int ⊗

(
L β1
nx1
⊗ Inx2 + Inx1 ⊗L β2

nx2

)
.

For simplicity of exposition, in the rest of the paper we assume that hx1
= hx2

= hx,
where hxi is the discretization step in the respective spatial direction, noting that the
method readily generalizes to problems where this is not the case.

By using the trapezoidal rule we approximate the two terms in the objective
functional (4.3), by

(4.10) Jn = J1n =
1

γ
J2n =

[
I(nt−1)·nx1 ·nx2 0

0 1
2Inx1 ·nx2

]
,

which is applied to vectors arising from every time-step, apart from the initial time
t = 0. Notice that matrix Jn is diagonal with only two different values on the diagonal,
and hence can be almost exactly approximated by a scaled identity.

We should mention that we assume constant diffusion coefficients in the FDE
constraints. In turn, this yields that the discretized constraint matrix has a multi-
level Toeplitz structure. As we discuss in the following section, such matrices can be
approximated by circulant preconditioners, which in turn allow us to use the precon-
ditioner in (3.10) for accelerating the solution of the resulting ADMM sub-problems.
In the presence of non-constant diffusion coefficients, the discretized constraint ma-
trices would belong to the class of multilevel GLT sequences. In this case, circulant
preconditioners would no longer be effective and we would have to approximate such
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matrices using diagonal times multilevel banded Toeplitz matrices (see for example
[24, 53]). In light of the discussion in Section 3, we can observe that one could extend
the results presented in this paper to the non-constant diffusion coefficient case, by
making use of the preconditioner in (3.13) (upon noting that the discretization of the
functional in (4.3) yields a diagonal matrix). For brevity of presentation this is left
to a future study.

In the following proposition, we summarize some well-known properties of the
fractional binomial coefficients that arise above when constructing the matrices Cα
and Lβ (see for example [39, page 397], or [51, 72]):

Proposition 4.1. Let 0 < α < 1 and 1 < β < 2, with gαk , g
β
k as in (4.4), (4.6).

Then, we have that:

gα0 > 0, gαk < 0, ∀ k ≥ 1,

nt∑
k=0

gαk > 0, ∀ nt ≥ 1,(4.11)

gβ0 = 1, gβ1 = −β, gβ2 > gβ3 > . . . > 0,
∞∑
k=0

gβk = 0,

n∑
k=0

gβk < 0, ∀ n ≥ 1.(4.12)

5. Toeplitz Matrices and Circulant Preconditioners. In this section, we
propose a multilevel circulant preconditioner, suitable for approximating multilevel
Toeplitz matrices, and then examine the quality of such a preconditioner for the
problem at hand, showing that the preconditioner is in fact a.c.s. for a scaled version
of the coefficient matrix in (4.9).

Toeplitz and multilevel Toeplitz matrices appear often when (numerically) solving
partial, integral, or fractional differential equations, problems in time series analysis,
as well as in signal processing (see for example [1, 46, 63, 74], and the references
therein). An active area of research is that of solving a huge-scale systems of lin-
ear equations, Ax = b, where the matrix A has some specific structure, such as
Toeplitz, multilevel Toeplitz, or it can be written as a combination of Toeplitz and
other structured matrices. There are two major approaches for solving such sys-
tems. One alternative is to solve them directly by exploiting the matrix structure
(see for example [6, 16, 47, 73]). A more popular approach is to employ some
iterative method to solve the system, assisted by an appropriately designed pre-
conditioner, to ensure that the iterative method achieves fast convergence (as in
[8, 9, 10, 11, 12, 13, 14, 15, 42, 44, 45, 46, 56, 71]). An equally rich literature exists for
preconditioning Toeplitz-like linear systems arising specifically from the discretization
of fractional diffusion equations (see [17, 24, 25, 29, 32, 45, 46, 48, 53], among others).

In this paper, we follow the simplest possible approach: that of approximating
multilevel Toeplitz matrices using multilevel circulant preconditioners. To do so, we
first have to derive a unilevel circulant approximation of an arbitrary unilevel Toeplitz
matrix. Given a unilevel Toeplitz matrix Tn ∈ Rn×n, we employ the circulant approx-
imation proposed for the first time in [14] (also called the T. Chan preconditioner for
Tn). More specifically, we define the optimal circulant approximation of Tn, as the
solution of the following optimization problem:

(5.1) C1(Tn) = min
Cn∈Cn

‖Cn − Tn‖F ,

where Cn is the set of all n× n circulant matrices, and ‖ · ‖F the Frobenius norm. It
turns out that (5.1) admits the following closed form solution:

ci =
(n− i) · ti + i · t−n+i

n
, i ∈ {0, . . . , n− 1}.
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Then, we can write C1(Tn) = F ∗nΛnFn, where Fn is the discrete Fourier transform
of size n and Λn is a diagonal matrix containing the eigenvalues of C1(Tn), which
can be computed as Λn = diag(Fnc1), where c1 is the first column of C1(Tn). Other
unilevel circulant approximations are possible, such as those proposed in [12, 13, 71],
however, the T. Chan preconditioner seems (empirically) to behave better for the
problem under consideration.

We now focus on the discretized FDE given in (4.8). By multiplying this equation
on both sides by ψ = min{hαt , hβ1

x , h
β2
x }, we have:

Bnyn + ψun = ψgn,

where yn, un, gn represent the discretized variants of y, u, g, Bn = ψDn, with Dn
defined as in (4.9), ht, hx the time and spatial mesh-sizes, and n = [nx1

, nx2
, nt].

We observe that the matrix Dn (and hence Bn) enjoys a 3-level Toeplitz structure.
In particular, each block of Dn (Bn) enjoys a quadrantally symmetric block Toeplitz
structure (such matrices are analyzed for example in [10]). Given the matrix Bn, we
can define its T. Chan-based 3-level circulant preconditioner as:

C3(Bn) = ψC1(C α
nt)⊗ Inx1 ·nx2 − ψInt ⊗

(
C1(L β1

nx1
)⊗ Inx2 + Inx1 ⊗ C1(L β2

nx2
)
)

= (Fnx1 ⊗ Fnx2 ⊗ Fnt)
∗Λn(Fnx1 ⊗ Fnx2 ⊗ Fnt),

(5.2)

where Λn is the diagonal eigenvalue matrix of the preconditioner, computed as:

Λn = ψΛα ⊗ Inx1 ·nx2 − ψInt ⊗
(
Λβ1
⊗ Inx2 + Inx1 ⊗ Λβ2

)
,

with Λα, Λβ1
, Λβ2

being the diagonal matrices containing the eigenvalues of the T.
Chan approximations of the matrices C α

nt , L β1
nx1

, and L β2
nx2

, respectively.

The preconditioner in (5.2) can be computed efficiently in O(N(n) logN(n)) op-
erations, using the fast Fourier transform. The storage requirements are O(N(n))
since we only need to store the eigenvalue matrix, that is Λn. Clearly, the precondi-
tioner in (5.2) can be defined similarly for FDEs of arbitrary dimension, say d. Given
a d-index n, containing the level sizes of an arbitrary d-level Toeplitz Tn or circulant
matrix Cn, we summarize the computational and storage costs of various recursive
linear algebra operations in Table 5.1.

Table 5.1: Summary of computational and storage complexity

Structure Operation Computations Storage

d-level circulant Cnx O(N(n) logN(n)) O(N(n))
d-level circulant C−1

n x O(N(n) logN(n)) O(N(n))

d-level circulant C
(1)
n C

(2)
n O(N(n)) O(N(n))

d-level circulant C
(1)
n + C

(2)
n O(N(n)) O(N(n))

d-level Toeplitz Tnx O(2dN(n) logN(n)) O(2dN(n))
d-level circulant Construct Cd(Tn) O(N(n) logN(n)) O(N(n))

Using the definition of the matrices used to construct matrix Bn (see (4.5) and
(4.7)), we are now able to derive the generating function of this 3-level Toeplitz matrix.
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To that end, let us define the following scalars:

(5.3) ν1 =
ψ

hβ1
x

, ν2 =
ψ

hβ2
x

, ν3 =
ψ

hαt
,

which are obviously bounded above by 1, from the definition of ψ. Of course in order
for these to be theoretically meaningful, we have to assume that hαt ∝ hβ1

x ∝ hβ2
x .

Lemma 5.1. Let n = [nx1
, nx2

, nt] be a 3-index and define the matrix Dn as in
(4.9). Then, the symbol generating the matrix-sequence {Bn}n = {ψDn}n, can be
expressed as:

φβ1,β2,α(θ) = ν3

∞∑
k=0

gαk e
ikθ3−

∞∑
k=−1

(
−ν1

2 cos(β1π
2 )

(
gβ1

k+1(eikθ1 + e−ikθ1)
)

+
−ν2

2 cos(β2π
2 )

(
gβ2

k+1(eikθ2 + e−ikθ2)
))
,

(5.4)

where θ = [θ1, θ2, θ3], and gck is the fractional binomial coefficient, for some c ∈
(0, 1) ∪ (1, 2) and an arbitrary k ≥ 0. Thus, we can write Bn = Tn(φβ1,β2,α).

Proof. We omit the proof, which follows easily from the definition of the matrices
within Bn, that is using the definition of C α

n in (4.5) and L β
n in (4.7). The reader is

referred to [24, 46, 53], among others, for derivations of similar results. The alternative
representation of matrix Bn follows directly from Theorem 2.8.

To analyze the effectiveness of the proposed 3-level circulant preconditioner for
Bn, we prove that the trigonometric polynomial generating function of matrix Bn
belongs to the Wiener class (that is, it has absolutely summable coefficients).

Lemma 5.2. Assume that β1 and β2 are bounded away from 1. Then, the gener-
ating function φβ1,β2,α(θ) defined in (5.4) belongs to the Wiener class, that is:

φβ1,β2,α(θ) =
∑
k∈Z3

φke
i〈k,θ〉, such that

∑
k∈Z3

|φk| <∞.

Proof. For brevity of presentation, we provide an outline of the proof. Firstly, one
has to transform (5.4) to the form φβ1,β2,α(θ) =

∑
k∈Z3 φke

i〈k,θ〉, by matching the
coefficients of the associated trigonometric polynomials. By taking the absolute values
of the matched coefficients, applying the triangle inequality, and using the properties
of the fractional binomial coefficients, summarized in Proposition 4.1, we obtain:

∑
k∈Z3

|φk| ≤ ν3

∞∑
k=0

|gαk |+
∞∑

k=−1

(
ν1

| cos(β1π
2 )|
|gβ1

k+1|+
ν2

| cos(β2π
2 )|
|gβ2

k+1|
)

≤ (2ν3) · gα0 +

(
2ν1

| cos(β1π
2 )|

)
β1 +

(
2ν2

| cos(β2π
2 )|

)
β2.

The latter completes the proof.

Using the results presented in [10, 44, 45], we can derive the following Theorem, which
in fact shows that the 3-level circulant approximation of matrix Bn defined in (5.2)
is an a.c.s. for it.
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Theorem 5.3. Let Bn = ψDn where n = [nx1
, nx2

, nt], and C3(Bn) its circulant
approximation defined in (5.2). For every ε(m) > 0, such that ε(m)→ 0 as m→∞,
there exist constants Nx1

, Nx2
, Nt, such that for all nx1

> Nx1
, nx2

> Nx2
, nt > Nt:

Bn − C3(Bn) = Un,ε(m) + Vn,ε(m),

where

rank(Un,ε(m)) = O(nx2
nx1

+ nx1
nt + ntnx2

), ‖Vn,ε(m)‖2 < ε(m).

Proof. The proof is omitted since it follows exactly the developments in [45, The-
orem 3.2 and Theorem 4.1], with the only difference being that the Strang unilevel
circulant approximation is used there (for example see [12]) instead of the T. Chan
approximation. Notice that the authors in [45] assume invertibility of C3(Bn), using
which they prove a weak clustering result. Hence, to prove the result stated here, one
needs to follow only part of the proof outlined in [45, Theorem 3.2].

Remark 5.1. Following [45, Remark 4.1], assuming that d = O(1), we can recur-
sively extend the result of Theorem 5.3 to the d-level case, using induction. In other
words, the developments discussed in this paper can be extended trivially to higher
dimensional FDEs. As expected, the circulant approximation becomes weaker as the
dimension of the associated FDE is increased. In particular, the result in [67] shows
that in the general case, any multilevel circulant preconditioner for multilevel Toeplitz
matrices is not a superlinear preconditioner. Superlinear preconditioners are impor-
tant, in that they allow preconditioned Conjugate Gradient-like methods to converge in
a constant number of iterations, independently of the size of the problem. In general,
one could not hope of achieving a strong clustering when preconditioning multilevel
Toeplitz matrices using multilevel circulant preconditioners. In light of that, it comes
as no surprise that a preconditioner like the one in (5.2) does not asymptotically
capture all of the eigenvalues of the approximated multilevel Toeplitz matrix.

Remark 5.2. Let us now notice that a scaled identity approximation for the dis-
cretized objective Hessian matrix in (4.10) yields (trivially) a GLT sequence. Sim-
ilarly, the approximation C3(Bn) in (5.2) for the matrix Bn = ψDn, where Dn is
defined in (4.9), is also a GLT sequence (since it can be considered as a multilevel
Toeplitz matrix). In view of the previous, as well as Theorem 2.16 (condition (6.)),
we can see that the proposed approximations for the matrices associated to the dis-
cretized version of (4.2) satisfy the conditions of Proposition 3.2. Hence, we are able
to invoke Theorem 3.3 for the preconditioner in (3.10), which is constructed by using
the aforementioned multilevel circulant approximations. Thus, we are able to show
that the resulting preconditioned ADMM system matrix, corresponding to the normal
equations in (3.9), is weakly clustered at 1. Furthermore, by the same Theorem, we
expect convergence of PCG in a number of iterations independent of the grid-size.

6. Implementation Details and Numerical Results. In this section we dis-
cuss specific implementation details and present the numerical results obtained by
running the implementation of the proposed method over a variety of settings of the
FDE optimization problem.

6.1. Test problem and implementation details. We assess the performance
of the proposed method on the following test problem. We attempt to numerically
solve problem (4.2). The state and the control are defined on the domain Ω× (0, T ) =
(0, 1)2×(0, 1). For some n ∈ N, the discretized grid contains n×n×n uniform points,
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in space and time (i.e. we make use of the 3-index n = [n, n, n]), which yields:

xi1 = ihx, x
j
2 = jhx, t

k = kht, i, j = 1, . . . , n, k = 1, . . . , n, hx =
1

n+ 1
, ht = hx.

It is worth mentioning that the choice of the number of discretization points in time
should depend on the value of the fractional derivative orders. In particular, in the
theory we had to assume that hαt ∝ hβ1

x ∝ hβ2
x . Of course, this could be difficult to

satisfy for certain values of α, β1, and β2. In terms of discretization error, nt = n
suffices, as we employ first-order numerical schemes for the space and time fractional
derivatives. In what follows, we choose to use nt = n throughout all the experiments,
noting that for very large values of n, this should be adjusted to take into considera-
tion the values of the fractional derivative orders. Such an increase in the number of
discretization points in time, could potentially be tackled by the use of higher-order
numerical methods for the space fractional derivatives (see [22] and the references
therein for higher-order approximations for the Riemann–Liouville and Riesz frac-
tional derivatives). This is omitted for a future study.

As a desired state function, we set ȳ(x1, x2, t) = 10 cos(10x1) sin(x1x2)(1− e−5t),
as in [23, Section 5.1], with homogeneous boundary and initial conditions. Throughout
this section, we employ the convention that nx1

= nx2
= nt, and we only present the

overall size of the discretized state vector, that is N(n) = nx1
· nx2

· nt = n3
x1

. As
an indicator of convergence of the numerical method, we apply the trapezoidal rule
to roughly approximate the discrepancy between the solution for the state and the
desired state on the discrete level, i.e.:

EL2(y − ȳ) ≈ ‖y − ȳ‖L2 .

We should note that the previous measure approximates the misfit between the state
and the desired state of the continuous problem, and hence it is not expected to
converge to zero. Due to the Dirichlet boundary conditions, there is a mismatch
between y and ȳ on the boundary. Hence a refinement in the grid size is expected to
result in slight increase in the approximate discrepancy measure.

We implement a standard 2-Block ADMM for solving problems of the form of
(3.4). The implementation follows exactly the developments in Section 3. We solve
system (3.9) using the MATLAB function pcg. We note that while various potential
acceleration strategies for ADMMs have been studied in the literature (see for example
[5, 37]), the focus of the paper is to illustrate the viability of the proposed approach,
and hence the simplest possible ADMM scheme is adopted. The step-size of ADMM is
chosen to be close to the maximum allowed one in all computations, that is ρ = 1.618.
The termination criteria of the ADMM are summarized as follows:(
‖Bnyjn +ψ(ujn − gn)‖∞ ≤ 10−4

)
∧
(
‖yjn − zjyn‖∞ ≤ 10−4

)
∧
(
‖ujn − zjun

‖∞ ≤ 10−4
)
.

In order to avoid unnecessary computations, we do not require a specific tolerance
for the dual infeasibility. Instead, we report the dual infeasibility at the accepted
optimal point. The Krylov solver tolerance is set dynamically, based on the accuracy
attained at the respective ADMM iteration. In particular, the required tolerance for
the Krylov solver is set to:

In. Tol. = 0.05·max
{

min{‖Bnyjn+ψ(ujn−gn)‖∞, ‖yjn−zjyn‖∞, ‖u
j
n−zjun

‖∞}, 10−4
}
,

at every iteration j. Hence, we present the average number of inner iterations in
the results to follow. Furthermore, we employ the convention that the discretized
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restricting functions are of the form ybn = −yan = c · en (or ubn = −uan = c · en),
where en is the N(n)-dimensional vector of ones and c > 0. Thus, we present only
the value of the entries of yan (uan , respectively).

As we discussed earlier, the FDE constraints were scaled by the constant ψ, since
this was required from the theory (see Theorem 5.3). By doing this, we ensure that
the elements of the matrix Bn are of order 1 (assuming that hαt ∝ hβixi , for i = 1, 2).
As a result, the discretized control in the FDE constraints is multiplied by ψ. In
ADMM such a scaling translates to a scaled step of the dual variables corresponding
to the FDE constraints. In order to improve the balance of the algorithm, we multiply
by ψ the constraints linking un with its copy variables zun , thus scaling all the dual
multipliers corresponding to these constraints.

The penalty parameter of ADMM, δ, is chosen from a pool of five values which
deliver reasonably good behavior of the method. More specifically, for the experiments
to follow we choose δ ∈ {0.1, 0.4, 2, 10, 100}. We note here that one could tune this
parameter for each problem instance and obtain significantly better results. However,
as this is not practical, we restrict ourselves to a small set of possible values.

The experiments were conducted on a PC with a 2.2 GHz Intel (hexa-) core
i7 processor, run under the Windows 10 operating system. The code is written in
MATLAB R2019a.

6.2. Numerical Results. We distinguish three types of problems:
• Problems with box constraints on the state y,
• problems with box constraints on the control u, and
• problems with box constraints on both variables.

As expected and verified in practice, the third type of problem is the most difficult
one. Hence, we will focus our attention on problems with box constraints on both
variables, while presenting a few experiments on problems of the other two types.

Box constraints on the state y. Let us briefly focus on the case where the
state variable is required to stay in a box, while the control is free, that is ya ≤ y ≤
yb, −∞ ≤ u ≤ ∞. Using similar arguments as in [23, 29], we can see that an optimal
solution in this case is guaranteed to exist. We run the method for different inequality
bounds on the state y. The results are summarized in Table 6.1. All fixed parameters
are provided at the title of the respective Table.

Table 6.1: Inequalities on the state: Varying restriction bounds (with N = 503,
βx = βy = 1.3, α = 0.7, γ = 10−4, δ = 0.1).

ya EL2(y− ȳ) Dual Inf.
Iterations

Time (s)
PCG ADMM

−7 5.60 ×10−1(*)1 2.13 ×10−3 9 75 142.31
−5 5.80 ×10−1 3.14 ×10−3 10 105 206.73
−3 7.88 ×10−1 4.11 ×10−3 10 100 193.77
−1 1.38 ×100 8.74 ×10−4 10 86 173.49

Box constraints on the control u. We now focus on the case with −∞ ≤ y ≤
∞, ua ≤ u ≤ ub. Again, it is straightforward to show that such a problem admits an
optimal solution (see [29]). We run the method for different inequality bounds on the

1(*) means that the solution coincides with the equality constrained solution; all the variables
lie strictly within the restriction bounds.
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control u. The results are summarized in Table 6.2 (including all the values of the
parameters used to perform the experiment).

Table 6.2: Inequalities on the control: Varying restriction bounds (with N = 503,
βx = βy = 1.3, α = 0.7, γ = 10−4, δ = 0.4).

ua EL2(y− ȳ) Dual Inf.
Iterations

Time (s)
PCG ADMM

−400 5.60 ×10−1(*) 8.43 ×10−4 16 30 84.46
−300 5.65 ×10−1 8.79 ×10−4 19 22 72.77
−200 6.25 ×10−1 4.39 ×10−4 17 28 85.55
−100 8.90 ×10−1 1.49 ×10−4 18 65 205.69

Box constraints on both variables. Let us now consider the case where ya ≤
y ≤ yb, ua ≤ u ≤ ub. In general, in this case one is not able to conclude that the
problem admits an optimal solution. Thus, we run the method on instances for which
a solution is known to exist.

First, we present the runs of the method for different inequality bounds in Table
6.3. Next, we present the runs of the method for varying grid size in Table 6.4. As
one can observe in Table 6.4, the grid size does not affect the average number of inner
PCG iterations. This comes in line with our observations in Section 3. Nevertheless, it
is expected that ADMM requires more iterations as the size of the problem increases.
Furthermore, we can observe the first-order convergence of the numerical method, as
n is increased.

Table 6.3: Inequalities on both variables: Varying restriction bounds (with
βx = βy = 1.3, α = 0.7, γ = 10−4, δ = 0.4, N = 503).

ya ua EL2(y− ȳ) Dual Inf.
Iter.

Time (s)
PCG ADMM

−7 −400 5.60 ×10−1(*) 4.88 ×10−3 10 36 74.20
−7 −200 5.94 ×10−1 2.35 ×10−3 11 38 80.14
−4 −350 6.45 ×10−1 1.99 ×10−4 18 126 412.66
−1 −400 1.38 ×100 2.56 ×10−4 19 109 377.86

Table 6.4: Inequalities on both variables: Varying grid size (with βx = βy = 1.3,
α = 0.7, γ = 10−4, ya = −4, ua = −350).

N δ EL2(y− ȳ) Dual Inf.
Iter.

Time (s)
PCG ADMM

83 2 3.87 ×10−1 5.23 ×10−4 12 86 1.89
163 2 5.02 ×10−1 8.68 ×10−5 13 58 6.06
323 0.4 6.09 ×10−1 2.94 ×10−4 16 62 75.04
503 0.4 6.45 ×10−1 1.99 ×10−4 18 126 412.66
643 0.1 6.58 ×10−1 3.34 ×10−3 17 97 987.12
803 0.1 6.65 ×10−1 4.31 ×10−3 17 102 1,135.83

1003 0.1 6.70 ×10−1 4.91 ×10−3 17 119 2,436.17
1283 0.1 6.73 ×10−1 3.49 ×10−3 17 169 9,077.08

Subsequently, we run the method for various values of the fractional derivative
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orders. The results are summarized in Table 6.5. As one can observe, the constraint
matrix becomes ill-conditioned when β is close to 1, due to the scaling factor in the
definition of the Riesz derivative

(
that is, −1

2 cos( βπ2 )

)
. In turn, this results in an increase

of the PCG iterations in the case where β = 1.1.

Table 6.5: Inequalities on both variables: Varying fractional derivative orders (with
N = 324, ya = −4, ua = −350, γ = 10−4).

α β δ EL2(y− ȳ) Dual Inf.
Iter.

Time (s)
PCG ADMM

0.1 1.3 0.4 6.46 ×10−1 1.60 ×10−4 17 126 380.75
0.3 1.3 0.4 6.46 ×10−1 2.56 ×10−4 17 126 385.96
0.5 1.3 0.4 5.12 ×10−1 2.83 ×10−4 18 126 408.47
0.9 1.3 0.4 6.44 ×10−1 3.10 ×10−4 19 125 419.46
0.7 1.1 0.4 6.48 ×10−1 1.21 ×10−3 30 100 508.59
0.7 1.5 0.1 7.79 ×10−1 4.23 ×10−4 15 96 275.03
0.7 1.7 0.4 1.04 ×100 2.46 ×10−4 13 113 275.21
0.7 1.9 0.1 1.36 ×100 1.36 ×10−3 8 108 180.85

Finally, we present the runs of the method for various values of the regularization
parameter γ. We note at this point that as γ is changed, the solution of the equality
constrained problem is significantly altered. In light of this, we adjust the inequality
constraints of the problem for each value of γ, in order to ensure that the optimal
solution will lie strictly within the bounds. That way, we are able to compare the
convergence behavior of ADMM, for instances with different regularization values, γ.
The results are summarized in Table 6.6.

Table 6.6: Inequalities on both variables: Varying regularization (with N = 503,
α = 0.7, β = 1.3).

γ ya ua δ EL2(y− ȳ) Dual Inf.
Iter.

Time (s)
PCG ADMM

10−2 −2 −100 0.1 1.77 ×100(*) 1.38 ×10−3 11 87 190.99
10−4 −7 −400 0.4 5.60 ×10−1(*) 4.88 ×10−3 10 36 74.20
10−6 −9 −2, 800 10 1.28 ×10−1(*) 6.03 ×10−4 8 47 71.13
10−8 −9 −4, 000 100 1.13 ×10−1(*) 2.18 ×10−4 6 32 44.70

10−10 −9 −4, 000 100 1.13 ×10−1(*) 2.18 ×10−4 5 32 40.77

We can observe that the proposed approach is sufficiently robust with respect to
the problem parameters. The linear systems that have to be solved within ADMM
require a small number of PCG iterations for a wide range of parameter choices.
Furthermore, ADMM achieves convergence to a 4-digit accurate primal solution in a
reasonable number of iterations, making the method overall efficient. In light of the
generality of the approach (established in Section 3), the numerical results are very
promising, and we conjecture that the proposed method can be equally effective for
a very wide range of FDE optimization problems.

7. Conclusions. In this paper, we proposed the use of an Alternating Direction
Method of Multipliers, for the solution of a large class of PDE-constrained convex
quadratic optimization problems. Firstly, under some general assumptions, and by
using the theory of Generalized Locally Toeplitz sequences, we showed that the linear
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system arising at every ADMM iteration preserves the GLT structure of the PDE con-
straints. We then associated a symbol to the aforementioned linear system while pro-
viding and analyzing some alternatives for preconditioning it efficiently. Subsequently,
we focused on solving two-dimensional, time-dependent FDE-constrained optimiza-
tion problems, with box constraints on the state and/or control variables. Using
the Grünwald–Letnikov finite difference method, and by employing a discretize-then-
optimize approach, we solved the resulting problem in the discretized variables. Given
the underlying structure of such discretized problems, we designed a recursive linear
algebra based on FFTs, using which we solved the associated ADMM linear systems
through a Krylov subspace solver alongside a multilevel circulant preconditioner. We
demonstrated how one can restrict the storage requirements to order of N (where
N is the grid size), while requiring only O(N logN) operations for every iteration of
the Krylov solver. We further verified that the number of Krylov iterations required
at each ADMM iteration is independent of the grid size. As a proof of concept, we
implemented the method, and demonstrated its scalability, efficiency, and generality.

While the paper is focused on a special type of FDE optimization problems, we
have provided a suitable methodology that has a significantly wider range of applica-
bility. As a future research direction, we would like to employ the method, and the
associated preconditioners, to various extensions of the current model, by allowing
non-constant diffusion coefficients, employing higher-order discretization methods, or
by solving FDEs posed in higher space-time dimensions.
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