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Abstract

The aim of the history matching method is to locate non-implausible regions of the parameter
space of complex deterministic or stochastic models by matching model outputs with data. It
does this via a series of waves where at each wave an emulator is fitted to a small number of
training samples. An implausibility measure is defined which takes into account the closeness
of simulated and observed outputs as well as emulator uncertainty. As the waves progress, the
emulator becomes more accurate so that training samples are more concentrated on promising
regions of the space and poorer parts of the space are rejected with more confidence. Whilst
history matching has proved to be useful, existing implementations are not fully automated
and some ad-hoc choices are made during the process, which involves user intervention and is
time consuming. This occurs especially when the non-implausible region becomes small and
it is difficult to sample this space uniformly to generate new training points. In this article
we develop a sequential Monte Carlo (SMC) algorithm for implementing history matching
that is semi-automated. Our novel SMC approach reveals that the history matching method
yields a non-implausible region that can be multi-modal, highly irregular and very difficult
to sample uniformly. Our SMC approach offers a much more reliable sampling of the non-
implausible space, which requires additional computation compared to other approaches used
in the literature.

Keywords: emulator, Gaussian process, history matching, hydrology, Markov chain Monte
Carlo, Markov processes.
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1 Introduction

As practitioners strive to develop more realistic models, the computational burden of cali-
brating them to observed data typically increases. The development and implementation of
such models often results in some computer code that is not tractable to handle in a con-
ventional way. Complex models arise in many different fields such as biology (e.g. Vo et al.
(2015)), ecology (e.g. Chen et al. (2017)), climate (e.g. Holden et al. (2018)), cosmology (e.g.
Vernon et al. (2014)) and many other disciplines. In the case of deterministic models, it may
be very expensive to solve the model even for a single parameter configuration. Stochastic
models may be expensive to simulate, and may only produce noisy likelihood estimates. His-
tory matching (e.g. Craig et al. (1997)) is a method for determining non-implausible regions
of the parameter space of a complex computer model where simulation from the model is very
expensive. A non-implausible parameter value is defined to be one for which there currently
is not evidence that simulation outputs generated using that value will not match observed
outputs. The method proceeds in a series of waves and uses emulation to determine thriftily
without model simulation the current non-implausible region. From this region a training
sample can be formed, model simulation performed, followed by another application of em-
ulation. After each wave the non-implausible volume gets smaller as the emulator is more
accurate over smaller volumes and more training points are generally placed closer to where
simulated outputs match observed outputs.

Whilst history matching has proven to be useful in quickly eliminating large portions of the
implausible parameter space, user intervention is often required during the process and various
ad-hoc decisions are made. In this paper we develop a novel sequential Monte Carlo (SMC)
algorithm for history matching. By doing this, we obtain a more generic, semi-automated (less
practitioner tuning) and principled algorithm for exploring the non-implausible space. As a
by-product of the latter, we demonstrate that the non-implausible region generated from
history matching can be extremely complex and difficult to explore even for sophisticated
sampling methods. This serves to highlight challenges for practitioners that can arise from
history matching and provides motivation for further research in this area.

The paper is structured as follows. Details of the history matching approach and some
variants of how it is implemented are provided in Section 2. Section 3 describes the novel
SMC framework for history matching. Numerical examples to illustrate the ideas in this paper
are shown in Section 4. The paper concludes with a discussion in Section 5.

2 History Matching

In this section we describe the history matching method and some of the issues with current
implementations of it. We note that history matching is sometimes referred to as a general
problem rather than a method (e.g. Oliver and Chen (2011)). Our usage of the term ‘method’
is consistent with some other terms in the literature such as ‘technique’ (McKinley et al., 2018)
and ‘iterative procedure’ (Andrianakis et al., 2015).
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2.1 The Method

Let θ ∈ Θ ⊆ R
p be the p-dimensional parameter of interest of a model M. An initial non-

implausible region of interest Θ0 is defined. The model M may be deterministic or stochastic.
We denote the solution of the deterministic system as yθ = M(θ) and generation from the
stochastic system as yθ = M(θ, u) where u are the random numbers required in the stochastic
model and yθ ∈ Y ⊆ R

n where n is the number of outputs. We write ykθ as the kth output of
the model for k = 1, . . . , n. We use the term ‘model simulation’ for both deterministic and
stochastic models. The observed output is denoted as yobs ∈ Y.

Input : An initial non-implausible region of interest Θ0.
Output: A region Θs ⊂ Θ that is deemed as non-implausible.

1 Set the wave counter to w = 1
2 Generate Nw training samples from Θ0 using a space filling design and simulate the

model at each θj to generate the collection of outputs {yθj}
Nw

j=1.

3 Determine a set of outputs to be emulated at wave w, denoted Qw ⊆ {1, 2, . . . , n}.

Fit an emulator Ek
w to the training data {θj, y

k
θj
}Nw

j=1 for k ∈ Qw.

4 Use the emulator Ek
w to define an implausibility function Ik

w(θ) for k ∈ Qw. If

Ik
w(θ) > cw for some chosen cw for any k ∈ Qw, then θ is deemed as implausible by

emulator Ew.
5 Use all emulators Ek

r for r = 1, . . . , w and k ∈ Qr to define the non-implausible region

Θw = ∩w
r=1 ∩k∈Qw

{θ ∈ Θ|Ik
r (θ) < cr}.

6 Increase wave counter w = w + 1.

7 Generate Nw training samples {θj}
Nw

j=1 from Θw and simulate the model at each θj to

generate the collection of outputs {yθj}
Nw

j=1.

8 If the stopping rule is satisfied then finish otherwise return to Line 3.
Algorithm 1: Steps involved in the history matching algorithm.

The steps involved in history matching are shown in Algorithm 1. The first step involves
generating a training sample from π(θ) and simulating from the model at these points. It
is common in the history matching literature to use an approach with improved space filling
properties compared to pseudo-random samples. For example, latin hypercube sampling
(Iman, 2008) or quasi-Monte Carlo (QMC, Niederreiter (1992)) are popular choices.

An emulator is then fitted to the training sample for some subset of the outputs. We denote
the set of outputs emulated at wave w as Qw ⊆ {1, 2, . . . , n}. The set Qw usually includes the
outputs that can be emulated with reasonable accuracy. Often the set Qw will grow in later
waves as more of the non-implausible space is reduced, allowing some outputs to be more easily
emulated (Vernon et al., 2018). For the moment we drop the output index k and consider a
single output for notational convenience. A common emulator choice is the Gaussian process
(GP), but in principle any emulator can be used. In the numerical results in Section 4 we use
a GP and assume that the reader is familiar with them (see Rasmussen and Williams (2006)
for details on GPs). The fitted emulator can then divide the parameter space into implausible
and non-implausible regions. The practitioner must decide upon an implausibility measure,
I(θ), for each output to inform the split. In particular, an untested θ is deemed as currently
non-implausible if I(θ) < c for some chosen cut-off c. For multiple outputs, there is an
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implausibility measure for each and a non-implausible test value must satisfy the cut-off for
all outputs. One common choice of the implausibility measure (e.g. Andrianakis et al. (2015))
is as follows

I(θ) =
|yθ − yobs|

√

s2m,θ + s2e,θ + s2d + s2obs

, (1)

where sm,θ is the estimated standard deviation of the model output, se,θ is a standard deviation
that arises from emulation uncertainty, sobs is the standard deviation of the observation error,
and sd is an additional standard deviation to account for the fact that the model might be
misspecified in some way. The model output standard deviation sm,θ is zero if the model is
deterministic. In the case of a stochastic model, the model output standard deviation can be
estimated easily from the training data if it is assumed that it is independent of θ. If this
is not a reasonable assumption, then K independent simulations can be performed for each
θ in the training sample, and a surface can be fitted to the empirical standard deviations
to predict for untested θ. When K simulations are performed, the output yθ is an average
of the K simulations. Choosing c = 3 can be justified using Pukelsheim’s rule (Pukelsheim,
1994). Pukelsheim’s rule is the powerful result that states that for any continuous, unimodal
distribution, 95% of its probability must lie within ±3σ, regardless of asymmetry, skew, or
heavy tails. In the case of multiple outputs, Vernon et al. (2018), for example, incorporate
an additional step that, for each wave, includes only the emulators that are deemed as being
accurate enough.

The implausibility measure could also be formed from the log-likelihood function of the un-
derlying model. In latent variable stochastic models, an estimate of the likelihood could
be obtained via importance sampling methods (Andrieu and Roberts, 2009), which may be
expensive to obtain. In such instances we could consider the implausibility function as
I(θ) = − log f(yobs|θ)− r × s2e,θ and recognise that the log-likelihood, log f(yobs|θ), may not
be the exact value but rather only an estimate of it. It is natural to consider the log-likelihood
as opposed to the likelihood as the former is generally easier to emulate as the curvature of
the log-likelihood surface does not vary as greatly with respect to the parameter. Further, for
numerical stability, the log-likelihood may be all that is available. Wilkinson (2014) consider
even taking the log a second time if the log-likelihood values differ widely for different θ in
the training sample. The value of r may be considered as an exploration parameter. The
larger it is the more we are inclined to explore where the emulator is uncertain. The smaller
it is the more we exploit regions where the emulator predicts the log-likelihood to be large.
Finally, if we simply take the distance between observed and simulated data we might consider
I(θ) = ρθ − r × s2e,θ. Based on the Gaussian assumption of the GP prediction we may take
r = 3.

The choice of what type of output(s) to use in history matching is likely to be problem
dependent. The advantage of emulating a log-likelihood function is that only a single output
needs to be emulated. However, given it is a function of several model outputs combined
via a probabilistic model for the data generating process, the log-likelihood surface may be a
complex and multi-modal function which is difficult to emulate and will also lead to a more
challenging non-implausible region to sample. In many applications, separate model outputs
might be less complex functions of the input parameter and easier to emulate, but more
emulators are required. For more discussion on these points, see Vernon et al. (2010a,b, 2018).
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The choice of model output is not the focus of this paper. In Section 4 we consider examples
involving a single model output (a distance or log-likelihood function) and an example with
several model outputs. Instead, our motivation is to demonstrate non-implausible regions
that are difficult to sample from and are thus suitable test examples for our new method.

The next step involves generating uniformly from the non-implausible parameter space, which
we denote as Θ1 = ∩n

k=1{θ ∈ Θ|Ik(θ) < c1}, re-introducing again the possibility of n > 1
outputs. This produces a new training sample that is concentrated in more promising parts
of the parameter space relative to the initial training sample. This essentially re-starts the
history matching process, where an emulator is fitted to each output of the new training
sample. The new emulators are likely to lead to more accurate predictions as the training
sample is less diffuse and the outputs simulated from the model less variable across Θ1. This
often results in a smoother function and reduced model stochasticity, enabling more accurate
emulators. The history matching method continues in this fashion in waves, where we denote
the wave counter as w. At wave w the implausibility function for output k is denoted Ik

w(θ)
with a cut-off cw potentially depending on the wave. After w waves, the non-implausible
parameter space is denoted as Θw = ∩w

r=1 ∩
n
k=1 {θ ∈ Θ|Ik

r (θ) < cr}. That is, for an untested
θ to be deemed as non-implausible for wave w + 1 it must be deemed as non-implausible for
all previous w waves.

The waves continue until a user-specified stopping rule is met. Andrianakis et al. (2017)
discuss some commonly used stopping rules; the entire space may be deemed implausible, the
emulator’s uncertainty is small enough and/or a sufficient number of points that match the
observed data have been collated. Further, when the implausibility measure is based on a
distance or approximate likelihood function there is no easily defined cut-off of implausibility
nor stopping rule, unlike the standard history matching implausibility measures given by (1)
and its variants. To simplify the exposition, we do not attempt to address the issue in this
paper, except that we can stop the algorithm if it becomes too computationally demanding to
sample uniformly from the non-implausible region. Further, given the semi-automatic nature
of our algorithm, it is possible to leave the algorithm running and save the output after each
wave, and then decide on a stopping rule post-hoc.

For simplicity in this paper we assume there is either a single output n = 1 or that the
implausibility measures of n > 1 outputs are combined into a single implausibility measure,
such as the second maximum implausibility measure (Vernon et al., 2010a). We find that
such instances are sufficient to demonstrate the performance of the algorithm and also the
challenges that can arise from history matching. The single output could be some scalar yobs.
Alternatively, when yobs is vector-valued, the output could be some distance ρθ = ||yθ − yobs||
between simulated and observed outputs, or the ‘distance’ could be quantified through a
chosen likelihood function, f(yobs|θ) or a 1-1 transformation of it such as the log-likelihood. If
the exact likelihood computation is not feasible, an approximate likelihood could be used, such
as a stochastic estimator of the likelihood. In Section 5 we discuss how our SMC algorithm
for history matching could be extended to multiple outputs, whose implausibility measures
are not combined into a single implausibility measure.
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2.2 Issues with History Matching

Despite the ability of history matching to relatively quickly identify parts of the parameter
space that may be consistent with the observed data, it does have at least two issues:

1. The cut-off values cw may not be easy to select in practice and there is no existing
automated method for doing so.

2. Sampling uniformly from Θw as w increases becomes increasingly difficult.

Regarding issue 1, as was already mentioned, a sensible cut-off value for the implausibility
measure in (1) is 3. However, this value assumes that we can accurately compute the quantity
in (1). This would involve being able to model sm,θ and sd accurately, which may be difficult
to do, especially for the model misspecification term sd (especially when this term may depend
on θ). Sometimes the sd term is simply ignored. If the implausibility measure is not calculated
accurately enough then a cut-off value of c = 3 may lead to the non-implausible parameter
space reducing too quickly or not quickly enough. A conservative estimate of sd can be used
to make the choice c = 3 meaningful (Andrianakis et al., 2015), but it may not be clear what
degree of conservatism is appropriate. Many authors (e.g. Vernon et al. (2014), Wilkinson
(2014) and Andrianakis et al. (2015)) report instances of having to manually change these
cut-off values after each wave and/or resort to differing numbers of training samples for each
wave. Regarding the log-likelihood implausibility measure, Wilkinson (2014) suggest a cut-
off value that depends on the maximum log-likelihood value/estimate in the training sample
minus 10 log-likelihood points, but this value may not be appropriate for all applications
and may also need to change over the waves. Moreover, an approximate cut-off based on
the log-likelihood is likely to depend on the parameter dimension, and also potentially on the
number of training samples, since a larger number of training samples will increase the chance
of landing near the maximum log-likelihood. If the implausibility measure is based on some
distance between observed and simulated data, then an appropriate cut-off value is generally
unclear and will need to change throughout the algorithm as distances get generally smaller.
It could be argued that an implausibility metric such as (1) should be strongly preferred
precisely because this gives the cut-off a meaningful interpretation, but there will be times
when a one-dimensional distance measure is practically convenient. Thus an approach able
to select the thresholds in a more automated way would be welcome.

Regarding issue 2, uniform samples from Θw can be obtained perfectly by rejection sampling;
continually sampling from π(θ) until θ ∈ Θw (see, for example, Wilkinson (2014)). However,
as w increases, the acceptance rate of this rejection sampler decreases rapidly. It may become
unacceptably small if the volume of the parameter space consistent with the observed data
is a tiny fraction of the volume of the original parameter space. Once the rejection sampler
becomes too inefficient various authors resort to ad-hoc approaches for generating training
samples from subsequent waves, choices that do not preserve the uniform distribution on Θw.
For example, Andrianakis et al. (2015) proposes 20 parameter values centered on a subset
of parameter values from a previous wave that are deemed non-implausible. An approach
that can reliably sample the non-implausible space uniformly is of interest to ensure that the
parameter space is comprehensively explored.

Williamson and Vernon (2013) consider a more sophisticated approach to the sampling prob-
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lem based on evolutionary Monte Carlo. The approach is similar to parallel tempering in
that several chains are run in parallel. One of the chains has the desired target, the uniform
distribution over Θw, as its limiting distribution, whilst the other chains increasingly relax the
constraints so that they can more freely search the parameter space. The method has local
moves to update each chain and also proposes swaps between chains. Although the approach
has the desired target as its limiting distribution, its implementation is not straightforward
and there are many tuning parameters such as the number of chains, the target distribution
of each chain, local proposal distributions and chain swapping mechanisms.

Andrianakis et al. (2017) provide another serious attempt to uniformly sample the non-
implausible region. The method is based on slice sampling. However, since each co-ordinate
of the input is updated separately, this approach may be inefficient if there is dependence
between inputs implied by the data. Nonetheless, the approach of Andrianakis et al. (2017),
or some adaptation of it, could be used in our SMC framework described next.

3 SMC Framework for History Matching

Here we propose to place the history matching method into the SMC framework. This
allows us to take advantage of the extensive research on efficient SMC algorithms (e.g.
Del Moral et al. (2006), Fearnhead and Taylor (2013) and South et al. (2018)), which are
naturally adaptive.

SMC involves sampling from a sequence of distributions that smoothly evolves between a
distribution that is easy to sample from and finishing at the distribution of interest, some-
times referred to as the target distribution. For history matching, we define the sequence of
distributions as

pw(θ) ∝ π(θ)
w
∏

k=1

I(Ik(θ) ≤ ck), (2)

where π(θ) defines the distribution that samples are initially drawn from, for example a uni-
form distribution over a hyper-rectangle or some other distribution that has been informed
from experts or historical data. As was mentioned previously, history matching usually draws
the first set of training samples from an initial region of interest using a space filling design.
We note this is not equivalent to drawing pseudo-random numbers from a uniform distri-
bution. If desired, we can initialise the SMC process in the same way as standard history
matching, in which case π(θ) is not the density of a statistical distribution but we retain it
for notational convenience. Our approach fits within the framework of Chopin (2002), but
see Del Moral et al. (2006) for a more general framework for SMC methods. Assume that
we have a collection of weighted samples or ‘particles’, {W i

w, θ
i
w}

M
i=1 from pw(θ). To push the

particle set to the next target, a re-weighting step is required. A simple importance sampling
argument leads to the following update of the weights

W i
w+1 ∝ W i

wI(Iw+1(θ
i
w) ≤ cw+1),

so that the values of the samples θiw themselves remain unchanged. Assuming that W i
w = 1/M

for i = 1, . . . ,M , the weights W i
w+1 will either be proportional to a constant or equal to
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zero. Thus placing the history matching approach into the SMC framework allows us to
select the implausibility cut-off at each wave cw+1 so that a certain proportion, α, have
a non-zero weight. This is equivalent to ensuring that the effective sample size (ESS),
often measured by 1/

∑M
i=1(W

i
w+1)

2, is roughly αM . A similar approach is adopted by
Drovandi and Pettitt (2011a) and Del Moral et al. (2012) in the SMC algorithms developed
for approximate Bayesian computation. Drovandi et al. (2016) develop a similar idea for
calibrating differential equations to population data in the presence of parameter uncertainty.

After the re-weighting step the ESS drops to roughly αM . Resampling M times from the
surviving particles reproduces an equally weighted sample of size M . Although mathemat-
ically the ESS is equal to M after resampling, the drawback is that some particles will be
duplicated. A diverse sample from each of the targets is desired. This can be achieved by
applying an MCMC kernel to each of the resampled particles. Given that an MCMC kernel
may reject proposals, it is generally advised to apply say R iterations of the MCMC kernel.
We implement the adaptive strategy promoted by South et al. (2018), which involves running
one MCMC iteration on each particle, estimating the average MCMC acceptance rate, and
using that to determine R.

The selection of an efficient MCMC kernel is critical to the success of the SMC algorithm.
SMC has the distinct advantage over serial-based algorithms such as standard MCMC in
that the population of particles can be harnessed to help build a useful MCMC proposal.
The simplest approach is a multivariate normal random walk (perhaps after transforming
each parameter to the real line) with a covariance matrix calibrated from the weighted or
re-sampled particle set (e.g. Drovandi and Pettitt (2011a)). However, given the complexity of
the distributions that arise from history matching (illustrated in Section 4), we find that this
standard approach is infeasible due to the low MCMC acceptance rates generated and hence
unattractively large values of R.

The slice sampling approach of Andrianakis et al. (2017) could be used in the MCMC step of
our method. However, we find some success for the examples in this paper with the following
approach. A kernel density estimate (kde) using the Epanechnikov kernel is calibrated to each
component of θ (i.e. the marginals) based on a subset of the M re-sampled particles. If the
parameter space is bounded then the kde is also restricted to that support. The cumulative
distribution function of the fitted kdes can be used to transform each of the marginals to
roughly standard uniform, which can be transformed again to roughly standard normal via
the standard normal quantile function. A multivariate normal random walk is then applied
to this transformed space. The Jacobian term of the transformation is also incorporated into
the Metropolis-Hastings ratio. We find that the distribution on the transformed space is
significantly more regular compared to the transformed space, in the sense that heavy tails
can be reduced and modes brought closer together. Once a proposal is generated on the
transformed space, a sample on the original space requires evaluating the quantile function
for each of the fitted marginals. Unfortunately the quantile function of the kde has no explicit
form, but it can be approximated numerically. All of these options and functionality are
provided in the ksdensity function in Matlab.

We note that the requirement to approximate the quantile function of the kde for each of
the marginals substantially slows down the MCMC step relative to other standard transforms
such as the log (positive parameters) or the logistic (bounded parameters). However, we find
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that in the challenging examples in Section 4 the approach we adopt is critical to maintain
a reasonable value of R throughout the algorithm. More detail and comparison is provided
in Section 4. In typical applications of history matching where the simulation of the model
is very expensive, the MCMC step of the SMC algorithm, which does not involve any model
simulation, may remain relatively fast. However, one of the messages of this paper is that
a significant and perhaps unavoidable amount of effort needs to be spent on ensuring the
non-implausible part of the space is well represented at each wave.

Because the sequence of distributions (2) implied by SMC history matching involves indicator
functions, it is possible to reject MCMC proposals early based on π(θ) and proposal densities
before checking for implausibility from the fitted emulators. This idea has also been used
in the context of ABC (Picchini, 2014). Furthermore, once a proposal has been deemed
implausible by one of the emulators, there is no need to check for implausibility with the
remaining emulators.

After each wave, the SMC process generates M particles from pw(θ). The training sample
for the next wave can be obtained by sub-sampling N << M particles from this set (with
duplicates ignored for deterministic models). The SMC history matching algorithm developed
in this paper is summarised in Algorithm 2.

The larger the value of M the more chance there is of the non-implausible space being well
represented. On the other hand, the computing time of the MCMC step will increase linearly
with M .

It would be possible to implement the algorithm with a priori fixed implausibility thresholds.
However, the proportion of the SMC particles satisfying the threshold will be unknown, and
could be very small or 0. It is important that there are a sufficient number of ‘alive’ particles
to inform the proposal distribution for the MCMC step. In the examples below we often
take M = 10, 000 and α = 0.5 for illustrative purposes, which are rather conservative choices.
Selecting α = 0.5 does not aim to rapidly eliminate regions of the input space, and thus is
more suitable for computer models that are relatively fast. For more expensive computer
models, it will be of interest to choose a smaller α to more aggressively eliminate implausible
regions and reduce the number of expensive runs needed. It is important though to ensure
there are enough ‘alive’ particles at each wave to inform the MCMC proposal. One way to
counteract a smaller α is to increase M . An alternative approach would be to run additional
SMC iterations to more gradually target the non-implausible region implied by the current
SMC history matching wave. These additional SMC iterations would not trigger the expensive
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computer model.

Input : The number of SMC particles M , the initial distribution π(θ), the desired
probability 1− c of moving a particle in the MCMC step, the proportion α
of SMC particles to keep at each iteration that also helps to define the
implausibility cut-off and the number of training samples N for fitting the
emulator at each wave.

Output: A collection of parameter values {θi}Mi=1 that are deemed as
non-implausible.

1 Set wave counter w = 0
2 Set W i

0 = 1
M for i = 1, . . . ,M

3 Simulate θi0
iid
∼ π(θ) for i = 1, . . . ,M

4 Simulate N training samples from π(θ) using a space filling design and fit an
emulator Ew

5 while stopping rule not met do

6 Set w = w + 1
7 Compute implausibility measure Iw(θ

i
w−1) for i = 1, . . . ,M

8 Determine implausibility cut-off value cw based on the α quantile of implausibility
values {Iw(θ

i
w−1)}

M
i=1

9 Resample floor((1− α)M) particle values from the surviving particles (i.e. those
with Iw(θ

i
w−1) ≤ cw) to replenish the SMC population

10 Set θiw = θiw−1 for i = 1, . . . ,M
11 Form a suitable MCMC proposal distribution from the resampled particles
12 Move {θiw}

M
i=1 with one iteration of an MCMC kernel targetting pw(θ) (see

Algorithm 3)

13 Compute Rt =
⌈

log (c)
log (1−pacc)

⌉

where pacc is the acceptance probability of the above

move step
14 for k = 1 to Rt do

15 Move {θiw}
M
i=1 with one iteration of an MCMC kernel targetting pw(θ) (see

Algorithm 3)
16 end

17 Sample N particles from {θiw}
M
i=1 without replacement (removing duplicates for

deterministic models). Fit emulator Ew based on this training sample
18 end

Algorithm 2: SMC History Matching Algorithm.
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Input : Collection of re-sampled particles {θi}Mi=1 from pw(θ), wave counter w,
fitted emulators {E1, E2, . . . , Ew}, the implausibility threshold cut-offs
c1, c2, . . . , cw and the initial distribution π(θ). For simplicity of notation we
omit the wave index w from θ.

Output: Collection of particles {θi}Mi=1 from pw(θ) that are better diversified.
1 Fit a kde to each marginal of θ based on the collection of particles {θi}Mi=1

2 Use the cdf of the fitted kde and the normal quantile function to transform each
margin to roughly standard normal. Denote the transformed particles as {ziw}

M
i=1

3 Estimate covariance matrix from {zi}Mi=1, Σ̂
4 for i = 1, . . . ,M do

5 Propose z∗ ∼ N (zi, Σ̂)
6 Use the fitted kdes to transform each margin of z∗ back to the original scale

denoted θ∗

7 Compute the proposal density

q(θ∗|θi) = exp
(

∑p
k=1 log f̂k(θ

∗[k])−
∑p

k=1 logN (z∗[k]; 0, 1)
)

where θ[k] denotes

the kth component of θ and f̂k(·) denotes the fitted kde for the kth marginal
8 Compute the proposal density in the other direction q(θi|θ∗)
9 Compute the first part of the Metropolis-Hastings ratio

r = min(π(θ∗)q(θi|θ∗)/π(θi)q(θ∗|θi))
10 if U(0, 1) > r then

11 reject early and go to the next iteration of the for loop at line 4
12 end

13 for j = 1, . . . , w do

14 Compute Ij(θ
∗) from fitted emulator Ej

15 if Ij(θ
∗) > cj then

16 reject early and go to the next iteration of the for loop at line 4
17 end

18 end

19 Accept θi = θ∗

20 end

Algorithm 3: MCMC kernel used within the generic SMC history matching method in
Algorithm 2. The proposal distribution for the MCMC algorithm is specific to this paper.
For simplicity of notation we omit the wave index w from θ.

One advantage of the SMC sampling approach over the evolutionary Monte Carlo method of
Williamson and Vernon (2013) is that the information from the SMC population of particles
at the current wave can be harnessed to help facilitate uniform sampling of the non-implausible
region at the next wave. Further, the SMC approach allows for adaptive choice of the cut-
offs. Finally, the approach of Williamson and Vernon (2013) is an MCMC algorithm and is
thus less suited to parallel computing compared to our SMC approach. Parallel computing
architectures are critical in history matching applications so that model simulations can be
performed in parallel for different inputs. Therefore it is useful that our SMC algorithm for
uniform sampling of the non-implausible space can take advantage of parallel computing.
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4 Examples

Below we illustrate our ideas on a toy problem, and non-trivial applications in hydrology,
biology and reservoir modelling. All of the substantive applications do not necessarily require
history matching as the model simulation is not expensive relative to typical applications
of history matching. However, they are sufficient for us to illustrate the messages of this
paper. The first substantive example is in hydrology, and involves a deterministic model
and the implausibility measure is based on a distance between observed and simulated data.
The SMC history matching approach is compared with an SMC optimisation routine. The
biological example involves a stochastic model for an autoregulatory gene network, and the
implausibility measure is based on an unbiased likelihood estimator. In this case we compare
the output and efficiency with a more standard Bayesian SMC method. The third example
is in reservoir modelling, where we use the implausibility measure in (1). Again, we compare
results with an SMC optimisation routine.

For all of the examples we emulate each output with a GP with zero mean function and
a squared exponential covariance function with automatic relevance determination. The GP
hyperparameters are estimated by maximum marginal likelihood estimation. For all examples
except the toy example in the next subsection we emulate the centred output using the sample
mean of the expensive simulations at each wave. This helps to improve the zero mean GP
assumption.

4.1 Toy Problem

Here the objective is to minimise the following function taken from one of the test functions
in Molga and Smutnicki (2005):

y = − sin(x1) sin(x
2
1/π)

2 − sin(x2) sin(2x
2
2/π)

2,

where θ = (x1, x2) ∈ (0, π) × (0, π). Figure 1 provides a visualisation of the function.

For each wave we randomly select N = 50 training samples for fitting the GP. The history
matching method is solved using brute force by starting with 220 QMC samples over the
bounded support. The process starts by selecting N = 50 samples at random from this initial
set and fitting a GP. The implausibility for each sample is computed as I(θ) = yp(θ)−r×sp(θ)
where yp(θ) and sp(θ) is the mean prediction of the function and the standard deviation from
the currently fitted GP, respectively. The exploration parameter is set at r = 3. The cut-off
for implausibility at wave w is given by Iw(θ) > cw where cw is selected adaptively such that
exactly half of the surviving samples satisfy the cut-off. Thus after each wave half of the
original 220 samples is lost. Nine waves are used so that there are still a significant number of
the original samples that satisfy all of the waves. In effect we have perfectly uniform samples
from each of the non-implausible regions defined after each wave. The non-implausible regions
are shown in black in Figure 2. The training samples are shown as crosses, and are effectively
taken uniformly at random from the black region in the previous wave (the black region for
wave 0 is the entire space of θ).

What is immediately noticeable even from this very simple example is that the non-implausible
region defined from the history matching procedure can be significantly disconnected, which
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Figure 1: Visualisation of the toy function. Black regions show where the function value is
smallest.

creates a probability distribution that can be highly multi-modal and irregular, making it
difficult to sample efficiently and reliably. This is because the non-implausible regions exist
where the emulator predicts low function values and/or where there is high uncertainty in the
prediction. There is a small non-implausible island at the top left of the space which exists
even after wave 4, where the true function is relatively high and thus not of interest. This
part of the space can only be discarded once a training sample is placed near that region,
which can be seen in wave 5.

We now fix the sequence of distributions implied by the GP fits based on perfect uniform
sampling and explore the ability of SMC for sampling this sequence. Here M = 5K particles
are used. A random subset of 2.5K of these samples for each wave are shown as light grey
dots in Figure 2. It is clear that the SMC procedure is quite successful at uniformly sampling
the black regions. The acceptance rate of the MCMC step remains reasonable throughout the
algorithm, between 40-60%. In contrast, by wave 9, the acceptance rate of the brute force
approach (i.e. perfect sampler) is 0.2%.

We compare the output of the SMC approach with a more standard approach that might
be adopted in the history matching literature. A logit transformation is applied to each
component of θ to make the parameter space unbounded. Then, the sampling distribution is
specified as a multivariate normal distribution with a mean and covariance that is calculated
from the existing M = 5K particles satisfying the constraint for the next wave. Sampling
from this normal distribution continues until N = 5K samples are generated that satisfy all
waves to date. The samples from this approach after each wave are shown in light grey dots
in Figure 3. It is evident from these plots that this approach under-represents and over-
represents in different spots within the black region. Some of the black regions are essentially
ignored, which implies that these regions may remain completely unexplored by the history
matching algorithm, which could potentially be useful regions of the parameter space. We
also use some ideas from this paper and apply the marginal cdf transform (rather than logit
transform) and fit a multivariate normal distribution on this space. The results are shown

13



Figure 2: Results for the SMC approach to sample from the sequence of distributions obtained
by brute force for the toy example. The black regions denote the non-implausible regions after
each wave and the light grey dots are the SMC samples. The grey crosses are the training
samples for fitting the GP during the brute force process.
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Figure 3: Results for the adhoc approach with the logit transformation to sample from the
sequence of distributions obtained by brute force for the toy example. The black regions denote
the non-implausible regions after each wave and the light grey dots are samples generated by
a more standard approach that might be used in history matching.
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in Figure 4. The results are better than for the logit transform, but ultimately it remains
clear that uniform sampling is not achieved. The acceptance rate of the SMC approach is
typically lower than the adhoc approaches, since an MCMC kernel may reject a proposal even
if it satisfies all relevant waves. However, this is a necessary price to pay to guarantee more
reliable sampling of the non-implausible space.

Figure 4: Results for the adhoc approach with the kde transformation applied to the marginals
to sample from the sequence of distributions obtained by brute force for the toy example. The
black regions denote the non-implausible regions after each wave and the light grey dots are
generated with the described ad-hoc approach.

The example here in two dimensions already demonstrates the multi-modal and irregular
sequence of distributions that can be generated from the history matching process, and one
can imagine how much more complex this sequence might be in higher dimensions. The next
example, which involves seven parameters, provides some insight into this.
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4.2 Hydrology Example

Here the objective is to find parameter values of a rainfall-runoff model (RRM) that lead to
good predictions of a stream flow time-series given input time series of rainfall and potential
evapotranspiration. RRMs are hydrological models that conceptualise the process by which
precipitation across a catchment is transformed into water flowing in a river or stream (surface
water). The mechanics of an RRM are typically described by a set of water balance equations
(differential or difference equations), involving a number of conceptual reservoirs or stores of
water in a catchment. In this example, we consider a simple, spatially-lumped (in the sense
that the conceptual water stores and precipitation are not modelled as spatially-distributed
processes) RRM used by Schoups and Vrugt (2010) and Schoups et al. (2010), which is derived
from the FLEX model of Fenicia et al. (2007).

The RRM consists of four conceptual reservoirs of water in a catchment: (i) an interception
reservoir that accounts for precipitation intercepted by vegetation; (ii) a soil water reservoir
(the unsaturated zone); (iii) a fast-reacting reservoir with relatively short residence time, so
that water in this store appears as surface water relatively quickly; and (iv) a slow-reacting
reservoir, for which there is a relatively long residence time before water in this store emerges
as surface water. The stores identified in (iii) and (iv) give rise to surface water components
that are sometimes referred to by hydrologists as quickflow and slowflow (or baseflow).

The states of the four reservoirs (interception, unsaturated, fast and slow) at time t are denoted
It, Ut, Ft and St respectively, and in order to remain independent of the catchment area, these
storages are measured in the same units as rainfall (mm). The interception reservoir intercepts
precipitation (measured) which enters at rate Pt (mm/day), and can fill to a maximum storage
capacity of Imax. Because some of the precipitation over the catchment is retained in the
interception reservoir, the effective precipitation rate, P e

t (mm/day), entering the soil water
store, is less than the measured precipitation and is calculated as P e

t = Pt − (Imax − It). The
interception reservoir also loses water to the atmosphere via evapotranspiration at a rate that
is calculated as EI

t = min(Ep

t , It) (mm/day), where Ep

t is the potential evapotranspiration rate
(mm/day), typically calculated based on environmental factors (temperature, solar radiation,
wind speed etc) using the Penman-Monteith equation (Monteith, 1965). The water balance
for the interception reservoir is therefore

dIt
dt

= Pt − EI
t − P e

t .

Our model assumes that the soil water store, Ut, has a maximum capacity of Umax (mm), and
its water balance is governed by the equation

dUt

dt
= P e

t −Qf

t −Ea
t −Qs

t ,

where P e
t is the effective rainfall rate at time t as previously defined, Qf

t is the runoff
rate (mm/day) that enters the fast-reacting reservoir, Ea

t is the actual evapotranspiration
(mm/day) and Qs

t (mm/day) is the percolation rate (mm/day) into the slow-reacting reser-
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Table 1: Parameters of the rainfall-runoff model and prior uncertainty ranges.

Parameter Symbol Lower Upper Units

Maximum interception Imax 1 10 mm
Soil water storage capacity Umax 10 1000 mm
Maximum percolation rate Qs

max 0 100 mm/day
Evaporation parameter αE 1E-6 100 –
Runoff parameter αF -10 10 –
Time constant, fast reservoir KF 0 10 days
Time constant, slow reservoir KS 0 150 days

voir. The fluxes Qf

t , Q
s
t and Ea

t are modelled as

Qf

t = P e
t f

(

Ut

Umax
;αF

)

,

Ea
t = (Ep

t − EI
t )f

(

Ut

Umax
;αE

)

, and

Qs
t = Qs

maxf(
Ut

Umax
;αS),

where f(U ;α) = 1−e−αU

1−e−α is a sigmoidal function that is monotonically increasing in U . Qs
max

is the parameter defining the maximum percolation rate into the slow-reacting reservoir, and
αF , αE and αS (6= 0) are parameters governing the rate of change of the sigmoidal function for
each of the three fluxes. The fast-reacting reservoir and slow reacting reservoirs have water
balances, respectively of

dFt

dt
= Qf

t −QF
t and

dSt

dt
= Qs

t −QS
t ,

where QF
t = KFFt (mm/day) and QS

t = KSSt (mm/day). Finally, streamflow is then mod-
elled as Qt = QF

t + QS
t and can be transformed to a volume per unit time (consistent with

observations of flow) by multiplying by the catchment area.

In its entirety, the RRM has eight parameters, but following the approach used by Schoups and Vrugt
(2010) we fix αS to 1 × 10−6 resulting in a percolation rate that is effectively linearly re-
lated to the storage Ut. Fixing this parameter, truncates the parameter vector to θ =
(Imax, Umax, Qs

max, αF , αE ,KF ,KS)
⊤ .

Schoups and Vrugt (2010) calibrate the model above to daily precipitation, evaporation and
streamflow data for the Guadalupe River basin at Spring Branch, Texas, USA. These authors
devised plausible ranges for the seven parameters outlined above, which we provide in Table
1.

To quantify the discrepancy between the data and simulation, denoted ρp(θ), we consider the
following relative distance

ρp(θ) =
T
∑

t=1

(ytobs − ytθ)
2

ytobs
,

18



where ytobs and ytθ are the observed and simulated streamflow at time t. The number of time
points is T , where T = 1827 here. Matlab code for this hydrology model is available as Ex-
ample 6 in the DREAM package (Vrugt, 2016), which is available at
http://www.pc-progress.com/en/onlinehelp/dream1/DREAM_Suite.html?Demoexamples.html.

For the history matching procedure, the implausibility for each sample is computed as I(θ) =
ρp(θ)−r×sd(θ) where ρp(θ) and sp(θ) is the mean prediction of the function and the standard
deviation from the currently fitted GP, respectively. The exploration parameter is set at r = 3.
The cut-off for implausibility at wave w is given by Iw(θ) > cw where cw is selected adaptively
such that exactly half of the surviving samples satisfy the cut-off.

Even for moderate dimensional problems the brute force approach to history matching is
infeasible. Thus we explore our SMC approach for this task. We use M = 10K particles in
the SMC and N = 1K training samples for the GP at each wave. For illustrative purposes we
use 29 waves.

The SMC procedure appears to be successful in performing the history matching. However,
the acceptance rates of the MCMC step are around 7-18%, which are significantly smaller than
that for the toy example above. The evolution of the MCMC acceptance probability over the
waves is shown as the solid plot in Figure 5. The acceptance rate of 7% might be considered
small for a seven dimensional parameter space, which indicates that the non-implausible region
is difficult to explore effectively. This is confirmed in Figure 6, which shows bivariate plots
of the SMC samples after various waves. It is evident that even the marginal and bivariate
distributions are complex, with samples also appearing in disconnected regions. In particular,
some of the boundaries of the parameter space cannot be ruled out as implausible early in
the process.

It turns out that a careful design of the MCMC proposal is required for the SMC procedure
to perform well enough. We tried also using the logistic function and the cdf of the beta
distribution (after scaling) to transform the marginals. However, given the significant multi-
modality present, we found that these approaches resulted in a very small MCMC acceptance
probability that decreased rapidly. The value of R became too large for the SMC sampler
to be computationally feasible. This further demonstrates the significantly complex sampling
problem that arises from history matching.

For comparison purposes we also run a standard SMC optimisation approach (i.e. no emulator)
with M = 10K particles. The sequence of distributions is defined by the 0.5 quantile of the
distances in the current particle set. The same type of MCMC kernel is used in the move step.
We again perform 29 waves. The bivariate plots after certain iterations of this approach are
shown in Figure 7. It is evident, when comparing to Figure 6, that relatively regular bivariate
distributions of the parameters arise from the SMC optimisation. Hence, the complexity
of the joint distributions as seen in Figure 6 is mostly an artifact of the history matching
method rather than being a result of the hydrology model. The difficulty in sampling the
parameter space is in part reflected in the acceptance probability of the MCMC kernel of the
SMC history matching and optimisation approaches. Using the same type of proposal in the
MCMC kernel, it is clear from Figure 5 that SMC optimisation has a much higher acceptance
rate than history matching (compare the solid plot with the dash plot). Furthermore, the
distributions arising from SMC optimisation are regular enough that it is not necessary to
resort to using kde fitting of the marginals as presented in Algorithm 3. Figure 5 shows that
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Figure 5: Acceptance probability of the MCMC step when applying the SMC history matching
method (solid), SMC optimisation method with kde transforms for the marginals (dash) and
the SMC optimisation method with logistic transforms for the marginals (dot-dash).

a simple logistic transform of the marginals leads to reasonable acceptance rates (dot-dash
plot).

Of course these results do not imply that history matching should be dismissed; over the 29
waves, history matching uses more than two orders of magnitude fewer simulations of the
model, which is critical in applications where history matching is adopted. However, the
results do highlight the challenges associated with history matching and how SMC history
matching can help to address those challenges.

The above hydrology example uses a deterministic model, whereas the next example consid-
ers a stochastic process and the implausibility measure depends on an unbiased likelihood
estimator.

4.3 Gene Network Example

Golightly and Wilkinson (2005), and more recently Drovandi et al. (2018), consider a Markov
jump process for an autoregulatory gene network consisting of four species DNA, RNA, P and
P2. See Golightly and Wilkinson (2005) for more details. The system contains eight possible
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Figure 6: Bivariate scatterplots of the parameters (with marginal histograms along the diag-
onals) when the SMC history matching method is applied to the hydrology example.
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Figure 7: Bivariate scatterplots of the parameters (with marginal histograms along the diag-
onals) when SMC optimisation is applied to the hydrology example.
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reactions

DNA + P2
c1DNA×P2−−−−−−−→ DNA · P2, 2P

c5P(P−1)/2
−−−−−−−→ P2,

DNA · P2
c2(k−DNA)
−−−−−−−→ DNA +P2, P2

c6P2−−−→ 2P,

DNA
c3DNA
−−−−→ DNA+RNA, RNA

c7RNA
−−−−→ ∅,

RNA
c4RNA
−−−−→ RNA + P, P

c8P−−→ ∅,

where k is a conservation constant (number of copies of the gene) and c = (c1, . . . , c8) are
the rate constants governing the speed at which the system evolves. We consider the same
scenario in Golightly and Wilkinson (2005) where data are simulated using rate values c =
(0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1), with k = 10, and initial species levels (DNA,RNA,P,P2) =
(5, 8, 8, 8). We simulate equi-spaced data as the next 100 observations (on all species) recorded
at 0.5 unit time intervals. Note that we assume these data are observed without error. As
in Fearnhead et al. (2014), we take independent half-Cauchy priors for the parameters, with
density p(ci) ∝ 1/(1 + 4c2i ), ci > 0 for i = 1, . . . , 8. We remove the positivity constraint on
the rate parameters by working on the log scale, that is, with θi = log ci for i = 1, . . . , 8.

This model does not have a computationally tractable likelihood function. One approach to
perform inference for such models is to assume that each species is observed with Gaussian
error with a standard deviation of σ (Holenstein, 2009). The likelihood of the implied state
space model can be estimated with a particle filter using J particles (Gordon et al., 1993).
More accurate inferences are obtained with a low value of σ, with the correct posterior obtained
in the limit as σ → 0. However as σ decreases, more particles (J) are required to obtain an
accurate likelihood estimate, increasing the computation. For illustration purposes, we use
σ = 0.6 and J = 6000 here.

For the history matching procedure, the emulator is trained on values of log(− log f̂(yobs|θ))
as the output, where f̂(yobs|θ) is the estimated likelihood. We take the log twice to improve
the capacity of the emulator to provide a good fit (as advocated by Wilkinson (2014)). Since
π(θ) is relatively vague, many datasets from the initial predictive distribution are far from the
observed data. When some rate parameters are relatively large, simulation from the model can
be very expensive. To overcome this, if any of the four species reaches a population size of 100
or the simulation is taking too long, the likelihood estimation procedure is terminated early
and log f̂(yobs|θ) is set to the smallest properly estimated log-likelihood initially drawn from
π(θ), which is relatively very small. This discourages exploring such areas of the parameter
space in future waves. For parameter configurations that lead to an estimated likelihood of
numerically 0, we also set the log-likelihood estimate to the small value mentioned above.
The implausibility for each sample is computed as I(θ) = yp(θ)− r × sd(θ) where yp(θ) and
sp(θ) is the mean prediction and the standard deviation of the predicted output from the
currently fitted GP, respectively. The exploration parameter is set at r = 3. The cut-off for
implausibility at wave w is given by Iw(θ) > cw where cw is selected adaptively such that
exactly half of the surviving samples satisfy the cut-off.

We perform 30 waves of our SMC history matching method. Boxplots of the output log(− log f̂(yobs|θ))
from the training points at each wave are shown in Figure 8. Even after 20 waves, some of
the training points generated by the SMC history matching method are not consistent with
the data.
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Figure 8: Boxplots of the output log(− log f̂(yobs|θ)) from the training points at each wave
for the gene network example. The largest value of the outliers typically corresponds to a
parameter value that simulates data far from the observed data and/or can take an excessive
time to simulate.
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For comparison purposes we also run a standard SMC sampler with 1K particles to sample
from the posterior distribution. The SMC sampler we use is based on likelihood annealing and
uses the adaptive features described in South et al. (2018), which adaptively determines the
annealing temperatures and the number of MCMC repeats in the move step as we find it works
well enough here. Here we use a multivariate normal random walk proposal in the move step.
The marginal posterior distributions, together with the marginal distributions obtained from
SMC history matching after 19, 24 and 29 waves, are shown in Figure 9. The SMC procedure
only requires 11 intermediate temperatures to reach the posterior, which are roughly 0.0004,
0.0014, 0.005, 0.0127, 0.028, 0.056, 0.104, 0.18, 0.30, 0.48 and 0.74. In contrast, even after 24
waves the distributions implied by SMC history matching are less precise than the posterior.
This highlights that a relatively large number of waves are required to eliminate poor parts
of the parameter space. Figure 10 plots the MCMC acceptance rate of the history matching
and Bayesian SMC methods over the iterations. It is clear that the Bayesian SMC method
produces a higher acceptance rate, even with a simpler proposal distribution. This again
highlights the difficult sampling problem generated by history matching.

-4 -2 0 2
0

0.5

1

1.5
1

posterior
wave 19
wave 24
wave 29

-2 0 2 4
0

0.5

1

1.5
2

-3 -2 -1 0 1
0

1

2

3
3

-3 -2 -1 0
0

1

2

3
4

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8
5

-2 0 2 4 6
0

0.2

0.4

0.6

0.8
6

-3 -2 -1 0
0

1

2

3
7

-4 -3 -2 -1 0
0

1

2

3
8

Figure 9: Marginal distributions obtained for the gene network example. Shown are the
marginal posterior distributions from Bayesian SMC (solid), and the marginal distributions
obtained from the output of SMC history matching after 19 (dash), 24 (dot-dash) and 29
(dot) waves.

Despite the above comparisons, history matching only uses 30K model simulations (stopping
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Figure 10: Acceptance probability of the MCMC step when applying the SMC history match-
ing method (solid) and the Bayesian SMC method with a multivariate normal random walk
(RW) proposal (dash) to the gene network example.

after wave 24, which might be considered reasonable, would result in 25K model simulations)
whilst the Bayesian SMC method uses roughly 460K model simulations with only 1K SMC
particles (SMC history matching had 10K particles).

4.4 Reservoir Modelling Example

The previous examples consider only a single output, which is either a distance or likelihood.
However, history matching is often applied in situations where there is interest in matching on
multiple outputs, or a set of summary statistics of the data. For the purposes of demonstrating
the latter, we consider the IC Fault model (e.g. Tavassoli et al. (2005)), which was considered
as a benchmark example for history matching in Salter and Williamson (2016).

The IC fault model is a cross-sectional model of a reservoir. The model contains three un-
known parameters; h, (the fault throw), kg (the good-quality sand permeability), and kh (the
poor-quality sand permeability). The model produces a multivariate time series of length
36 months, consisting of the oil production rate, water injection rate and water cut (or pro-
duction) rate recorded each month. Following Salter and Williamson (2016), we attempt to
match on three statistics: o24 (the oil production rate in Month24), o36 (the oil production
rate in Month 36) and w36 (the water injection rate in Month 36). The observed value of the
statistic is assumed to be (563.6, 387.5, 917.2)⊤ .

The model has previously been run at 159,661 different parameter values in the space h ∈
(0, 60), kg ∈ (100, 200) and kh ∈ (0, 50). The parameter values tested and the corresponding
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model output can be downloaded from
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/.
For simplicity, instead of simulating directly from the model at an untried parameter value,
we assume that the model output can be well approximated by taking the model output at
the closest parameter value in Euclidean space within the pre-existing database. We take
this approach to produce the “expensive” model runs. The model output is thus inherently
discrete as it is only recorded to one decimal place and there are many repeated values.

In the history matching, the three model summary statistics are emulated with a separate
GP. The implausibility measure for each output is given by (1), where only emulation un-
certainty is considered. We take the overall implausibility measure as the maximum of the
three implausibility values. We use M = 10, 000 particles in the SMC and N = 100 training
samples for the GP at each wave. As per the previous examples, we compare SMC history
matching with an SMC optimisation approach that uses 10, 000 particles. Here the distance to
be minimised is taken as the Euclidean distance between the model output and observed sum-
maries. We terminated the SMC history matching when the acceptance rate for the MCMC
step drops below 1%, which occurs after at the 18th wave. We also run SMC optimisation for
18 waves. After the 18th wave, SMC optimisation has around 40% of its particles with the
lowest Euclidean distance.

Bivariate scatterplots of the particles from SMC history matching and optimisation for var-
ious waves are shown in Figures 11 and 12, respectively. The SMC optimisation approach
demonstrates that there are different pockets of the parameter value that lead to close matches
with the observed statistic. However, the history matching method appears to generate non-
implausible regions with additional multimodality. Even our carefully designed and sophis-
ticated MCMC kernel described in Section 3 is having great difficulty sampling from the
non-implausible space, further highlighting the challenging sampling problem that history
matching can generate.

Figures 13 and 14 demonstrate that, unsurprisingly given the additional expensive models
runs, that SMC optimisation finds a more narrow volume of the parameter space that generate
close matches with the observed outputs at wave 18.

5 Discussion

In this paper we have developed a novel algorithm based on SMC for history matching that is
adaptive and offers a principled method for sampling from the non-implausible space at each
wave. Our algorithm reveals in greater detail the significant complexity of the probability
distribution associated with the non-implausible space that arises from history matching.

We advise practitioners that more care and computation may be required to help ensure
that potentially important pockets of the parameter space are not ignored. Clearly history
matching is an important method in the context of expensive simulators. McKinley et al.
(2018) demonstrate in a complex stochastic epidemic model that history matching is able
to determine parameter regions that lead to close matches with observed outputs whereas a
more conventional SMC ABC algorithm that requires significantly more model simulations
is not able to in a feasible amount of time. More sophisticated emulation approaches than
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Figure 11: Bivariate scatterplots of the parameters (with marginal histograms along the
diagonals) when SMC history matching is applied to the IC Fault example.
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Figure 12: Bivariate scatterplots of the parameters (with marginal histograms along the
diagonals) when SMC optimisation is applied to the IC Fault example.
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Figure 13: Marginal distributions estimated from the samples obtained with SMC optimisa-
tion (solid) and SMC history matching (dash) at wave 18 for the IC Fault example.
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that used in this paper, such as including a mean structure and fitting separate emulators
for each disconnected region (see Vernon et al. (2010a)), can help to more quickly discard
implausible pockets of the parameter space, reducing the multimodality problem. However,
even with more accurate emulation modelling, it is likely that the non-implausible region
remains difficult to sample generally.

Our method is semi-automatic in that it adaptively chooses the implausibility thresholds
and the number of MCMC repeats, but the practitioner is still required to choose a suitable
proposal distribution for the MCMC kernel. Even in our applications of moderate dimension
we found that a simple multivariate normal random walk, which is commonly used in the
SMC literature (e.g. Chopin (2002) and Drovandi and Pettitt (2011b)), is not efficient enough.
Here we developed a method based on transforming the marginals with kde estimates before
applying a multivariate normal random walk. Although we found some success with this
approach, the MCMC acceptance rates were sometimes small, which significantly increased
computational burden. An extension of the slice sampling method used in Andrianakis et al.
(2017) may prove useful. The SMC approach of Schuster et al. (2017), called kernel SMC,
uses estimated derivatives and local covariance estimates to improve sampler efficiency. In
summary, more research in determining a suitable MCMC kernel that is able to explore
irregular, multi-modal distributions without derivative information, which can arise from
history matching, is required.

In this paper, the emulator for wave w is trained only on points sampled from the non-
implausible space at that wave. However, it is possible to apply the emulator to all training
points generated up to wave w. An alternative approach to training emulators is that rather
than proceeding in waves of distinct training sets, training samples are sequentially appended
to an existing training set stemming from a method called Bayesian optimisation (Mockus,
2012). We might be interested in placing additional training points where there is significant
uncertainty in the emulator’s prediction. It is important to note though, that with certain
emulators such as GPs the prediction cost is O(N) where N is number of training points.
See Holden et al. (2018) for further discussion on different emulator training strategies. We
suggest that SMC might also be useful in this sequential training approach, and we leave that
for future research.

To simplify the explanation of the ideas of this paper we assumed that only one output
required emulation. However, in many realistic applications (e.g. Vernon et al. (2014) and
Andrianakis et al. (2015)) there are multiple outputs which are emulated separately. One
possible approach as described in Andrianakis et al. (2015) is to take the overall implausi-
bility measure as the maximum implausibility over all outputs. In this case an appropriate
implausibility cut-off threshold is even less clear, which further motivates our semi-automated
method. Another approach is to introduce outputs in some sequential fashion, focussing ini-
tially on the outputs that are emulated accurately. It is possible to extend our SMC approach
to accommodate this heuristic by modifying the sequence of distributions that SMC depends
on to include an indicator highlighting which outputs have been introduced. One approach
would sequentially introduce outputs one-at-a-time once the already introduced outputs are
satisfied. The output to introduce could be adaptively chosen by selecting the one that is
most accurately emulated out of the outputs not yet introduced. The implausibility thresh-
olds for each introduced output can be determined adaptively using the same approach as in
our paper.
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