
COMPRESSIVE SAMPLING FOR ARRAY CAMERAS

XUEFEI YAN∗, DAVID J. BRADY† , JIANQIANG WANG‡ , CHAO HUANG§ , ZIAN LI¶,
SONGSONG YAN‖, DI LIU#, AND ZHAN MA††

Abstract. While design of high performance lenses and image sensors has long been the focus
of camera development, the size, weight and power of image data processing components is currently
the primary barrier to radical improvements in camera resolution. Here we show that Deep-Learning-
Aided Compressive Sampling (DLACS) can reduce operating power on camera-head electronics by
20x. Traditional compressive sampling has to date been primarily applied in the physical sensor
layer, we show here that with aid from deep learning algorithms, compressive sampling offers unique
power management advantages in digital layer compression.

1. Introduction. In the 75 year transition from standard definition to 8K, the
pixel capacity of video has increased by a factor of 100. Over the same time period,
the computer was invented and the processing, communications and storage capacities
of digital systems improved by 6-8 orders of magnitude. The failure of video resolution
to develop a rate comparable to other information technologies may be attributed to
the physical challenge of creating lenses and sensors capable of capturing more than 10
megapixels. Recently, however, parallel [7] and multiscale [4, 5] optical and electronic
designs have enabled video capture with resolution in the range of 0.1-10 gigapixels
per frame. At 10 to 100 gigapixels, video capacity will have increased by a factor
comparable to improvements in other information technologies.

Since multiscale and array optics have largely resolved lens design challenges as-
sociated with gigapixel-scale cameras, the size, weight, power and cost (SWaP) of
electronic components capable of processing and storing such video is the primary
remaining barrier to gigapixel-scale cameras. Through the AWARE [29] and Man-
tis [7] programs we know that the size, weight and power of electrical components is
currently the primary barrier to compact gigapixel scale cameras. In these systems,
image sensors operating at 30 fps draw 100 milliwatts/megapixel, whereas the image
processing pipeline draws 200-1000 milliwatts/megapixel. Here we show that radical
reductions in electronic SWaP may be achieved using novel read-out and intial im-
age processing architectures. Traditional architectures focus on "edge" analysis and
compression of video data streams. Current standards use discrete cosine or wavelet
transformations, followed by coefficient analysis and thresholding. Although cameras
most typically use application specific circuits with hardware specifically designed for
video compression, initial image processing, color demosaicing and compression still
typically draws 5-10x more power per pixel than image capture. The strategies dis-
cussed in this paper can initially be implemented off-sensor to make the ISP power
draw substantially less than the sensor operating power. Over the slightly longer

∗Camputer Laboratory, Kunshan China (yanxf@ksitri.com).
†Department of Electrical and Computer Engineering, Duke University, Durham, NC

(dbrady@duke.edu)
‡Nanjing University, School of Electronic Science and Engineering, Nanjing, China

(1139970854@qq.com).
§Nanjing University, School of Electronic Science and Engineering, Nanjing, China

(283753123@qq.com).
¶Camputer Laboratory, Kunshan China (zian_li@126.com).
‖Camputer Laboratory, Kunshan China (yanss@ksitri.com).
#Camputer Laboratory, Kunshan China (liudi@ksitri.com).
††Nanjing University, School of Electronic Science and Engineering, Nanjing, China

(mazhan@nju.edu.cn).

1

ar
X

iv
:1

90
8.

10
90

3v
1 

 [
ee

ss
.I

V
] 

 2
8 

A
ug

 2
01

9

mailto:yanxf@ksitri.com
mailto:dbrady@duke.edu
mailto:1139970854@qq.com
mailto:283753123@qq.com
mailto:zian\protect _li@126.com
mailto:yanss@ksitri.com
mailto:liudi@ksitri.com
mailto:mazhan@nju.edu.cn


term, implemetnation of compressive coding directly in the sensor read-out could re-
duce camera head power per pixel by as much as 100x by effectively eliminating the
ISP while making the sensor itself 10x more power efficient.

Compressive sampling is an alternative to traditional compression strategies. The
work of Donoho, Candes and Tao showing that quasi-random global sampling ker-
nels could inverted with high probability [13, 8] led many any studies of compressive
sampling to focus on this approach [21, 9]. However, in practice global random sam-
pling is both hard to implement physically and mathematically unattractive, since
the nonnegative nature of typical optical signals renders the forward model extremely
ill-conditioned. Beyond its tremendous success in magnetic resonance imaging [24],
the most practical demonstrations of compressed sensing to date have been in tomo-
graphic systems where complete image sampling is not possible. Compressed sensing
has shown clear advantages in projection, diffraction and spectral tomography[6], but
in these cases the sampling kernel is as compact as possible.

More recently, neural methods have replaced constrained optimization as the in-
version method of choice for compressively sampled data [28, 23, 19, 20, 34]. When
using an neural network, the invertibility proofs associated with quasi-random sam-
pling are no longer relevant. Image data is typically "locally correlated," meaning
that the the mutual information of pixel data drops rapidly as the separation between
pixels grows. This means that it is unlikely that the numeric value of two measure-
ments drawn from distant parts of an image can be represented in fewer than two
digital values. Since pixels in compact neighborhoods tend to be highly correlated,
however, one expects that these regions can be accurately described by less than one
digital value per pixel.

This paper considers "compressed sensing" in the basic sense of the term, e.g.
refering to blind downsampling of image data to less than one measurement per pixel.
We do not consider quasi-random global sampling in the Donoho-Candes sense, since
we expect that such sampling to be noncompetitive with local compression for the
reason just mentioned. Our particular focus is video compression with the goal of
radically reducing the size, weight and power per pixel of cameras. We specifically
propose compressed sampling consisting of blind coded downsampling of pixel data
with low-bit-depth-integer masks. "Blind" is the important aspect of compression
here because any image data specific algorithm necessarily involves computational
analysis of pixel values. Since each computation on the pixels costs power, blind
compression tends to require significantly less power per pixel.

While physical layer compressed sampling for video using, for example, multiple
apertures [27, 30] and coded pixel shape [3] has been proposed, it has has not generally
been applied in digital video sampling. Robucci et al. proposed compressive image
sampling using quasi-random matrices in CMOS sensors [31], but with the goal of im-
proved compression more paramount than power management. With no constraint on
power, it is difficult for compressive measurement to compete with post-measurement
compression. Image and video compression is a highly developed technology cen-
tered on industrial standards such as JPEG, JPEG2000 [16], H.264/AVC [17] and
H.265/HEVC [18]. While computational complexity and computational power is an
important consideration in defining such standards, the standards most commonly
focus on processing image data at the point of encoding to preserve image features in
easily decoded format. Typically, capture side processing is substantially more sophis-
ticated than display side processing. This approach makes sense because image data
is captured once but potentially displayed many times. One generally assumes that
captured data will be displayed at least one time, making the expenditure of energy

2



to prepare for standard decoding worthwhile. In many modern and emerging imaging
applications, however, energy expended at the point of capture is more expensive than
cloud or display energy. Capture devices are often mobile battery-powered systems
with limited energy.

Of course, numerous recent studies have applied variational autoencoders and
related neural systems to image and video compression [2, 25, 1, 26, 22]. In many cases
these systems achieve compression ratios that exceed HVEC and JPEG2000 quality.
Unfortunately, due the rapidly developing state of this field we do not include direct
image quality comparisons with our methods here. We anticipate, in fact, that some
of the generative startegies developed in this field will be applicable to improving
our results. To our knowledge, however, existing and previous work does not seek
to minimize power in the compression step. We suggest, however, that the blind
compressed sampling strategies proposed here are necessary for power minimization.
More advanced neural estimation strategies may then apply unlimited computational
power on off-camera platforms.

Power management is particularly critical in view of the increasing popularity
of array cameras. Where one traditionally assumes that zoom, focus, exposure, etc.
must be set at capture and that the captured image is processed and prepared for
display at the camera head, parallel sampling allows the full “light field” of wide field
of view, high resolution, high depth of field and high dynamic range image data to be
captured. One can then filter at the cloud or display level to decide which subset of
the light field to view. Since most of the light field is never viewed, however, analysis
and processing of image data at the camera head is inefficient. For this reason, the
compression methods discussed in this paper specifically relevant to array cameras,
although they remain applicable to single camera systems. Array cameras [7] aim
to radically increase the quantity of camera image data through parallel optical and
electronic processing. Since the quantity of captured information vastly exceeds the
capacity of typical displays, most of the captured data is never viewed. A conventional
camera assumes the image data will inevitably be displayed and thus it makes sense
to process for display at the point of capture. An array camera, in contrast, may
assume that the image data will never be displayed. In this case it makes sense to
push most of the processing power requirement to the display side, since the odds
that this power will be required are low.

Compressed sensing, accordingly, removes computation from the camera head but
increases the computation required at the end display. Of course, in video surveillance
and other camera applications most of the data from even conventional single apeture
cameras is never viewed and the techniques described here may be applicable.

1.1. Our contribution. This report presents the DLACS method we develop,
able to run both in the stand-alone manner and in the collaborative manner with
other methods saving significant computation at the capture head and keeping good
reconstruction quality, though requiring greater computation from a deep neural net-
work on ISP of the display side. To our knowledge, this paper proposes for the first
time blind coded downsampling of pixel data with low-bit-depth-integer masks. We
show theoretically and experimental that this process uses 10-20x less power than
JPEG compression. By delaying other traditional image processing steps, such as de-
mosaicking, tone balancing, denoising, etc. for off camera or partial implementation,
this strategy can reduce the power cost of imaging by upto 100x, which is critical for
development of gigapixel scale array cameras.

3



2. Coding strategy. Conventionally image data is compressed according to
“intra-frame” analysis and “inter-frame” prediction. Here we focus on the use of com-
pressive sampling in intraframe compression to reduce camera head electrical power in
array cameras. In conventional compression systems intraframe compression analyzes
coefficients in discrete cosine or wavelet transformed data to code significant image
features. As a practical matter, intraframe analysis describes the initial layer of data
processing when image data captured at the sensor and transfered to the image signal
processing (ISP) layer. In a conventional system the initial ISP layer converts cap-
tured data from raster scanned raw RGB data into image-based color planes in, for
example, YUV, format. The initially formatted data is then further processed by a
sequence of transformations to create compressed data in, for example, JPEG, H.264
or HEVC format. Each step of in the image processing pipeline can be described
by linear transformations of pixel data in the form g = Hf , followed by nonlinear
data analysis and filtering steps. Here f refers to pixel data in any given layer and g
corresponds to coded data or “measurements.” In conventional systems the number of
measurements is equal to or greater than the number of pixels. Meaning, for example,
that when JPEG systems analyze the discrete Fourier transform of the frame every
DCT coefficient is analyzed. In fact, conventional systems increase the number of
measurements relative to the raw data in demosiacing RGB data prior to subsequent
multi-step image data compression.

Compressive measurement systems also transform raw pixel data to measurements
according to the linear transformation g = Hf , but in this case H is of less than full
rank. Compressive measurement implemented in digital form in the image read-out
process yields the advantages of (1) immediately reducing that sensor data load and
(2) reducing the number of times that each pixel value is independently processed.
Since the power expended in the camera head ISP process is directly proportional to
the number of pixels processed and the number of times each pixel value is accessed
and processed, compressive measurement can substantially reduce ISP power.

DLACS can be implemented in camera read-out as a few low-bit-depth-integer 2D
masks. Image sensor data is read-out in row-frame format. Intra-frame compressive
sampling is implemented by maintaining a set of buffers, each buffer persists for a
few rows, here we consider buffers spanning 8, 16 or 32 rows. Each incoming pixel
is added to the current state of one or more buffers, effecting in sum of pixel values
weighted by the masks. Power and bandwidth is reduced in this process because (1)
demosaicing and other early image processing tasks are deferred for later processing
, (2) the number of times each pixel is accessed and processed is much smaller than
those in traditional methods, and (3) values in compressed file are not immediately
analyzed for content.

Traditional compressive sampling method usually use low-bit-depth-integer masks
with certain properties, such as orthogonality, as weights for combining pixels in blocks
of certain shapes. In this study, instead of manually making masks with orthogonal
property, we use neural training methods to both obtaining the low-bit-depth-integer
masks and training the weights of decompression layers. Based on characteristics of
available system strategies, we used an integer code, the masks, to combine pixels of
the raw-bayer data of each frame into compressed array of numbers. The compressed
array of numbers are quantized to eight-bit integers as outputs of the compression
module. The compressed data can be decompressed by a deep neural network and
become the decompressed raw-bayer data. The usual RGB frame is obtained by ap-
plying the conventional steps of demosaicing, while-balance tuning, black-level tuning
and color tuning to the decompressed raw-bayer data of the frame.

4



The flow of our DLACS method is presented in Fig. 2.1. The steps carried out by
the camera head and the electronics directly connected to it are listed in the red boxes
of the flow. The quantized compressed data from the camera-head system are stored in
and/or transmitted to local and/or cloud storage and/or buffer. Intermediate analyses
can be carried out using the compressed data without decompression. Besides other
analyses purposes, these analyses may help to determine whether the decompression
and additional steps need to be processed. When the images need to be displayed, or
analyses of decompressed raw-bayer and/or RGB images need to be carried out, the
compressed data can be decompressed by trained deep neural networks (NNs) and go
through additional Image Signal Processing (ISP) steps in local and/or cloud devices
independent from the camera-head system.

An example raw-bayer frame from the camera head is presented in the left panel
of Fig. 2.2. The raw-bayer frame from the camera head is immediately compressed by
a set of four masks with integer values. Example mask set containing four masks with
four-bit integer values in dimension [8, 8] are visualized in Fig. 2.3. After compression,
the compressed integer array is quantized to an eight-bit-integer array as presented in
Fig. 2.4. In proposed applications, these three operations occur in the camera head
during the read-out process. Although we consider here only intra-frame compression,
we recognize that these operations may be followed by loss-less entropy compression
and/or intraframe compression as in current compression standards.

At the time of decompression, the eight-bit-integer array can be decompressed
to a decompressed raw-bayer frame by trained deep NNs. The decompressed raw-
bayer image from the eight-bit-integer array in Fig. 2.4 is presented in the right
panel of Fig. 2.2. The RGB frame can be obtained by applying the conventional
steps of demosaicing, white-balance tuning, black-level tuning and color tuning to
the decompressed raw-bayer frame. The RGB frames from the example original and
decompressed raw-bayer data are presented in Fig. 2.5.

Read in raw-bayer frame from camera head

Compress the raw-bayer frame into a compressed integer
array with integer	masks

Quantize the compressed integer array to eight bit	for	
storage	and/or	transmission

Decompress	the	quantized	compressed	integer	array	to	
decompressed	raw-bayer	frame	by	trained	deep	NNs

Obtain	RGB	frame	by	applying	the	conventional	steps	of	
demosaicing,	white-balance	tuning,	black-level	tuning	
and	color	tuning	to	the	decompressed	raw-bayer	frame

Fig. 2.1. Flow of our DLACS method. The steps in the red boxes are carried out by the
camera head and the electronics directly connected to the camera head. The quantized compressed
data can be stored in and/or transmitted to local and/or cloud storage and/or buffer, as sketched
by the shaded arrow crossed by a dashed line. The quantized compressed data can be decompressed
and go through additional ISP steps by local and/or cloud devices independent from the camera-head
system, as listed in the blue boxes.

5



(a) Original (b) Decompressed

Fig. 2.2. The original and the decompressed raw-bayer images are presented in the left and right
panel, respectively. The dimensions of both images are [2048, 3864]. The metrics of the decompressed
relative to the original raw-bayer image are: PSNR = 41.64, SSIM = 0.993.

Fig. 2.3. Example four-bit-integer masks of dimension [8, 8] in the four panels.

The processes of obtaining the integer code, the compression, the quantization of
compressed data and the decompression, as well as the training of the neural-network
(NN) system are described in the following paragraphs.

The compressive sampling operations, summing pixels weighted by masks, can
be described by a specially designed convolutional-2D operation with a multi-channel
kernel. The kernel with dimension [kx, ky, 1, nc] contains nc 2D masks with dimen-
sion [kx, ky]. Carrying out convolutional-2D operation using this kernel with stride
size equal to kernel size is equivalent to using nc masks as weights in the summation of
each blocks of pixels into a number in a no-gap-no-overlap manner. A raw-bayer frame,
Datain of dimension [Nx, Ny, 1] is compressed into an array, Complearn, of dimension
[Nx/kx, Ny/ky, nc]. A convolutional-2D-transpose layer of kernel size [kx, ky, 1, nc]
and stride size [kx, ky] decompresses Complearn intoDecomplearn which is in dimension
[Nx, Ny, 1]. The kernels of both layers are tuned via the training process which mini-
mizes the mean-square-error (MSE) between Datain and Decomplearn. After training
the masks, put together as CompW , are in float32 format, after being scaled by a
constant, scW , they are rounded into integers of a certain bit depth, CompW code.
The constant scW is chosen so that the MSE between CompW · scW and CompW code
is minimized. The masks are obtained so except for differences due to integerization
of the values, they are optimized for combining pixels together in compressed arrays
which can be decompressed by a single-layer convolutional-2D-transpose with highest
quality.

The compressed array from using masks to combine raw-bayer pixels is scaled
by a constant integer, Qscale, and cast into an eight-bit-integer array, CompQ. The
constant, Qscale, is chosen so that the MSE between Comp · Qscale and CompQ is
minimized when tested with the training data. The eight-bit-integer array, CompQ,
is the output of the compression module. Because the bit lengths of CompQ and usual
image format, such as eight-bit PNG and JPEG, are the same and raw-bayer data

6



Fig. 2.4. The example compressed four eight-bit integer arrays of dimension [256, 480] are
visualized as four monochrome images in the four panels.

(a) Original (b) Decompressed

Fig. 2.5. (color online) The RGB frames from the original and the decompressed raw-bayer
frames are presented in the left and right panels, respectively. The metrics between these two are:
PSNR = 38.94, SSIM = 0.950. The dimensions of both images are [2048, 3864, 3].

contains three channels of colors with the same amount of pixels, the compression
ratio with respect to the non-compressed three-color eight-bit frame is nc/(3 kx ky).

The eight-bit-integer array, CompQ, is the input of the decompression module,
and is decompressed to be the decompressed raw-bayer data. In the decompression
module, a pre-transpose NN and a post-transpose NN are connected before and after
the convolutional-2D-transpose layer. The pre-transpose NN is a three-layer residual
convolutional-2D NN, and its output, dcomppre, has the same dimension as CompQ.
This NN can be conceptually viewed as compensating the loss due to the quantization
process, and paves the way for the following steps of decompression. This NN is
illustrated in Fig. 2.6. The convolutional-2D-transpose layer transforms dcomppre
into dcomp which has the same dimension as the raw-bayer frame, Datain. The post-
transpose NN is made of 20 convolutional-2D layers, 19 Batch-Normalization units
and 10 Leaky-Relu activation units. Its output, dcomppos, has the same dimension as
its input dcomp. This NN can be viewed as carrying out post-processing to improve
the quality of the output from the convolutional-2D-transpose layer, and its structure
is illustrated in Fig. 2.7.

The NN variables that need to be trained are the weight parameters in the de-
compression module because the compression module has only fixed parameters, the

7



IN
PU

T

Co
nv
	[3

,	3
,	6
4]

Re
LU

Co
nv
	[2

,	2
,	1
6]

Re
LU

Co
nv
	[1

,	1
,	1
]

Re
LU

Br
oa
d	
ca
st
	a
nd

	
ad
d

O
ut
pu

t

Fig. 2.6. (color online). Pre-transpose NN structure: Conv [kx, ky , nc] represents the
convolution-2D layer with a kernel of dimension [kx, ky , nc], stride equal to 1 and same padding,
ReLU represents the rectified-linear-unit activation. The output of the third ReLU with nc = 1 is
broad-casted to the same nc of the input and added to the input, forming a residual NN block.

IN
PU

T

Co
nv
	&
	B
N
	

[3
,	3
,		
64

]

Co
nv
	&
	B
N
	

[5
,	5
,		
32

]

Le
ak
y	
Re

LU

O
U
TP
U
T

Pre-stack	module

IN
PU

T

Co
nv
	&
	B
N
	

[3
,	3
,		
64

]

Co
nv
	&
	B
N
	

[5
,	5
,		
32

]

Le
ak
y	
Re

LU

O
U
TP
U
T

Ad
d Stackable	module

IN
PU

T

Pr
e-
st
ac
k	

m
od

ul
e

St
ac
ka
bl
e	

m
od

ul
e	
x8

Co
nv
	&
	B
N
	

[5
,	5
,		
96

]

Le
ak
y	
Re

LU

Co
nc
at

Co
nv
	

[5
,	5
,		
1]

Ta
nh

O
U
TP
U
T

Post-transpose	NN	structure

Fig. 2.7. (color online). Post-transpose NN: Conv represents a convolution-2D layer, the
convolutional kernel dimension is presented in square brackets as [kx, ky , nc], BN represents Batch
normalization, Leaky ReLU represents the leaky-ReLU activation, Concat represents concatenating
two tensors in the channel dimension, and Tanh represents the hyperbolic-tangent activation. The
pre-stack module is presented in the top panel, and the stackable module is presented in the mid-
dle panel. The post-transpose NN made of the pre-stack module, eight stackable modules stacked
together, and a few additional layers is presented in the bottom panel.

masks and the quantization-scaling constant. The training data are [128, 128, 1] crops
of 4K raw-bayer images taken using the Mantis camera platform previously described
in [7]. The Mean-Square Error (MSE) between input and decompressed raw-bayer
data is being optimized in the training process.

The DLACS method can also be applied on RGB data. In this case, the specially-
8



designed convolutional-2D operation with masks contained in kernel [kx, ky, 1, nc] is
applied to each of the channel of 2D dimension [Nx, Ny]. The compression ratio in this
case is nc/(kxky). Variations from this channel-by-channel approach of compressing
RGB data can also be simply achieved by changing the kernel dimension and apply
the convolutional operation on multiple channels at the same time. Applying the
CS method on RGB data involves more computational consumption compared with
directly applying on the raw-bayer data when the sizes of output are the same: the
raw-bayer data from the camera head need to be demosaiced into RGB first, which
consumes computation, and because of the increase of the number of pixels, the
amount of computation in the convolutional operation also increases.

The DLACS method can be conveniently and efficiently combined with existing
image and/or video compression algorithms, such as entropy coding (EC), JPEG,
JPEG2000, H.264 and HEVC. A raw-bayer image can be compressed to an eight-
bit integer array CompQ of dimension [Nx/kx, Ny/ky, nc], which may be viewed as
nc monochrome images of shape [Nx/kx, Ny/ky]. These monochrome images are of
substantially smaller size than the original raw-bayer image and/or the RGB image
demosaiced from the original raw-bayer image, and they can be further compressed
by existing image-compression methods. After data storage and/or transmission, the
raw-bayer image can be reconstructed by decompressing the reconstructed CompQ,
where the reconstructed CompQ can be obtained by using the decompression method
corresponding to the existing method used to compress CompQ. The reconstructed
raw-bayer image can then be demosaiced to RGB. For video compression, a sequence
of raw-bayer images can be compressed to a sequence of integer arrays CompQs,
and use existing video-compression algorithms to compress these integer arrays. The
reconstructed CompQ of each frame can be decompressed and demosaiced.

The decompression NN can be re-trained or fine tuned (by carrying out trans-
fer learning) for specific combinations with existing compression algorithms. When
combining with JPEG, the JPEG-compressed-and-reconstructed CompQs are the in-
put of the decompression NNs. The MSE between the output of the decompression,
dcomppos, and the input raw-bayer data is minimized. When combined with other ex-
isting algorithms, the NNs can be trained similarly. Transformations between signed
and unsigned eight-bit integers by adding or subtracting 128 need to be carried out
to suit the data type required by the existing methods and the input and output data
format of the NNs.

2.1. Performance metrics. As a demonstration of the performance of our
DLACS method, three original raw-bayer images containing indoor and outdoor scenes
are compressed by three sets of four masks. In the three sets, masks are of dimen-
sions [8, 8], [16, 16] and [32, 32], and compression ratios due to DLACS encoding are
1/48, 1/192 and 1/768, respectively. The RGB images are demosaiced from the re-
constructed raw-bayer data and compared with compressed-and-decompressed results
using other methods. We use a well-established software, OpenCV, for downsampling
and upsampling the RGB images demosaiced from the original raw-bayer images.
The RGB images downsampled by OpenCV with proper parameters can reach de-
sired compression ratios. The downsampled images can be upsampled to the original
dimensions for measuring metrics with respect to the original RGB images. We use a
well-established software, Glymur, for JPEG2000 compression, and the desired com-
pression ratio can be set manually and can be cross-checked by examining the input
and output sizes. We use a well-established software, Pillow, for JPEG compression.
The desired compression ratio cannot be directly set but can be changed empirically

9



by tuning the quality factor. Compression ratio 1/48 is reached by manually tuning
the quality factors for different input images. For the three example images, the qual-
ity factors are between 70 and 80. JPEG cannot reach a compression ratio as low as
1/192 even when setting the quality factor to the minimal value, 1. The compression
ratios reached by setting quality factor at 2 is close to those when setting quality
factor at 1, but the quality is higher. In these comparisons, the quality factor is fixed
at 2, and the compression ratios for the three example images are slightly larger than
but close to 1/192. The comparisons of metrics using DLACS, down-and-up sam-
pling (DAUS), JP2K and JPEG with compression different ratios are summarized in
Table. 2.1.

Our DLACS method can be easily combined with other methods. As an example,
the compressed eight-bit integer arrays CompQs are further compressed by arithmetic
coding, which is one of the well-established method of EC. When EC is applied,
CompQ is compressed to a smaller size in a lossless manner. The comparison of
quality between DLACS + EC, JPEG and JP2K at the same level of compression
are presented in Table 2.2. As another example, the compressed eight-bit integer
arrays CompQs are further compressed by JPEG with a fixed quality-factor Q, and
the reconstructed CompQs from the JPEG files are decompressed and demosaiced.
The decompression NNs are trained for decompressing the reconstructed CompQs.
The comparisons of the RGB images from the original raw-bayer, the reconstructed
raw-bayer data under compression ratio 1/48 and from the reconstructed raw-bayer
data from the DLACS-JPEG combined method are presented in Fig. 2.8. The drop
of reconstruction quality, as described by the metrics, related to DLACS method
compressing at 1/48 ratio and the hybrid-DLACS-JPEGmethod compressing at ratios
between 1/624 to 1/1104 are clearly visualized in the zoomed-in windows on the
bottom right of the panels. While the hybrid-DLACS-JPEG method removed more
fine details compared with the original and the 1/48 compressed-and-reconstructed
images, the results still keep high quality as can be visualized in the figures and
observed in the metrics. The code corresponding to Tables 2.1 and 2.2, and Fig. 2.8
can be found in Reference [11].

It is observed in these examples, the reconstruction quality of the stand-alone
DLACS method is lower than that of JPEG2000’s in general, lower than JPEG with
compression ratio 1/48, close to JPEG with compression ratio between 1/90 and 1/125
with the help from EC, and higher than JPEG with compression ratio 1/192. While
JPEG cannot reach a compression ratio below 1/192, the stand-alone DLACS method
and the hybrid-DLACS-JPEG method can reach much smaller compression ratio with
reasonable quality. And because of the substantially reduced amount of computation
by the stand-alone DLACS method and the hybrid-DLACS-JPEG method, they can
reach small compression ratios with reasonable quality consuming much less compu-
tation and power in the compression module.

Our DLACS method is also tested using the uncompressed Kodak dataset in
RGB, in a channel-by-channel manner: each of the R, G and B channel of dimension
[Nx, Ny] is independently compressed and decompressed in the same manner as when
compressing/decompressing the raw-bayer data. After decompression of each channel,
instead of demosaicing, the three reconstructed channels are combined into RGB
images. The quality of reconstruction is measured by comparing the original and
reconstructed RGB images. The comparison of three original Kodak RGB images
with corresponding reconstructed ones using only the CS method under compression
ratio of 1/16 and 1/256, as well as the metrics, are presented in Fig. 2.9. The quality
comparison between only DLACS, DLACS + EC, JPEG and JP2K are presented in

10



Image 1 Image 2 Image 3
PSNR SSIM PSNR SSIM PSNR SSIM

DLACS (1/48) 37.30 0.924 38.66 0.943 35.98 0.893
DAUS (1/48) 35.07 0.912 35.05 0.935 33.86 0.873
JP2K (1/48) 41.69 0.955 43.28 0.965 40.84 0.951
JPEG (1/48) 41.33 0.953 43.39 0.967 39.83 0.944

DLACS (1/192) 32.60 0.881 33.84 0.913 32.17 0.836
DAUS (1/192) 30.19 0.868 30.10 0.907 30.16 0.823
JP2K (1/192) 39.25 0.945 41.20 0.960 37.53 0.917
JPEG (1/183) 25.69 0.817 23.59 0.815 23.02 0.730
DLACS (1/768) 28.29 0.842 29.00 0.876 29.17 0.800
DAUS (1/768) 26.32 0.837 25.42 0.881 27.29 0.797
JP2K (1/768) 35.22 0.916 38.06 0.948 34.34 0.873

Table 2.1
Comparison of results with different compression ratios. The compression ratios are presented

in the brackets in the leftmost column.

Image 1 Image 2 Image 3
Ratio SSIM Ratio SSIM Ratio SSIM

DLACS (1/48) + EC 1/94 0.924 1/95 0.943 1/102 0.893
JPEG 1/94 0.938 1/95 0.960 1/102 0.899
JP2K 1/94 0.950 1/95 0.962 1/102 0.935

DLACS (1/192) + EC 1/320 0.881 1/330 0.913 1/363 0.836
JP2K 1/320 0.938 1/330 0.957 1/364 0.898

DLACS (1/768) + EC 1/1335 0.842 1/1373 0.876 1/1584 0.800
JP2K 1/1337 0.897 1/1371 0.938 1/1574 0.848

Table 2.2
Comparison of SSIM between DLACS with EC, JPEG and JP2K for the three scenes.

Tables. 2.3, 2.4 and 2.5. Similar to the DLACS on raw-bayer study above, at same
compression levels, DLACS without EC generally has lower quality compared with
JPEG and JP2K, DLACS + EC has close quality to JPEG but lower than JP2K, and
JPEG cannot reach a compression ratio below ≈ 1/185.

The code corresponding to Tables 2.3, 2.4 and 2.5, and Fig. 2.9 can be found in
Reference [10].

Kodak 1 Kodak 2 Kodak 3
Ratio SSIM Ratio SSIM Ratio SSIM

DLACS (no EC) 1/16 0.906 1/16 0.883 1/16 0.928
JPEG 1/16 0.948 1/16 0.943 1/16 0.955
JP2K 1/16 0.957 1/16 0.958 1/16 0.963

DLACS + EC 1/25 0.906 1/26 0.883 1/23 0.928
JPEG 1/25 0.933 1/26 0.925 1/23 0.946
JP2K 1/25 0.943 1/26 0.938 1/23 0.955

Table 2.3
Comparison of quality between DLACS with/without EC, JPEG and JP2K. Four masks of

dimension [8, 8] for each channel of RGB, achieving DLACS-only compression ratio of 1/16.

11



(a) No compression. (b) Ratio = 1/48, PSNR =
37.30, SSIM = 0.924.

(c) Ratio = 1/720, PSNR =
33.02, SSIM = 0.886.

(d) No compression. (e) Ratio = 1/48, PSNR =
38.66, SSIM = 0.943.

(f) Ratio = 1/816, PSNR =
35.04, SSIM = 0.919.

(g) No compression. (h) Ratio = 1/48, PSNR =
35.98, SSIM = 0.893.

(i) Ratio = 1/672, PSNR =
32.30, SSIM = 0.835.

Fig. 2.8. (color online). Comparison of full 4K RGB images with different compression level
for an indoor, a mixed-indoor-outdoor and an outdoor scenes are presented in the three rows of
panels. The left panels present the original RGB images demosaiced from the original raw-bayer
data. The middle panels present the RGB images demosaiced from reconstructed raw-bayer data
compressed by a four masks of dimension [8, 8]. The right panels present the RGB images of this
hybrid method combining DLACS with four masks of dimension [8, 8] and JPEG with Q = 85. The
compression ratios and metric relative to the original RGB images are presented in the panels. Parts
of the full images are zoomed in and presented in the red boxes on the bottom right of each panel to
demonstrate the reconstruction-quality drop as more compression are carried out.

Kodak 1 Kodak 2 Kodak 3
Ratio SSIM Ratio SSIM Ratio SSIM

DLACS (no EC) 1/64 0.822 1/64 0.773 1/64 0.894
JPEG 1/64 0.878 1/64 0.863 1/64 0.912
JP2K 1/64 0.914 1/64 0.896 1/64 0.929

DLACS + EC 1/93 0.822 1/93 0.773 1/89 0.894
JPEG 1/93 0.840 1/93 0.818 1/89 0.896
JP2K 1/93 0.914 1/93 0.875 1/89 0.922

Table 2.4
Comparison of quality between DLACS with/without EC, JPEG and JP2K. Four masks of

dimension [16, 16] for each channel of RGB, achieving DLACS-only compression ratio of 1/64.

2.2. Computational complexity. In the compression process, the DLACS
method with set-of-four masks of 2D-mask-dimensions [8, 8], [16, 16] and [32, 32]
consists of four integer-integer multiplications and four integer-integer additions when
combining pixels with masks, and one integer-integer division for quantization (which
may be further simplified to bit shifting) for each raw-bayer pixel. The standard JPEG
method [33] carries out Discrete Cosine Transformations (DCTs) on 8 × 8 blocks of

12



Kodak 1 Kodak 2 Kodak 3
Ratio SSIM Ratio SSIM Ratio SSIM

DLACS (no EC) 1/256 0.752 1/256 0.689 1/256 0.858
JPEG 1/177 0.640 1/176 0.619 1/181 0.745
JP2K 1/256 0.848 1/256 0.816 1/256 0.905

DLACS + EC 1/355 0.752 1/359 0.689 1/346 0.858
JP2K 1/355 0.830 1/359 0.792 1/346 0.899

Table 2.5
Comparison of quality between DLACS with/without EC, JPEG and JP2K. Four masks of

dimension [32, 32] for each channel of RGB, achieving DLACS-only compression ratio of 1/256.

(a) No compression. (b) Ratio = 1/16, PSNR =
36.29, SSIM = 0.906.

(c) Ratio = 1/256, PSNR =
28.51, SSIM = 0.752.

(d) No compression. (e) Ratio = 1/16, PSNR =
34.84, SSIM = 0.883.

(f) Ratio = 1/256, PSNR =
27.38, SSIM = 0.689.

(g) No compression. (h) Ratio = 1/16, PSNR =
39.39, SSIM = 0.928.

(i) Ratio = 1/256, PSNR =
31.11, SSIM = 0.858.

Fig. 2.9. (color online). Comparison of three Kodak RGB images with different compression
levels are presented. The left panels present the original Kodak RGB images. The middle panels
present the reconstructed RGB images after being compressed by kernel of dimension [8, 8, 1, 4]. The
right panels present the reconstructed RGB images after being compressed by kernel [32, 32, 1, 4].
The compression ratios and metric relative to the original RGB images are presented in the panels.
Parts of the full images are zoomed in and presented in the red boxes on the bottom right of each
panel to demonstrate the reconstruction-quality drop as more compression are carried out.

YCbCr pixels which are demosaiced and color transferred from the raw-bayer data.
The DCT step of JPEG involves 64 integer-float-number multiplications and 64 float-
float-number additions for each Y, Cb and Cr pixel. The quantization step of JPEG
involves one time float-integer-number multiplication. Comparing the convolutional
operation of the CS method and the DCT operation of JPEG, the JPEG method

13



involves (64/4) × 3 = 48 times more multiplications and additions, where 3 comes
from the number of channels of the YCbCr format.

We carried out simple tests in Python to confirm the relative computational
complexity of the encoding operations used for DLACS and the DCT used for JPEG.
In these tests DCT processing required 22 times the computation time per pixel. Both
the DLACS-encoding operation and the DCT are coded as functions with loops on
a CPU without any acceleration methods such as vectorization or parallel running.
The run time is calculated only when the CPU is running the loops while the data
transmission and/or storage and/or display time are not included. The type of all the
data involved in the computation are fixed as 64-bit float, to avoid subtle changes of
run time due to data-type transformations. These tests do not include a fundamental-
level optimization for operations on data with different bit depth, which can be carried
out on specific hardware with careful design. The code of these tests can be found in
Reference [12].

We also carried out running-speed comparison between DLACS-encoder and DCT
using CUDA (C++) codes, optimized to the same level for parallel running on Nvidia-
TX1 system. Six 4K camera heads are connected to our Nvidia-TX1 system. Using a
common data acquisition tool, V4L2, 4K raw-bayer frames can be taken by specified
camera heads and be stored in the main memory of the TX1 GPU. Each raw-bayer
frame in the main memory is transferred to the CUDA buffer of the GPU for desired
computation. After CUDA computation, the results in CUDA buffer are transferred
to the main memory, and then can be written to the hard-disk or transferred out
via certain interface of the TX1 board. For comparing running speed of the DLACS-
encoder and DCT in a fair manner, the tests are carried out while making sure the
capacity of the TX1 GPU is exhausted. To keep the GPU’s capacity exhausted
throughout a test, and CUDA not waiting for data coming to the main memory,
we store a number of prepared 4K raw-bayer frames, the DLACS masks and the
DCT coefficients in the main memory prior to running CUDA, enabling CUDA to
start processing the next frame right after finishing the current one. Some initial
runs have been carried out, saving output to the hard-disk of TX1, for verifying
values in output file being correct for DLACS-encoder and DCT computation. After
verification, we carried out long runs without saving the output file to the hard-
disk, and potential effects on running time results due to CUDA waiting for hard-
disk writing of computation results have been avoided. The running-time values
are saved to the hard-disk, and this process takes negligible time and has negligible
effect on CUDA running time. In addition, we record time of computation and time
of transferring between CUDA buffer and the main memory separately, and keep
the comparison only on the time of computation. With 10 parallel CUDA threads,
cross checked by using a few different amounts of threads, we made sure each of
the test exhausted the computation capacity of the Nvidia-TX1 GPU. Results of
computation time with low statistical uncertainties are obtained in the long runs with
multiple parallel CUDA threads, and are presented in Table. 2.6. It is found that the
computation time per pixel from DCT (8×8 block) is more than 14 times of that from
DLACS-encoder (set-of-four masks). These comparisons yield ratio of computational
complexity close to a simple estimation of (64/4) = 16.

It should be noted that in the standards of 4:2:1 and 4:2:0, the Cb and Cr channels
are recorded in dimensions different from the Y channel, due to the smaller 2D size of
these channels, the theoretical ratio 48, in comparison with JPEG, becomes 32 and
24, respectively. In addition the bit depth of each operation in the JPEG method
is larger than that in the DLACS method because float numbers require more bits

14



Run type Thread number Running time per pixel (pico second)
DLACS, [8, 8, 4] 10 294.48± 3.57
DLACS, [16, 16, 4] 10 295.51± 3.15
DLACS [32, 32, 4] 10 285.37± 3.19
DCT 10 4323.42± 29.82
DLACS [8, 8, 4] 15 (for cross check) 302.27± 2.90
DCT 12 (for cross check) 4270.52± 27.75

Table 2.6
Running time per pixel of DLACS-encoding and DCT on Nvidia-TX1 system, using full com-

putation capacity of GPU, with 10 parallel CUDA threads. Two cross-check runs with different
amount of threads are also presented on the bottom of this table. The uncertainties in this table
represent statistical uncertainty of each run. The three numbers in the square brackets for DLACS
runs represent X and Y dimensions of masks and number of masks, respectively.

than integers. The decrease of bit depth could lead to different levels of decrease of
computation depending on the hardware and the details of fundamental-level control
of memory, buffer, etc. of the algorithm on the hardware. When the same type of
EC algorithm is being used, because of the decrease of the dimension of the integer
arrays to be coded by EC, the EC step used for DLACS needs much less computation
than that used in other methods such as JPEG and JP2K (the comparison between
different EC algorithms is not in the scope of this study). Without considering the
entropy-coding and the bit depth difference, the computational complexity of the
DLACS method is at least ≈ 20 times simpler than that of the JPEG method. In
addition, the demosaicing process carried out on the raw-bayer data to produce the
RGB and/or YCbCr data before JPEG and/or JP2K compression is also skipped
in our DLACS method, which further reduces the amount of computation in the
compression process.

In comparative studies of JP2K and JPEG the computational complexity of com-
pression (JP2K over JPEG) varied from ≈ 5 to 8 times under different tests in a “fair
comparison” condition [15, 32, 14], meaning that the DLACS methods proposed here
reduce computaional complexity more than 100x relative to JP2K.

3. Conclusion. Digital cameras implement a pixel data processing pipeline with
power requirements linearly proportional to the number of computational operations
per pixel. By reducing this number by >20x, compressive sampling enables a >20x
reduction in camera head processing power per pixel. DLACS pays for this reduction
by requiring substantially greater display side image data processing, but in ultra-
high resolution imaging systems most pixels are never examined and, for unexamined
pixels, this cost is never paid. Even when it is paid, display side processing may occur
on cloud platforms where processing power is more economical.

By reducing bit depth in our DLACS method, the base-level computation design
may be further simplified. When running in the stand-alone manner, because the
compression process only involves multiplication , summing and division of integers,
the computation is significantly simpler than that of JPEG, JPEG2000. When run-
ning in the combined manner, instead of the original raw-bayer data or the RGB data
demosaiced from them, the integer arrays, CompQs, serve as input of the existing
algorithms. Because the size of CompQs is substantially smaller, much less amount of
computation need to be carried out by the existing algorithms. For example, DLACS
compressed data may also be conveniently combined with NNs for different purposes
such as face recognition, etc.

15



The size, weight and power of electrical components is currently the primary
barrier to compact gigapixel scale cameras. As described here, compressive sampling
combined with deep learning based decompression can resolve this barrier.

REFERENCES

[1] E. Agustsson, M. Tschannen, F. Mentzer, R. Timofte, and L. Van Gool, Gen-
erative adversarial networks for extreme learned image compression, arXiv preprint
arXiv:1804.02958, (2018).

[2] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, Variational image
compression with a scale hyperprior, arXiv preprint arXiv:1802.01436, (2018).

[3] D. J. Brady, Coding for compressive imaging, May 12 2009. US Patent 7,532,772.
[4] D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish,

E. M. Vera, and S. D. Feller, Multiscale gigapixel photography, Nature, 486 (2012),
pp. 386–389, https://doi.org/10.1038/nature11150.

[5] D. J. Brady and N. Hagen, Multiscale lens design, Optics Express, 17 (2009), pp. 10659–
10674, https://doi.org/10.1364/oe.17.010659.

[6] D. J. Brady, A. Mrozack, K. MacCabe, and P. Llull, Compressive tomography, Ad-
vances in Optics and Photonics, 7 (2015), pp. 756–813, https://doi.org/10.1364/aop.7.
000756.

[7] D. J. Brady, W. B. Pang, H. Li, Z. Ma, Y. Tao, and X. Cao, Parallel cameras, Optica,
5 (2018), pp. 127–137, https://doi.org/10.1364/optica.5.000127.

[8] E. J. Candes and T. Tao, Near-optimal signal recovery from random projections: Universal
encoding strategies?, IEEE Transactions on Information Theory, 52 (2006), pp. 5406–5425,
https://doi.org/10.1109/TIT.2006.885507.

[9] R. Chartrand, R. G. Baraniuk, Y. C. Eldar, M. A. Figueiredo, and J. Tanner,
Introduction to the issue on compressive sensing, IEEE Journal of Selected Topics in Signal
Processing, 4 (2010), pp. 241–243.

[10] Code and data for CS on Kodak examples, https://github.com/saberbud/Kodak_RGB_CS.
[11] Code and data for CS on raw-bayer examples, https://github.com/saberbud/Raw_bayer_CS.
[12] Code for convolution vs. DCT, https://github.com/saberbud/Conv2D_vs_DCT.
[13] D. L. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52 (2006),

pp. 1289–1306, https://doi.org/10.1109/TIT.2006.871582.
[14] C. Duran-Faundez, V. Lecuire, and F. Lepage, Tiny block-size coding for energy-

efficient image compression and communication in wireless camera sensor networks, Sig-
nal Processing: Image Communication, 26 (2011), pp. 466 – 481, https://doi.org/https:
//doi.org/10.1016/j.image.2011.07.005, http://www.sciencedirect.com/science/article/pii/
S0923596511000890.

[15] M. Z. C. Iole Moccagatta, Computational complexity evaluation of jpeg 2000, Proc.SPIE,
4115 (2000), pp. 4115 – 4115 – 14, https://doi.org/10.1117/12.411572, https://doi.org/10.
1117/12.411572.

[16] ISO, JPEG and JPEG2000, https://www.iso.org/ics/35.040.30/x/p/1/u/0/w/0/d/0.
[17] ITU-T, Series h: Audiovisual and multimedia systems, infrastructure of audiovisual services–

coding of moving video, high efficiency video coding, h.264 (04/13) itu-t, recommendation
h, https://www.itu.int/ITU-T/recommendations/rec.aspx?id=13189.

[18] ITU-T, Series h: Audiovisual and multimedia systems, infrastructure of audiovisual services–
coding of moving video, high efficiency video coding, h.265, recommendation h, https:
//www.itu.int/ITU-T/recommendations/rec.aspx?rec=11885.

[19] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, Deep convolutional neural
network for inverse problems in imaging, IEEE Transactions on Image Processing, 26
(2017), pp. 4509–4522.

[20] K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, Reconnet: Non-iterative
reconstruction of images from compressively sensed measurements, in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 449–458.

[21] G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press,
2012, https://doi.org/10.1017/CBO9780511794308.

[22] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, Dvc: An end-to-end deep
video compression framework, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 11006–11015.

[23] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos, Using deep neural networks for
inverse problems in imaging: beyond analytical methods, IEEE Signal Processing Magazine,

16

https://doi.org/10.1038/nature11150
https://doi.org/10.1364/oe.17.010659
https://doi.org/10.1364/aop.7.000756
https://doi.org/10.1364/aop.7.000756
https://doi.org/10.1364/optica.5.000127
https://doi.org/10.1109/TIT.2006.885507
https://github.com/saberbud/Kodak_RGB_CS
https://github.com/saberbud/Raw_bayer_CS
https://github.com/saberbud/Conv2D_vs_DCT
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/https://doi.org/10.1016/j.image.2011.07.005
https://doi.org/https://doi.org/10.1016/j.image.2011.07.005
http://www.sciencedirect.com/science/article/pii/S0923596511000890
http://www.sciencedirect.com/science/article/pii/S0923596511000890
https://doi.org/10.1117/12.411572
https://doi.org/10.1117/12.411572
https://doi.org/10.1117/12.411572
https://www.iso.org/ics/35.040.30/x/p/1/u/0/w/0/d/0
https://www.itu.int/ITU-T/recommendations/rec.aspx?id=13189
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11885
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=11885
https://doi.org/10.1017/CBO9780511794308


35 (2018), pp. 20–36.
[24] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing mri,

IEEE signal processing magazine, 25 (2008), p. 72.
[25] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. V. Gool, Practical full

resolution learned lossless image compression, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 10629–10638.

[26] D. Minnen, J. Ballé, and G. D. Toderici, Joint autoregressive and hierarchical priors for
learned image compression, in Advances in Neural Information Processing Systems, 2018,
pp. 10771–10780.

[27] S. Mohan, P. P. Nikos, and J. B. David, Compressive video sensors using multichannel
imagers, Appl. Opt., 49 (2010), pp. B9–B17, https://doi.org/10.1364/AO.49.0000B9, http:
//ao.osa.org/abstract.cfm?URI=ao-49-10-B9.

[28] A. Mousavi and R. G. Baraniuk, Learning to invert: Signal recovery via deep convolu-
tional networks, in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), IEEE, 2017, pp. 2272–2276.

[29] J. M. Nichols, K. P. Judd, C. C. Olson, K. Novak, J. R. Waterman, S. Feller,
S. McCain, J. Anderson, and D. Brady, Range performance of the DARPA AWARE
wide field-of-view visible imager, Appl. Opt., 55 (2016), pp. 4478–4484.

[30] N. P. Pitsianis, D. J. Brady, A. Portnoy, X. Sun, T. Suleski, M. A. Fiddy, M. R.
Feldman, and R. D. TeKolste, Compressive imaging sensors, vol. 6232, Proceedings
of SPIE, 2006.

[31] R. Robucci, L. K. Chiu, J. Gray, J. Romberg, P. Hasler, and D. Anderson, Com-
pressive sensing on a cmos separable transform image sensor, in 2008 IEEE International
Conference on Acoustics, Speech and Signal Processing, IEEE, 2008, pp. 5125–5128.

[32] D. Santa-Cruz, R. Grosbois, and T. Ebrahimi, Jpeg 2000 performance evaluation and as-
sessment, Signal Processing: Image Communication, 17 (2002), pp. 113 – 130, https://
doi.org/https://doi.org/10.1016/S0923-5965(01)00025-X, http://www.sciencedirect.com/
science/article/pii/S092359650100025X. JPEG 2000.

[33] G. K. Wallace, The jpeg still picture compression standard, Commun. ACM, 34 (1991),
pp. 30–44, https://doi.org/10.1145/103085.103089, http://doi.acm.org/10.1145/103085.
103089.

[34] X. Xie, Y. Wang, G. Shi, C. Wang, J. Du, and X. Han, Adaptive measurement network
for cs image reconstruction, in CCF Chinese Conference on Computer Vision, Springer,
2017, pp. 407–417.

17

https://doi.org/10.1364/AO.49.0000B9
http://ao.osa.org/abstract.cfm?URI=ao-49-10-B9
http://ao.osa.org/abstract.cfm?URI=ao-49-10-B9
https://doi.org/https://doi.org/10.1016/S0923-5965(01)00025-X
https://doi.org/https://doi.org/10.1016/S0923-5965(01)00025-X
http://www.sciencedirect.com/science/article/pii/S092359650100025X
http://www.sciencedirect.com/science/article/pii/S092359650100025X
https://doi.org/10.1145/103085.103089
http://doi.acm.org/10.1145/103085.103089
http://doi.acm.org/10.1145/103085.103089

	1 Introduction
	1.1 Our contribution

	2 Coding strategy
	2.1 Performance metrics
	2.2 Computational complexity

	3 Conclusion
	References

