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Abstract. We introduce a class of unconditionally energy stable, high order accurate schemes for
gradient flows in a very general setting. The new schemes are a high order analogue of the minimizing
movements approach for generating a time discrete approximation to a gradient flow by solving a
sequence of optimization problems. In particular, each step entails minimizing the associated energy
of the gradient flow plus a movement limiter term that is, in the classical context of steepest descent
with respect to an inner product, simply quadratic. A variety of existing unconditionally stable
numerical methods can be recognized as (typically just first order accurate in time) minimizing
movement schemes for their associated evolution equations, already requiring the optimization of the
energy plus a quadratic term at every time step. Therefore, our approach gives a painless way to
extend these to high order accurate in time schemes while maintaining their unconditional stability.
In this sense, it can be viewed as a variational analogue of Richardson extrapolation.
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1. Introduction. We are concerned with numerical schemes for evolution equa-
tions that arise as gradient flow (steepest descent) for an energy E : H → R, where
H is a Hilbert space with inner product 〈·, ·〉:

(1.1) u′ = −∇HE(u).

Equation (1.1) may represent a (scalar or vectorial) ordinary or partial differential
equation. A fundamental property of equation (1.1) is that it dissipates the energy
over time:

d

dt
E(u) = 〈∇HE(u), u′〉 = −||∇HE(u)||2 ≤ 0.

Our focus is on unconditionally energy stable, high order in time discretizations. To
be precise, by energy stable we mean the following dissipative property:

(1.2) E(un+1) ≤ E(un)

where un denotes the approximation to the solution at the n-th time step. Thus, in
the context of PDEs, where H is infinite dimensional, we are concerned with discrete
in time, continuous in space schemes.

The backward Euler method for the abstract equation (1.1), with time step size
k > 0, reads

(1.3)
un+1 − un

k
= −∇HE(un+1).
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2 VARIATIONAL EXTRAPOLATION

As is well known and immediate to see, a solution un+1 for the implicit scheme (1.3)
can be found via the following optimization problem

(1.4) un+1 = arg min
u

(
E(u) +

1

2k
||u− un||2

)
since (1.3) is the Euler-Lagrange equation for the optimization (1.4); here, ‖·‖2 = 〈·, ·〉.
It follows that

(1.5) E(un+1) ≤ E(un+1) +
1

2k
||un+1 − un||2 ≤ E(un) +

1

2k
||un − un||2 = E(un)

so that scheme (1.3) is unconditionally stable, provided that optimization problem
(1.4) can be solved.

Energetic formulation (1.4) of the backward Euler scheme (1.3) is often referred to
as minimizing movements. It enables extending numerical schemes for the stationary
optimization problem minuE(u) to the dynamic, evolutionary problem (1.1) provided
an additional, typically quadratic term in the cost function can be accommodated.
The quadratic term 1

2k‖u−un‖
2 in (1.4) is often referred to as the movement limiter,

as it opposes deviation from the current configuration un. It encodes the inner product
with respect to which the gradient flow is being generated. Beyond numerical analysis
and computation, minimizing movements approximation of gradient flows have been
instrumental in the analysis of evolution equations of the form (1.1), e.g. in defining
and finding weak solutions beyond the formation of singularities when classical notions
of solution cease to exist.

The following combination of desirable properties distinguish the new schemes
introduced in this paper:

1. Complete generality. There is no assumption (e.g. convexity) on the energy
E in (1.1) beyond sufficient differentiability.

2. Unconditional energy stability.
3. High (at least up to third) order accuracy.
4. Each time step requires a few standard minimizing movements solves, equiv-

alent to backward Euler substeps, or optimization of the associated energy
plus a quadratic term.

Property 4 is perhaps the most unique and appealing aspect of the new framework:
There are many existing schemes that can be recognized as some form of minimizing
movements, sometimes relying on efficient optimization algorithms to solve (1.3) via
(1.4). Our contribution shows how to painlessly jack up the order of accuracy of
these schemes while preserving unconditional stability, relying only on a black-box
implementation of the standard backward Euler scheme. In that sense, our new
schemes can be understood as a variational analogue of Richardson extrapolation on
(1.3), which in its standard form lacks the stability guarantees of our new schemes.

Many general purpose numerical schemes can certainly be used for solving (1.1),
such as multistep or Runge-Kutta methods [1]. However, the energy stability of
the standard examples of such schemes is either not immediate, or not true at all,
at the level of generality we seek here, when applied to an equation of the form
(1.1). Our focus is on high order schemes whose stability can be guaranteed over
an entire class of evolution laws, namely gradient flows (1.1). Nevertheless, after
some appropriate transformations, the new schemes we propose can be seen as a new,
special class of diagonally implicit Runge-Kutta (DIRK) schemes tailored to these
important dynamics. In the extensive literature on Runge-Kutta methods, one of the
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related contributions to the nonlinear notion of stability (1.2) we seek is B-stability for
evolutions that satisfy a monotonicity (contractivity) condition [2]. In the context of
gradient flows, this requires convexity of the energy E in (1.1), which is too restrictive
for the applications we have in mind (see e.g. Examples (5.2) and (5.4) in Section
5.2). Very recently, [10] & [11] propose high order Runge-Kutta schemes for gradient
flows with stability guarantees. Among these, [11] concerns fully implicit schemes,
as in the present work, but is again restricted to convex energies as in earlier works
on B-convexity. The paper [10] studies implicit-explicit schemes that, in the spirit
of convexity splitting [5], break up the energy into convex and concave parts, and
treat the convex part implicitly and the concave part explicitly. The present work
differs in placing no convexity assumptions on E, which is treated fully implicitly. An
example where the energy is in fact concave, yet the optimization (1.4) is solvable
at very low cost, is the threshold dynamics algorithm for motion by mean curvature
[6, 7] that is known to be unconditionally energy stable [4]. We show in [12] how ideas
developed in the present paper can be used to jack up the order of accuracy of this
intriguing algorithm while preserving its desirable stability properties, which appears
to be beyond the scope of previous contributions. See also Remark 5.2 of Section
5.2 in this context. Finally, we also mention recent work on the scalar auxiliary
variable method [8] as another approach focusing on unconditional energy stability
for gradient flows.

The rest of the paper is organized as follows:
• Section 2 presents the general framework for the new scheme, focusing on

unconditional energy stability.
• Section 3 focuses on consistency, showing how to attain 2nd and 3rd order

accuracy.
• Section 4 gives 2nd and 3rd order examples of the new schemes.
• Section 5 presents numerical convergence studies on a number of well-known

ordinary and partial differential equations that are gradient flows.
The code for section 5 is publicly available, and can be found at https://github.com/
AZaitzeff/gradientflow.

2. The New Schemes: Stability. In this section, we formulate a wide class
of numerical schemes that are energy stable by construction. We thus place stability
front and center, leaving consistency to be dealt with subsequently. It is therefore
important to allow many degrees of freedom in the scheme at this stage, in the form
of a large number of coefficients, that will eventually be chosen, in the next section,
to attain consistency at a high order of accuracy.

Our method is a linear M -stage scheme of the following form:
1. Set U0 = un
2. For m = 1, . . . ,M :

(2.1) Um = arg min
u

(
E(u) +

m−1∑
i=0

γm,i
2k
||u− Ui||2

)
.

3. Set un+1 = UM
Notice that the proposed scheme (2.1), as promised, merely requires the solution

of exactly the same type of problem at every time step as the standard backward
Euler scheme: minimization of the associated energy plus a quadratic term.

At this point, it is not clear why a scheme such as (2.1) should dissipate energy
E at every iteration as in (1.2). However, in this section we establish quite broad
conditions on the coefficients γm,i that ensure energy dissipation (1.2); this is the

https://github.com/AZaitzeff/gradientflow
https://github.com/AZaitzeff/gradientflow


4 VARIATIONAL EXTRAPOLATION

essential observation at the heart of the present paper. To demonstrate the idea,
consider the following two-stage special case of scheme (2.1):

U1 = arg min
u

(
E(u) +

γ1,0
2k
||u− un||2

)
(2.2)

un+1 = arg min
u

(
E(u) +

γ2,0
2k
||u− un||2 +

γ2,1
2k
||u− U1||2

)
(2.3)

and impose the conditions

(2.4) γ1,0 −
γ22,0

γ2,0 + γ2,1
≥ 0 and γ2,0 + γ2,1 > 0

on the parameters. Set θ =
γ2,0

γ2,0+γ2,1
. Note that (2.3) is equivalent to

(2.5) un+1 = arg min
u

(
E(u) +

γ2,0 + γ2,1
2k

∥∥u− (θun + (1− θ)U1

)∥∥2).
This can be seen by expanding the norm squared and comparing the quadratic and
linear terms in u. The constant terms are not equal but that does not matter for the
minimization.
We have

E(un+1) ≤ E(un+1) +
γ2,0 + γ2,1

2k

∥∥un+1 −
(
θun + (1− θ)U1

)∥∥2 (by (2.4))

≤ E(U1) +
γ2,0 + γ2,1

2k

∥∥U1 −
(
θun + (1− θ)U1

)∥∥2 (by (2.5))

= E(U1) +
γ2
2,0

(γ2,1 + γ2,0)2k
‖U1 − un‖2

≤ E(U1) +
γ1,0
2k
‖U1 − un‖2 (by (2.4))

≤ E(un) (by (2.2))

establishing unconditional energy stability of scheme (2.2) & (2.3) under the condition
(2.4) on its parameters. We offer some insight to the conditions in (2.4). First, the
condition γ2,0 +γ2,1 > 0 is reasonable as it requires that the function being minimized
in (2.3) goes to +∞ as ||u|| → ∞. What is more surprising is that one of the second
stage coefficients can be negative while maintaining unconditionally stability. We can
‘reward’ the distance to one of the previous stages as long as the distance to the other

stage is penalized sufficiently strongly. The condition γ1,0 ≥
γ2
2,0

γ2,0+γ2,1
requires that

the penalization in the first stage has to be strong relative to the penalization in the
second stage.
We will now extend this discussion to the general, M -stage case of scheme (2.1):

Theorem 2.1. Define the following auxiliary quantities in terms of the coeffi-
cients γm,i of scheme (2.1):

γ̃m,i = γm,i −
M∑

j=m+1

γ̃j,i
S̃j,m

S̃j,j
(2.6)

S̃j,m =

m−1∑
i=0

γ̃j,i(2.7)
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Where if m = M , the sum in (2.6) is considered to be zero. If S̃m,m > 0 for m =
1, . . . ,M , then scheme (2.1) satisfies the energy stability condition (1.2): For every
n = 0, 1, 2, . . . we have E(un+1) ≤ E(un).

As we will see in Section 3, the conditions on the parameters γi,j of scheme (2.1)
imposed in Theorem 2.1 are loose enough to enable meeting consistency conditions
to high order. We will establish Theorem 2.1 with the help of the following two
lemmas.The first lemma is the multi-step version of the equivalence of (2.3) and (2.5)
in our two step example:

Lemma 2.2. Let the auxiliary quantities S̃j,m, and γ̃m,i be defined as in Theo-
rem 2.1. We have

arg min
u

(
E(u) +

m−1∑
i=0

γm,i
2k
||u− Ui||2

)

= arg min
u

(
E(u) +

1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||u−

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2

)

Proof. As in the two step case the proof consists of expanding the norm squared
terms and showing that all the quadratic and linear terms of u are equal. First the
expansion of

∑m−1
i=0

γm,i

2k ||u− Ui||
2 is

||u||2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.(2.8)

Next, we will establish two identities to help us expand

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

||u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2.

First by rearranging (2.6),

(2.9) γm,i =

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j

.

Next, an identity of S̃m,m:

S̃m,m =

m−1∑
i=0

γ̃m,i =

m−1∑
i=0

[
γm,i −

M∑
j=m+1

γ̃j,i
S̃j,m

S̃j,j

]

=

m−1∑
i=0

γm,i −
M∑

j=m+1

[m−1∑
i=0

γ̃j,i

]
S̃j,m

S̃j,j

=

m−1∑
i=0

γm,i −
M∑

j=m+1

S̃2
j,m

S̃j,j

.

We use this identity to establish the following:

(2.10)

M∑
j=m

S̃2
j,m

S̃j,j

= S̃m,m+

M∑
j=m+1

S̃2
j,m

S̃j,j

=

m−1∑
i=0

γm,i−
M∑

j=m+1

S̃2
j,m

S̃j,j

+

M∑
j=m+1

S̃2
j,m

S̃j,j

=

m−1∑
i=0

γm,i.
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Now we can calculate the expansion:

1

2k

M∑
j=m

S̃2
j,m

S̃j,j

||u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2

=
||u||2

2k

M∑
j=m

S̃2
j,m

S̃j,j

− 1

k
〈u,

m−1∑
i=0

M∑
j=m

γ̃j,i
S̃j,m

S̃j,j

Ui〉+ terms that do not depend on u

=
||u||2

2k

m−1∑
i=0

γm,i −
1

k
〈u,

m−1∑
i=0

γm,iUi〉+ terms that do not depend on u.

Where the last equality follows from (2.9) and (2.10). Since this expansion matches
(2.8) up to a constant in u the proof is complete.

Now we will use Lemma 2.2 to relate the energy of sub-step m to sub-step m− 1.
This lemma is the crux of the proof of the theorem and where we use the condition
that S̃m,m > 0 for all m.

Lemma 2.3. Let the auxiliary quantities S̃j,m, γ̃m,i be given in Theorem 2.1 and

let S̃m,m > 0 for m = 1, . . . ,M . Then

E(Um) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j
||Um −

m−1∑
i=0

γ̃j,i

S̃j,m
Ui||2

≤E(Um−1) +
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j
||Um−1 −

m−2∑
i=0

γ̃j,i

S̃j,m−1
Ui||2

Proof. By (2.1) & Lemma 2.2,

Um = argmin
u

E(u) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

||u−
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2.

Since Um is the minimizer of the above optimization problem

E(Um) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

||Um −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2(2.11)

≤ E(Um−1) +
1

2k

M∑
j=m

S̃2
j,m

S̃j,j

||Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2(2.12)

Next using the definition of auxiliary variables we can state an identity that will
simplify (2.12). For m > 1 and j ≥ m

S̃2
j,m

S̃j,j

||Um−1 −
m−1∑
i=0

γ̃j,i

S̃j,m

Ui||2 =
S̃2
j,m

S̃j,j

||Um−1

(
1− γ̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m

Ui||2

=
S̃2
j,m

S̃j,j

||Um−1

(
S̃j,m−1

S̃j,m

)
−

m−2∑
i=0

γ̃j,i

S̃j,m

Ui||2 =
S̃2
j,m−1

S̃j,j

||Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2.

Using this identity (2.12) is equal to

(2.13) E(Um−1) +
1

2k

M∑
j=m

S̃2
j,m−1

S̃j,j

||Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2
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Now since S̃m−1,m−1 > 0,

(2.14)
S̃2
m−1,m−1

S̃m−1,m−1

||Um−1 −
m−2∑
i=0

γ̃m−1,i

S̃m−1,m−1

Ui||2 > 0.

By adding (2.14) to (2.13), we have that (2.13) is less than or equal to

E(Um−1) +
1

2k

M∑
j=m−1

S̃2
j,m−1

S̃j,j

||Um−1 −
m−2∑
i=0

γ̃j,i

S̃j,m−1

Ui||2

concluding the proof.

Proof. (of theorem) The main idea of the proof is to use Lemma 2.3 repeatedly
to relate the energy of E(un+1) to E(un). First, since S̃M,M > 0

E(un+1) = E(UM ) ≤ E(UM ) +
1

2k

S̃2
M,M

S̃M,M

||UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui||2

The right hand side of the equation is of the form required by Lemma 2.3. By using
the Lemma 2.3 repeatedly we have

E(UM ) +
1

2k

S̃2
M,M

S̃M,M

||UM −
M−1∑
i=0

γ̃M,i

S̃M,M

Ui||2

≤E(UM−1) +
1

2k

M∑
j=M−1

S̃2
j,M−1

S̃j,j

||UM−1 −
M−2∑
i=0

γ̃j,i

S̃j,M−1

Ui||2

...

≤E(U1) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j

||U1 −
γ̃j,0

S̃j,1

U0||2.

By (2.1) and Lemma 2.2

U1 = argmin
u

E(u) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j

||u− γ̃j,0

S̃j,1

U0||2

so

E(U1) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j

||U1 −
γ̃j,0

S̃j,1

U0||2 ≤ E(U0) +
1

2k

M∑
j=1

S̃2
j,1

S̃j,j

||U0 − U0||2 = E(un)

completing the proof of the theorem.

Now the condition that S̃m,m > 0 for m = 1, . . . ,M is the multi-step equivalent
of (2.4) in the two step case. Given the γ’s you can calculate the auxiliary quantities
(2.6) and (2.7) explicitly as follows:
for m = M,M − 1, . . . , 1:

1. Calculate γ̃m,i for i = 1, 2, . . . ,m

2. Calculate S̃j,m for j = m,m+ 1, . . . ,M .
Thus given γ’s we can easily check if they satisfy the hypothesis of Theorem 2.1.
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3. The New Schemes: Consistency. We now turn to the question of whether
the coefficients γm,i in scheme (2.1) can be chosen to ensure its high order consistency
with the abstract evolution law (1.1). As mentioned before, the schemes are diagonal
implicit Runge-Kutta, whose order conditions are well established (for example in
[1]). For completeness, we derive the conditions here. From (2.1), each stage Um
satisfies the Euler-Lagrange equation:

(3.1)

[m−1∑
i=0

γm,i

]
Um + k∇HE(Um) =

m−1∑
i=0

γm,iUi.

The consistency equations for the γs are found by carrying out a Taylor series ex-
pansion of Um around U0 = u(t0). We will calculate the one-step error. For n ∈
{1, 2, 3, . . .}, let DnE(u) : Hn → R denote the multilinear form given by

DnE(u)(v1, . . . , vn) =
∂n

∂s1 · · · ∂sn
E(u+ s1v1 + s2v2 + · · ·+ snvn)

∣∣∣∣
s1=s2=···=sn=0

so that the linear functional DnE(u)(v1, v2, . . . , vn−1, ·) : H → R may be identified
with an element of H, which will be denoted simply as DnE(v1, v2, . . . , vn−1) in what
follows. We begin with the exact solution starting from u(t0):

{
ut = −∇E(u) t > t0

u(t0) = U0

The Taylor expansion of u(k + t0) around t0 is

u(k + t0) =u(t0) + kut(t0) +
1

2
k2utt(t0) +

1

6
k3uttt(t0) + h.o.t.

=U0 − kDE(U0) +
1

2
k2D2E(U0)DE(U0)

− 1

6
k3
[
D2E(U0)

(
D2E(U0) (DE(U0))

)
+D3E(U0)

(
DE(U0), DE(U0)

)]
+ h.o.t.

(3.2)

We now present the error at each stage of the multi-stage algorithm, (2.1), and the
conditions required to achieve various orders of accuracy:

Proposition 3.1. Let Um be given in (2.1) for m = 0, 1, . . . ,M . The Taylor
expansion of Um at each stage has the same form as (3.2), namely:

(3.3) Um = U0 − β1,mkDE(U0) + β2,mk
2D2E(U0)DE(U0)

− k3
[
β3,mD

2E(U0)
(
D2E(U0) (DE(U0))

)
+ β4,mD

3E(U0)
(
DE(U0), DE(U0)

)]
+O(k4)
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where the coefficients obey the following recursive relation

β1,0 = β2,0 = β3,0 = β4,0 = 0

β1,m =
1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]

β2,m =
1

Sm

[
β1,m +

m−1∑
i=1

γm,iβ2,i

]

β3,m =
1

Sm

[
β2,m +

m−1∑
i=1

γm,iβ3,i

]

β4,m =
1

Sm

[
β2
1,m

2
+

m−1∑
i=1

γm,iβ4,i

]
(3.4)

with Sm =
∑m−1
i=0 γm,i. Furthermore, the following conditions for UM in scheme (2.1)

are necessary and sufficient for various orders of accuracy:

First Order: Second Order: Third Order:

β1,M = 1 β1,M = 1 β1,M = 1

β2,M = 1/2 β2,M = 1/2(3.5)

β3,M = 1/6

β4,M = 1/6

Proof. We will now show by induction that the aforementioned consistency for-
mulas, (3.3) and (3.4), hold.

Stage zero: U0 trivially satisfies (3.3) and (3.4).

Stage m: Assume (3.3) and (3.4) up to stage m− 1. First we are going to solve
for Um − U0 in (3.1):

Um − U0 =− k

Sm
DE(Um) +

1

Sm

m−1∑
i=0

γm,iUi − U0.(3.6)

Now Taylor expand DE(Um) around U0 in (3.6):

Um − U0 =− k

Sm

[
DE(U0) +D2E(U0)(Um − U0) +

1

2
D3E(U0)

(
Um − U0, Um − U0

)]
+

1

Sm

m−1∑
i=0

γm,iUi − U0 + h.o.t.

Substituting the ansatz U0 + kA1 + k2A2 + k3A3 +O(k4) for Um and equation (3.3)
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for Ui, and retaining up to terms of third order, we have that

kA1 + k2A2 + k3A3 =

− k

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]
DE(U0) + k2

[
1

Sm
D2E(U0)

(
−A1 +

m−1∑
i=1

γm,iβ2,iDE(U0)
)]

− k3
[

1

Sm
D2E(U0)

(
A2 +

m−1∑
i=1

γm,iβ3,iD
2E(U0)DE(U0)

)
+

1

2

1

Sm
D3E(U0)

(
A1, A1

)
+

1

Sm

m−1∑
i=1

γm,iβ4,iD
3E(U0)

(
DE(U0), DE(U0)

)]
+O(k4)

(3.7)

Solving for A1, A2, A3 by matching terms of the same order in (3.7), we arrive at:

A1 = −
1

Sm

[
1 +

m−1∑
i=1

γm,iβ1,i

]
DE(U0)

A2 =
1

Sm
D2E(U0)

(
−A1 +

m−1∑
i=1

γm,iβ2,iDE(U0)
)

=

(
1

S2
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]
+

1

Sm

m−1∑
i=1

γm,iβ2,i

)
D2E(U0)

(
DE(U0)

)
A3 = −

1

Sm
D2E(U0)

(
A2 +

m−1∑
i=1

γm,iβ3,iD
2E(U0)DE(U0)

)
−

1

2

1

Sm
D3E(U0)

(
A1, A1

)
−

1

Sm

m−1∑
i=1

γm,iβ4,iD
3E(U0)

(
DE(U0), DE(U0)

)
= −

(
1

S3
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]
+

1

S2
m

m−1∑
i=1

γm,iβ2,i

+
1

Sm

m−1∑
i=1

γm,iβ3,i

)
D2E(U0)

(
D2E(U0) (DE(U0))

)
−
(

1

2

1

S3
m

[
1 +

m−1∑
i=1

γm,iβ1,i

]2
+

1

Sm

m−1∑
i=1

γm,iβ4,i

)
D3E(U0)

(
DE(U0), DE(U0)

)
completing the induction step.

Matching the consistency equations, (3.3) and (3.4), at UM with the one step error
(3.2) gives the conditions on UM for various orders of accuracy (3.5), completing the
proof.

In the next section, we give examples of γ’s that satisfy the consistency equations
(Proposition 3.1) as well as the hypothesis of Theorem 2.1 concurrently.

4. The New Schemes: Examples. In this section, we exhibit second and
third order examples of scheme (2.1) that satisfy concurrently the hypothesis guar-
anteeing unconditional energy stability (Theorem 2.1) and the consistency equations
(Proposition 3.1) up to second and third order. We found the γ’s by the following
numerical procedure: we first found a set of γ’s that satisfied the conditions of Theo-
rem 2.1. Then we used the interior point method with the conditions of Theorem 2.1
as our constraint and an objective function that penalized the mismatch between the
current β1,M and β2,M (and β3,M and β4,M for third order) and (3.5). After obtain-
ing γ’s that satisfied the consistency equations up to some small tolerance as well as
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our constraint, we sought a nearby algebraic solution to the consistency equations
that still satisfied the conditions in Theorem 2.1. For some number of stages M , it
is impossible to satisfy the consistency equation for a given order and the stability
conditions. Therefore, we searched for γ’s that encoded stable algorithms of various
orders with different total number of stages and report a set of γ’s with the lowest
number of stages for a given order here. Using this method we were able to find second
and third order stable schemes. Whether even higher order accuracy (together with
stability) can be obtained with this class of schemes will require a more systematic ap-
proach to the solvability of the conditions on γ, and will be the subject of future work.

4.1. Second order examples. It can be shown that there is no unconditionally
energy stable second order two-stage method. However, it turns out that three stages
are sufficient for unconditional stability:

(4.1) γ =

 γ1,0 0 0
γ2,0 γ2,1 0
γ3,0 γ3,1 γ3,2

 =

 5 0 0
−2 6 0
−2 3

14
44
7

 ≈
 5.0 0 0
−2.0 6.0 0
−2.0 0.22 6.29

 .

This choice of γ’s that endows the three-stage method (2.1) with unconditional sta-
bility and second order accuracy is by no means unique; indeed, here is another that
has the additional benefit of having each one of its stages depend only on the previous
one and un:

(4.2) γ =

 9
2 0 0
− 11

6
44
7 0

− 287591
148306 0 944163

148306

 ≈
 4.5 0 0
−1.83 6.29 0
−1.94 0 6.37

 .

4.2. Third order examples. We now exhibit a six stage version of scheme (2.1)
that concurrently satisfies the conditions for unconditional energy stability (Theo-
rem 2.1) as well the consistency equations (Proposition 3.1) up to third order:

γ ≈


11.17 0 0 0 0 0
−7.5 19.43 0 0 0 0
−1.05 −4.75 13.98 0 0 0

1.8 0.05 −7.83 13.8 0 0
6.2 −7.17 −1.33 1.63 11.52 0
−2.83 4.69 2.46 −11.55 6.68 11.95

(4.3)

The exact values of the γ’s above are given in the appendix (section 7); they are all
rational numbers but with long fractional representations. Again, we cannot rule out
other solutions for γ, possibly with fewer stages.

5. The New Schemes: Numerical Tests. In this section, we will apply the
second order (4.1) and third (4.3) order accurate unconditionally stable schemes to
a variety of gradient flows. We found (4.1) before (4.2) and therefore ran all our
numerical tests with the former. The gradient flows considered span linear and non-
linear ordinary and partial differential equations. The corresponding energies include
convex and non-convex forms. Careful numerical convergence studies are presented
in each case to verify the anticipated convergence rates of previous sections.

Remark 5.1. Note that equation (2.1) can be rewritten using only one quadratic
movement limiter term, so a black box implementation for backward Euler (1.3), or
equivalently (1.4), is all that is needed for our method, and is called once per stage.
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5.1. Ordinary Differential Equations. First, we turn to the ODE u′ =
− sinh(u) with the corresponding energy E(u) = cosh(u). With initial condition
u(0) = −2, the exact solution is u∗(t) = −2 coth−1(exp(t) coth(1)). Table 1 and
Table 2 show the error in the solution at time t = 2 computed by the second order
scheme (2.1) & (4.1) and the third order scheme (2.1) & (4.3), respectively, at various
choices of the time step size. The anticipated order or convergence is clearly observed
for both schemes. Figure 1 shows the energy at every time step for the third order
method with 16 time steps. As expected, the energy decreases at every time step.
There is little visual difference between Figure 1, the plot of the second order method
with 16 time steps and the plot of the exact energy.

Number of
time steps 24 25 26 27 28

Error at t = 2 5.25e-04 1.31e-04 3.27e-05 8.18e-06 2.05e-06
Order - 2.00 2.00 2.00 2.00

Table 1: The new second order accurate, unconditionally stable, three-stage scheme (2.1) & (4.1)
on the ODE u′ = − sinh(u) with energy E(u) = cosh(u).

Number of
time steps 24 25 26 27 28

Error at t = 2 1.19e-05 1.48e-06 1.85e-07 2.30e-08 2.88e-09
Order - 3.00 3.00 3.00 3.00

Table 2: The new third order accurate, unconditionally stable, six-stage scheme (2.1) & (4.3) on
the ODE u′ = − sinh(u) with energy E(u) = cosh(u).

Fig. 1: The new third six-stage scheme (2.1) & (4.3) with 16 time steps on the ODE on the ODE
u′ = − sinh(u) with energy E(u) = cosh(u)

We next turn to an ODE with the non-smooth energy

(5.1) E(u) =

{
1
2 |u| if |u| < 1

|u− 1|+ 1
2 if |u| ≥ 1.

Since the energy is non-smooth we do not expect higher order convergence. As shown
in Figure 2, the second (2.1) & (4.1) and third order scheme (2.1) & (4.3) obtain first
order convergence on average. Notwithstanding, the energy decreases at every time
step as shown in Figure 3 for the third order method with 16 time steps.



VARIATIONAL EXTRAPOLATION 13

Fig. 2: The new second order accurate, unconditionally stable, three-stage scheme (2.1) & (4.3)
(right) and the new third six-stage scheme (2.1) & (4.3) (left) on the ODE induced by gradient flow
on non smooth energy (5.1)

Fig. 3: The new third order six-stage scheme (2.1) & (4.3) with 16 time steps on the ODE induced
by gradient flow on non smooth energy (5.1)

5.2. Partial Differential Equations. For PDEs, we start with a preliminary
test on the one dimensional heat equation ut = uxx on x ∈ [−1, 1] subject to periodic
boundary conditions with initial data u(x, 0) = sin(πx). This is gradient flow with
respect to the L2 inner product for the energy E(u) = 1

2

∫
u2x dx. The exact solution

is u∗(x, t) = sin(πx) exp(−π2t). The spatial domain [−1, 1]. For this example as
well as the other PDEs in this section, we choose the discretization of the Laplacian
and number of spatial points so that the contribution to the error from the spatial
discretization is negligible. Table 3 and Table 4 show the L2 error in the approximate
solution at t = 1

8 , computed via the second order accurate scheme (2.1) & (4.1), and
the third order accurate scheme (2.1) & (4.3), respectively. Figure 4 shows the energy
at every time step for the third order method with 16 time steps. We see that the
energy decreases at every time step.

We now turn to less trivial examples, starting with the Allen-Cahn equation

(5.2) ut = ∆u−W ′(u)

where W : R→ R is a double-well potential. This is gradient flow for the energy

(5.3) E(u) =

∫
1

2
|∇u|2 +W (u) dx
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Number of
time steps 22 23 24 25 26 27

L2 1.09e-03 2.66e-04 6.59e-05 1.64e-05 4.09e-06 1.02e-06
Order - 2.03 2.01 2.01 2.00 2.00

Table 3: The new second order accurate, unconditionally stable, three-stage scheme (2.1) & (4.1)
on the one-dimensional heat equation ut = uxx.

Number of
time steps 22 23 24 25 26 27

L2 2.30e-05 2.75e-06 3.36e-07 4.16e-06 5.17e-09 6.37e-10
Order - 3.06 3.03 3.02 3.01 3.02

Table 4: The new third order accurate, unconditionally stable, six-stage scheme (2.1) & (4.3) on
the one-dimensional heat equation ut = uxx.

with respect to the L2 inner product.
First, we consider equation (5.2) in one space dimension, with the potential

W (u) = 8u−16u2− 8
3u

3+8u4. This is a double well potential with unequal depth wells;
see Figure 5. In this case, equation (5.2) is well-known to possess traveling wave solu-
tions on x ∈ R, see Figure 6. We choose the initial condition u(x, 0) = tanh(4x+ 20);
the exact solution is then u∗(x, t) = tanh(4x + 20 − 8t). The computational domain
is x ∈ [−10, 10]. We approximate the solution on R by using the Dirichlet boundary
conditions u(±10, t) = ±1: The domain size is large enough that the mismatch in
boundary conditions do not substantially contribute to the error in the approximate
solution over the time interval t ∈ [0, 5]. Table 5 and Table 6 tabulate the error in
the computed solution at time t = 5 for our two new schemes.

Next, we consider the Allen-Cahn equation (5.2) in two space dimensions, with
the potential W (u) = u2(1−u)2 that has equal depth wells; see Figure 5. We take the
initial condition u(x, y, 0) = 1

1+exp[−(7.5−
√
x2+y2)]

on the domain x ∈ [−10, 10]2, and

impose periodic boundary conditions. We run the system to find u at t = 20, (Figure 7
shows u at t = 0 and t = 20). As a proxy for the exact solution of the equation
with this initial data, we compute a very highly accurate numerical approximation
u∗(x, y, t) via the following second order accurate in time, semi-implicit, multi-step
scheme [3] on an extremely fine spatial grid and take very small time steps:

3

2
un+1 − 2un +

1

2
un−1 = k∆un+1 − k(2W ′(un)−W ′(un−1)).

Table 7 and Table 8 show the errors in and convergence rates for the approximate
solutions computed by our new multi-stage schemes.

As a final example, we consider the Cahn-Hilliard equation

(5.4) ut = −∆
(
∆u−W ′(u)

)
where we take W to be the double well potential W (u) = u2(1−u)2 with equal depth
wells and impose periodic boundary conditions. This flow is also gradient descent for
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Fig. 4: The new third six-stage scheme (2.1) & (4.3) with 16 time steps on the one-dimensional
heat equation ut = uxx

Fig. 5: The double well potentials used in the Allen-Cahn (5.2) and Cahn-Hilliard (5.4) equations:
One with unequal and the other with equal depth wells.

energy (5.3), but with respect to the H−1 inner product:

〈u , v 〉 =

∫
u∆−1v dx.

Starting from the initial condition u(x, y, 0) = 1

1+exp[−(5−
√
x2+2y2)]

and running the

system until t = 20 (see Figure 8). We computed a proxy for the “exact” solution
once again using the second order accurate, semi-implicit multi-step scheme from [3]
[9]:

3

2
un+1 − 2un +

1

2
un−1 = −k∆[∆un+1 − k(2W ′(un)−W ′(un−1))]

where the spatial and temporal resolution was taken to be high to ensure the errors
are low. Table 9 and Table 10 show the errors in and convergence rates for the
approximate solutions computed by our new multi-stage schemes.

Remark 5.2. As further evidence of the generality and flexibility of the new
schemes introduced in this paper, we note that they can also be used to jack up the
order of accuracy in time of less conventional numerical algorithms such as threshold
dynamics [6, 7]. Also known as diffusion generated motion, threshold dynamics is an
unconditionally stable algorithm for simulating the motion of interfaces by mean cur-
vature, merely by alternating the two simple steps of convolution and thresholding. It
was given a variational formulation in [4] that exhibits it as carrying out an approx-
imate minimizing movements procedure at every time step. Although the stability
calculation of Section 2 applies verbatim, the consistency calculations of Section 3
have to be redone. This is because (a) motion by mean curvature, although formally
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Fig. 6: The initial condition (black) and the solution at final time (gray) in the numerical conver-
gence study on the 1D Allen-Cahn equation (5.2) with a potential that has unequal depth wells.

Number of
time steps 27 28 29 210 211 212

L2 5.14e-02 1.26e-02 3.13e-03 7.79e-04 1.94e-04 4.86e-05
Order - 2.02 2.01 2.01 2.00 2.00

Table 5: The new second order accurate, unconditionally stable, three-stage scheme (2.1) & (4.1)
on the one-dimensional Allen-Cahn equation (5.2) with a traveling wave solution.

a gradient flow on perimeter, does not quite fit the classical formulation (1.1), and
(b) the variational formulation in [4] shows that threshold dynamics carries out min-
imizing movements for approximately the right energy with respect to approximately
the right metric: these additional errors have to be taken into account. Due to the
substantial modifications to the consistency calculation required, extension of the new
schemes to enhancing the order of accuracy of threshold dynamics will be taken up
in a subsequent, separate paper [12].

6. Conclusion. We presented a class of unconditionally stable, high order in
time schemes for gradient flows. The new schemes can be thought of as a variational
analogue of Richardson extrapolation: they enable jacking up the order of accuracy
of standard backward Euler method, while maintaining its unconditional stability, at
the expense of taking multiple backward Euler time substeps per full time step. What
results is a universal method to jack up the accuracy to at least third order in time
whenever a blackbox implementation of the standard backward Euler scheme is avail-
able, while increasing overall complexity by only a constant factor. We demonstrated
the method and its advertised accuracy on a number of linear and nonlinear ODEs
and PDEs.

Whether this class of schemes can be used to achieve arbitrarily high (i.e. ≥ 4)
order in time accuracy will be the topic of a future investigation.

7. Appendix. We record here the exact values for the coefficients γ in the six-
stage, third order accurate scheme introduced in Section 4. They are rational numbers,
but the irreducible fraction representation of some of them are quite long, and were
therefore approximated above. With the universal, exact values given below, we can
rigorously state that the new scheme introduced in this paper can be used to jack up
the order of accuracy in time of any backward Euler scheme (1.3) for gradient flows
(1.1) to third order while maintaining unconditional energy stability.
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Number of
time steps 27 28 29 210 211 212

L2 9.06e-04 9.97e-05 1.20e-05 1.48e-06 1.85e-07 2.37e-08
Order - 3.18 3.06 3.02 3.00 2.97

Table 6: The new third order accurate, unconditionally stable, six-stage scheme (2.1) & (4.3) on
the one-dimensional Allen-Cahn equation (5.2) with a traveling wave solution.

Fig. 7: Initial condition and the solution at final time for the 2D Allen-Cahn equation with a
potential that has equal depth wells.

The matrix of values is:

γ =



67
6 0 0 0 0 0
− 15

2
136
7 0 0 0 0

− 21
20 − 19

4
587
42 0 0 0

9
5

1
21 − 47

6
69
5 0 0

31
5 − 43

6 − 4
3

13
8

242
21 0

− 17
6

75
16 γ6,2 γ6,3 γ6,4 γ6,5


where

γ6,2 = −96877768305591883216465260738322381995331343806720345

39417514787340924198452679823989476266149744556295712

γ6,3 = −910677500903250179715877776918800480038125970511673389

78835029574681848396905359647978952532299489112591424

γ6,4 =
2985416726242784122189204876225493950575679989899779

446910598495928845787445349478338733176300958688160

γ6,5 =
523180952458721016795516949849623944572931703979520653

43797238652601026887169644248877195851277493951439680

It can be checked that these γ’s satisfy the inequalities in the hypothesis of The-
orem 2.1 for stability, and the consistency equations in Proposition 3.1 for third
order exactly. Code for doing so can be found at https://github.com/AZaitzeff/
gradientflow.
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Fig. 8: Initial condition and the solution at final time for the 2D Cahn-Hilliard equation with a
potential that has equal depth wells.

Number of
time steps 22 23 24 25 26

L2 1.16e-03 2.62e-04 6.41e-05 1.64e-05 4.22e-06
Order - 2.15 2.03 1.97 1.95

Table 9: The new second order accurate, unconditionally stable, three-stage scheme (2.1) & (4.1)
on the two-dimensional Cahn-Hilliard equation (5.4) with a potential that has equal depth wells.

Number of
time steps 22 23 24 25

L2 2.20e-04 4.12e-05 6.73e-06 1.05e-06
Order - 2.42 2.62 2.67

Table 10: The new third order accurate, unconditionally stable, six-stage scheme (2.1) & (4.1) on
the two-dimensional Cahn-Hilliard equation (5.4) with a potential that has equal depth wells.
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