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Abstract. A rational link may be represented by any of the (infinitely) many link diagrams corre-
sponding to various continued fraction expansions of the same rational number. The continued fraction
expansion of the rational number in which all signs are the same is called a nonalternating form and
the diagram corresponding to it is a reduced alternating link diagram, which is minimum in terms of
the number of crossings in the diagram. Famous formulas exist in the literature for the braid index of
a rational link by Murasugi and for its HOMFLY polynomial by Lickorish and Millet, but these rely
on a special continued fraction expansion of the rational number in which all partial denominators are
even (called all-even form). In this paper we present an algorithmic way to transform a continued
fraction given in nonalternating form into the all-even form. Using this method we derive formulas
for the braid index and the HOMFLY polynomial of a rational link in terms of its reduced alternating
form, or equivalently the nonalternating form of the corresponding rational number.

1. Introduction

How to compute the braid index of rational links was first shown by Murasugi [13] more than 25
years ago. This computation became possible because of the discovery of the HOMFLY polynomial
H(a, z) [8, 14]. Using this polynomial one could derive the Morton-William-Frank inequality [7, 12]:

b(K) ≥ (E(K)− e(K))/2 + 1,

where K is a knot or link, b(K) is the braid index of K, E(K) is the maximal a-power of HK(a, z),
e(K) is the minimal a-power of HK(a, z), and HK(a, z) is the HOMFLY polynomial of the knot or
link K. In addition, we have an inequality given by Yamada [16]

b(K) ≤ s(DK),

where DK is any regular diagram of K and s(DK) is the number of Seifert circles in DK . In the case
that one can find a diagram D of a knot or link K such that s(D) = (E(D) − e(D))/2 + 1 holds, it
then follows that we must have s(D) = b(D).

When Murasugi [13] first established the braid index of rational links, he did so by using a special
diagram DK of the link K that relies on a particular continued fraction expansion using only even
integers which is usually highly non minimal. The same special expansion was used by Lickorish and
Millet [11, Proposition 14] to present a formula for the HOMFLY polynomial of a rational link. A
possible reason for representing rational links with such a special diagram is noted by Duzhin and
Shkolnikov [5] who observed that “due to the fact that all blocks are of even length, strands are
everywhere counter-directed.”
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Unfortunately, this special all-even expansion is not only highly non-minimal, but it also does not
exist if both integers in the fraction defining the rational link are odd, in which case one could not
apply this method directly and needs to use a diagram of the mirror image of K (which corresponds
to a different fraction in which one of the integers is even). Missing are formulas that are stated in
terms of minimal (alternating) diagrams or equivalently that can use any fraction of a rational link
(even those where both integers are odd).

A first effort in this direction was made by the authors in [4], which contains a formula for the
braid index of a rational link K, represented by a canonical minimal diagram D of K. The proof of
the formula is quite different from Murasugi’s approach, the formula itself is in fact just one of the
applications of a more general result in [4], which can be applied to compute the braid index of many
other knot and link families, including all alternating Montesinos links [4]. The more general validity
of the formula also makes it directly applicable to a rational link K (without using its mirror image)
even if the numerator and denominator of the corresponding rational number are both odd.

In this paper we take a completely different approach. We develop a general procedure which
transforms (when this is possible) a continued fraction representing an alternating link diagram into
a continued fraction whose partial denominators are all even. A continued fraction representing an
alternating link diagram is a continued fraction in which the signs of the partial denominators do not
alternate. We call these nonalternating continued fractions and we partition their partial denominators
into primitive blocks. The conversion into all-even form may be performed on these primitive blocks
essentially independently (except for some easily predictable propagation of signs). The details of
these purely arithmetic manipulations are given in Section 3. With this conversion at hand we have a
tool that allows us to transform Murasugi’s formula for the braid index [13] and the Lickorish-Millet
formula for the HOMFLY polynomial [11] directly. As explained in Section 4, the primitive blocks also
have the property that the crossing sings in an alternating rational link are constant within a block and
opposite in adjacent blocks. This observation allows us to phrase our formulas in terms of the crossing
signs in a manner that is similar to the main result in [4]. Our new braid index formula is presented in
Section 5 and a new HOMFLY polynomial formula is presented in Section 7. The connection between
our present braid index formula and the one derived in [4] is explained in Section 6.

The proofs of the results presented in this paper rely on representing the link diagram in all-even
form even if they are stated in terms of a minimal representation. Since taking the mirror image
does not change the braid index and changes the HOMFLY polynomial only to the extent of a simple
substitution a 7→ a−1, the formulas we find remain useful even in the case when the rational link
diagram has no all-even representation. It is an interesting question of future research to develop a
HOMFLY formula that is independent of the existence of the all-even representation and is comparable
in this sense to the braid index formula presented in [4].

2. Finite simple continued fractions

We define a finite simple continued fraction as an expression of the form

(2.1) [c0, . . . , cn] = c0 +
1

c1 +
1

c2 +
.. .

1

cn−1 +
1

cn

,
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where the partial denominators c0, . . . , cn are integers and cn 6= 0. If cn 6= 0, we can evaluate the
expression using algebra and we obtain a rational number p/q. Conversely, as it is well-known, every
rational number p/q may be written as a finite continued fraction in such a way, that only the first
partial denominator c0 may be zero or negative, all other partial denominators are positive. This
representation is unique up to the possibility of replacing [c0, . . . , cn−1, 1] with [c0, . . . , cn−1 + 1] or,
conversely, replacing [c0, . . . , cn] where cn > 1 with [c0, . . . , cn − 1, 1].

Equivalently, we may introduce

M(c) =

(
c 1
1 0

)
for each integer c, and then the following statement is easily shown by induction on n (cf. [3, p. 205]).

Proposition 2.1. If the integers c0, c1, . . . , cn satisfy cn 6= 0, then the value p/q of [c0, . . . , cn] (for
the integers p and q) is given by

(2.2)

(
p
q

)
= M(c0)M(c1) · · ·M(cn)

(
1
0

)
.

Using Equation (2.2) we may extend the definition of the evaluation [c0, c1, . . . , cn] to any finite
sequence c0, c1, . . . , cn of integers. We will set p/0 = ∞ when p 6= 0 and we will leave 0/0 undefined.
Note that, the determinant of M(c) is −1, regardless of the value of c, and so the vector given in
Equation (2.2) is never the null vector.

It is easy to verify directly that extending the evaluation of Equation (2.2) to all finite sequences
of integers amounts to adding the following rules to the evaluation of (2.1). We set

p

0
=∞ for p 6= 0 and

p

∞
= 0 all p.

A key equality whose variants we will be using is the following formula of Lagrange (see Lagrange’s
Appendix to Euler’s Algebra [6] cited in [9]),

(2.3) [a,−b] = a− 1

b
= a− 1− 1

1 + 1
b−1

= [a− 1, 1, b− 1].

A slightly generalized variant of (2.3) is the following.

Proposition 2.2. For δ ∈ {−1, 1}, any generalized finite simple continued fraction [c0, . . . , cn] satisfies

[c0, . . . , ci, . . . , cj , . . . , cn] = [c0, . . . , ci + δ,−δ, δ − ci+1,−ci+2, . . . ,−cj , . . . ,−cn].

This is a direct consequence of the equation

M(ci)M(ci+1)

(
p
q

)
= M(ci + δ)M(−δ)M(δ − ci+1)

(
δp
−δq

)
that holds for any pair of numbers (p, q). The direct verification is left to the reader.

In our applications most of the time we will be interested in finite simple continued fractions
satisfying c1 · · · cn 6= 0.

Definition 2.3. We call a finite simple continued fraction [c0, c1, . . . , cn] nonsingular if it satisfies
c1 · · · cn 6= 0, otherwise we call it singular.
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Applying Proposition 2.2 to a nonsingular [c0, c1, . . . , cn] results in a singular continued fraction
only if ci = −δ or ci+1 = δ. In all of these situations we may return to nonsingular finite continued
fractions by using the following rule.

Lemma 2.4. We have

[c0, c1, . . . , cj−1, 0, cj+1, . . . , cn] = [c0, c1, . . . , cj−1 + cj+1, . . . , cn].

This is a direct consequence of M(ci−1)M(0)M(ci+1) = M(ci−1 + ci+1). In the case when ci = −δ,
Proposition 2.2 yields

[c0, . . . , ci−1,−δ, ci+1 . . . , cj , . . . , cn] = [c0, . . . , ci−1, 0,−δ, δ − ci+1, . . . ,−cj , . . . ,−cn].

Combining this equation with Lemma 2.4 we obtain

[c0, . . . , ci−1,−δ, ci+1 . . . , cj , . . . , cn] = [c0, . . . , ci−1 − δ, δ − ci+1, . . . ,−cj , . . . ,−cn].

Using Proposition 2.2 and Lemma 2.4 we may transform any finite simple continued fractions in
one of the two standard forms as defined in Definition 2.5 below.

Definition 2.5. A finite simple continued fraction [c0, . . . , cn] is in nonalternating denominator form
if c1 · · · cn 6= 0, the integers c1, . . . , cn all have the same sign, and c0 is either zero or has the same sign
as all the other ci-s. On the other hand, a finite continued fraction [c0, . . . , cn] is in even denominator
form if c1 · · · cn 6= 0 and the integers c0, . . . , cn−1 are all even integers.

The following statement is a variant of the well-known uniqueness result on the standard continued
fraction expansion of a rational number.

Lemma 2.6. Every rational number p/q has a representation in the nonalternating denominator form.
This form is unique up to the possibility of replacing [c0, . . . , cn] with [c0, . . . , cn− 1, 1] when cn > 1 or
with [c0, . . . , cn + 1,−1] when cn < −1.

The nonalternating representations of a positive and a negative rational number of the same absolute
value are connected by the obvious equality [−c0, . . . ,−cn] = (−1) · [c0, . . . , cn].

The following statement is a generalization of the observation made in [5, Lemma 2]. Its proof is
essentially the same as that given in [5, Lemma 2].

Lemma 2.7. Every rational number p/q has a unique representation [c0, . . . , cn] as a finite continued
fraction in an even denominator form. The partial denominator cn is even if and only if the product
pq is even.

3. Converting the nonalternating denominator form into the even denominator form

Lemma 3.1. Assume there is an i such that three consecutive partial denominators ci, ci+1 and ci+2

in the nonsingular simple finite continued fraction [c0, . . . , cn] have the same sign as δ ∈ {−1, 1}. Then
the continued fraction, obtained from [c0, . . . , cn] by the following procedure, has the same evaluation
as [c0, . . . , cn]:

(1) Replace ci with ci + δ and ci+2 with ci+2 + δ.
(2) Replace ci+1 with |ci+1| − 1 copies of 2. (In particular, simply remove ci+1 if it is equal to δ).
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(3) Keep the sign of ci + δ and replace each subsequent sign in such a way that signs alternate up
to and including the changed copy of ci+2;

(4) Replace cj with (−1)|ci+1| · cj for each j > i+ 2.

Proof. We proceed by induction on |ci+1|. If ci+1 = δ then the statement may be obtained from
Proposition 2.2 using −δ and replacing [. . . ci, δ, ci+1 . . .] = [. . . ci, δ−δ, δ,−δ−ci+1,−ci+2 . . .] = [. . . ci+
δ,−δ − ci+1,−ci+2 . . .]. Assume the statement is true for |ci+1| = k and assume |ci+1| = k + 1. Let
δ = sign(ci+1). Applying Proposition 2.2 once yields

[. . . , ci, ci+1, ci+2, . . . , cj , . . . , cn] = [. . . , ci + δ,−δ, δ − ci+1,−ci+2, . . . ,−cj , . . . ,−cn].

Observe that in the resulting continued fraction, the consecutive partial denominators −δ, δ − ci+1,
−ci+2 all have the same sign as −δ and the absolute value of δ − ci+1 is k. Applying the induction
hypothesis to these three consecutive partial denominators we obtain that our continued fraction has
the same evaluation as

[. . . , ci + δ,−2 · δ, 2 · δ, . . . , (−1)k · 2 · δ, (−1)k+1(ci+2 + δ), . . . , (−1)k+1cj , . . . , (−1)k+1cn].

�

Proposition 3.2. Assume a simple continued fraction [c0, . . . , cn] contains a contiguous subsequence
cm, cm+1, . . . , cm+2k of partial denominators, satisfying the following conditions:

(1) the integers cm, cm+1, . . . , cm+2k all have the same sign δ;
(2) cm and cm+2k are odd;
(3) cm+2i is even for 1 ≤ i ≤ k − 1.

Then the continued fraction, obtained by the following transformation, has the same evaluation:

(1) replace cm with cm + δ and cm+2k with cm+2k + δ;
(2) for each i ∈ {1, . . . , k − 1} replace cm+2i with cm+2i + 2δ;
(3) for each i ∈ {1, . . . , k} replace cm+2i−1 with |cm+2i−1| − 1 copies of 2;
(4) keep the sign of cm + δ and replace each subsequent sign in such a way that signs alternate up

to and including the changed copy of cm+2k;
(5) for each j > m+ 2k + 1 we replace cj with (−1)|cm+1|+|cm+3|+···+|cm+2k−1| · cj.

Proof. To prove this we repeatedly use Lemma 3.1. We explain the principle using an example given
by the equality

[1, 2,3, 4,2, 1,6, 3,5, 3] = [1, 2,4,−2, 2,−2,4,−8, 2,−2,6, 3].

In this example, m = 2 and k = 3. To help keep track of the strings of entries inserted between
c2, c4, c6 and c8, these are marked in bold. We replace c3, c5 and c7 by alternating strings of 2’s. As a
first step we apply Lemma 3.1 to cm, cm+1, cm+2. Thus we obtain that our continued fraction has the
same evaluation as

[. . . , cm + δ,−2δ, 2δ, . . . , (−1)|cm+1|−12δ, (−1)|cm+1|(cm+2 + δ), . . . , (−1)|cm+1|cj , . . . , (−1)|cm+1|cn].

In our example

[1, 2,3, 4,2, 1,6, 3,5, 3] = [1, 2,4,−2, 2,−2,3, 1,6, 3,5, 3].

Next we apply Lemma 3.1 to (−1)|cm+1|(cm+2 + δ), (−1)|cm+1|cm+3, (−1)|cm+1|cm+4. This results in

replacing (−1)|cm+1|(cm+2 + δ) with (−1)|cm+1|(cm+2 + 2δ), (−1)|cm+1|cm+3 with a sequence of length
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|cm+3|−1 in which copies of 2 and −2 alternate, and (−1)|cm+1|cm+3 with (−1)|cm+1|+|cm+3|(cm+3 + δ).

All partial denominators after this one are multiplied by (−1)|cm+3|. In our example we obtain

[1, 2,3, 4,2, 1,6, 3,5, 3] = [1, 2,3,−2, 2,−2,4,−7,−3,−5,−3].

Note that c5 = 1 is replaced with an empty sequence. We continue in a similar fashion, ap-
plying Lemma 3.1 to the consecutive partial denominators (−1)|cm+1|+|cm+3|+···+|cm+2i−1|(cm+2i + δ),

(−1)|cm+1|+|cm+3|+···+|cm+2i−1|cm+2i+1 and (−1)|cm+1|+|cm+3|+···+|cm+2i−1|cm+2i+2 for i = 1, 2, . . . , k −
1. �

Definition 3.3. We say that a subsequence of consecutive partial denominators (cm, . . . , cm+2k) in a
nonsingular finite simple continued fraction [c0, . . . , cn] is a primitive block if it satisfies one of the
following criteria:

(1) k = 0 and cm is even;
(2) k ≥ 1 and (cm, . . . , cm+2k) satisfies the hypotheses in Proposition 3.2;
(3) k = 0, m = n and cn can be odd or even.

We say that a finite simple continued fraction [c0, c1, . . . , cn] has a primitive block decomposition if
the sequence of its partial denominators may be written as a concatenation of primitive blocks. We
will say a primitive block is trivial if k = 0, otherwise we say it is nontrivial. We will also call a type
(3) trivial primitive block exceptional.

Remark 3.4. A primitive block decomposition, if it exists, allows us to use Proposition 3.2 to rewrite
a continued fraction in even denominator form. Indeed, when we apply Proposition 3.2 to a nontrivial
primitive block (cm, . . . , cm+2k), the sign of each ci satisfying i < m remains unchanged, and all ci
satisfying i > 2m+ 1 get multiplied by the same power of (−1). Hence the other primitive blocks of
the continued fraction remain primitive blocks, whereas the nontrivial primitive block (cm, . . . , cm+2k)
is replaced by a concatenation of trivial primitive blocks. Applying Proposition 3.2 repeatedly we may
replace all nontrivial primitive blocks by a concatenation of trivial primitive blocks. These contain
even integers, except for the last one, if that primitive block is exceptional.

Example 3.5. The rational number 1402/1813 has the nonalternating simple continuous fraction
expansion [0, 1, 3, 2, 2, 3, 5, 1, 3]. This has the primitive block decomposition [0, 1, 3, 2, 2, 3; 5, 1, 3] (here
primitive blocks are separated by semi-colons). By Proposition 3.2, we have

[0, 1, 3, 2, 2, 3; 5, 1, 3] = [0, 2,−2, 2,−4, 2,−4;−5,−1,−3] = [0, 2,−2, 2,−4, 2,−4;−6, 4].

Proposition 3.6. If the primitive block decomposition of a finite simple continued fraction [c0, . . . , cn]
exists, then it is unique.

Proof. Let [c0, . . . , cn] be a finite simple continued fraction with a primitive block decomposition. We
show this primitive block decomposition is unique. The statement may be shown by induction on n.
For n = 0 the statement is obvious. For n > 0 the partial denominator c0 is in a trivial primitive block
by itself if and only if c0 is even. In that case we may apply the induction hypothesis to [c1, . . . , cn]. If
c0 is odd then it is contained in a nontrivial primitive block that begins with c0. By the definition of
a nontrivial primitive block, the right and of this block can be only at c2k where k is the least positive
integer i such that c2i is odd and of the same sign as c0. We may apply the induction hypothesis to
[c2k+1, . . . , cn]. �

Remark 3.7. The proof of Proposition 3.6 amounts to providing a recursively defined algorithm that
finds the unique primitive block decomposition given that such a decomposition exists. Assume that
[c0, . . . , cn] is a nonalternating simple continuous fraction expansion:
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(1) If c0 is even, put it into a trivial primitive block, and proceed recursively on [c1, . . . , cn].
(2) If c0 is odd and n = 0 then c0 is in an exceptional trivial primitive block.
(3) If c0 is odd and n > 0 then the nontrivial primitive block containing c0 ends at the first odd

c2k, and we proceed recursively on [c2k+1, . . . , cn].

Next we need to show that for a rational number p/q we can construct a primitive block decompo-
sition.

Theorem 3.8. Every nonzero rational number p/q may be written in two ways as a finite simple con-
tinued fraction in a nonalternating form. Exactly one of of these nonalternating forms has a primitive
block decomposition. This primitive block decomposition contains no exceptional trivial primitive block
if and only if pq is even.

Proof. The first sentence recalls Lemma 2.6. What we need to show is that exactly one of the nonal-
ternating forms has a primitive block decomposition. Note that, for p/q = 0 the only way to write it
in nonalternating form is p/q = [0] where 0 is a trivial primitive block.

From now on, without loss of generality, we may assume p/q > 0. Such a continued fraction can be
written in a nonalternating form in exactly two ways: as [c0, c1, . . . , cn] satisfying c0 ≥ 0, c1 · · · cn > 0
and cn > 1, or as [c0, c1, . . . , cn−1, cn − 1, 1].

Case 1: [c0, c1, . . . , cn] has a primitive block decomposition. By Proposition 3.6 this decomposition is
unique. We need to show that [c0, c1, . . . , cn−1, cn− 1, 1] cannot have a primitive block decomposition.
If cn is even then it is contained in a trivial primitive block by itself and [c0, c1, . . . , cn−1] has a
primitive block decomposition with no exceptional block at cn−1. Then the partial denominator cn−1
is an odd number that has to be the left end of a nontrivial primitive block, that has no right end
in [c0, c1, . . . , cn−1, cn − 1, 1]. If cn is odd then there are two choices. Either cn is the right end
of a block that is not exceptional or cn is an exceptional block. In either case the last block in
[c0, c1, . . . , cn−1, cn − 1, 1] does not have the correct format and [c0, c1, . . . , cn−1, cn − 1, 1] cannot have
a primitive block decomposition.

Case 2: [c0, c1, . . . , cn] has no primitive block decomposition. We need to show that [c0, c1, . . . , cn−1,
cn − 1, 1] has a primitive block decomposition. The algorithm described in Remark 3.7 applied to
[c0, c1, . . . , cn] finds an m < n such that [c0, . . . , cm−1] has a primitive block decomposition with
no exceptional trivial primitive block at the end, cm is odd but cm+2i is even for all m + 2i ≤ n.
If n − m is even, say n = m + 2k then cm, cm+1, . . . , cm+2k − 1 is a nontrivial primitive block in
[c0, . . . , cn−1, cn − 1, 1] and the last partial denominator 1 belongs to an exceptional trivial primitive
block. If n−m is odd, say n = m+ 2k + 1 then cm, cm+1, . . . , cm+2k+1 − 1, 1 is a nontrivial primitive
block in [c0, . . . , cn−1, cn − 1, 1].

So far we have shown that every rational number may be uniquely written into a nonalternating form
that has a primitive block decomposition. The second half of the statement is a direct consequence of
Lemma 2.7 and Remark 3.4. �

Example 3.9. As seen in Example 3.5, the nonalternating simple continuous fraction expansion of
1402/1813 is [0, 1, 3, 2, 2, 3, 5, 1, 3], which has the primitive block decomposition [0, 1, 3, 2, 2, 3; 5, 1, 3].
The other nonalternating simple continued fraction decomposition is [0, 1, 3, 2, 2, 3, 5, 1, 2, 1], which has
no primitive block decomposition: the algorithm described in Remark 3.7 would yield the blocks 0
and 1, 3, 2, 2, 3, and the block starting at 5 is incomplete.
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4. Transforming rational links into all-even form

We encode an unoriented rational link diagram by a continued fraction p/q = [0, a1, a2, . . . , an]
whose evaluation has absolute value at most one and satisfies a1 · · · an 6= 0, where the numbers
|a1|, . . . , |an| are the numbers of consecutive half-turn twists in the twistboxes B1, . . . , Bn following
the sign convention as shown in Figure 1 (without the orientation of the strands). We denote the link

−

a1

−a2
a3

−a2m
a2m+1

−a2

a1 a3

−a2m
+

Figure 1. Without the orientation: the sign convention used to define the standard
form of non-oriented rational links; With orientation: preferred standard form of ori-
ented rational links.

presented in this form by the symbol b(q, p) or by the vector (a1, a2, . . . , an), and call such a diagram
a standard diagram of the unoriented rational link. Notice that the left end of the diagram is fixed,
the closing on the right end depends on the parity of n. Our choice of twisting signs agrees with [1, 3],
but some articles use the mirror image [5]. Since the braid index is an invariant of oriented links,
we will need to consider the rational links with orientation. Once a rational link b(q, p) is given an
orientation, the crossings in it also have signs known as crossing sign in knot theory given by the
convention shown in Figure 2, which is not to be confused with the signs of the half-turn twists in
the twistboxes in Figure 1. In order to avoid this confusion, in the rest of this paper, we will call the

Figure 2. The crossing sign convention at a crossing in an oriented link diagram.

sign given in Figure 1 the twist sign and the sign given by Figure 2 the crossing sign (its usual name
in knot theory). We will denote the twist sign of the crossings in twistbox Bi (corresponding to ai
in b(q, p) = (a0, a1, ..., an)) by signt(ai) and denote the crossing sign of these crossings by ε(ai). Note
that the twist sign is given by the formula

(4.1) signt(ai) = (−1)i−1 sign(ai).

If there is a need to indicate the crossing sign and the twist sign of the crossings corresponding to
an ai entry in a twistbox simultaneously, then we will indicate the twist sign by placing a + or −
in front of the number ai and indicate the crossing sign by placing a superscript + or − to ai. An
example is given in Figure 3. Notice that in general, a rational link diagram in its standard form is
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not necessarily alternating. In fact, b(q, p) = (a0, a1, ..., an) is an alternating diagram if and only if
the continued fraction expansion [a0, a1, ..., an] is in nonalternating denominator form. From this it
follows that every rational link has an alternating link diagram, see [1, 3].

Figure 3. The crossing sign convention for crossings in an oriented link diagram: the
signs in front of the aj ’s indicate which strand is on top as indicated in Figure 1, while
the + or − in the superscript indicate the crossing sign given by Figure 2. Shown is
the example [0, 2−,−3+,−1−, 3+, 3+].

Since we are interested in the braid index and the HOMFLY polynomial of a rational link we need
to consider rational links as oriented links. The classification of these links can be found in [1] and is
due to Schubert [15].

Theorem 4.1. b(q, p) and b(q′, p′) are equivalent as oriented links if and only if q = q′ and p±1 ≡ p′

mod (2q), and are equivalent as unoriented links if and only if q = q′ and p±1 ≡ p′ mod (q).

Rational links are invertible and therefore we will orient the lowermost strand from the right to
the left (as indicated by solid arrows) without loss of generality. If the orientation of the top strand
at left side of the link diagram in its standard form is as shown in Figure 1 (indicated by the hollow

arrow), then we say that the link diagram is in a preferred standard form and we will denote by b̃(q, p)
the corresponding link b(q, p) if we want to emphasize that b(q, p) is given by diagram is in preferred
standard form. It is important to note that the braid index formula obtained in [13] (Proposition 5.2)
is based on preferred standard forms of rational links. As to the HOMFLY polynomial, the result of
Lickorish and Millett [11, Proposition 14] we use is stated in terms of the Conway notation [2], but
we rephrased it in Proposition 7.1 below as a statement on link diagrams in preferred standard form.

Theorem 4.1 needs some more explanation for oriented links. In the case that b(q, p) has two
components, we have two choices for the orientation of the second component (namely the one that
does not contain the bottom strand of the diagram), and one and only one such choice would produce

a preferred standard diagram b̃(q, p). By the procedure shown in Figure 4, we can convert any rational
link (or knot) that is not in preferred standard form to a preferred standard form representation: first
we fold up the part shown with a dashed line in the upper right corner and then we fold down the
entire diagram, applying a spatial 180 degree rotation that changes the twist sign of all crossings.
In Figure 4 the continued fraction representing the original link (disregarding the orientation) is
5/18 = [0, 3, 1, 1, 2], after the transformation we obtain the link represented by the continued fraction
−13/18 = [0,−1,−2,−1,−1,−2]. The second continued fraction is obtained from the first by replacing
3, the first nonzero partial denominator, with the sequence 1, 2 and then taking the negative of all
partial denominators. We note that p = −5 and p′ = −13 do not satisfy p±1 ≡ p′ mod (2q). We
resolve this problem by assuming that in the case of oriented rational links we are always given
the preferred standard form b̃(q, p) by a vector (a1, a2, . . . , an). That is the link b̃(18, 5) given by
5/18 = [0, 3, 1, 1, 2] must have the second component oriented differently than shown in Figure 4.

Given b̃(q, p) the other choice of orientation produces b̃(q,−(q − p)), which is usually a different link
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type than b̃(q, p) by Theorem 4.1. In the example of Figure 4 b̃(q,−(q − p)) = b̃(18,−13) is shown on
the bottom right.

This observation may be generalized as follows.

Lemma 4.2. If p/q = [0, c1, c2, . . . , cn] satisfies |c1| > 1 and c1 · · · cn 6= 0 then 1− p/q = (q − p)/q =

[0, sign(c1), c1 − sign(c1), c2, . . . , cn]. Moreover if b̃(q, p) is given by the vector (c1, c2, . . . , cn) then the

vector (sign(c1), c1 − sign(c1), c2, . . . , cn) gives the mirror image of b̃(q,−(q − p)).

Note that the operation p/q 7→ 1 − p/q is an involution and that the involution described in
Lemma 4.2 above is somewhat similar to the involution described in Lemma 2.6.

Figure 4. The procedure of changing a two component rational link in a non-preferred
standard form to a preferred standard form.

Define the sign of a twistbox Bi as the crossing sign of all crossings in it and denote it (by abuse
of notation) by ε(Bi). Under the assumption that b(q, p) is in a preferred standard form and that
ai > 0 for all i (hence ε(B1) = +1), we note that the signs of adjacent twistboxes are related by the
automaton shown in Figure 5. (If ai > 0 but ε(B1) = −1 then the diagram is not in a preferred

standard form and we would need to change to b̃(q, q − p).) Inspecting the signs of the crossings in
the states of the automaton, we obtain the following result.

−

o

ee o,e e

Start

oo

o,ee

o
+

− +

+

−

Figure 5. Automaton, parsing the signs of crossings in an alternating link. o and e
stand for an odd or even number of crossings in a twistbox respectively.

Theorem 4.3. Suppose b̃(q, p) is represented by a nonalternating continued fraction p/q = [0, a1,
. . . , an] that has a primitive block decomposition with no exceptional primitive block. Then twistboxes
associated with the same primitive block have the same sign, while the twistboxes associated with
adjacent primitive blocks have opposite signs.
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Proof. Let the diagram D be given by the vector (a1, . . . , an). (i) Let (a1, . . . , a1+2k) be the first
primitive block. Without loss of generality we may assume ai > 0 for all i, the case ai < 0 for all i is
completely analogous. This means that B1 is involving the middle two strings of the preferred standard
diagram as shown in top middle of Figure 5. If a1 is even then it is the only element of its primitive
block (k = 0) and ε(B2) = −1. The partial denominator a2 corresponds to the bottom center state of
Figure 5 and therefore ε(a2) = −1. If a1 is odd, then it is the first element of a nonsingleton primitive
block. We have ε(B2) = 1, a2 corresponds to the top right state in the automaton and ε(a2) = 1.
The subsequent partial denominators correspond to twistboxes filled with positive crossings, as long
as we oscillate between the top right and the bottom right states of Figure 5, and we reach the first
negative state exactly when we leave the bottom right state moving left. This corresponds exactly to
finishing the primitive block containing a1+2k with a1+2k) odd and ε(B2+2k) = −1 corresponds to the
bottom center state of Figure 5.

(ii) Let (am, . . . , am+2k) be the second primitive block starting at the bottom center state of Figure 5.
If am is even then it is the only element of its primitive block (k = 0) and ε(Bm+1) = 1. The partial
denominator am+1 corresponds to the top center state of Figure 5. If am is odd, then it is the first
element of a nonsingleton primitive block, we have ε(Bm+1) = −1 and am+1 corresponds to the
bottom left state in the automaton. The subsequent partial denominators will all label twistboxes
filled with negative crossings, as long as we oscillate between the bottom left and the top left states
of Figure 5, and we reach the first positive state exactly when we leave the top left state moving
right. This corresponds exactly to finishing the primitive block containing am+2k with am+2k) odd
and ε(Bm+2k+1) = 1 corresponds to the top center state of Figure 5.

The theorem follows by induction on the number of blocks. �

Theorem 4.4. Suppose b̃(q, p) is represented by a nonalternating continued fraction p/q = [0, a1, . . . ,
an] that has a primitive block decomposition with no exceptional primitive block. For each i ∈ {1, . . . , n}
define τ(i) by

τ(i) = i− 1− | {j ≤ i : ε(aj) 6= ε(aj−1) or j = 1 and a1 is even} | +
∑
j<i

ε(aj)=ε(aj−1)=(−1)j

(aj − 2).

Then the all-even continued fraction representation of p/q may be obtained by replacing each ai as
follows.

(1) If a1 is even, keep it, if it is odd, replace it with a1 + sign(a1).

(2) If ε(ai) 6= ε(ai−1) then replace ai with (−1)τ(i) ·ai if ai is even and with (−1)τ(i) ·(ai+sign(a1))
if ai is odd.

(3) If ε(ai) = ε(ai−1) = (−1)i−1 · sign(a1) then replace ai with (−1)τ(i) · (ai + sign(a1)) if ai is odd

and with (−1)τ(i) · (ai + 2 · sign(a1)) if ai is even.
(4) If ε(ai) = ε(ai−1) = (−1)i · sign(a1) then replace ai with the sequence

(−1)τ(i) · sign(a1) · 2, (−1)τ(i) · sign(a1) · (−2), . . . (−1)τ(i) · sign(a1) · (−1)|ai|−2 · 2

of length |ai| − 1.

Example 4.5. Using the example of Proposition 3.2 we have the link b̃(49654, 34651) given by
[0,+1+,+2+,+3+,+4−,+2+,+1−,+6−,+3−,+5+,+3+]. Applying the procedure given by Theo-
rem 4.4 we have sign(a1) = +1, τ(2) = 1, τ(3) = τ(4) = τ(5) = τ(6) = 2, τ(7) = 3, τ(8) = 8, τ(9) =
9, τ(10) = 9. This will result in the even denominator form [0, 2,−2, 4, 4, 2, 2,−2, 2,−2, 2,−2, 4, 6,−2,
2].
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Proof. The states of the automaton shown in Figure 5 indicate the position of each ai in its primitive
block: the two middle states correspond to a last element of a primitive block, the upper right and
lower left states correspond to ai being in an odd (but not last) position of a block of odd length,
the lower right and upper left states correspond to ai being in an even position in a block of odd
length. (We associate to each ai the state reached after reading ai.) These states are also identifiable
if we know the crossing signs in the twistboxes associated to ai−1 and ai and we also know the parity
of ai. The stated rules then follow from Proposition 3.2, after verifying that (−1)τ(i) sign(a1) is the
correct sign of the number (or first number in the sequence) obtained by transforming ai. Indeed, the
transformed numbers must be alternating in sign, except when the crossing sign of some aj is different
from the crossing sign of aj−1: in this case the first number obtained by transforming aj+1 must have
the same sign as the last number obtained by transforming aj .

�

5. The braid index of rational links

In this section we show how Theorem 4.3 may be used to derive the formula for the braid index
of an alternating rational link, given in [4], using the result of Murasugi [3, Proposition 10.4.3] which
allows one to compute the braid index of an oriented rational link K that has a preferred standard
form.

Definition 5.1. Let p/q be a rational number such that pq is even. Assume its unique even denomina-
tor form continued fraction expansion is [2d0, 2d1, . . . , 2dn]. We define the Cromwell-Murasugi index
of p/q to be the number

∑n
i=0 |di| − t+ 1 where t is the number of indices i such that didi+1 < 0.

In terms of the above definition, Murasugi’s result [3, Proposition 10.4.3] may be stated as follows.

Proposition 5.2. If an oriented rational link K has a preferred standard form b̃(q, p), then its braid
index is given by the Cromwell-Murasugi index of p/q, as defined in Definition 5.1.

The next theorem shows how to compute the braid index of a rational link K that has a preferred
standard form, using the unique continued fraction expansion that corresponds to a an alternating
link and has a primitive block decomposition.

Theorem 5.3. Suppose p/q is a rational number such that pq is even. Let [c0, . . . , cn] be the unique
nonalternating continued fraction expansion of p/q that has a primitive block decomposition. Then the
Cromwell-Murasugi index of p/q may be computed by adding 1 to the sum of all |ci|/2 such that ci is
in an odd position in the primitive block containing it.

Proof. Consider a primitive block [cm, cm+1, . . . , cm+2k]. After transforming the preceding primitive
blocks into even denominator form, this block turns into [cm · δ, cm+1 · δ, . . . , cm+2k · δ] for some
δ ∈ {−1,+1}. Note that no sign change occurs between blocks. We use the procedure described in
Lemma 3.1 to transform this block into even denominator form. For each i ∈ {1, . . . , k}, the partial
denominator cm+2i−1 · δ is replaced with a sequence of 2’s of length |cm+2i−1| − 1. Hence the total
length of 2k + 1 of the primitive block is increased to

2k + 1 +

k∑
i=1

(|cm+2i−1| − 2) = 1 +

k∑
i=1

|cm+2i−1|.
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Since signs in the transformed block alternate, the total number of sign changes in the transformed

block is
∑k

i=1 |cm+2i−1|. The sum of the halves of the absolute values of the partial denominators in
the transformed block is

1

2

(
(|cm|+ 1) + (|cm+2k|+ 1) +

k−1∑
i=1

(|cm+2i|+ 2) + 2

k∑
i=1

(|cm+2i−1| − 1)

)

=
1

2

k∑
i=0

|cm+2i|+
k∑
i=1

|cm+2i−1|.

Subtracting the number of sign changes yields

(
k∑
i=0
|cm+2i|

)
/2. �

Example 5.4. As seen in Example 3.5, the rational number 1402/1813 has the nonalternating sim-
ple continued fraction expansion [0, 1, 3, 2, 2, 3; 5, 1, 3] that has a primitive block decomposition. By
Theorem 5.3, the Cromwell-Murasugi index of 1402/1813 is

1 +
1 + 2 + 3

2
+

5 + 3

2
= 8.

We have also seen in Example 3.5 that the continued fraction expansion of 1402/1813 is
[0, 2,−2, 2,−4, 2,−4;−6, 4]. By definition, the Cromwell-Murasugi index of 1402/1813 is

(0 + 1 + 1 + 1 + 2 + 1 + 2 + 3 + 2)− 6 + 1 = 13− 6 + 1 = 8.

If b(q, p) is not in the preferred standard form, then the above theorem cannot be applied to the
diagram b(q, p) directly. That is, in order to use Murasugi’s formula to calculate the braid index of

b(q, p), we have to apply the formula to b̃(q,−(q−p)) (or b̃(q, q−p) since b̃(q, q−p) is the mirror image

of b̃(q,−(q − p)) and has the same braid index). For example b(4, 1) = [0, 4] (a (4, 2) torus link) with

the orientation given in Figure 1 yields the link b̃(4, 1), which has linking number 2 and braid index 3.
If we reorient the top component in b(4, 1), and change it to the preferred standard form as shown by

the procedure illustrated in Figure 4, then it becomes b̃(4,−3) = [0,−1,−3], which has linking number

−2 and braid index 2. Passing to its mirror image b̃(4, 3) = [0, 1, 3] will lead us to the same braid
index 2, although it changes its linking number to 2. When the rational link is a knot (that is, a link
with one component), the orientation of the knot is completely determined by the orientation of the
bottom strand and the knot diagram may or may not be in a preferred standard form. Specifically,
b(q, p) is in a preferred standard form if and only if p is even (q is odd since b(q, p) is a knot). Thus,

if pq is odd, then b̃(q, p) does not exist and one needs to use the same procedure shown in Figure 4 to

change it to b̃(q, p− q) in order to apply Murasugi’s formula. We now establish an alternative method
to compute the Cromwell-Murasugi index, using only facts about different ways to expand a rational
number into continued fractions.

Theorem 5.5. Assume that a rational link K has a preferred standard form diagram that is repre-
sented by the alternating continued fraction p/q = [0, a1, . . . , an] where all ai > 0, then the braid index

of K = b̃(q, p) is given by

(5.1) b(K) = 1 +
1

2

 ∑
j≥0,ε(B2j+1)=ε(B1)

a2j+1 +
∑

j≥1,ε(B2j)=−ε(B1)

a2j

+ c(p/q, n).

Here the correction term c(p/q, n) is given by

c(p/q, n) =

{
0 if n is odd and ε(Bn) = ε(B1), or n is even and ε(Bn) = − sign(B1);

1/2 if n is odd and ε(Bn) = −ε(B1), or n is even and ε(Bn) = sign(B1).
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Remark 5.6. Since K is in a preferred standard form, it is necessary that pq is even. It is important
that we apply the theorem to the preferred standard form only. For example for the knot 1037 =
b(53, 30) = b(53, 23), 30/53 = [0, 1+, 1+, 3+, 3−, 2−] is in the preferred standard form while 23/53 =
[0, 2−, 3−, 3+, 2+] is not. Consequently, if we apply Theorem 5.5 to 30/53 = [0, 1+, 1+, 3+, 3−, 2−] we
obtain the correct braid index of five, however if we use 23/53 = [0, 2−, 3−, 3+, 2+] then the formula
in Theorem 5.5 yields an incorrect braid index of three.

Proof. Since pq is even, it has a unique nonalternating continued fraction expansion that has primitive
block decomposition, and this primitive block decomposition contains no exceptional primitive block
by Theorem 3.8.

Case 1: [0, a1, . . . , an] is the nonalternating continued fraction expansion of p/q that has a primitive
block decomposition. By Theorem 4.3, the signs of all crossings are the same in all twistboxes labeled
by partial denominators associated to the same primitive block, and they are opposite for crossings in
twistboxes associated to adjacent primitive blocks.

By Theorem 5.3, computing the braid index of K is one more than the sum of all ai/2 such that
ai is in an odd position in the block containing it. For the block containing a1 this formula calls for
summing over all odd indices i in the block. In the next block, the sign of the crossings is opposite and
the entries ai are the even indexed entries. Since all primitive blocks have an odd number of entries,
the same pattern continues all the way: we have to take the sum of all a2i+1/2 such that the sign of
the crossings in twistbox number 2i+1 is the same as the sign of the crossings in the twistbox number
1, and we have to add the sum of all a2i/2 such that the sign of the crossings in the twistbox number
2i is the opposite of the sign of the crossings in the twistbox number 1. In this case, we want the
correcting term c(p/q, n) to equal zero. The sign of all crossings in twistbox number n is the same as
the sign of all crossings in the first twistbox exactly when the number of primitive blocks containing
a1, . . . , an is odd, which is equivalent to n being odd.

Case 2: [0, a1, . . . , an] is the other nonalternating continued fraction expansion of p/q, the one that has
no primitive block decomposition. As seen in the proof of Theorem 5.3, the nonalternating continued
fraction expansion of p/q that has a primitive block expansion is [0, a1, . . . , an−1, an − 1, 1] if an > 1
and it is [0, a1, . . . , an−2, an−1 + 1] if an = 1.

Subcase 2a: We assume an > 1. In this case the primitive block decomposition of [0, a1, . . . , an−1, an−
1, 1] ends with a nontrivial block containing an+1 := 1 (by Theorem 5.3) and the sign of the crossing
in twistbox number n + 1 is the same as the sign of all crossings in twistbox number n. This sign is
the same as ε(B1) = ε(Bn) if n + 1 is odd, and it is −ε(B1) = ε(Bn) if n + 1 is even. So the partial
denominator an+1 = 1 contributes 1/2 to the braid index. This is the only term not included in the
sum

1 +
1

2

 ∑
j≥0,ε(B2j+1)=ε(B1)

a2j+1 +
∑

j≥1,ε(B2j)=−ε(B1)

a2j


computed using [0, a1, . . . , an]. Note that for [0, a1, . . . , an] or for [0, a1, . . . , an − 1, 1] the term an/2
or (an− 1)/2 does not appear in our formula. The correct braid index is thus obtained by adding the
correcting term c(p/q, n) = 1/2 to the contribution of the ais.

Subcase 2b: We have an = 1. In this case [0, a1, . . . , an−2, an−1 + 1] has a primitive block decompo-
sition. We either have that ε(B1) = ε(Bn−1) and n − 1 is odd, or that ε(B1) = −ε(Bn−1) and n − 1
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is even. Hence an/2 in not included in the sum

1 +
1

2

 ∑
j≥0,ε(B2j+1)=ε(B1)

a2j+1 +
∑

j≥1,ε(B2j)=−ε(B1)

a2j


and the contribution an−1/2 needs to be increased by 1/2 to obtain the correct braid index. �

Remark 5.7. The formula of Theorem 5.5 is invariant under a change to a mirror image. If
we compare two mirror image rational link diagrams given by the vectors [0, a1, a2, . . . , an] and
[0,−a1,−a2, . . . ,−an] then all signs ε(Bi) change but this has no effect on the result in the formula
of Theorem 5.5.

6. Connecting our braid index formulas

Let us now present the formula derived in [4], starting with the convention used there. Let p, q
be a pair of positive and co-prime integers such that q > p and consider the minimal (alternating)
link diagram obtained from the expansion p/q = [0, a1, a2, . . . , an] with positive entries a1 · · · an 6= 0.
The “standard form” adopted in [4] is similar to the link diagram given in Figure 1 with the following
differences: (i) it is based on an expansion p/q = [0, a1, a2, . . . , an] with positive entries a1 · · · an 6= 0;
(ii) it is required that n = 2k+1 be odd: this can always be done since if n is even then it is necessary
that an > 1 and we can move to p/q = [0, a1, . . . , an − 1, 1]; (iii) the orientation of the bottom left
strand is from right to left, but there is no restriction on the orientation of the top left strand; (iv) it
is required that signt(a1) = −1 (equivalently one could also require that signt(a1) = +1 instead). We
will call an oriented rational link diagram in this form the alternative standard form to distinguish it
from the previously defined preferred standard form, and denote it by b̄(q, p). Define bi = ε(ai)ai, and
(b1, b2, ..., b2k+1) is called the signed vector of the rational link b̄(q, p). Under these assumptions the
authors proved the following theorem in [4]:

Theorem 6.1. Let K = b̄(q, p) be a rational link diagram in an alternative standard form with signed
vector (b1, b2, ..., b2k+1), then the braid index of K is given by

(6.1) b(K) = 1 +
2 + ε(b1) + ε(b2k+1)

4
+

∑
b2j>0,1≤j≤k

b2j
2

+
∑

b2j+1<0,0≤j≤k

|b2j+1|
2

Remark 6.2. If signt(a1) = +1 is used in the definition of the alternative standard form then the
formula in Theorem 6.1 becomes

(6.2) b(K) = 1 +
2− ε(b1)− ε(b2k+1)

4
+

∑
b2j<0,1≤j≤k

|b2j |
2

+
∑

b2j+1>0,0≤j≤k

b2j+1

2
.

Theorem 6.3. For an oriented rational link K = b(q, p) with pq even, the braid index computed from

a diagram in a preferred standard form b̃(q, p) is equal to the braid index computed from a diagram in
an alternative standard form b̄(q, p), i.e., the formulation of the braid index of K given by Theorem 6.1
is equivalent to the Cromwell-Murasugi index given by Theorem 5.5.

Proof. Without loss of generality assume that signt(a1) = −1 is used in the definition of the alternative
standard form and formula (6.1) is used. Since the diagram is also in a preferred standard form, it

implies that K = b̄(q, p) = b̃(q,−p) = (0;−a1, . . . ,−an), hence ε(B1) = −1 = ε(b1). Thus the formula



16 YUANAN DIAO†, CLAUS ERNST∗ AND GABOR HETYEI†

of Theorem 5.5 looks like

b(K) = 1 +
1

2

 ∑
j≥0,ε(B2j+1)=−1

a2j+1 +
∑

j≥1,ε(B2j)=1

a2j

+ c(p/q, n).

Case 1: n = 2k + 1. If ε(B1) = ε(B2k+1) then ε(b1) = ε(b2k+1) = −1 and c(p/q, n) = 0 =
2+ε(b1)+ε(b2k+1)

4 . If ε(B1) 6= ε(B2k+1) then ε(b1) + ε(b2k+1) = 0 and c(p/q, n) = 1/2 =
2+ε(b1)+ε(b2k+1)

4 .
Moreover

1

2

 ∑
j≥0,ε(B2j+1)=−1

a2j+1 +
∑

j≥1,ε(B2j)=1

a2j

 =
∑

b2j+1<0,0≤j≤k

|b2j+1|
2

+
∑

b2j>0,1≤j≤k

b2j
2
,

and we have equality between Theorems 5.5 and 6.1.

Case 2: n = 2k. In this case it is necessary that a2k > 1 and b̄(q, p) = (0, a1, a2, ..., a2k − 1, 1).
Furthermore, b2k = ε(a2k)(a2k − 1), a2k+1 = 1 and ε(a2k+1) = ε(a2k) as one can easily check. So
formula (6.1) becomes

1 +
1

2
+

∑
b2j>0,1≤j≤k

a2j
2

+
∑

b2j+1<0,0≤j≤k−1

a2j+1

2

if ε(a2k) = −1 and

1 +
∑

b2j>0,1≤j≤k

a2j
2

+
∑

b2j+1<0,0≤j≤k−1

a2j+1

2

if ε(a2k) = +1. On the other hand, we have b̃(q,−p) = (0,−a1,−a2, ...,−a2k). If −1 = ε(B1) 6= ε(B2k),
then c(p/q, 2k) = 0 and (5.1) becomes

b(K) = 1 +
1

2

 ∑
j≥0,ε(B2j+1)=−1

a2j+1 +
∑

j≥1,ε(B2j)=+1

a2j


= 1 +

∑
b2j>0,1≤j≤k

a2j
2

+
∑

b2j+1<0,0≤j≤k−1

a2j+1

2
.

If −1 = ε(B1) = ε(B2k) then c(p/q, 2k) = 1/2 and (5.1) becomes

b(K) = 1 +
1

2
+

1

2

 ∑
j≥0,ε(B2j+1)=−1

a2j+1 +
∑

j≥1,ε(B2j)=+1

a2j


= 1 +

1

2
+

∑
b2j>0,1≤j≤k

a2j
2

+
∑

b2j+1<0,0≤j≤k−1

a2j+1

2
.

Thus we have equality between Theorems 5.5 and 6.1. �

Theorem 6.3 settles the case when b(q, p) has a preferred standard rational link diagram. What if
b(q, p) does not have a preferred standard rational link diagram? Since Theorem 5.5 cannot be applied
directly to it, we cannot compare the formula (6.1) obtained directly from b̄(q, p) with formula (5.1).
However, recall that if b̄(q, p) is not in the preferred standard form, then its mirror image can be

deformed into a preferred standard form b̃(q, q− p) which is also in an alternative standard form (one
may have to adjust an to create a signed vector of odd length), by the procedure illustrated in Figure 4.
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In the following we show that there is an elementary proof showing that the braid index formula (6.1)
based on the diagram b̄(q, p) is the same as the one based on the diagram b̄(q, q − p).

Let (b1, b2, ..., b2k+1) be the signed vector of b(q, p) in its alternate standard form. The signed vector
(c1, c2, ..., c2k′+1) of b(q, q−p) depends on the values of b1 and b2k+1 and is given in the following cases:

−
(
ε(b1), (ε(b1)(|b1| − 1), b2, ..., b2k, (ε(b2k+1)(|b2k+1| − 1), ε(b2k+1)

)
, |b1| > 1, |b2k+1| > 1;

−
(
(ε(b2)(|b2|+ 1), b3, ..., b2k, (ε(b2k+1)(|b2k+1| − 1), ε(b2k+1)

)
, |b1| = 1, |b2k+1| > 1;

−
(
(ε(b1), (ε(b1)(|b1| − 1), b2, ..., b2k−1, (ε(b2k)(|b2k|+ 1)

)
, |b1| > 1, |b2k+1| = 1;

−
(
(ε(b2)(|b2|+ 1), b3, ..., b2k−1, (ε(b2k)(|b2k|+ 1)

)
, |b1| = 1, |b2k+1| = 1.

By (6.1), we have

(6.3) b(b(q, p)) = 1 +
2 + ε(b1) + ε(b2k+1)

4
+

∑
b2j>0,1≤j≤k

b2j
2

+
∑

b2j+1<0,0≤j≤k

|b2j+1|
2

.

On the other hand, one can verify that applying (6.1) to the signed vector (c1, c2, ..., c2k′+1) for b(q, q−p)
as listed above yields exactly the braid index. We will verify the case when |b1| > 1 and |b2k+1| > 1,
and leave the other cases to the reader. Notice that if we denote the signed vector of b(q, q − p) by
(c1, c2, ..., c2k+3), then we have c1 = −ε(b1), c2 = −ε(b1)(|b1| − 1), cm = −bm−1 for 3 ≤ m ≤ 2k + 1,
c2k+2 = −ε(b2k+1)(|b2k+1| − 1), c2k+3 = −ε(b2k+1). By (6.1) we have

b(b(q, q − p)) = 1 +
2 + ε(c1) + ε(c2k+3)

4
+

∑
c2j>0,1≤j≤k+1

c2j
2

+
∑

c2j+1<0,0≤j≤k+1

|c2j+1|
2

= 1 +
2− ε(b1)− ε(b2k+1)

4
+

∑
b2j+1<0,1≤j≤k−1

|b2j+1|
2

+
∑

b2j>0,2≤j≤k

b2j
2

+ ∆(c1) + ∆(c2) + ∆(c2k+2) + ∆(c2k+3),(6.4)

where ∆(ci) is the contribution of the crossings corresponding to ci (i = 1, 2, 2k + 2, 2k + 3). There
are four cases to verify: (i) b1 > 1, b2k+1 > 1; (ii) b1 > 1, b2k+1 < −1; (iii) b1 < −1, b2k+1 > 1; (iv)
b1 < −1, b2k+1 < −1.

(i) c1 = −1, c2 = −(b1 − 1) < 0, c2k+3 = −1 and c2k+2 = −(b2k+1 − 1) < 0. It follows that
∆(c1) = 1/2 = 2ε(b1)/4, ∆(c2) = 0, ∆(c2k+2) = 0 and ∆(c2k+3) = 1/2 = 2ε(b2k+1)/4, thus the
summation in (6.4) equals the summation in (6.3).

(ii) c1 = −1, c2 = −(b1 − 1) < 0, c2k+3 = 1 and c2k+2 = (|b2k+1| − 1) > 0. It follows that ∆(c1) =
1/2 = 2ε(b1)/4, ∆(c2) = 0, ∆(c2k+2) = (|b2k+1| − 1)/2 = |b2k+1|/2 − 1/2 = |b2k+1|/2 + 2ε(b2k+1)/4
and ∆(c2k+3) = 0, thus the summation in (6.4) also equals the summation in (6.3).

(iii) and (iv) are similar and left to the reader.

This proves the following:

Theorem 6.4. Assume that p/q = [0, a1, . . . , an] and b(q, p) does not have a preferred standard form.
Then the formulation of the braid index of b̄(q, p) given by Theorem 6.1 is equivalent to the Cromwell-
Murasugi index given in Theorem 5.5 applied to mirror image b̄(q, q − p).

Thus we have established the equivalence of the braid index formulations given by Theorem 6.1 and
Theorem 5.5 respectively, through completely elementary arguments.



18 YUANAN DIAO†, CLAUS ERNST∗ AND GABOR HETYEI†

We conclude this section with presenting an extended example of a rational link with two compo-
nents to illustrate the various ways to compute the braid index of a rational link, depending on how
the link is represented.

Figure 6. The two bridge link b̄(17426, 5075) = (0, 3, 2, 3, 3, 1, 2, 3, 4, 4) in an alter-
native standard form with signed vector (3, 2, 3, 3,−1,−2,−3, 4,−4). Notice that it is
not in a preferred standard form.

Example 6.5. Consider the rational link given in Figure 6, which is in an alternative standard form
with signed vector (3, 2, 3, 3,−1,−2,−3, 4,−4), but not in a preferred standard form. By Theorem 6.1,
we have

b(K) = 1 + (2 + ε(b1) + ε(b2k+1))/4 +
∑

b2j>0,1≤j≤k
b2j/2 +

∑
b2j+1<0,0≤j≤k

|b2j+1|/2

= 1 + 1/2 + (2 + 3 + 4)/2 + (1 + 3 + 4)/2 = 10.

Notice that we cannot apply Theorem 5.5 to b̄(17426, 5075) since it is not in a preferred standard form,
but we can deform it to b̄(17426,−12351) with vector (−1,−2,−2,−3,−3,−1,−2,−3,−4,−3,−1)

and signt(a1) = +1. The diagram given by this is in preferred standard form b̃(17426, 12351) with
12351/17426 = [0, 1+, 2+, 2+, 3+, 3+, 1−, 2−, 3−, 4+, 4−]. By Theorem 5.5 we have

b(K) = 1 + c(p/q, n) +
1

2

 ∑
j≥0,ε(B2j+1)=ε(B1)

a2j+1 +
∑

j≥1,ε(B2j)=−ε(B1)

a2j


= 1 + 0 + (1 + 2 + 3 + 4)/2 + (1 + 3 + 4)/2 = 10.

The mirror image K of b̄(17426, 5075) is also in an alternative standard form with signed vector
(−1,−2,−2,−3,−3, 1, 2, 3,−4, 3, 1). By Theorem 6.1 we have:

b(K) = 1 + (2 + ε(b1) + ε(b2k+1))/4 +
∑

b2j>0,1≤j≤k
b2j/2 +

∑
b2j+1<0,0≤j≤k

|b2j+1|/2

= 1 + 1/2 + (1 + 3 + 3)/2 + (1 + 2 + 3 + 4)/2 = 10.

We also have 12351/17426 = [0,−2, 2,−2, 6,−2, 2,−4, 4, 4,−2, 4] and the Cromwell-Murasugi index
as in Definition 5.1 is given by 16− 7 + 1 = 10. Finally, 12351/17426 = [0, 1, 2, 2, 3, 3, 1, 2, 3, 4, 4] has a
primitive block decomposition with no nontrivial primitive block as follows: [0,1, 2,2, 3,3; 1, 2,3; 4; 4]
By Theorem 5.3, the Cromwell-Murasugi index of 12351/17426 is b(K) = (1+2+3+1+3+4+4)/2+1 =
10.

If we reverse the orientation of one of the components in b̄(17426, 5075) given in Figure 6, then we

obtain a link diagram that is in a preferred standard form K ′ = b̃(17426, 5075) which is also in an
alternative standard form, but with a different signed vector (−3,−2,−3, 3, 1, 2, 3, 4, 4). The braid
index of K ′ can be computed both by the formula in Theorem 6.1 and by the formula in Theorem 5.5:

b(K ′) = 1 + (2 + ε(b1) + ε(b2k+1))/4 +
∑

b2j>0,1≤j≤k
b2j/2 +

∑
b2j+1<0,0≤j≤k

|b2j+1|/2

= 1 + 1/2 + (3 + 2 + 4)/2 + (3 + 3)/2 = 9

= 1 + c(p/q, n) +
∑

j≥0,ε(B2j+1)=ε(B1)

a2j+1/2 +
∑

j≥1,ε(B2j)=−ε(B1)

a2j/2.
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On the other hand, we have 5075/17426 = [0, 4,−2, 4, 4,−4, 2,−2, 6,−2, 2,−2] and the Cromwell-
Murasugi index as in Definition 5.1 gives 17 − 9 + 1 = 9. Notice that although 5075/17426 =
[0, 3, 2, 3, 3, 1, 2, 3, 4, 4] has no primitive block decomposition, 5075/17426 = [0, 3, 2, 3, 3, 1, 2, 3, 4, 3, 1]
does have a primitive block decomposition with no nontrivial primitive block: [0,3, 2,3; 3, 1,2, 3,4, 3,
1]. By Theorem 5.3, the Cromwell-Murasugi index of 5075/17426 is b(K) = (3+3+3+2+4+1)/2+1 =
9.

7. The HOMFLY Polynomial of alternating rational links

In this section we derive a formula for the HOMFLY polynomial of an alternating link. We will rely
on a result of Lickorish and Millett [11, Proposition 14] about the HOMFLY polynomial of a rational
link whose continued fraction is represented in the all-even form. Note that they use the parameters
l and µ which are linked to the parameters a and z we use below by the formulas

l = i · a and µ =
a2 − 1

az
.

Using the matrices

(7.1) M(2r) =

(
(1− (−1)rl−2r)µ−1 (−1)rl−2r

1 0

)
=

(
(1−a−2r)az

a2−1 a−2r

1 0

)
for all even integers, they state the following theorem.

Proposition 7.1 (Lickorish–Millett). Let K be a rational knot or link, represented by the continued
fraction [0, c1, . . . , cn] where the ci are even integers. Then the HOMFLY polynomial P(K) is given
by

(7.2) P(K) =
(
1 0

)
M((−1)ncn)M((−1)n−1cn−1) · · ·M(c2)M(−c1)

(
1

a2−1
az

)
Remark 7.2. Lickorish and Millett [11] represent rational knots and links by continued fractions of
the form [cn, . . . , c1] instead of our [0, c1, . . . , cn]. To account for this change we reversed the order of

indices in their formula. They also introduce the conjugate M(2r) of M(2r) obtained by interchanging
l = i · z and l−1 = −iz−1. Note however, that interchanging l and l−1 in (7.1) takes M(2r) into

M(−2r): the parity of r is the same as that of −r, thus (−1)r = (−1)−r whereas l−2(−r) = l2r, so
replacing 2r with −2r has the same effect as interchanging l and l−1. Hence taking the conjugate of
M(ci) is exactly the same as replacing it with M(−ci). The formula stated in [11, Proposition 14]
calls for taking the conjugate of every second matrix factor in such a way that the rightmost matrix
is conjugated. The effect of replacing each M(ci) with M((−1)ici) is exactly the same.

Keeping Proposition 3.2 in mind, we will be interested in using Proposition 7.1 in situations where
a contiguous substring ci, ci+1, . . . , cj of partial denominators is of the form 2,−2, . . . , (−1)j−i2 or
−2, 2, . . . , , (−1)j−i+12. Note that, due to the rule calling for “conjugating” every second factor in (7.2),
such alternating strings of 2s and−2s give rise to powers of the matricesM(2) andM(−2) respectively.
Substituting r = 1 and r = −1, respectively, into (7.1) yields

(7.3) M(2) =

(
za−1 a−2

1 0

)
and M(−2) =

(
−za a2

1 0

)
.
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It is easy to describe the powers of such matrices in terms of Fibonacci polynomials Fn(x) defined
by the initial conditions

(7.4) F0(x) = 0 and F1(x) = 1;

and the recurrence

(7.5) Fn+1(x) = xFn(x) + Fn−1(x) for n ≥ 1

It is well known that these polynomials are given by the closed form formula

(7.6) Fn(x) =

b(n−1)/2c∑
j=0

(
n− j − 1

j

)
xn−1−2j .

Proposition 7.3. For all n ≥ 1, we have(
u v2

1 0

)n
=

(
vn · Fn+1 (u/v) vn+1 · Fn (u/v)
vn−1 · Fn (u/v) vn · Fn−1 (u/v)

)

Proof. We proceed by induction on n. For n = 1 the statement is is a direct consequence of the
definitions. Assume the statement is true for some n ≥ 1. Then(

u v2

1 0

)n+1

=

(
u v2

1 0

)
·
(
u v2

1 0

)n
=

(
u v2

1 0

)
·
(
vn · Fn+1 (u/v) vn+1 · Fn (u/v)
vn−1 · Fn (u/v) vn · Fn−1 (u/v)

)
=

(
vn+1(u/v · Fn+1(u/v) + Fn(u/v)) vn+2(u/v · Fn(u/v) + Fn−1(u/v))

vn · Fn+1 (u/v) vn+1 · Fn (u/v)

)
.

and the statement is now a direct consequence of the recurrence (7.5). �

Direct substitution of Proposition 7.3 into (7.3) yields

M(2)n =

(
a−n · Fn+1 (z) a−(n+1) · Fn (z)
a−n+1 · Fn (z) a−n · Fn−1 (z)

)
(7.7)

M(−2)n =

(
an · Fn+1 (−z) an+1 · Fn (−z)
an−1 · Fn (−z) an · Fn−1 (−z)

)
.(7.8)

We extend the validity of (7.7) and (7.8) to n = 0 by setting

(7.9) F−1(x) = 1.

Observe that (7.9) is consistent with applying the recurrence formula (7.5) to n = 0, as we have
1 = F1(x) = x · F0(x) + F−1(x). Furthermore, extending (7.7) and (7.8) in such a way yields

M(2)0 =M(−2)0 =

(
1 0
0 1

)
as expected.

We can use this to derive a different formula for the HOMFLY polynomial P(K) than the one
given in Proposition 7.1. Let K be a rational knot or link, represented by the continued fraction
p/q = [0, c1, . . . , cn] where pq is an even integer and the vector (c1, . . . , cn) describes a standard
diagram with all ci > 0. Let (Bl1; . . . ;Bln) be block decomposition of (c1, . . . , cn) and let σi = ±1 be
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the sign of crossings in the block Bli. If M(Bli) is the 2 × 2 matrix giving the contribution of the
block Bli to the HOMFLY polynomial P(K) then the HOMFLY polynomial P(K) is given by

(7.10) P(K) =
(
1 0

)
M(Bl1)M(Bl2) · · ·M(Blk)

(
1

a2−1
az

)
,

where for a block Bli = (cm, . . . , cm+2ji) we have the following product of 2ji + 1 of 2× 2 matrices

M(Bli) =M
(
σi
cm + 1

2

)
M(σi2)cm+1−1M

(
σi
cm+2 + 2

2

)
M(σi2)cm+3−1

· · ·M(σi2)cm+2ji−1−1M
(
σi
cm+2ji + 1

2

)
.

(7.11)

The formula given in equation (7.10) allows the computation of the HOMFLY polynomial of an
oriented link from its minimal alternating form, provided it is in preferred standard form.

Example 7.4. We are given the two bridge knot 3244/4195 with the primitive block decomposition
(0, 1, 3, 2, 2, 3; 5, 3, 3). If we assume that signt(a1) = −1 then the crossings in the first block Bl1 =
(1, 3, 2, 2, 3) are negative and the crossings in the second block Bl2 = (5, 3, 3) are positive. Then we
compute the following matrix product for the HOMFLY polynomial

P(K) =
(
1 0

)
M
(
−2

2

)
M(−2)3−1M

(
−4

2

)
M(−2)2−1

M
(
−4

2

)
M
(

6

2

)
M(2)3−1M

(
4

2

)(
1

a2−1
az

)
.

Using Theorem 4.4 we obtain the following result.

Theorem 7.5. Suppose b̃(q, p) is represented by a nonalternating continued fraction p/q = [0, a1, . . . ,
an] that has a primitive block decomposition with no exceptional primitive block. Then the HOMFLY
polynomial may be written in matrix form as follows:

P(K) =
(
1 0

)
H (an)H (an−1) · · ·H (a1)

(
1

a2−1
az

)
.

Here, after introducing s = sign(a1), the matrices H (a1) ,H (a2) , . . .H (an) are given by the following
formulas.

(1)

H(a1) =

{
M(−a1) if a1 is even;

M(−(a1 + s)) if a1 is odd.

(2) If ε(ai) 6= ε(ai−1) then set

H(ai) =

{
M(−ε(ai)ai) if ai is even;

M(−ε(ai)(ai + s)) if ai is odd.
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(3) If ε(ai) = ε(ai−1) = (−1)i−1 · s then set

H(ai) =

{
M(−ε(ai)(ai + 2s)) if ai is even;

M(−ε(ai)(ai + s)) if ai is odd.

(4) If ε(ai) = ε(ai−1) = (−1)i · s then set

H(ai) =

(
aε(ai)·(ai−s) · F|ai|+1 (−ε(ai) · z) aε(ai)·ai · F|ai| (−ε(ai) · z)
aε(ai)·(ai−2s) · F|ai| (−ε(ai) · z) aε(ai)·(ai−s) · F|ai|−1 (−ε(ai) · z)

)
.

The application of Theorem 4.4 may be facilitated by the following observation: if we start with
a nonalternating continued fraction [0, a1, . . . , an] in which all signs alternate, the signs alternate in
the corresponding continued fraction [0, c1, . . . , cm] in all-even form, except at the beginning of a new
primitive block, where the crossing sign changes. Since the Lickorish-Millet formula (7.2) calls for
associatingM((−1)ici) to ci, the actual signs of the parameters 2r insideM(2r) that we will be using
will be constant within each primitive block and the opposites of the crossing signs. The details of
the verification are left to the reader.

Remark 7.6. Theorem 7.5 is directly applicable only when the link has a diagram b̄(q, p) in preferred
standard form. If this is not the case, and the link diagram does not have a preferred standard form,
we may apply the result to the mirror image b̄(q, q−p). It is well-known (see, for example, [3, Theorem
10.2.3]) that the HOMFLY polynomial of an oriented link may be obtained by substituting a−1 into
a in the HOMFLY polynomial of its mirror image.
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Hetyei).

References

[1] G. Burde, H. Zieschang and M. Heusener Knots, De Gruyter Studies in Mathematics 5, 2013.
[2] J.H. Conway, An enumeration of knots and links, and some of their algebraic properties, 1970 Computational

Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329–358 Pergamon, Oxford
[3] P. Cromwell, Knots and links, Cambridge University Press, 2004.
[4] Y. Diao, C. Ernst, G. Hetyei and P. Liu, A diagrammatic approach for determining the braid index of alternating

links, preprint 2018.
[5] S. Duzhin and M. Shkolnikov, A formula for the HOMFLY polynomial of rational links, Arnold Math. J. 1 (2015),

345–359.
[6] L. Euler, Elements of algebra, Translated from the German by John Hewlett, Reprint of the 1840 edition, with an

introduction by C. Truesdell, Springer-Verlag, New York, 1984, lx+593 pp.
[7] J. Franks and R. Williams Braids and The Jones Polynomial, Trans. Amer. Math. Soc., 303 (1987), 97–108.
[8] P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K. Millett and A. Ocneanu A New Polynomial Invariant of Knots and

Links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239–246.
[9] J.R. Goldman, and L.H. Kauffman, Rational tangles, Adv. in Appl. Math. 18 (1997), 300–332.

[10] L.H. Kauffman, and S. Lambropoulou, On the classification of rational tangles, Adv. in Appl. Math. 33 (2004),
199–237.

[11] W.B.R. Lickorish and Kenneth C. Millett, A polynomial invariant of oriented links. Topology 26 (1987), 107–141.
[12] H. Morton Seifert Circles and Knot Polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107–109.
[13] K. Murasugi On The Braid Index of Alternating Links, Trans. Amer. Math. Soc. 326 (1991), 237–260.
[14] J. Przytycki and P. Traczyk Conway Algebras and Skein Equivalence of Links, Proc. Amer. Math. Soc. 100 (1987),

744–748.



INVARIANTS OF RATIONAL LINKS REPRESENTED BY REDUCED ALTERNATING DIAGRAMS 23

[15] K. Schubert, Knoten mit zwei Brücken, Mathematische Zeitschrift, 65 (1956), 133–170.
[16] S. Yamada The Minimal Number of Seifert Circles Equals The Braid Index of A Link, Invent. Math. 89 (1987),

347–356.

† Department of Mathematics and Statistics, University of North Carolina Charlotte, Charlotte,
NC 28223

∗ Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101, USA


	1. Introduction
	2. Finite simple continued fractions
	3. Converting the nonalternating denominator form into the even denominator form
	4. Transforming rational links into all-even form
	5. The braid index of rational links
	6. Connecting our braid index formulas
	7. The HOMFLY Polynomial of alternating rational links
	Acknowledgments
	References

