
LOW-RANK REPRESENTATION OF TENSOR NETWORK
OPERATORS WITH LONG-RANGE PAIRWISE INTERACTIONS

LIN LIN∗ AND YU TONG†

Abstract. Tensor network operators, such as the matrix product operator (MPO) and the pro-
jected entangled-pair operator (PEPO), can provide efficient representation of certain linear operators
in high dimensional spaces. This paper focuses on the efficient representation of tensor network op-
erators with long-range pairwise interactions such as the Coulomb interaction. For MPOs, we find
that all existing efficient methods exploit a peculiar “upper-triangular low-rank” (UTLR) property,
i.e. the upper-triangular part of the matrix can be well approximated by a low-rank matrix, while
the matrix itself can be full-rank. This allows us to convert the problem of finding the efficient
MPO representation into a matrix completion problem. We develop a modified incremental singular
value decomposition method (ISVD) to solve this ill-conditioned matrix completion problem. This
algorithm yields equivalent MPO representation to that developed in [Stoudenmire and White, Phys.
Rev. Lett. 2017]. In order to efficiently treat more general tensor network operators, we develop
another strategy for compressing tensor network operators based on hierarchical low-rank matrix
formats, such as the hierarchical off-diagonal low-rank (HODLR) format, and the H-matrix format.
Though the pre-constant in the complexity is larger, the advantage of using the hierarchical low-rank
matrix format is that it is applicable to both MPOs and PEPOs. For the Coulomb interaction, the
operator can be represented by a linear combination of O(log(N) log(N/ε)) MPOs/PEPOs, each
with a constant bond dimension, where N is the system size and ε is the accuracy of the low-rank
truncation. Neither the modified ISVD nor the hierarchical low-rank algorithm assumes that the
long-range interaction takes a translation-invariant form.

Key words. Matrix product operator, projected entangled-pair operator, upper-triangular low-
rank matrix, hierarchical off-diagonal low-rank, H-matrix, fast multipole method

AMS subject classifications. 15A69, 41A99, 65Z05

1. Introduction. Tensor network states [37, 36], particularly presented by the
matrix product states (MPS) [37, 28, 31] and projected entangled-pair states (PEPS) [34,
35, 25], are among the most promising classes of variational methods for approxi-
mating high-dimensional functions in quantum physics. Besides their successes for
treating strongly correlated quantum systems [38, 23], the MPS (also known as the
tensor train method (TT) [27, 26, 21]), have become useful in a wide range of appli-
cations [30, 32, 19]. A core component of tensor network algorithms is the efficient
representation of linear operators. In MPS the operator representation is called the
matrix product operator (MPO), and in PEPS the projected entangled-pair oper-
ator (PEPO). These forms of representation are naturally designed for short-range
interactions, such as interactions of nearest-neighbor type on a regular lattice. For
long-range interactions, such as those naturally appearing from electronic structure
calculations due to the Coulomb interaction, a straightforward representation would
lead to a large MPO/PEPO rank, which can be prohibitively expensive. Therefore
efficient representation of tensor network operators with long-range interactions is
crucial for the success of the methods.

In this paper, we focus on the tensor network operators with long-range pair-
wise interactions, such as the Coulomb interaction. A tensor network operator with

∗Department of Mathematics, University of California, Berkeley, and Computational Re-
search Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. Email:
linlin@math.berkeley.edu
†Department of Mathematics, University of California, Berkeley, CA 94720. Email:

yu tong@berkeley.edu

1

ar
X

iv
:1

90
9.

02
20

6v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 5
 S

ep
 2

01
9

2

pairwise interaction can be defined as

(1.1) V̂ =
1

2

∑
1≤i 6=j≤N

V(i, j)n̂in̂j =
∑

1≤i<j≤N

V(i, j)n̂in̂j .

Here V ∈ RN×N is a symmetric matrix, called the coefficient matrix of V̂ , and n̂i is
called a number operator. The precise definition of n̂i, as well as the connection to
the Coulomb interaction will be discussed in Section 2.

There have been a number of proposals to treat MPOs with long-range pairwise
interactions. Using the exponential fitting techniques based on finite state machines
(FSM) [12, 29, 14, 11, 13], the Coulomb interaction and other translation-invariant
long-range interactions on one-dimensional lattice systems can be efficiently repre-
sented. For the Coulomb interaction, the MPO rank can be bounded by log(N/ε),
where N is the number of sites and ε is the target accuracy. For one-dimensional
systems without the translation-invariance property, recently a method based on a
sequence of singular value decomposition (SVD) compression operations [11, 33] has
been developed. This method is observed to yield a compact MPO representation for
the Coulomb interaction with basis functions arising from electronic structure calcu-
lations that are not translation-invariant. On the other hand, this is a greedy method,
and there is no a priori upper bound for the MPO rank. For two-dimensional and
higher dimensional lattice systems, PEPOs can provide more efficient representation
of linear operators than MPOs. To our knowledge, the only efficient PEPO representa-
tion for long-range interaction is given by the recently developed correlation function
valued PEPO (CF-PEPO) [24]. CF-PEPO uses a fitting method, which maps the
original lattice system with translation-invariant long-range interactions to an effec-
tive system defined on a superlattice but with short-range interactions. There is no
a priori upper bound for the PEPO rank. Neither is it clear whether the CF-PEPO
method can be efficiently generalized to non-translation-invariant systems.
Contribution: The contribution of this paper is two-fold. First, we find that the
success of both the exponential fitting method and the SVD compression method
rests on the assumption that V satisfies the “upper-triangular low-rank” (UTLR)
property, i.e. the upper-triangular part of V can be extended into a matrix that is
approximately low-rank, while V can be a full-rank matrix. Therefore the problem
can be viewed as a special type of matrix completion problem [10]. However, this
matrix completion problem is highly ill-conditioned, and standard matrix completion
algorithms suffer from numerical stability problems [9, 20, 22, 8, 2]. Based on the work
of [8], we develop a modified incremental singular value decomposition method (ISVD)
to simultaneously find the low-rank structure in a numerically stable fashion, and to
construct the MPO representation. The algorithm yields an MPO representation
equivalent to that in the SVD compression method [33]. The ISVD method is not
restricted to translation-invariant systems, and numerical results indicate that the
performance of ISVD is comparable to (in fact is marginally better than) that of the
exponential fitting methods for translation-invariant systems.

Second, we propose a new way for representing long-range interactions based on
the framework of hierarchical low-rank matrices. In particular, we focus on the hier-
archical off-diagonal low-rank (HODLR) format [1], and the H-matrix format [15, 17].
The main advantage of the hierarchical low-rank format is that it allows us to construct
efficient representation for both MPOs and PEPOs. For the Coulomb interaction, we
can represent V̂ using a linear combination of O(log(N) log(N/ε)) MPOs/PEPOs, and
the bond dimension of each MPO/PEPO is bounded by a constant. From a compu-

3

tational perspective, such a format can be more preferable than a single MPO/PEPO
operator with bond dimension bounded by O(log(N) log(N/ε)). Furthermore, the
hierarchical low-rank format can also be applied to systems without the translation-
invariance property.
Notation:

Throughout the paper all vectors and operators are defined on finite-dimensional
spaces. We use hatted letters such as Â, V̂ to denote high-dimensional linear operators.
Vectors, matrices and tensor cores are denoted by bold font letters such as A,X,V.
The tensor product of A and B is denoted by A ⊗ B. We use the matlab notation
such as A(I,J) to denote sub-matrices, where I,J are index sets. Given a certain
global ordering of all indices, the notation I ≺ J means that for any i ∈ I and j ∈ J ,
we have i < j.
Organization: The rest of the paper is organized as follows. In Section 2 we briefly
introduce the MPO and PEPO representation. In Section 3 we introduce and use the
UTLR structure to construct MPO representation of long-range interaction for 1D
systems. In Section 4 we introduce the method to construct MPO/PEPO representa-
tion using the hierarchical low-rank matrix format. Numerical results are presented
in Section 6. We conclude our work in Section 7. The rules of finite state ma-
chine (FSM) for representing non-overlapping MPOs and PEPOs are given in the
Appendix A and B, respectively.

2. Preliminaries. We first briefly review the construction of MPS/MPO, as
well as of PEPS/PEPO. For more detailed information we refer readers to [31, 25].
A single vector X ∈ Rn1×···×nd can be interpreted as an order-d tensor, where the
d-tuple (n1, . . . , nd) is called the size of the tensor. We assume that the index follows
a lexicographic ordering (a.k.a. row-major ordering). Each entry can be accessed
using multi-indices X(i1, . . . , id), 1 ≤ iα ≤ nα, α = 1, . . . , d. A linear operator Â ∈
R(m1×···×md)×(n1×···×nd) is an order 2d-tensor, with each entry denoted by

Â(i1, . . . , id; j1, . . . , jd).

The application of Â to X gives a tensor Y ∈ Rm1×···×md as

Y(i1, . . . , id) =

n1∑
j1=1

· · ·
nd∑
jd=1

Â(i1, . . . , id; j1, . . . , jd)X(j1, . . . , jd),

which can be written in short-hand notation as Y = ÂX.
In (1.1), we used i, j as the site indices and d = N . The sites can be organized into

lattices of one, two and three dimensions. For Coulomb interaction in 1D V(i, j) =
1/|i−j| for i 6= j, and we set V(i, i) = 0. In higher dimensions we use the notation i, j
to represent a lattice site. For example, on an N ×N 2D lattice we have i = (ix, iy)
for 1 ≤ ix, iy ≤ N . For a pairwise interaction in the form of (1.1), the coefficient
matrix has as its entries V(ix + Niy, jx + Njy), using a row-major order, and this
is written more compactly as V(i, j) hereafter. The Coulomb interaction takes the
form V(i, j) = 1

‖i−j‖ , where ‖ · ‖ is the Euclidean distance. Using this notation, the

pairwise interaction is called translation-invariant if V(i, j) is a function of i−j (in the
presence of periodic boundary conditions, we may simply redefine i− j). In Eq. (1.1),
we may assume for simplicity that n1 = · · · = nd = n. n̂i acts only on a single-site i
and should be interpreted as I⊗(i−1) ⊗ n ⊗ I⊗(n−i+1), where I is the identity matrix
of size n and n is an n × n matrix. n̂i can be understood as a spin operator for

4

quantum spin systems, or a number operator for quantum fermionic systems, though
the precise form of n is not relevant for the purpose of this paper.

2.1. Matrix product operators. A vector X is represented by an MPS/TT
format if each entry can be represented as as a matrix product

(2.1) X(i1, . . . , id) = U1(i1) · · ·Ud(id),

where each Uα(iα) is a matrix of size (rα−1, rα). Since X(i1, . . . , id) is a scalar, by
definition r0 = rd = 1. Each Uα, called a core tensor, can be viewed as a 3-tensor
of size (rα−1, nα, rα), and the matrix Uα(iα) is called the iα-th slice of Uα. Since
the first and third indices of Uα are to be contracted out via matrix-multiplication
operations, they are called the internal indices, while the second index is called the
external index. The (d+ 1)-tuple (r0, r1, . . . , rd) is called the bond dimension (a.k.a.
the MPO/TT rank). Sometimes the bond dimension also refers to a single scalar
max1≤α≤d rα.

The MPO format of a linear operator Â is

(2.2) Â(i1, . . . , id; j1, . . . , jd) = A1 (i1, j1) A2 (i2, j2) · · ·Ad (id, jd) .

Each Aα is also called a core tensor, and is of size (sα−1,mα, nα, sα). The first and
the fourth indices are called the internal indices, and the second and third indices the
external indices. The matrix Aα(i1, j1) ∈ Rmα×nα is called a slice. Again s0 = sd = 1.
The (d + 1)-tuple (s0, . . . , sd), or sometimes simply max1≤α≤d sα, is called the bond
dimension.

Consider the application of the linear operator Â on X, denoted by Y = ÂX,
then the vector Y has an MPS representation as

Y(i1, . . . , id) = V1(i1) · · ·Vd(id).

Using the MPO representation, we may readily find that

Vα(iα) =

nα∑
jα=1

Aα(iα, jα)⊗U(jα).

The bond dimension of Y is (s0r0, s1r1, . . . , sdrd).

The simplest example of the MPO is an operator in the tensor product form, i.e.

Â = a1 ⊗ · · · ⊗ an,

where aα ∈ Rnα×nα is a matrix, i.e. aα(iα, jα) is a scalar. In the component form

Â(i1, . . . , id; j1, . . . , jd) = a1 (i1, j1) a2 (i2, j2) · · ·ad (id, jd) .

Clearly the MPO bond dimension is 1.

The second example is an operator with nearest-neighbor interaction, e.g.

Â =

d−1∑
α=1

(I1 ⊗ · · · ⊗ Iα−1)⊗ aα ⊗ aα+1 ⊗ (Iα+2 ⊗ · · · ⊗ Id).

5

where Iα is the identity matrix of size nα. In the component form

Â(i1, . . . , id; j1, . . . , jd)

=

d−1∑
α=1

(δi1,j1 · · · δiα−1,jα−1
)aα (iα, jα) aα+1 (iα+1, jα+1) (δiα+2,jα+2

· · · δid,jd).
(2.3)

Â can be viewed as the linear combination of (d − 1) MPOs in the tensor product
form, and if so the resulting MPO rank would be (d− 1). However, note that we may
define

A1(i1, j1) =
(
0 a1(i1, j1) δi1,j1

)
, Ad(id, jd) =

 δid,jd
ad(id, jd)

0

 ,

and

Aα(iα, jα) =

 δiα,jα 0 0
aα(iα, jα) 0 0

0 aα(iα, jα) δiα,jα

 , 2 ≤ α ≤ d− 1.

Then it can be readily verified that the MPO of the form (2.2) that agrees with the
component form (2.3). Hence the MPO rank is independent of d and is always 3.

When the context is clear, we may also identify âα with (I1 ⊗ · · · ⊗ Iα−1)⊗ aα ⊗
(Iα+1 ⊗ · · · ⊗ Id). Then

Â =

d−1∑
α=1

âαâα+1.

In the MPO form, we may also omit the (i, j) indices and write

A1 =
(
0 a1 I1

)
, Ad =

Id
ad
0

 , Aα =

Iα 0 0
aα 0 0
0 aα Iα

 , 2 ≤ α ≤ d− 1.

The third example is an operator with a special form of long-range interaction:

Â =
∑

1≤α<β≤d

eλ(α−β)âαâβ .

We assume λ > 0, and omit the component form for simplicity. The length of the
interaction is characterized by 1/λ. A straightforward term-by-term representation
would lead to an MPO of rank O(d2). Nonetheless, using the fact that

e−λn = e−λe−λ · · · e−λ︸ ︷︷ ︸
n times

, n ∈ N+,

Â can also be written as an MPO with rank-3 as

A1 =
(
0 a1 I1

)
, Ad =

 Id
e−λad

0

 , Aα =

 Iα 0 0
e−λaα e−λIα 0

0 aα Iα

 , 2 ≤ α ≤ d−1.

6

i

j

k

l
T

(a) A 4-tensor

i

j

k

l

r

sT T'

(b) Tensor contraction between a 4-
tensor and a 3-tensor

Fig. 2.1. (a) Graphical representation of a 4-tensor T = (Tijkl). (b) Graphical representation
of the tensor contraction between tensors T and T′:

∑
l TijklT

′
lrs.

In physics literature, this is a special case of the finite state machine (FSM) [13]. For
more complex settings, the FSM rule often specifies the row/column indices of each
core tensor as input/output signals. We will use the language of input/output signals
only in the Appendices A and B.

In order to proceed with the discussion of PEPS/PEPO, it is no longer productive
to keep using the component form. Instead, the graphical representation of tensors
is preferred. Fig. 2.1 shows an example of the graphical representation of tensors
and tensor contraction operations. A tensor is visualized as a vertex and each index
(internal and external) is represented as an edge. When two vertices are linked by an
edge, the corresponding index is contracted out. A more detailed introduction can
be found in [5]. Using this representation, MPS and MPO can be represented using
graphs in Fig. 2.2 (a) and (b) respectively.

(a) MPS (b) MPO

Fig. 2.2. Graphical representation of an MPS and an MPO.

2.2. Projected entangled-pair operators. The MPS and MPO impose an in-
trinsically one-dimensional structure on the tensor following the index 1, . . . , d. This
is a very efficient representation for certain problems defined on a one-dimensional
lattice. For problems defined on a two-dimensional lattice and beyond, the PEPS
and PEPO often provide a more efficient representation of vectors and linear opera-
tors, respectively. The PEPS/PEPO can be most conveniently represented using the
graphical representation (see Fig. 2.3 (a) and (b)).

7

In the two-dimensional case, each core tensor in the PEPS/PEPO format has up
to 5/6 indices, respectively. Similar to what we have done for MPS/MPO, the (up
to 4) contracted indices are called internal indices, while remaining ones are called
external indices.

(a) PEPS (b) PEPO

Fig. 2.3. Graphical representation of a PEPS and a PEPO corresponding to a two-dimensional
lattice.

3. Long-range interaction MPO in 1D systems. In this section we focus on
a 1D system consisting of N sites. The simplest example of constructing a long-range
interaction MPO in 1D system is the exponential fitting method [29, 12, 14]. We
briefly describe this method used for the Coulomb interaction. First we approximate
the inverse-distance by the sum of exponentials

(3.1)
1

r
≈

M∑
k=1

ake
−λkr, 1 ≤ r ≤ N.

Then the tensor corresponding to the Coulomb interaction can be approximated by

V̂ ≈
M∑
k=1

ak
∑
i<j

e−λk(j−i)n̂in̂j ,

where ak, λk ≥ 0. This can be done analytically through the quadrature of an integral
representation [7], or numerically through a least squares procedure. Following the
discussion of the finite state machine in Section 2.1, the operator on the right-hand
side can be represented by an MPO of bond dimension M + 2, the MPO tensor of
which at site i has the form

(3.2)

 I 0 0
b⊗ ni e−Λ ⊗ I 0

0 aT ⊗ ni I

 ,

where a = (a1, · · · , aM)T , b = (e−λ1 , · · · , e−λM)T , and Λ = diag(λ1, · · · , λM). This
is true for 2 ≤ i ≤ N − 1. For the tensors at the beginning and end of the MPO
we only need to use the last row and first column of the above matrix respectively.
Then in order to achieve a target accuracy ε for a system of size N , we only need
M = O(log(N/ε)) [3, 6].

8

For the Coulomb interaction, there are two main methods for performing the
exponential fitting procedure. One way is to represent 1/r as an integral, e.g.

1

r
=

∫ ∞
0

e−λrdλ,

and then approximate the right hand side with a quadrature scheme with M points,
such as the Gauss quadrature. This procedure results in pointwise error of ε in a fixed
size finite interval [a, b] where 0 < a < b <∞ with M upper bounded by O(log(1/ε))
terms [4, 7, 6]. Another way is to solve a nonlinear least squares problem to find the
fitting parameters. However, this optimization problem can have many stationary
points, making finding the global minimum difficult. We can only start from different
reasonable initial guesses to increase the chance of obtaining the global minimum.

The exponential fitting method is efficient when V is strictly decaying and translation-
invariant. When either of these two conditions is not satisfied, this method needs some
modification. There are methods to deal with the former by introducing complex ex-
ponents [29]. The generalization to non-translation-invariant systems can be more
difficult.

In this work we propose a new perspective based on matrix completion, which
naturally generalizes the exponential fitting method to situations where V is neither
strictly decaying nor translation-invariant. We define a rank M matrix Ṽ by

(3.3) Ṽ(i, j) =

M∑
k=1

ake
−λk(j−i) =

M∑
k=1

ake
−λkjeλki.

The success of the exponential fitting method rests on the fact that Ṽ can agree very
well with V in the upper-triangular part, but can differ with V arbitrarily on the
diagonal part and the lower-triangular part. Indeed, the lower-triangular part of Ṽ
grows exponentially with respect to (i − j), while that of V decays with respect to
(i− j) due to the symmetry of V. Despite the difference, the tensor

∑
i<j Ṽ(i, j)n̂in̂j

very well approximates
∑
i<j V(i, j)n̂in̂j .

More generally, we shall demonstrate that it is possible to construct an efficient
MPO representation of V̂ , if the matrix V satisfies the following upper triangular low
rank (UTLR) property.

Definition 3.1 (Upper-triangular low-rank matrix). A symmetric matrix A ∈
RN×N is an upper-triangular low-rank (UTLR) matrix, if for any ε > 0, there exists
r . log(N/ε), and a rank-r matrix Ã, such that for any index sets I ≺ J ,

‖A(I,J)− Ã(I,J)‖2 ≤ ε‖A(I,J)‖2.

For a UTLR matrix V, we may find its rank-M approximation by solving the
following optimization problem

(3.4)
min
Ṽ

‖PΩ(Ṽ)− PΩ(V)‖2F

s.t. rank(Ṽ) ≤M,

where Ω denotes the set of indices corresponding to the upper-triangular part of the
matrix, and PΩ is an restriction operation that returns only the elements in the set
Ω. Eq. (3.4) is a matrix completion problem [10].

9

Once the low-rank solution Ṽ = LRT is obtained, where L and R are both N×M
matrices, we let li, ri denote the transpose of the i-th row of L and R respectively.
Then Ṽ(i, j) = lTi rj . Therefore we can construct an MPO with the following tensor
at site i (2 ≤ i ≤ N − 1):

(3.5)

 I 0 0
ri ⊗ ni I⊗ I 0

0 lTi ⊗ ni I

 .

Again the core tensor for i = 1 and i = N are given by the last row and the first
column of Eq. (3.5). In order to recover the MPO construction in the exponential
fitting method (3.2), we may define

li = e−(N−i)Λa, ri = e(N−i+1)Λb.

The extra term eNΛ is introduced to keep the notation consistent with a more general
case discussed later.

3.1. An online matrix completion algorithm. The matrix completion prob-
lem (3.5) has several features:

1. The sparsity pattern Ω is always fixed to be all the upper-triangular entries.
2. We are actually not concerned about restoring the missing data. The missing

data only serves to support a low-rank structure, and they do not necessarily
need to be explicitly computed.

3. The matrix completion problem is ill-conditioned, i.e. the ratio between the
largest singular value and the smallest nonzero singular value scales exponen-
tially with respect to the system size. Therefore explicit computation of the
missing entries can easily lead to an overflow error.

The last feature requires some explanation. Consider the matrix restored by the
exponential fitting procedure as in (3.3). The lower left corner of the matrix is
Ṽ(N, 1) =

∑
k ake

λk(N−1). Therefore this entry, and nearby entries, grow expo-
nentially with respect to the system size. This also results in an exponential growth
of the largest singular value.

For the matrix completion problem, both convex optimization-based approaches [9]
and alternating least squares (ALS)-based approaches [20, 22] require some regular-
ization term. In our case, the regularization term will become dominant even if the
regularization parameter is chosen to be very small. Online matrix completion al-
gorithms, which applies SVD compression operations incrementally [8, 2], also suffer
from the exponential growth of matrix entries in the low-rank approximation. More
importantly, the largest singular value, which grows exponentially with system size,
also makes the matrix completion problem difficult to solve.

We introduce a modified incremental SVD (ISVD) algorithm with missing data,
which avoids the computation of the SVD of the whole matrix and therefore improves
the numerical stability. This method is modified from the ISVD algorithm with miss-
ing data introduced in [2, 8]. The main modification is that we add a QR factorization
step which makes the method stable even for extremely ill-conditioned matrices. We
also find that the resulting MPO representation is equivalent to that in [33]. For
clarity, we first introduce how to apply the original ISVD with missing data on the
present matrix completion problem in this section and Section 3.2. In Section 3.3 we
introduce the modified algorithm.

The algorithm proceeds in a row-by-row fashion. Define Ωp := {p + 1, . . . , N}
the set of column indices corresponding to the sparsity pattern Ω in the p-th row,

10

and correspondingly Ωcp := {1, . . . , p}. Suppose we have already completed the first

p rows, and the completed matrix is Ṽp. This matrix is rank-M and has an SVD

Ṽp = UpSpW
T
p . Now we want to complete the first p+1 rows denoted by the matrix

V̄p+1. Note that the first p rows of V̄p+1 are just Ṽp, and on the (p + 1)-th row
we have V̄(p+1,Ωp+1) = V(p+1,Ωp+1). Our goal is to choose the unknown entries
V̄(p+1,Ωcp+1), so that V̄p+1 can also be approximated by a rank-M matrix. Now

assume V̄(p+1, :) = xTWT
p + rT , where rTWp = 0. If r = 0, then V̄ is already a

rank-M matrix. Otherwise

V̄p+1 =

(
Ṽp

V̄(p+1, :)

)
=

(
UpSpW

T
p

xTWT
p + rT

)
=

(
UpSp 0
xT ‖r‖

)(
WT

p

rT /‖r‖

)
=

(
Up 0
0 1

)(
Sp 0
xT ‖r‖

)(
WT

p

rT /‖r‖

)
.

(3.6)

Note that on the third line of Eq. (3.6), both the first and the third matrices are
orthogonal matrices. Hence the smallest singular value of V̄p+1 is upper bounded by
‖r‖. In order to approximate V̄p+1 by a rank-M matrix, we want ‖r‖ to be as small
as possible. This corresponds to the following optimization problem:

min
V̄(p+1,Ωcp+1)

min
x
‖V̄(p+1, :)− xTWT

p ‖2.

It is easy to see that the solution is

x = Wp(:,Ωp+1)+V̄(p+1,Ωp+1)T

V̄(p+1,Ωcp+1) = xTWp(:,Ω
c
p+1),

where A+ denotes the Moore–Penrose inverse of A. Then we obtain the truncated
SVD

(3.7)

(
Sp 0
xT ‖r‖

)
≈ Xp+1Sp+1Y

T
p+1

where Sp+1 is an M ×M matrix, Xp+1,Yp+1 are column orthogonal matrices of size
(M + 1)×M . Thus we may approximate V̄p+1 by

Ṽp+1 =

[(
Up 0
0 1

)
Xp+1

]
Sp+1

[
YT
p+1

(
WT

p

rT /‖r‖

)]
.

Thus letting

Up+1 =

(
Up 0
0 1

)
Xp+1, Wp+1 =

(
Wp r/‖r‖

)
Yp+1,

we can proceed to the next row. The UN−1, SN−1 and WN−1 we get in the end gives
the SVD of the completed matrix (noting that ΩN = ∅).

3.2. Constructing the MPO. We now apply the above procedure to the co-
efficient matrix V. Let li = UN−1(i, :)T and ri = SN−1W

T
N−1(:, i), and use (3.5), we

11

get an MPO that represents the interaction V̂ . However, this procedure is not numer-
ically stable. Let us consider the Coulomb interaction approximated with exponential
fitting method. Then the ratio ‖lN−1‖/‖l1‖ grows exponentially with respect to the
system size, and so is ‖r2‖/‖rN‖.

To solve this problem, we will make use of the interior part of the MPO tensor.
Write

Xp =

(
X̃p

aTp

)
,

then we have

Up =

(
Up−1 0

0 1

)(
X̃p

aTp

)
=

(
Up−1X̃p

aTp

)

=

 Up−2X̃p−1X̃p

aTp−1X̃p

aTp

 = · · ·

Thus

lTi = UN−1(i, :) = aTi X̃i+1X̃i+2 · · · X̃N−1

where a1 = U1 = (1). Therefore we have

Ṽ(i, j) = lTi rj = aTi X̃i+1X̃i+2 · · · X̃N−1rj .

Now define

(3.8) bj = X̃jX̃j+1 · · · X̃N−1rj ,

we then have

(3.9) Ṽ(i, j) = aTi X̃i+1X̃i+2 · · · X̃j−1bj .

Therefore we can construct an MPO whose tensors are of the form

(3.10)

 I 0 0

bi ⊗ ni X̃i ⊗ I 0
0 aTi ⊗ ni I

to represent

∑
i<j Ṽ(i, j)n̂in̂j . This is analogous to (3.2) in the exponential fitting.

The algorithm is summarized in Algorithm 1. Due to the fact that Ωp+1 ⊂ Ωp, as a

practical algorithm we do not need to keep track of V̄p or Ṽp, but only Wp(:,Ωp).

12

Algorithm 1 Constructing the MPO representation via matrix completion

Input: V ∈ RN×N ,M
1: S1 ← (‖V(1, 2:N)‖)
2: W1 ← (V(1, 2:N)T /‖V(1, 2:N)‖) ∈ R(N−1)×1

3: a1 ← (1)
4: b2 ← (V(1, 2))
5: for p = 1:N − 2 do
6: x← argminx‖Wp(2:N−p, :)x−V(p+1, p+2:N)T ‖
7: r← V(p+1, p+2:N)T −Wp(2:N−p, :)x
8: if ‖r‖ > tol then

9: Xp+1,Sp+1,Yp+1 ← SVD of

(
Sp 0
xT ‖r‖

)
{keep M singular values}

10: Wp+1 ←
(

Wp(2:N−p, :) r/‖r‖
)
Yp+1

11: else

12: Xp+1,Sp+1,Yp+1 ← SVD of

(
Sp
xT

)
{keep M singular values}

13: Wp+1 ←Wp(2:N−p, :)Yp+1

14: end if
15: bp+2 ← Sp+1W

T
p+1(:, 1)

16: if p 6= N − 1 then
17: ap+1 ← XM+1(p+1, :)T , X̃p+1 ← Xp+1(1:M, :)
18: end if
19: end for
Output: ai, bj , X̃k for 1 ≤ i ≤ N − 1, 2 ≤ j ≤ N , 2 ≤ k ≤ N − 1, and MPO

according to (3.10).

Note that Eq. (3.8) is not the only possible choice for bj . If the matrix V is
exactly of rank M , then

bj = X̃jSjW
T
j (:, j) = Sj−1W

T
j−1(:, j).

This relation becomes approximately correct for the case when V is numerically low-
rank. Therefore we may set

(3.11) bj = Sj−1W
T
j−1(:, j).

We argue that Eq. (3.11) is in fact a better choice. Just like we can obtain ai
without computing li that grows exponentially with the system size, we want to do
the same with bj so that it does not rely on computing rj either. And this is achieved
by our new choice for the value of bj . Also, the new bj can be expected to give a
more accurate approximation than the original one, because for an element of V on
the p-th column, the error of the approximation using this bj only comes from the
first p SVDs, and does not depend on any future steps.

Furthermore, using the fact that Ωp+1 ⊂ Ωp, we do not need to explicitly fill out
the missing data either, thereby avoiding computing and storing the lower triangular
part of the matrix Ṽp. We can avoid computing the missing part V̄(p+1,Ωcp+1) for
each row as well. The pseudocode for the resulting algorithm is presented in Algorithm
1. Note that there is some abuse of notation involved in the algorithm, as we use Wp

to denote the last N − p rows of the Wp matrix we described previously.

13

Algorithm 2 A modified ISVD method for robust construction of the MPO repre-
sentation

Input: V ∈ RN×N ,M
1: S1 ← (‖V(1, 2:N)‖)
2: W1 ← (V(1, 2:N)T /‖V(1, 2:N)‖) ∈ R(N−1)×1

3: a1 ← (1)
4: b2 ← (V(1, 2))
5: for p = 1:N − 2 do
6: Q,R← QR factorization of Wp(2:N−p, :)
7: x← argminx‖Wp(2:N−p, :)x−V(p+1, p+2:N)T ‖
8: r← V(p+1, p+2:N)T −Wp(2:N−p, :)x
9: if ‖r‖ > tol then

10: Xp+1,Sp+1,Yp+1 ← SVD of

(
SpR

T 0
xTRT ‖r‖

)
{keep M singular values}

11: Wp+1 ←
(

Q r/‖r‖
)
Yp+1

12: else

13: Xp+1,Sp+1,Yp+1 ← SVD of

(
SpR

T

xTRT

)
{keep M singular values}

14: Wp+1 ← QYp+1

15: end if
16: bp+2 ← Sp+1W

T
p+1(:, 1)

17: if p 6= N − 1 then
18: ap+1 ← XM+1(p+1, :)T , X̃p+1 ← Xp+1(1:M, :)
19: end if
20: end for
Output: ai, bj , X̃k for 1 ≤ i ≤ N − 1, 2 ≤ j ≤ N , 2 ≤ k ≤ N − 1, and MPO

according to (3.10).

3.3. A modified practical algorithm. Despite that Algorithm 1 computes
a,b, X̃ directly, in practice it can still become unstable when N becomes large. This
is because the singular values of Ṽ grows exponentially with respect to N . Then in
Algorithm 1, the SVD step (3.7) also increasingly ill-conditioned as p increases.

Fig. 3.1. The purple and red rectangles are matrix blocks V(1:p,Ωp) with p = 3 and 4, for
which we are going to compute approximate truncated SVDs in Algorithm 2. Diagonal entries are
marked with blue dots.

We now further modify the ISVD algorithm as follows. Instead of trying to ap-

14

proximate the SVD of V(1:p, :) for each p as is done in the previous sections, we com-
pute the approximate SVD for each off-diagonal block V(1:p,Ωp) = V(1:p, p+1:N),
which avoids the exponential growth of singular values. This can be implemented by
introducing only an extra QR factorization step.

Denoting the approximate SVD obtained for V(1:p, p+1:N) as UpSpW
T
p (note

this Wp is different from the one defined previously), we perform a QR factorization
on Wp(2:N−p, :) = QR. Then we have(

UpSp[Wp(2:N−p, :)]T
V(p+1, p+2:N)

)
=

(
Up 0
0 1

)(
SpR

T 0
xTRT ‖r‖

)(
QT

rT /‖r‖

)
Then we perform SVD on the matrix in the middle of the right-hand side, and use
this to obtain Up+1, Sp+1, Wp+1. The pseudocode for the algorithm is described in
Algorithm 2. The extra QR factorization step is in Line 6 in Alg. 2 We remark that
the MPO representation obtained from Algorithm 2 is equivalent to that obtained
in [33].

Below we demonstrate that one can reconstruct the UTLR low-rank factors from
the ai, X̃i, bi obtained from Algorithm 2. First, note that not all X̃i’s are square
matrices, though all X̃i’s are full-rank matrices. Each X̃i for i = 2, 3, · · · ,M is an
(i − 1) × i matrix, and each X̃i for i = N −M + 1, N −M + 2, · · · , N − 1 is an
(N − i+ 1)× (N − i) matrix. Each X̃i’s in the middle is an M ×M matrix. Therefore
the first M − 1 X̃i’s have right inverses, the last M − 1 X̃i’s have left inverses, and
every X̃i in the middle has an inverse. We denote these left or right inverses as X̃+

i

Now we define

lTi = aTi X̃i+1X̃i+2 · · · X̃N−M , i = 1, 2, · · · , N −M
lTi = aTi X̃+

i X̃+
i−1 · · · X̃

+
N−M+1 i = N −M + 1, N −M + 2, · · · , N − 1

rj = X̃+
N−MX̃+

N−M−1 · · · X̃
+
j bj j = 2, 3, · · · , N −M

rj = X̃N−M+1X̃N−M+2 · · · X̃j−1bj j = N −M + 1, N −M + 2, · · · , N

and it can be checked that lTi rj = aTi X̃i+1 · · · X̃j−1bj for any 1 ≤ i < j ≤ N .
Therefore we have a upper-triangular low-rank approximation for the matrix V.

4. Representing long-range interaction via the hierarchical low-rank
format. In this section we present an alternative method to construct tensor net-
work operators with long-range pairwise interactions using the hierarchical low-rank
format. The advantage of this method is that it can be naturally generalized to higher
dimensional tensors represented by PEPOs. Compared to the CF-PEPO approach [24]
which relies on a fitting procedure and therefore is difficult to establish the a priori
error bound, we demonstrate that our algorithm yields a sum of O(log(N) log(N/ε))
PEPOs whose bond dimension is bounded by a constant for the Coulomb interaction.

We study the case when V can be represented as a hierarchical off-diagonal low-
rank (HODLR) matrix and a H-matrix respectively. Furthermore, the hierarchical
low-rank representation is not restricted to translation-invariant operators.

4.1. Rank-one MPOs and PEPOs. We first introduce some terminologies
with respect to the MPOs and PEPOs we are going to use in this section. There are
mainly two types of operators we are going to use extensively, which can be efficiently
represented by MPOs and PEPOs. Consider a rank-one operator in 1D∑

i<j

âib̂j ,

15

Fig. 4.1. A PEPO constructed from the snake-shaped MPO by adding bonds with bond dimen-
sion 1 (blue dotted lines).

where âi and b̂j are local operators defined on sites i and j, and as a result they
commute with each other. This operator can be represented by an MPO with bond
dimension 3, since we can treat it as a special case of the interaction in (2.1) in which
λ = 0.

The notion of rank-one operators can be easily generalized to a 2D system, for
operators in the form ∑

i≺j

âib̂j,

where ≺ is some order assigned to the system. This can be represented by a snake-
shaped MPO [24] with bond dimension 3. The coefficient matrix is a UTLR matrix
of rank 1. We add some bonds with bond dimension 1 to make it a PEPO. The bond
dimension of the PEPO is still 3. A graphical illustration of the PEPO is provided in
Fig. 4.1.

Sometimes the operator acts trivially everywhere except for a given region (de-
scribed by an index set I) in the system, we may order the sites in such a way that all
sites in I are labeled before the rest of the sites. Then the operator is Ô = ÔI⊗ÎIc . In
such cases we call the set I the support of operator Ô. Now suppose Ô1, Ô2, · · · , Ôm
are m rank-one operators in a 1D system. Integer intervals I1, I2, · · · , Im are the
supports of each operator respectively. If Ii ∩ Ij = ∅, then the operators Ôi, Ôj are
non-overlapping. The sum of these operators can be expressed as an MPO with bond
dimension 5. We give the MPO rules in Appendix A.

This notion of two operators being non-overlapping can be easily extended to 2D
systems. Instead of intervals the supports are replaced by boxes. The sum of these
operators can be expressed as a PEPO with bond dimension 5. We will also give the
PEPO rules in Appendix B. As mentioned before, in 2D we need to define an order
≺ for the rank-one operators. However when we consider a sum of non-overlapping
rank-one operators, the order only needs to be defined locally within each support,
i.e. we do not need to impose a global ordering valid for all rank-one operators.

4.2. Hierarchical low-rank matrix. In this section we introduce the hierar-
chical low-rank matrix, and its use to construct MPO and PEPO representation of
tensor network operators with long-range interactions. Consider the 1D system first.

16

We denote by I0 = {0, 1, · · · , N − 1} the set of all sites in the system. Note that
we use zero-based indexing for sites in the system from now on. We divide the do-
main hierarchically. At the first level, we divide the system into two equal parts
I1;0 = {0, 1, · · · , N/2− 1} and I1;1 = {N/2, N/2 + 1, · · · , N − 1}. At the second level
there will be four such intervals, and third level eight intervals, and so on. In general
we define I`;α = {α2N−`, α2N−`+1, · · · , (α+1)2N−`−1}, where 0 ≤ α ≤ 2`−1. There
are in total L = log2(N) levels. Each interval has a neighbor list NL(I) containing
all the other intervals on the same level that are neighbors of I.

The intervals defined in this way give rise to a tree structure. When an interval
I`;α ⊂ I`−1;β , then we say I`;α is a child of I`−1;β , or equivalently I`−1;β is a parent
of I`;α. When two intervals are children of the same parent we call them siblings.

A key component of the definition of the hierarchical low-rank matrix is the
interaction list, which we denote by IL(I) for each interval I. If A is a hierarchical
low-rank matrix, and J ∈ IL(I), then A(I,J) can be approximated by a low-rank
matrix. The two hierarchical low-rank matrix formats considered in this paper, the
HODLR and the H-matrix formats, differ only in the choice of interaction lists. Given
a set of interaction lists, we are ready to define the hierarchical low-rank matrix:

Definition 4.1 (Hierarchical low-rank matrix). A symmetric matrix A ∈ RN×N
is a hierarchical low-rank matrix, if for any index set I and any index set J ∈ IL(I),
there exists a rank r . log(N/ε) matrix ÃI,J such that

‖A(I,J)− ÃI,J ‖2 ≤ ε‖Ã(I,J)‖2.

From Definition 4.1, we immediately recognize that a UTLR matrix must be a
hierarchical low-rank matrix. To see this, we simply pick ÃI,J to be the (I,J)-th

matrix block of Ã given by the UTLR format. The reverse statement is not true,
since the matrix blocks ÃI,J in a hierarchical low-rank matrix may not be related at
all to each other.

The concept above can be naturally extends to two-dimensional and higher di-
mensional systems. Instead of intervals, the interaction lists are defined using boxes.
We will first use hierarchical low-rank structure in 1D to build MPOs, and then discuss
its generalization to 2D for constructing PEPOs.

4.3. HODLR format. A matrix A of the HODLR format can be constructed
as follows. For an interval I on level ` > 1, we define the interaction list IL(I) to
be the set of all J such that J is a sibling of I. For level 1 the two intervals have
each other as the only member in their respective interaction list. Each matrix block
A(I,J) for J ∈ IL(I) then has a low-rank structure and therefore admits a low-rank
approximation. Using this interaction list we can divide the whole matrix into non-
overlapping blocks each with a low-rank structure. The division is shown in Fig. 4.2
(a).

Now we construct the MPOs from this format. At level `, define

(4.1) V̂
(`)
αβ =

∑
i∈I`;α

∑
j∈I`;β

V(i, j)n̂in̂j ,

for I`;β ∈ IL(I`;α). The sum of all the interactions at level ` can be written as

V̂ (`) =

2`−1∑
α=0

V̂
(`)
2α,2α+1.

17

234

1

(a) HODLR

234

(b) H-matrix

234

(c) Type-0 and type-1 interac-
tions

Fig. 4.2. A matrix satisfying the HODLR format (a) and the H-matrix format (b). (c) shows
the two types of interactions at level 4 for H-matrix format. In red frames are type-0 interactions
and in blue frames type-1 interactions. In (a)(b)(c) The numbers show the level of each submatrix.

Note only interactions allowed in the interaction list is covered on this level, which is
an important fact that enables us to construct MPOs with a small bond dimension.
Then we can decompose the tensor as

V̂ =

L∑
`=1

V̂ (`).

This sum covers all the interactions in V̂ .
Because of the hierarchical low-rank structure, we can yield some approximate

low-rank decomposition V(I`;2α, I`;2α+1) ≈ ABT . Then

∑
i∈I`;2α

∑
j∈I`;2α+1

V(i, j)n̂in̂j ≈
M∑
r=1

∑
i∈I`;2α

∑
j∈I`;2α+1

(A(i, r)n̂i)(B(j, r)n̂j).

Note that on the right-hand side each r indexes a rank-one operator. The support of
each rank-one operator is I`;2α ∪ I`;2α+1 = I`−1;α.

Therefore, for each α = 0, 1, · · · , 2`−1 − 1, we have M rank-one operators. For
each α, we pick one from these M operators correspond to a given index r, and sum
them up to get,

V̂ (`)
r =

∑
α

∑
i∈I`;2α

∑
j∈I`;2α+1

(A(i, r)n̂i)(B(j, r)n̂j),

and then we have

V̂ (`) =

M∑
r=1

V̂ (`)
r .

Hence all the interactions at level ` can be collected into M operators V̂
(`)
r , each one is

a sum of non-overlapping rank-one operators. From this procedure, we have collected
all interactions at level ` into a sum of M MPOs each with bond dimension 5. M can
be chosen to be O(log(N/ε)) for the coefficient matrix to have a 2-norm error of ε.
The system contains L levels so in total we need ML = O(log(N) log(N/ε)) MPOs,
each with a bounded rank.

18

4.4. H-matrix format. In the HODLR matrix, a matrix block A(I,J) is low-
rank as long as I,J are non-overlapping and are at the same level. This is also
called the weak-admissibility condition [18]. The H-matrix is a more general class of
hierarchical low-rank matrices, which requires the strong-admissibility condition, i.e.
I,J are not only non-overlapping, but their distance should be comparable to their
sizes, i.e. dist(I,J) & max{|I|, |J |}.

In the H-matrix format, we define the interaction list IL(I) of an interval I in
the following way: an interval J ∈ I if and only if the parent of J and the parent
of I are neighbors, and J is not a neighbor of I. Therefore in 1D it is guaranteed
that dist(I,J) ≥ max{|I|, |J |} if J ∈ IL(I). A hierarchical low-rank matrix with
interaction list defined in this way is called an H-matrix. A graphical illustration is
shown in Fig. 4.2 (b).

We first consider a 1D system. The system is divided into intervals hierarchically
the same way as in Section 4.3. Sill we divide the interactions into different levels

(4.2) V̂ =

L∑
`=2

V̂ (`) + D̂,

where D̂ contains only nearest-neighbor interactions. Note that the lowest level is 2
in this format, as the interaction list at level 1 is empty. Based on the interaction list
of the H-matrix, V̂ (`) is defined as

V̂ (`) =

2`−1−2∑
α=0

(
V̂

(`)
2α,2α+2 + V̂

(`)
2α,2α+3 + V̂

(`)
2α+1,2α+3

)
,

where V̂
(`)
αβ is defined in Eq. (4.1). One can see how this corresponds to the H-matrix

interaction list from Fig. 4.2 (b).

Now we want to efficiently represent the operator V̂ (`) as linear combination of
MPOs. Similar to the previous section we first write

V̂
(`)
αβ ≈

M∑
r=1

V̂
(`)
αβ,r, V̂

(`)
αβ,r =

∑
i∈I`;α

∑
j∈I`;β

(A(i, r)n̂i)(B(j, r)n̂j),

where V̂
(`)
αβ,r is a rank-one operator defined in (4.1). The low-rank decomposition

is done by performing truncated SVD and cutting off singular values smaller than
ε′‖V(I`;α, I`;β)‖2 for some ε′ > 0. Then

V̂ (`) =

M∑
r=1

2`−1−2∑
α=0

(
V̂

(`)
2α,2α+2,r + V̂

(`)
2α,2α+3,r + V̂

(`)
2α+1,2α+3,r

)
.

However, unlike in the HODLR case, these operators can be overlapping for different

α, β. For example V̂
(`)
2α,2α+2,r and V̂

(`)
2α,2α+3,r are overlapping. Also V̂

(`)
2α,2α+2,r and

V̂
(`)
2α+2,2α+4,r are overlapping as well. Therefore we need to further separate the terms

19

as

V̂ (`) =

M∑
r=1

2`−2−1∑
α=0

V̂
(`)
4α,4α+2,r +

2`−2−1∑
α=0

V̂
(`)
4α,4α+3,r +

2`−2−1∑
α=0

V̂
(`)
4α+1,4α+3,r

(4.3)

+

M∑
r=1

2`−2−2∑
α=0

V̂
(`)
4α+2,4α+4,r +

2`−2−2∑
α=0

V̂
(`)
4α+2,4α+5,r +

2`−2−2∑
α=0

V̂
(`)
4α+3,4α+5,r

(4.4)

For each of the six terms on the right-hand side we construct M MPOs. Each term
represents a sum of non-overlapping rank-one operators, and therefore has bond di-
mension 5. Operators on the first line we call type-0 and on the second line we call
type-1. They can be visualized on the coefficient matrix, as shown in Fig. 4.2.

From the discussion we construct 6M MPOs each with bond dimension 5. Since
the system contains L levels in total we have 6LM MPOs. To ensure the 2-norm error
of the coefficient matrix to be smaller than ε, we need to choose ε′ = Cε/N for some
constant C. Then we have M = O(log(1/ε′)) = O(log(N/ε)). The total number of
MPOs is O(log(N) log(N/ε)).

In practical calculation, we may further reduce the constant prefactor from 6 to
4 without increasing M . This is because the strong admissibility condition allows
one to concatenate certain blocks together only with a mild increase of the numer-
ical rank [18]. For example, matrices V(I`;4α, I`;4α+2) and V(I`;4α, I`;4α+3) can be
concatenated into a single matrix V(I`;4α, I`;4α+2 ∪ I`;4α+3). This allows us to com-
bine some of the operators and thereby reduce the prefactor. The reduction of the
prefactor becomes more significant in 2D and higher-dimensional cases.

(a) Allowed interactions

(b) V̂
(l,p,q)
(αx,αy)

operators (c) Assignment rules

Fig. 4.3. An N × N 2D system. Different Colors represent the (p, q) values of the relevant

V̂
(l,p,q)
(αx,αy)

operators. Red: (0,0); Green: (1,0); Blue: (0,1); Purple: (1,1). (a) A box at level 4 is

colored black. Other colored boxes are those that are allowed to interact with it at level 4. (b) The

regions colored red, green, purple and blue correspond respectively to V̂
(4,0,0)
(0,0)

, V̂
(4,1,0)
(1,0)

, V̂
(4,1,1)
(1,1)

, and

V̂
(4,0,1)
(1,2)

. (c) An arrow here means we include all the interactions of the form V(i, j)n̂in̂j, where i

is in the level-3 box at the origin of the arrow, j is in the level-3 box at the end of the arrow, and

i and j are not neighbors, in the corresponding operator V̂
(4,p,q)
(αx,αy)

. Only interactions represented by

arrows with the same color can be included in the same PEPO.

4.5. Higher dimensional cases. When the coefficient matrix V satisfies the
hierarchical low-rank format, the tensor V̂ can be efficiently represented by PEPOs

20

when the lattice dimension is larger than 1. We consider the 2D case below, and the
3D case follows similarly. We consider an N × N := 2L × 2L lattice, with each site
indexed by i = (αx, αy) ∈ {1, 2, · · · , N}2.

In the 2D case, the intervals are replaced by boxes. We define a box on level `,
indexed by α = (αx, αy), by

I`;α = {αx2L−`, αx2L−` + 1, · · · , (αx + 1)2L−` − 1}
× {αy2L−`, αy2L−` + 1, · · · , (αy + 1)2L−` − 1},

and interaction between two level-` boxes α, β is denoted as V̂
(`)
αβ , similar to (4.1).

Similar to H-matrices in 1D, the interaction list IL(I) is the set of all boxes J
such that

1. The parent of J is a neighbor of the parent of I,
2. I and J are not neighbors.

Fig. 4.3 (a) shows an example of the allowed interactions at level 4. All the interactions
at level ` are collected into an operator V̂ (`), and we have the same decomposition as
in (4.2).

In the previous section we have divided the interactions at level ` into type-0 and
type-1, and further into six terms in (4.3) and (4.4) respectively. Here we divide all
interactions into four types: type-(p, q) for p, q ∈ {0, 1}. And we write

V̂ (`) =
∑
pq

2`−2−1−p∑
αx=0

2`−2−1−q∑
αy=0

V̂
(l,p,q)
(αx,αy),

where V̂
(l,p,q)
(αx,αy) covers most, but not all interactions at level ` (to avoid double count-

ing) between boxes I`;γ for γ = (4αx + 2p + βx, 4αy + 2q + βy), βx, βy ∈ {0, 1, 2, 3}.
The boxes can be divided into a 4 × 4 array. Some examples are given in Fig. 4.3

(b). In general, V̂
(l,p,q)
(αx,αy) with the same p, q but different αx, αy are non-overlapping,

and therefore can be summed up without increasing the bond dimension beyond 5.
A graphical description of the rules is given in Fig. 4.3 (c).

Using the simplest scheme each V̂
(l,p,q)
(αx,αy) contains at most 78 interactions between

pairs of boxes at level `. The number 78 is obtained as follows: there are 16× 15/2 =

120 pairwise interactions between boxes in V̂
(l,p,q)
(αx,αy), as can be seen in Fig. 4.3 (b). 42

of these pairwise interactions are between adjacent boxes (sharing an edge or vertex),
and therefore in total there are 78 permissible ones. Note that there will be double

counting if we include all 78 interactions in each V̂
(l,p,q)
(αx,αy), so in fact this maximum is

only attained at the lower-right corner according to the assignment rule in Fig. 4.3
(c).

However, using the fact that for I`;β1
, I`;β2

∈ IL(I`;α), we may directly compress
the interactions between I`;α and I`;β1

∪I`;β2
. This is the same as what we have done

for the 1D case in the previous section. Using this method, all pairwise interactions
involving one box in the 4 × 4 box array can be merged into one. Any interaction
included has to involve one of the 12 boxes that are not among the 4 boxes at the
lower-right corner. The result is that we can reduce the number of interactions to 12
for p = q = 0 and 8 for all other cases.

Each of the 12 or 8 interactions, which we index by k, is then approximated by

21

the linear combination of rank-one operators. Therefore

V̂
(l,p,q)
(αx,αy) =

Kpq∑
k=1

M∑
r=1

V̂
(l,p,q)
(αx,αy),kr,

where Kpq = 12 for p = q = 0 and 8 otherwise, and each V̂
(l,p,q)
(αx,αy),kr is a rank-one

operator. We simply add zero operators when there is not enough k. It is clear that
this is not the most efficient method, but it gives us the desired scaling in the end.
The rank-one operators are obtained using a low-rank decomposition similar to (4.4),
which is in turn obtained from a truncated SVD.

Then we can define

V̂
(l,p,q)
kr =

2`−2−1−p∑
αx=0

2`−2−1−q∑
αy=0

V̂
(l,p,q)
(αx,αy),kr.

Everything we have done above is to make this a sum of non-overlapping rank-one
operator introduced in Section 4.1. It can be represented by a PEPO with bond
dimension 5.

Therefore all the interactions at level ` can be written as

V̂ (`) =

1∑
p=0

1∑
q=0

Kpq∑
k=1

M∑
r=1

V̂
(l,p,q)
kr .

This is a linear combination of 36M PEPOs with bond dimension 5.
The total number of PEPOs needed for the system will be 36ML. To ensure

the coefficient matrix 2-norm error to be below ε we need M = O(log(N/ε)) and
L = log(N). The number of PEPOs needed will scale like O(log(N/ε) log(N)). We
remark that this is in fact a rather loose upper bound. Our numerical experiments
indicate that for small-to-medium sized systems (e.g. N = 128), the actual number
of PEPOs needed is usually much smaller.

5. Error analysis for the Coulomb matrix. The modified ISVD algorithm
and the hierarchical low-rank representation can be applied to general pairwise inter-
actions with or without the translation-invariance property. To illustrate the efficiency
of the compressed representation, in this section we briefly list some known results
for the Coulomb interaction.

For the Coulomb interaction, the error bound for the exponential fitting method
using the quadrature scheme is given in [3, 6]. In particular, 0 < δ < r < D and any
ε > 0, there exist M = O{log[D/(δε)]} numbers αl, λl > 0 such that

(5.1)

∣∣∣∣∣1r −
M∑
l=1

αl exp (−λlr)

∣∣∣∣∣ < ε.

A more general approximation can be obtained from classical results in the fast mul-
tipole method (e.g. [16, Theorem 3.2]). Consider the two-dimensional case for ex-
ample, we may obtain the following approximate low-rank decomposition of the off-
diagonal part of the Coulomb kernel: for two regions A ⊂ R2 and B ⊂ R2, such that
A ⊂ B(r0, a) and B ⊂ B(r0, r)

c, a < r, then for any p ≥ 0, there exists ak ∈ C∞(A)

22

and bk ∈ C∞(B), 1 ≤ k ≤ 2p+ 1 =: M such that for any r ∈ A, r′ ∈ B,

(5.2)

∣∣∣∣∣ 1

‖r− r′‖
−

M∑
k=1

ak(r)bk(r′)

∣∣∣∣∣ ≤ 1

r − a

(a
r

)p+1

.

This immediately implies that in order to control the pointwise error up to ε, the rank
M can be bounded by log(1/ε). In order to control the 2-norm of each low-rank block,
M can be bounded by log(N/ε). Note that the separation between the sets A,B is
crucial for the error estimate, which corresponds to the strong admissibility condition.
For 2D and higher dimensional Coulomb interaction, the separation is indeed crucial
to bound the PEPO rank. Hence we only consider theH-matrix format for 2D systems
in the numerical examples below.

6. Numerical examples. In this section we present numerical results for 1D
and 2D systems using the methods we introduced above. As before, we will only focus
on long-range pairwise interactions of the form (1.1).

6.1. Quasi 1D system. We compare the numerical performance of the expo-
nential fitting method and the modified ISVD described in Algorithm 2 on Coulomb
interaction of the form

V̂ =
∑

1≤i<j≤N

1

|ri − rj |
n̂in̂j ,

where ri = (xi, yi). We always choose xi = i, |yi| < 1 so that this mimics a quasi-1D
system. Define the error matrix as E(i, j) = Ṽ(i, j) − V(i, j), and we measure the
error using the 2-norm of the error matrix.

In the first example we let all yi = 0. The resulting system is translation invariant,
and we can apply the exponential fitting method as well as modified ISVD. The
numerical results are shown in Fig. 6.1.

Fig. 6.1 shows that the accuracy of the two methods is comparable, and the
modified ISVD outperforms exponential fitting by a small margin in terms of 2-norm
error. However, the distribution of the error of the two methods is very different. The
error of the modified ISVD is concentrated at the upper-right corner of the matrix,
which is the interaction between the two ends of the system. This can be expected from
Eq. (3.9), where the error accumulation becomes more significant as more matrices
X̃k are multiplied together. On the other hand, the error of exponential fitting is
concentrated some distance away from the diagonal.

In the second example we set yi to be random numbers drawn uniformly from
[−0.2, 0.2]. system is then no longer translation-invariant, and the exponential fitting
method is not applicable. However, the modified ISVD still performs well. In Fig. 6.2
we can see that the convergence of error with respect to M and error distribution are
both very similar to the translation-invariant case.

We also test the performance of HODLR and H-matrix based MPO construction
on this model with yi = 0. The number of MPOs needed with fixed singular value
threshold ε′ = 10−3 and the relative 2-norm error is plotted in Fig. 6.3 (a). The
H-matrix format requires a large number of MPOs than the HODLR format. The
error distribution is plotted for system size N = 128, in Fig. 6.3 (b) (c).

6.2. 2D system. We then consider a 2D system with sites on a uniform N ×N
grid. For the 2D system we only show the numerical results for the H-matrix format,
since the Coulomb interaction in 2D only satisfies the strong admissibility condition.

23

2 4 6 8
Rank

10 6

10 5

10 4

10 3

10 2

2-
no

rm
 e

rro
r

exp fit
modified ISVD

(a) Error versus rank

24 25 26 27 28

system size

10 8

10 7

10 6

10 5

10 4

2-
no

rm
 e

rro
r

exp fit
modified ISVD

(b) Error versus system size

0 50 100

0

20

40

60

80

100

120
0e+00

5e-06

1e-05

1e-05

2e-05

2e-05

3e-05

(c) Error distribution: exponential fitting

0 50 100

0

20

40

60

80

100

120
0e+00

1e-05

2e-05

3e-05

4e-05

5e-05

(d) Error distribution: modified ISVD

Fig. 6.1. 2-norm error with exponential fitting and modified ISVD in Algorithm 2 for (a)
system size 128 and rank from 2 to 8, and (b) system size from 16 to 256 and rank 6. (c) (d) are
error distributions for the exponential fitting and modified ISVD respectively.

2 4 6 8
Rank

10 5

10 4

10 3

10 2

2-
no

rm
 e

rro
r

modified ISVD

(a) Error versus rank

0 50 100

0

20

40

60

80

100

120
0e+00

1e-05

2e-05

3e-05

4e-05

5e-05

(b) Error distribution

Fig. 6.2. Relative 2-norm errors versus rank M and error distribution of modified ISVD for
non-translation-invariant interactions.

In other words, the growth of the rank M becomes unfavorable using the HODLR
format. The error distribution is plotted in Fig. 6.3 (d). Table 6.1 shows the number
of PEPOs, as well as the maximal PEPO rank for different system sizes in order
to achieve the same truncation criterion ε′ (we truncate singular values for block
V(I,J)) at threshold ε′‖V(I,J)‖2). We observe that the maximal rank M grows

24

24 25 26 27 28

system size

10

20

30

40

nu
m

be
r o

f M
PO

s

1

2

3

re
l 2

-n
or

m
 e

rro
r

1e 4

(a) HODLR error

0 50 100

0

20

40

60

80

100

120
0e+00

1e-06

2e-06

3e-06

4e-06

(b) HODLR

0 50 100

0

20

40

60

80

100

120
0e+00

2e-07

4e-07

6e-07

8e-07

(c) H-matrix 1D

0 250 500 750 1000

0

200

400

600

800

1000 0e+00

2e-06

4e-06

6e-06

8e-06

(d) H-matrix 2D

Fig. 6.3. (a) Number of MPOs needed (orange) and relative 2-norm errors (blue) for HODLR
format (solid lines) and H-matrix format (dashed lines) in 1D with threshold 10−3. (b) Error
distributions of HODLR format in 1D. (c) H-matrix in 1D. (d) H-matrix in 2D. System size for
(b) and (c) is 128, and system side length is 32 for (d). Threshold is ε′ = 10−5 for (b), (c), (d).

system size number of PEPOs maximal rank
16× 16 328 13
32× 32 756 14
64× 64 1221 15

128× 128 1696 15
Table 6.1

Performance of the H-matrix format for the 2D system. The truncation threshold ε′ = 10−5.

very mildly with respect to the system size. The number of PEPOs increases more
noticeably when the system size is small, and the growth becomes slower as the side
length N increases from 64 to 128. The number of PEPOs should eventually become
only logarithmic with respect to N .

7. Conclusion. We introduced two methods for constructing efficient MPO and
PEPO representation of tensors with pairwise long-range interactions, without as-
suming that the system is translation-invariant. Using the upper-triangular low-rank
(UTLR) structure, the construction of the MPO representation can be solved as a
matrix completion problem. We developed a modified ISVD algorithm to solve the
matrix completion problem with in a numerically stable fashion. Although we do not
yet have a theoretical error bound for the accuracy of the modified ISVD algorithm,
numerical results indicate that the error of the modified ISVD method is comparable

25

to that of the exponential fitting method, which indicates that for Coulomb interac-
tion, the MPO rank from the modified ISVD method can be bounded by log(N/ε)).
The hierarchical low-rank format can be used to construct both MPOs and PEPOs.
For the Coulomb interaction, the tensor can be approximated by the linear combi-
nation of O(log(N) log(N/ε)) MPOs/PEPOs, and the rank of each MPO/PEPO is
bounded by a constant. The hierarchical low-rank format leads to an MPO represen-
tation with a higher MPO rank than that from the modified ISVD method. However,
the linear combination representation may naturally facilitate parallel computation,
and this is particularly the case for the PEPO representation where a relatively large
number of PEPOs can be needed. On the other hand, the MPOs/PEPOs from our
hierarchical low-rank format have many zero entries. It would be of practical interest
to develop alternative algorithms to reduce the number of zeros and to obtain a more
compact representation with reduced preconstants.

Acknowledgments. This work was partially supported by the Department of
Energy under Grant No. de-sc0017867, No. DE-AC02-05CH11231 (L. L.), by the
Air Force Office of Scientific Research under award number FA9550-18-1-0095 (L.L.
and Y. T.). We thank Garnet Chan, Matthew O’Rourke and Miles Stoudenmire for
helpful discussions.

Appendix A. FSM rules for sum of non-overlapping MPOs.
For a 1D system we divide into intervals {Iα} such as done in our construction

of the hierarchical low-rank matrix. First we clarify some notations. For an operator
defined in an interval we use the notation Ô. For example, the identity operator
defined in an interval {Iα} is Îα. Tensors and operators defined on a single site are
still denoted as T, O, etc. We want to represent an operator of the form

Ĥ =
∑
α

⊗
β<α

Îβ

⊗ Ĥα ⊗

⊗
β>α

Îβ

 ,

using an MPO, where we already have an MPO representation of each operator Ĥα

defined on interval Iα.
Using the finite state machine (FSM) description of MPOs [12, 14], we assume

there are the following general finite state machine rules for each Ĥα shown in Ta-
ble A.1. It is equivalent to the equation

Ĥα =
∑

r1,r2,··· ,r‖Iα‖−1

|Iα|⊗
i=1

Hi(ri−1, ri),

where r0 = r‖Iα‖ = 1, and H(l, r) is an operator for each l, r. The MPO rules for Ĥ
are shown in Table A.2.

position rule num input state operator output state
ALL 1 l Hi(l, r) r

Table A.1
MPO rules for the Ĥα on interval Iα.

For the FSM rules of the operators Ĥα, we assume the FSM is in state 1 at the
very beginning and will be in state 1 at the end. This means on the first site in

http://arxiv.org/abs/de-sc/0017867

26

rule num input state operator output state

HEAD
1 4 Ii 4
2 5 Ii 5
3 4 Hi(1, r) r

BODY
4 4 Ii 4
5 5 Ii 5
6 l Hi(l, r) r

TAIL
7 4 Ii 4
8 5 Ii 5
9 l Hi(l, 1) 5

Table A.2
MPO rules for the sum of operators

(⊗
β<α Îβ

)
⊗ Ĥα ⊗

(⊗
β>α Îβ

)
.

interval Iα an operator Hi(1, r) is activated and then the FSM goes to state r, and
on the last site an operator Hi(l, 1) is activated, and the FSM goes into state 1. The
first site in the interval is called the head and the last site is called the tail. Note that
the FSM rules on the head and tail sites are different from on other sites inside the
interval.

Now we construct the FSM rules for Ĥ. We add two states4 and5 into the FSM.
4 is the default state meaning a non-trivial operator, i.e. Ĥα, has not been activated,
and 5 means such an operator has been activated, and only identity operators should
be picked afterwards. The FSM is in state 4 both at the very beginning and at the
end.

At the first site, i.e. the head, of each interval Iα, the input signal from the left is
either 4 or 5. If the signal is 4, then we choose either to not activate Ĥα and pass
along the signal 4, as in rule 1 of Table A.2, or to activate Ĥα, as in rule 3 of the
same table. If the signal is 5, then Ĥα cannot be activated and a signal 5 is passed
down. This is done in rule 2.

In the middle, or body, of each interval Iα, if Ĥα has been activated at the first
site, then we follow the FSM rules for the individual Ĥα (rule 6). If we receive either
4 or 5 then we pass the signal down (rules 4 and 5).

At the last site, or the tail, of each interval, if Ĥα has been activated, then the
output signal is 5 (rule 9). Otherwise the output signal is whatever this interval
received from the beginning (rules 7 and 8).

An important fact is that we have only added two signals into the original set of
signals. This means if the original MPOs {Ĥα} have a maximum bond dimension D,
then the new MPO for the sum has a bond dimension D + 2. In the case of the sum
of non-overlapping rank-one operators as discussed in 4.1, the bond dimension of the
sum is 5.

Appendix B. FSM rules for sum of non-overlapping PEPOs.
The FSM rules for PEPOs are more complex. To describe our FSM rules for

PEPOs, we first divide the sites inside a given box into different parts, as shown in
the right part of Fig. B.1. Different FSM rules should be applied to different parts.
Sites in a box are labeled based on their position in the box, as shown in the left part
of Fig. B.1. For example, the box at the upper-right corner of a box is labeled UR.

We assume for each individual PEPO Ĥα, we have the FSM rules specified in
Table B.1. Note that not all PEPO tensors have 4 internal indices and 2 physical
indices, as can be seen from Fig. 2.3 (b). For example, the tensors on the edges have

27

DL

UL UR

DR

L

D

U

R

Fig. B.1. At level ` = 3 the 2D system is partitioned into 8 × 8 boxes as shown on the right.
Each box, such as the one in the small circle, has its sites labeled either body, UL, U, UR, R, DR,
D, DL, or L as shown on the left. Different FSM rules apply in different regions in the system.
FSM rules in Tables B.2, B.3, and B.4 apply in the grey, red, and black boxes respectively.

3 internal indices. In this case, we simply add bonds with bond dimension 1 to make
them have 4 internal indices, similar to what we have done in the snake-shaped PEPO
construction in 4.1. These extra indices all take the value 1.

Now we design a set of FSM rules to represent

Ĥ =
∑
α

⊗
β≺α

Îβ

⊗ Ĥα ⊗

⊗
β�α

Îβ

 ,

where ≺ gives the lexicographical order defined in Section 1. One key difference
between 2D and 1D is that in 2D we no longer have a fixed direction for the signal of
FSM to be passed along. Therefore we require that signals between boxes (there are
signals passing within boxes according to the original FSM rules in Table B.1, which
we leave unchanged) only pass rightward or downward, making it easier to design
FSM rules.

position rule num (l, u, d, r) operator
ALL 1 (l, u, d, r) Hi(l, u, d, r)

Table B.1
PEPO rules for Ĥα in the box Iα

We first design the FSM rules for all parts of the system except for the upper-right
corner, the right edge, and the lower-right corner (the colored parts in Fig. B.1 (b)).
The rules are shown in Table B.2. Just like in the 1D case, we introduce two signals
4 and 5. 4 is the default signal. We change the value of the extra indices we added
at the edges and corners from 1 to 4.

At the UL site of each box Iα, there are two input signals from left and up. When
both are 4, then it means Ĥα can be activated in this box (rule 3), but we can also
choose not to activate it and pass along the signal (rule 1). If the site receives a signal
5 from the left, and 4 from above, then it means an Ĥα′ has already been activated
for some α′ to the left, and the only thing that can be done now is to pass down the
signal 5 to the right until the right edge (rule 2), where other FSM rules will process
it.

28

rule num (l, u, d, r) operator

UL
1 (4,4,4,4) Ii
2 (5,4,4,5) Ii
3 (4,4, d, r) Hi(1, 1, d, r)

U
4 (4,4,4,4) Ii
5 (5,4,4,5) Ii
6 (l,4, d, r) Hi(l, 1, d, r)

UR
7 (4,4,4,4) Ii
8 (5,4,4,5) Ii
9 (l,4, d,5) Hi(l, 1, d, 1)

R
10 (4,4,4,4) Ii
11 (l, u, d,4) Hi(l, u, d, 1)

DR
12 (4,4,4,4) Ii
13 (l, u,4,4) Hi(l, u, 1, 1)

D
14 (4,4,4,4) Ii
15 (l, u,4, r) Hi(l, u, 1, r)

DL
16 (4,4,4,4) Ii
17 (4, u,4, r) Hi(1, u, 1, r)

L
18 (4,4,4,4) Ii
19 (4, u, d, r) Hi(1, u, d, r)

BODY
20 (4,4,4,4) Ii
21 (l, u, d, r) Hi(l, u, d, r)

Table B.2
PEPO rules for the sum of operators

(⊗
β≺α Îβ

)
⊗ Ĥα ⊗

(⊗
β�α Îβ

)
in the whole system

except for the upper-right corner, the right edge, and the lower-right corner.

Other rules in Table B.2 are either identical to the FSM rules for Ĥα, or to pass
along signals 4 and 5. Note that the signal 5 is only passed along the upper edge
(UL, U, and UR in Fig. B.1 (a)) as specified in rules 2, 5, 8. If Ĥα has been activated
then a signal 5 will be passed to the box to the right from the UR site (rule 9).

We then describe the FSM rules for the upper-right corner and the right edge of
the system as shown in Table B.3. Together with the FSM rules for the lower-right
corner in Table B.4, these FSM rules are to ensure that either only one signal 5 is
passed down from the left, or exactly one Ĥα is activated in this part of the system.

Here we explain the rules in Table B.3. For the UL site of each box Iα, there are
four possible incoming signal combinations it can receive. The first possibility is that
it receives two 4 signals. In this case it means no Ĥα′ has been activated to the left
or from above, we can choose whether to activate Ĥα or not (rules 1 and 4). If only
one of the signals is 5 then it means an Ĥα′ has been activated elsewhere, and it is
only allowed to pass the signal 5 downward (instead of rightward as in Table B.2).
This is specified in rule 2. Other rules exist to pass along the signals or are the same
as those for the individual Ĥα. At the DL site, if Ĥα has been activated, then a
signal 5 is passed to the next box below (rule 16). The signal 5 is only passed along
the left boundary, as opposed to along the upper boundary in Table B.2.

Now all that is left is to formulate the FSM rules for the lower-right corner of
the system. The rules are shown in Table B.4. If the UL site receives exactly one
signal 4 and exactly one signal 5 form left and above respectively, then this means
everything is good and we only need to pass the signal 4 to the boundaries without

29

rule num (l, u, d, r) operator

UL

1 (4,4,4,4) Ii
2 (5,4,5,4) Ii
3 (4,5,5,4) Ii
4 (4,4, d, r) Hi(1, 1, d, r)

U
5 (4,4,4,4) Ii
6 (l,4, d, r) Hi(l, 1, d, r)

UR
7 (4,4,4,4) Ii
8 (l,4, d,4) Hi(l, 1, d, 1)

R
9 (4,4,4,4) Ii
10 (l, u, d,4) Hi(l, u, d, 1)

DR
11 (4,4,4,4) Ii
12 (l, u,4,4) Hi(l, u, 1, 1)

D
13 (4,4,4,4) Ii
14 (l, u,4, r) Hi(l, u, 1, r)

DL
15 (4,4,4,4) Ii
16 (4,5,5,4) Ii
17 (4, u,5, r) Hi(1, u, 1, r)

L
18 (4,4,4,4) Ii
19 (4,5,5,4) Ii
20 (4, u, d, r) Hi(1, u, d, r)

BODY
21 (4,4,4,4) Ii
22 (l, u, d, r) Hi(l, u, d, r)

Table B.3
PEPO rules for the upper-right corner and the right edge. Main differences are in the rules for

UL, UR, L, DL, U.

activating the operator (rules 1 and 2). If it receives two signals 4 then it means no
Ĥα′ has been activated in any other box, and therefore Ĥα has to be activated in the
current box (rule 3). No signal 5 will be passed down beyond this point.

The rules in Tables B.2, B.3, B.4 ensure that exactly one operator Ĥα is going to
be activated in the system. Otherwise some box on the right boundary (upper-right
corner, right edge, and lower-right corner) will have two signals 5 incoming at the UL
site, which is not allowed in the FSM rules and therefore will return a zero operator,
making the whole tensor product zero.

Similar to the 1D case, the bond dimension of each PEPO Ĥ we constructed
in this way is the bond dimension of the original PEPO Ĥα plus 2. In the case of
rank-one operators the sum PEPO has a bond dimension of 5.

REFERENCES

[1] S. Ambikasaran and E. Darve, An O(n logn) fast direct solver for partial hierarchically
semi-separable matrices, J. Sci. Comput., 57 (2013), pp. 477–501.

[2] L. Balzano and Stephen J Wright, On grouse and incremental svd, in 5th IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), IEEE, 2013, pp. 1–4.

[3] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc.
Natl. Acad. Sci. U.S.A., 99 (2002), pp. 10246–10251.

[4] G. Beylkin and L. Monzón, On approximation of functions by exponential sums, Appl. Com-
put. Harmon. A., 19 (2005), pp. 17–48.

30

rule num (l, u, d, r) operator

UL of R

1 (5,4,4,4) Ii
2 (4,5,4,4) Ii
3 (4,4, d, r) Hi(1, 1, d, r)

U of R
4 (4,4,4,4) Ii
5 (l,4, d, r) Hi(l, 1, d, r)

UR of R
6 (4,4,4,4) Ii
7 (l,4, d,4) Hi(l, 1, d, 1)

R of R
8 (4,4,4,4) Ii
9 (l, u, d,4) Hi(l, u, d, 1)

DR of R
10 (4,4,4,4) Ii
11 (l, u,4,4) Hi(l, u, 1, 1)

D of R
12 (4,4,4,4) Ii
13 (l, u,4, r) Hi(l, u, 1, r)

DL of R
14 (4,4,4,4) Ii
15 (4, u,4, r) Hi(1, u, 1, r)

L of R
16 (4,4,4,4) Ii
17 (4, u, d, r) Hi(1, u, d, r)

BODY of
R

18 (4,4,4,4) Ii
19 (l, u, d, r) Hi(l, u, d, r)

Table B.4
PEPO rules for the lower-right corner of the system.

[5] J. Biamonte and V. Bergholm, Tensor networks in a nutshell, arXiv preprint
arXiv:1708.00006, (2017).

[6] D. Braess and W. Hackbusch, Approximation of 1/x by exponential sums in [1,∞), IMA J.
Numer. Anal., 25 (2005), pp. 685–697.

[7] , On the efficient computation of high-dimensional integrals and the approximation by
exponential sums, in Multiscale, nonlinear and adaptive approximation, Springer, 2009,
pp. 39–74.

[8] Matthew Brand, Incremental singular value decomposition of uncertain data with missing
values, in European Conference on Computer Vision, Springer, 2002, pp. 707–720.

[9] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optim., 20 (2010), pp. 1956–1982.

[10] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Com-
put. Math., 9 (2009), p. 717.

[11] G. K.-L. Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White, Matrix product opera-
tors, matrix product states, and ab initio density matrix renormalization group algorithms,
J. Chem. Phys., 145 (2016), p. 014102.

[12] G. M. Crosswhite and D. Bacon, Finite automata for caching in matrix product algorithms,
Phys. Rev. A, 78 (2008), p. 012356.

[13] G. M Crosswhite, A. C. Doherty, and G. Vidal, Applying matrix product operators to
model systems with long-range interactions, Phys. Rev. B, 78 (2008), p. 035116.

[14] F. Fröwis, V. Nebendahl, and W. Dür, Tensor operators: Constructions and applications
for long-range interaction systems, Phys. Rev. A, 81 (2010), p. 062337.

[15] L. Grasedyck and W. Hackbusch, Construction and arithmetics of h-matrices, Computing,
70 (2003), pp. 295–334.

[16] L. Greengard and V. Rokhlin, A new version of the fast multipole method for the laplace
equation in three dimensions, Acta Numer., 6 (1997), pp. 229–269.

[17] W. Hackbusch, A sparse matrix arithmetic based on H-matrices. part i: Introduction to H-
matrices, Computing, 62 (1999), pp. 89–108.

[18] W. Hackbusch, B. N. Khoromskij, and R. Kriemann, Hierarchical matrices based on a weak
admissibility criterion, Computing, 73 (2004), pp. 207–243.

[19] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, Unsupervised generative modeling

31

using matrix product states, Phys. Rev. X, 8 (2018), p. 031012.
[20] Y. Hu, Y. Koren, and C. Volinsky, Collaborative filtering for implicit feedback datasets., in

ICDM, vol. 8, Citeseer, 2008, pp. 263–272.
[21] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, Dynamical approxima-

tion by hierarchical tucker and tensor-train tensors, SIAM J. Matrix Anal. A., 34 (2013),
pp. 470–494.

[22] A. Mnih and R. R. Salakhutdinov, Probabilistic matrix factorization, in Advances in neural
information processing systems, 2008, pp. 1257–1264.

[23] M. R. Norman, Colloquium: Herbertsmithite and the search for the quantum spin liquid, Rev.
Mod. Phys., 88 (2016), p. 041002.

[24] M. J. O’Rourke, Z. Li, and G. K.-L. Chan, Efficient representation of long-range interactions
in tensor network algorithms, Phys. Rev. B, 98 (2018), p. 205127.

[25] R. Orús, A practical introduction to tensor networks: Matrix product states and projected
entangled pair states, Ann. Phys., 349 (2014), pp. 117–158.

[26] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[27] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to

use svd in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759.
[28] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization, Phys.

Rev. Lett., 75 (1995), p. 3537.
[29] B. Pirvu, V. Murg, J. I. Cirac, and F. Verstraete, Matrix product operator representations,

New J. Phys., 12 (2010), p. 025012.
[30] M. Rakhuba and I. Oseledets, Calculating vibrational spectra of molecules using tensor train

decomposition, J. Chem. Phys., 145 (2016), p. 124101.
[31] U. Schollwöck, The density-matrix renormalization group in the age of matrix product states,

Ann. Phys., 326 (2011), pp. 96–192.
[32] E. Stoudenmire and D. J. Schwab, Supervised learning with tensor networks, in Advances

in Neural Information Processing Systems, 2016, pp. 4799–4807.
[33] E. M. Stoudenmire and S. R. White, Sliced basis density matrix renormalization group for

electronic structure, Phys. Rev. Lett., 119 (2017), p. 046401.
[34] F. Verstraete and J. I. Cirac, Renormalization algorithms for quantum-many body systems

in two and higher dimensions, arXiv preprint cond-mat/0407066, (2004).
[35] F. Verstraete, M. M. Wolf, D. Perez-Garcia, and J. I. Cirac, Criticality, the area law,

and the computational power of projected entangled pair states, Phys. Rev. Lett., 96 (2006),
p. 220601.

[36] G. Vidal, Classical simulation of infinite-size quantum lattice systems in one spatial dimen-
sion, Phys. Rev. Lett., 98 (2007), p. 070201.

[37] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett., 69 (1992), p. 2863.

[38] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state of the s= 1/2 kagome heisen-
berg antiferromagnet, Science, 332 (2011), pp. 1173–1176.

