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QUANTITATIVE PROPAGATION OF CHAOS IN THE BIMOLECULAR

CHEMICAL REACTION-DIFFUSION MODEL

TAU SHEAN LIM, YULONG LU, AND JAMES NOLEN

Abstract. We study a stochastic system of N interacting particles which models bimolec-
ular chemical reaction-diffusion. In this model, each particle i carries two attributes: the
spatial location X i

t ∈ T
d, and the type Ξi

t ∈ {1, · · · , n}. While X i
t is a standard (indepen-

dent) diffusion process, the evolution of the type Ξi
t is described by pairwise interactions

between different particles under a series of chemical reactions described by a chemical reac-
tion network. We prove that, as N → ∞, the stochastic system has a mean field limit which
is described by a nonlocal reaction-diffusion partial differential equation. In particular, we
obtain a quantitative propagation of chaos result for the interacting particle system. Our
proof is based on the relative entropy method used recently by Jabin and Wang [19]. The
key ingredient of the relative entropy method is a large deviation estimate for a special par-
tition function, which was proved previously by combinatorial estimates. We give a simple
probabilistic proof based on a novel martingale argument.

1. Introduction

In this paper, we consider a class of stochastic interacting particle systems modeling a
chemical reaction-diffusion process. In this model, there are N particles, indexed by i ∈
{1, · · · , N}. Each particle carries two attributes: a location X i

t ∈ T
d (the d-dimensional

torus), and a chemical type Ξi
t ∈ {S1, S2, · · · , Sn} = {1, · · · , ns}, where ns is the number of

distinct chemical species. As time t progresses, X i
t diffuses as a standard Brownian motion

in space independently, with the speed of diffusion depending on its type Ξi
t. The type

Ξi
t changes in time according the pairwise chemical interactions between different particles,

with transition rates depending on their locations, types, and a set of bimolecular chemical
reactions R1, R2, · · · , Rnr

of the form

Sk + Sl
R−→ Sk′ + Sl′, k, l, k′, l′ ∈ {1, · · · , ns}. (1.1)

Specifically, a pair of particles i, j with types matching the input of a reaction R (i.e.

(Ξi
t,Ξ

j
t) = (k, l) or (l, k) in (1.1)) may react and instantly change to types (k′, l′) or (l′, k′)

at a random time that depends on their spatial location X i
t , X

j
t . Our main result (Theorem

2.2) shows that in the limit N → ∞, the empirical measure of the particles converges in a
suitable sense to the solution of a nonlinear system of reaction-diffusion equations.
The precise description of the stochastic system will be given in the next section, using

the notations from chemical reaction network theory. For the time being, let us consider a
simple special case, which involves only two types of particles S1, S2 (and hence ns = 2), and
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a single irreversible chemical reaction (hence nr = 1)

S1 + S2 → 2S2. (1.2)

As mentioned earlier each particle diffuses independently in space with diffusivity depending
on its type. A reaction, which turns a type-S1 particle into a type-S2 particle, happens at
a random time, with a rate depending on its location relative to the type-S2 particles. The
reaction (1.2) is irreversible, in the sense that once a particle turns into type-S2, it can never
turn back to type-S1 again. Hence, we have the following stochastic system:







X i
t = X i

0 +

∫ t

0

σ(Ξi
s)dB

i
s,

Ξi
t = Ξi

0 + Ei

(

1

N

N∑

j=1,j 6=i

∫ t

0

1{(Ξi
s−,Ξ

j
s−) = (1, 2)}Φ(X i

s −Xj
s )ds

)

,

for 1 ≤ i ≤ N.

(1.3)

where σ : {1, 2} → R
+,Φ ∈ (L1 ∩ L∞)(Td) are prescribed diffusion coefficients and a reac-

tion rate kernels, {Bi
t}1≤i≤N are independent standard d-dimensional Brownian motions, and

{Ei(t)}1≤i≤N are independent unit Poisson jump processes. Here, if the type Ξi
t of a particle i

initially is 1 (hence a type-S1 particle), it then turns into 2 at a rate of 1
N

∑

j:Ξj
t=2Φ(X

i
t−Xj

t ).

The scaling 1
N

here is critical in deriving the mean field limit. When the type Ξi
t turns into

2, it remains a type-2 forever, because the rate is then zero (as 1{(Ξi
s,Ξ

j
s) = (1, 2)} = 0).

The objective of this paper is to establish the convergence, as N → ∞, of the empirical
measure of the process (which is a time-dependent random measure on T

d × {1, 2, · · · , n})

µN(t) =
1

N

N∑

i=1

δ(Xi
t ,Ξ

i
t)

(1.4)

to the solution ρ̄ of a mean field limit equation, which is a deterministic system of n non-local
reaction-diffusion equations, provided that the initial distribution µN(0) converges to ρ̄(0)
in some appropriate sense. For instance, in the special case (1.2), the limiting system of
equations is







∂tu =
σ(1)2

2
∆u− (Φ ∗ w)u,

∂tw =
σ(2)2

2
∆w + (Φ ∗ w)u,

(1.5)

where the components u, w : [0,∞)×T
d → R

+ represent the distribution of type-1,2 particle
respectively, and “∗” denotes the convolution operator

(Φ ∗ u)(x) =
∫

Td

Φ(x− y)u(y)dy.

The limit system in the general case, n ≥ 2, is given below in (2.14).
In the case that the initial distribution is well-mixed (constant density), the mean-field

limit coincides with a mass action system [17]. In this case, the normalized concentrations
{ρ̄k(t)}nk=1 for the n chemical species do not depend on x, and they satisfy a system of n
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ordinary differential equations. In the special case (1.2), this is a simple Lotka-Volterra
system, with (u, w) = (ρ̄1, ρ̄2), and some λ > 0:

{
u̇ = −λuw,
ẇ = λuw,

(1.6)

(cf. (1.5)). There is also a stochastic counterpart of these systems in which case the total
number {Mk(t)}t≥0 of each species k ∈ {1, · · · , n} is a counting process satisfying a certain
coupled stochastic system described by appropriate time-changed Poisson processes, whose
rates depend on the current configuration {Mk(t)}1≤k≤n. Again, for the special case (1.2),
the stochastic system is given by (with (U,W ) = (M1,M2))







Ut = U0 − E

(

λ

∫ t

0

Us−Ws−ds

)

,

Wt =W0 + E

(

λ

∫ t

0

Us−Ws−ds

)

,

where E is a unit rate Poisson process (cf. (1.3)). With an appropriate scaling (in the rate of
reactions), it can be shown that the process {MN

k (t)}1≤k≤n described by the stochastic system
converges, in a certain sense, to the solution {ρ̄k(t)}1≤k≤n of a mass action ODE system as
N → ∞ [3, 25]. This convergence result (at least for the case of bimolecular reactions), is a
special case of our main result, when the initial distribution is well-mixed spatially (i.e., X i

t ,
conditioned on Ξi

t, is a uniform random variable).
Models for chemical reactions with spatial diffusion have been studied for more than a

century, going back to the work of Smoluchowski [34] (see also [1, 8]). Nevertheless, there
are relatively few works that make a mathematically rigorous and quantitative connection
between stochastically interacting particles (as a microscopic model) and systems of reaction-
diffusion equations, as a mean field limit – this is the motivation for our work. De Massi,
Ferrari, and Lebowitz [6] derived a scalar reaction-diffusion equation as the limit of a Glauber-
type spin system on a lattice Z

d. This result was generalized by Durrett and Neuhauser [10]
to allow for more than two states/types, leading to a system of reaction-diffusion equations
for reactions of the form Sk → Sj, with rate depending on the density of other types. The
reaction-diffusion limit is useful for studying phase transitions in the underlying stochastic
model. See [5] for related results in the spatially-discrete setting. In a continuum setting,
Oelschläger [30] analyzed a system of diffusing particles in which each particle may give birth
(Sk → 2Sk), die (Sk → ∅), or change its type (Sk → Sj) at rates that depend on the density of
other types, leading to a system of reaction-diffusion equations in the infinite population limit.
See [7, 12, 23, 24] for related works involving scalar reaction-diffusion equations. Whether in
the spatially discrete or continuous setting, most of these models involve only one particle
changing its type at a time, although the rate of the reaction may depend on the types
and locations of other particles. The recent paper [2] studies the mean field limit of a
leader-follower dynamics, which models transitions between two labels (followers and leaders).
The mean field limit obtained there involves transport and reaction, but without diffusion.
Moreover, the reaction rate depends only on the global state of the system, but not on
specific locations. Compared to these works, the stochastic systems that we study allow
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for two particles to change type simultaneously with location-dependent reaction rate, in a
reaction of the form S1 + S2 → S3 + S4, for example. However, the total number of particles
is conserved in our systems.
The derivation of macroscopic equations from interacting particle systems is a classical

topic in mathematical physics dating back to Maxwell and Boltzmann. A prototype micro-
scopic model that has been studied a lot in the literature is the following McKean-Vlasov
system of stochastic differential equations:

dX i
t = σ(t, X i

t)dB
i
t +

1

N

N∑

j=1,j 6=i

F (X i
t −X

j
t )dt, 1 ≤ i ≤ N. (1.7)

For a Lipschitz continuous force F and a diffusion coefficient σ, this system has a mean
field limit which is a nonlocal drift-diffusion equation (usually called the McKean-Vlasov
equation); see e.g. [35] and [14] for a proof. An important concept in studying the particle
system (1.7), and others like it, is propagation of chaos, due to Kac [20] and McKean [28,29]
(see also the classical monograph by Sznitman [35]), which roughly means that as N → ∞,
any finite group of the particles are asymptotically chaotic (independent) if they are initially
chaotic (independent); see Definition 2.1 for a precise statement. In recent years, some
progress has been made in proving mean field limits of McKean-Vlasov systems with singular
interaction forces or kernel; we refer the interested reader to [13,15,18,19,33]. Among these
results, we specifically mention the recent work by Jabin and Wang [19], who investigate the
mean field limit for stochastic systems (1.7) with F ∈ W−1,∞ which in particular includes
the Biot-Savart kernel. They obtain a quantitative estimate for the propagation of chaos in
terms of the relative entropy between the k-marginals of the joint distribution of N particles
and the k-tensorized distribution of the mean field limit. The relative entropy method was
initiated by Yau [41] in the proof of hydrodynamic limits of Ginzburg-Landau Models, where
the relative entropy of the current density with respect to some local Gibbs equilibrium
serves as a controllable norm whose convergence to zero implies the existence of macroscopic
limit; see [21, 36] for more discussion about this method in interacting particle models from
statistical physics. The recent work [19] demonstrated the potential power of the relative
entropy method in the study of mean field limits of singular stochastic dynamics. Compared
to [41], the relative entropy approach used in [19] (and in the present article) is based on the
idea of controlling directly the relative entropy between the density of the particle system and
that of the mean field limit, instead of the local equilibrium measure of the particle system.
Our strategy of proving propagation of chaos in the chemical reaction model is similar to

that of Jabin and Wang [19]. Specifically, we show the propagation of chaos by proving an
explicit estimate for the relative entropy between the joint law of particle system and the
tensorized law of the mean field limit. The key ingredient of the proof is a large deviation
inequality of the form

sup
N≥2

E

[

exp

(

1

N

N∑

i,j=1,i 6=j

f(Yi, Yj)

)]

<∞, (1.8)
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where {Yi}i∈N are i.i.d. random variables, and f is a L∞ function satisfying some appropriate
cancellation condition (see Lemma 4.3). Note that this inequality requires weaker regularity
condition than the usual condition in obtaining large deviation bounds through Varadhan’s
lemma (c.f. [37, Theorem 2.5] and [9, Theorem 1.2.1]) since the function f needs not be
continuous. The inequality (1.8) (with a weaker assumption on f) was proved by Jabin and
Wang (see [19, Theorem 4]) using combinatorial estimates. One of the contributions of this
work is to provide a short probabilistic proof, assuming f is bounded. Our proof relies on
identifying a martingale structure in the exponential of (1.8) which allows us to conclude
the estimate from a sharp Marcinkiewicz-Zygmund inequality for a martingale difference
sequence.
One may wonder why we only restrict our attention to the case of bimolecular reactions

(1.1) (two inputs, two outputs), instead of a more general reaction structure. First, although
one may still discuss the mean field limit for general reaction structure, the notion of the
propagation of chaos only applies to those systems that conserve the total number of particles
in time. Since our work is based on this notion, it excludes the case of those reactions with
uneven inputs and outputs. It is also worthwhile to consider chemical reactions taking m
inputs, m outputs for m ≥ 3. However, proving a mean field limit for these models requires a
delicate estimate of the quantity (1.8), which now involves m-body interactions. This turns
out to be highly-nontrivial and will be investigated in a future work.
The rest of the paper is organized as follows. In the coming section, we begin with a brief

introduction to general notions of chaos, chemical reaction networks and some notations,
then we set up the N -particles system and state the main result of its propagation of chaos
property (Theorem 2.2). In Section 3, we will determine the infinitesimal generator LN of
the process (XN

t ,Ξ
N
t ) = {(X i

t ,Ξ
i
t)}1≤i≤N defined by the N -particles system, and its dual

L
∗
N . The proof of the main theorem is presented in Section 4, which is based on the idea of

establishing appropriate differential inequality for the normalized relative entropy and then
applying Grönwall lemma. The large deviation inequality and a lemma used in the proof
of this main theorem will be proved in Section 5. An appendix, briefly discusses the well-
posedness and regularity of the mean field limit equation and the Fokker-Planck equation for
N -particles system, is also included in Section 6.

Acknowledgement. The work of James Nolen was partially funded through grant DMS-
1351653 from the National Science Foundation.

2. Settings and the Main Result

2.1. Bimolecular chemical reaction network. To describe the model, we adopt the no-
tations from the theory of chemical reaction networks (see e.g. [3]), so let us now state the
definition of general chemical reaction networks. A chemical reaction network is a triplet
(S,C,R) given as follows.

(1) S = {1, 2, · · · , n} = {S1, · · · , Sn} is a finite set of chemical species.
(2) C = {C1, C2, · · · , Cnc

} ⊂ N
n
0 is a finite collection of chemical complexes. For instance,

C =
∑n

k=1 αkek ∈ N
n
0 (where {ek}k=1,··· ,n is the unit vector in R

n, αk ∈ N0) represents
the complex formed by a total of αk type-Sk particles for each 1 ≤ k ≤ n.
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(3) R = {R1, R2, · · · , Rnr
} ⊂ C × C is a finite collection of chemical reactions. For

instance, R = (C,C ′) ∈ R denotes the chemical reaction between complexes C → C ′.
If C =

∑n
k=1 αkek, C

′ =
∑n

k=1 βkek, then the reaction can be written in the form of a
chemical equation

n∑

k=1

αkSk
R−→

n∑

k=1

βkSk.

The complex C (the left hand side of the above) will be called the input of the reaction
R, whereas C ′ (the right hand side) is its output.

In this work, we restrict our attention to the case of a bimolecular reaction network, which
is a particular case of a chemical reaction network, whose complexes C ∈ C are of bimolecular
form, namely,

C ⊂ {ek + el : k, l ∈ S}.

This means that all reactions R ∈ R have the form Sk+Sl
R−→ Sk′+Sl′, for some k, l, k′, l′ ∈ S.

In this case, we use the notation

k + l
R−→ k′ + l′, (k, l)

R−→ (k′, l′), R : (k, l) → (k′, l′). (2.1)

It is possible that k = l and/or k′ = l′, so that the two input molecules and/or the two
output molecules are of the same species (e.g. (1.2)). Throughout this work, for every
chemical reaction equation R ∈ R written as above, to avoid ambiguity we always assume
the ascending order for both input and output, that is,

k ≤ l, k′ ≤ l′. (2.2)

For R ∈ R, we denote R− (resp. R+) the input (resp. output) of the reaction. For instance,
a chemical reaction of the form (2.1), we have

R− = {k, l}, R+ = {k′, l′}. (2.3)

We remark that the number of particles, and hence the total mass, are conserved in every
bimolecular reaction.

2.2. Notations. We now introduce some general notations being used in the work. Through-
out this paper, we will consider stochastic processes in the state space

Π = X×S,

where X = T
d (the d-dimensional torus), and the discrete set S = {1, 2, · · · , n} represents

the type of particles. Though the present work is mainly based on the case of a torus, we
sometimes will also consider the whole space setting, i.e., X = R

d. We set the variable
y = (x, ξ) ∈ Π, with x ∈ X, ξ ∈ S, and denote

dm = dx⊗ d#
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the canonical measure on Π, that is, the product of Lebesgue measure on T
d (or R

d), and
the counting measure # on {1, 2, · · · , n}. For N ≥ 1, denote variables

yN = (y1, · · · , yN) = (xN , ξN ) ∈ ΠN ,

yk = (xk, ξk) ∈ Π = X×S, k ∈ {1, 2, · · · , N},
xN = (x1, · · · , xN ) ∈ X

N ,

ξN = (ξ1, · · · , ξN) ∈ S
N .

Specifically, the boldface symbols yN ,xN , ξN are for elements in the N -fold product spaces
ΠN ,XN ,SN , while the normal typeset symbols y, x, ξ denote elements in Π,X,S. Like-
wise, the boldface uppercase symbols (e.g., XN

t ,Ξ
N
t ) denote processes on the N -fold product

spaces, while the normal uppercase symbols (e.g., Xt,Ξt) denote processes on X,S. Also, let
mN be the N -fold product of the measure m, which is a measure on ΠN :

mN := m⊗N =

N
︷ ︸︸ ︷
m⊗ · · · ⊗m.

Finally, for N ≥ 1, p ∈ [1,∞], and k ≥ 0, denote the spaces of measures and functions on
ΠN as below:

• M(ΠN) - the family of Borel measures on ΠN ;

• P(ΠN ) - the family of probability measures on ΠN ;

• C0(Π
N ) - the space of continuous functions on ΠN , vanishing at infinity;

• Lp(ΠN) - the space of all Lp- integrable functions on ΠN (w.r.t. dmN);

• Ck
0 (Π

N) - the space of functions f so that f(·, ξN) ∈ Ck
0 (X

N ) for all ξN ∈ S
N ;

• W k,p(ΠN) - the space of functions f so that f(·, ξN) ∈ W k,p(XN) for all ξN ∈ S
N .

Also, define a bilinear form 〈·, ·〉 : C0(Π
N)×M(ΠN) → R by

〈ϕ, ρ〉 :=
∫

ΠN

ϕ(yN)dρ(yN). (2.4)

2.3. The stochastic chemical reaction-diffusion system. Fix dimension d ≥ 1 and a
bimolecular chemical reaction network (S,C,R), with S = {1, 2, · · · , n}. Fix a function

σ : S → R
+, (2.5)

to represent the diffusion coefficient for each type of particle. For each reaction R ∈ R of the
form (2.1), we associate a non-negative function

ΦR ∈ L1(X) ∩ L∞(X), with ΦR(x) = ΦR(−x) for all x ∈ X, (2.6)

which will be called the reaction kernel of the chemical reaction R. The reaction kernel ΦR

will be used to define the rate at which the reaction R between two particles occurs. One
typical choice of reaction kernel, as introduced in [8], could be a cut-off function supported
on finite ball, i.e ΦR(x) = χ{|x|≤r} for some r > 0. The symmetry assumption (2.6) is not
essential to us and it is only used for the purpose of simplifying expressions in the mean field
limit; see Section 3.3 for more details.
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Next, we introduce some useful indicator functions. Given a fixed type k ∈ S, we denote
by χk : S → {0, 1} the indicator

χk(ξ) =

{
1 if ξ = k,

0 else.

For R ∈ R with (k, l)
R−→ (k′, l′), let χ±

R : S2 → {0, 1} be the indicator function

χ−
R(ξ, ξ

′) = χk(ξ)χl(ξ
′), χ+

R(ξ, ξ
′) = χk′(ξ)χl′(ξ

′). (2.7)

That is, χ−
R(ξ, ξ

′) (resp. χ+
R) indicates the event when (ξ, ξ′) matches with the input R− (resp.

output R+) of the reaction R. We stress here these indicators are order sensitive when k 6= ℓ

and k′ 6= ℓ′, in the sense that

χ−
R(k, l) = 1, χ−

R(l, k) = 0, χ+
R(k

′, l′) = 1, χ+
R(l

′, k′) = 0. (2.8)

We next introduce the “random ingredients” for the model. Let i ∈ N label particles
involved in the modeled chemical reaction-diffusion process. For each particle i, we associate
the following independent random variables and stochastic processes to it:

(1) a Π-valued random variable (X i
0,Ξ

i
0);

(2) a standard Brownian motion {Bi
t}t≥0.

For each R ∈ R and ordered pair (i, j) ∈ N
2 with i 6= j, we associate also

(3) an independent unit rate Poisson process {Eij
R (t)}t≥0;

These Poisson processes will be used to define the counts, up to a certain time, of the type-R
reactions that happens between the (ordered) pair of distinct particles i and j. The collection
of processes {Bi

t}t≥0, {Eij
R (t)}t≥0, for i, j ∈ N and R ∈ R are assumed to be independent. Let

(Ω,F ,P) be the probability space on which these random variables and processes are defined.
Fix N ≫ 1 large and consider the stochastic system of N -particles described as follows. For

each i ∈ {1, · · · , N}, we consider the process {(X i
t ,Ξ

i
t)}t≥0 on the state space Π = X×S, with

X i
t ∈ X representing the location of the i-th particle at time t ≥ 0, and Ξi

t ∈ S = {1, 2, · · · , n}
representing its type. Each particle i diffuses in the spatial domain X independently, with
diffusion coefficient σ(Ξi

t), depending on its current type Ξi
t. Therefore, X

i
t satisfies the SDE

X i
t = X i

0 +

∫ t

0

σ(Ξi
s)dB

i
s, 1 ≤ i ≤ N.

Next consider the type process {Ξi
t} for a given particle i, which is a pure jump process. The

type has initial value Ξi
0. To describe the evolution, we introduce the reaction counter process

Ẽ
ij
R (t) for a given reaction R ∈ R and the (ordered) pair of particles (i, j) (with i 6= j), which

is the following time-change of the Poisson process Eij
R (t):

Ẽ
ij
R (t) = E

ij
R

(
1

N

∫ t

0

χ−
R(Ξ

i
s−,Ξ

j
s−)ΦR(X

i
s −Xj

s )ds

)

.

Specifically, this is a counting process that counts the number of type-R reactions occurring
between the pair (i, j) up to time t. The rate of these reactions depends on the relative
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locations X i
t , X

j
t , through the reaction kernel ΦR, and is given by

1

N
· χ−

R(Ξ
i
t−,Ξ

j
t−) · ΦR(X

i
t −X

j
t ).

The scale 1
N

is the virtue of the mean field interaction, so that the pairwise interaction
diminishes as the number of particles N → ∞. Observe that the rate is nonzero only when
χ−
R(Ξ

i
t−,Ξ

j
t−) = 1 and when ΦR(X

i
t − X

j
t ) 6= 0. In other words, a reaction of type-R can

happen between the pair (i, j) only when the type (Ξi
t−,Ξ

j
t−) matches with the input R− of

the reaction (i.e., Ξi
t− = k,Ξj

t− = l, see (2.7)), and when their locations X i
t , X

j
t are sufficiently

close (if ΦR has a compact support).

As time progresses, a jump Ξi
t− → Ξi

t occurs when a reaction (k, l)
R−→ (k′, l′) between

particle i and some other particle j 6= i takes place. Namely, a jump in Ξi
t happens at the

time t when either a reaction of type-R between the pair (i, j), or (j, i) occurs, and hence,

when either reaction counter Ẽij
R (t) or Ẽ

ji
R (t) jumps. When that happens, the type (Ξi

t−,Ξ
j
t−)

instantly turns into the output R+ of the reaction R: either (k′, l′) or (l′, k′). To avoid
ambiguity, we enforce the rule of assignment that if the reaction of type-R occurs between the
pair (i, j) of particles, the type (Ξi

t−,Ξ
j
t−) turns into (k′, l′) in order (recall the convention

(2.2) that k′ ≤ l′). This also means, if a reaction occurs between the pair (j, i) instead, and

hence (Ξj
t−,Ξ

i
t−) = (k, l), it also turns into the same output: (Ξj

t ,Ξ
i
t) = (k′, l′). Specifically,

if (Ξi
t−,Ξ

j
t−) has value (k, l) (resp. (l, k)), then the reaction Ẽ

ji
R (resp. Ẽ

ij
R ) will not fire,

as the rate χ−
R(Ξ

j
t−,Ξ

i
t−) = 0 (resp., χ−

R(Ξ
i
t−,Ξ

j
t−) = 0 see (2.8)). Therefore, with the rule

of assignment, when a reaction of type-R happens, it always turns types k → k′, l → l′ in
ascending order. In total, the evolution of the type process is described by the following
stochastic integrals against the reaction counter processes Ẽij

R

Ξi
t = Ξi

0 +
∑

R∈R
R:(k,l)→(k′,l′)

N∑

j=1,j 6=i

[∫ t

0

(k′ − Ξi
s−)dẼ

ij
R (s) +

∫ t

0

(l′ − Ξi
s−)dẼ

ji
R (s)

]

.

In summary, the dynamics of the process (XN
t ,Ξ

N
t ) = {(X i

t ,Ξ
i
t)}1≤i≤N is described by the

following SDE system:







X i
t = X i

0 +

∫ t

0

σ(Ξi
s)dB

i
s,

Ξi
t = Ξi

0 +
∑

R∈R
R:(k,l)→(k′,l′)

N∑

j=1,j 6=i

[∫ t

0

(k′ − Ξi
s−)dẼ

ij
R (s) +

∫ t

0

(l′ − Ξi
s−)dẼ

ji
R (s)

]

,

for i ∈ {1, 2, · · · , N},
Ẽ

ij
R (t) = E

ij
R

(
1

N

∫ t

0

χ−
R(Ξ

i
s−,Ξ

j
s−)ΦR(X

i
s −Xj

s )ds

)

.

(2.9)
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Observe that Ξi
t takes values in {1, · · · , n}. The process t 7→

∫ t

0
(k′−Ξi

s−)dẼ
ij
R (s) is piecewise

constant, making a jump of size (k′ − k) only at times when Ξi
t = k. With probability one,

the jumps in Ẽij
R (t) occur at distinct times.

We can also write this equation in vector form. Let BN
t = (B1

t , · · · , BN
t ), which is the

standard Brownian motion on X
N , and ΣN(Ξ

N
t ) be the (N×N)-diagonal matrix with diagonal

entries σ(Ξi
t), for 1 ≤ i ≤ N . Introduce also the function Θij

R : SN → S
N by

Θij
R(ξN) = Θij

R(ξ1, · · · , ξN) = (ξ̃1, · · · , ξ̃N), ξ̃m =







k′ if m = i,

l′ if m = j,

ξl else.
(2.10)

That is, Θij
R(ξN) is obtained by changing only the i- and j-coordinate of ξN from ξi, ξj to the

output k′, l′ of the reaction R respectively, while leaving the other coordinates unchanged.
For later use, we also introduce Θ̃ij

R : SN → S
N the “reverse” of the map Θij

R, which turns
the i, j-coordinates into the input k, l of R:

Θ̃ij
R(ξN) = Θ̃ij

R(ξ1, · · · , ξN) = (ξ̃1, · · · , ξ̃N), ξ̃m =







k if m = i,

l if m = j,

ξm otherwise.
(2.11)

Then the vector form of (2.9) is written as follows:






XN
t = XN

0 +

∫ t

0

ΣN(Ξ
N
s )dB

N
s ,

ΞN
t = ΞN

0 +
∑

R∈R

N∑

i,j=1,i 6=j

∫ t

0

[Θij
R(Ξ

N
s−)− ΞN

s−]dE
ij
R (s).

(2.12)

Remarks. Before ending this subsection, let us make one comment about the rule of
assignment. By our construction, whenever a reaction R : (k, l) → (k′, l′) takes place, it
always turns k → k′, l → l′, following the ascending order of the input and output. Perhaps
a more realistic situation will be turning the input into a prescribed choice of output. For
instance, when considering a reaction R : (1, 2) → (2, 3), it is more natural to have 1 → 3,
while 2 remains 2 → 2, instead of following the ascending order 1 → 2, 2 → 3. To be precise,
for those reactions R : (k, l) → (k′, l′) with distinct inputs k 6= l, we prescribe a surjective
assignment θR : {k, l} → {k′, l′}. Whenever a reaction of type-R occurs, it turns k → θR(k),
and l → θR(l). If k = l, we then switch the types into (k′, l′) or (l′, k′), each with probability
1
2
. This is equivalent to first fix an order of the right hand side (the output) of (2.1) for each
R, namely,

k + l
R−→ θR(k) + θR(l),

(the order of the output does not matter when k = l). Then a reaction turns the input (k, l)
into the output, following the order of the right hand side above. One may construct the
dynamics with this rule, and of course the result of propagation of chaos still holds, except
with a minor difference in the mean field limit equation (2.16) (more precisely, the definition
of T̄+

R in (2.18)).
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2.4. Notions of entropy and chaos. Before stating our main results, we define some
notions of entropy and chaos. For a generic Polish space Π, let P(Π) be the family of
probability measures on Π. For N ≥ 2, we denote by Psym(Π

N ) the set of symmetric
probability measures on the product space ΠN , that is the set of laws of exchangeable ΠN -
valued random variables. Given a symmetric probability density ρN ∈ Psym(Π

N ), let us
denote by ρk,N ∈ P(Πk), 1 ≤ k ≤ N , the k-marginal of ρN . For two probability measures
µ, ν ∈ P(Π), the relative entropy of µ with respect to ν is defined as

H(µ‖ν) = E
µ log

(dµ

dν

)

.

If µ and ν have densities f, g with respect to a measure m on Π, then

H(µ‖ν) =
∫

Π

f(y) log

(
f(y)

g(y)

)

dm(y). (2.13)

For two symmetric probability measures ρN , ρ̄N ∈ Psym(Π
N) with k-marginals ρk,N and ρ̄k,N ,

we also define the following normalized relative entropies

HN(ρN‖ρ̄N ) :=
1

N
H(ρN‖ρ̄N), Hk(ρN‖ρ̄N) :=

1

k
H(ρk,N‖ρ̄k,N).

Definition 2.1 (Kac’s chaos). Let ρN ∈ Psym(Π
N) be a sequence of symmetric probability

measures on ΠN , N ≥ 1 and let ρ̄ ∈ P(Π). We say ρN is ρ̄-Kac’s chaotic if one of the
following three equivalent conditions holds:
(i) the sequence of two marginals ρ2,N ⇀ ρ̄⊗ ρ̄ (converges weakly) as N → ∞;
(ii) for all k ≥ 1 fixed,

ρk,N ⇀ ρ̄⊗k on Πk as N → ∞;

(iii) the law ρ̂N of the empirical measure µN
XN associated to XN = {X i}Ni=1 ∼ ρN satisfies

ρ̂N ⇀ δρ̄ in P(P(E)) as N → ∞.

The first notion of chaos given in Definition 2.1 (ii) was defined by Kac [20, Section 3].
Sznitman [35] proved the equivalence of the three formulations above. We also refer to [16,
Theorem 1.2] for more quantitative statements about Kac’s chaos.
The primary goal of this paper is to prove that the law of the chemical reaction system

(2.12) is Kac’s chaotic for all t ≥ 0. We will achieve this goal by proving a quantitative
bound on the normalized relative entropy between the joint distribution of the N -particles
and the tensorized law of the mean field limit; see Theorem 2.2.

2.5. Main result. The process {(XN
t ,Ξ

N
t )}t≥0 defines a Markov process on the state space

ΠN , whose generator LN and adjoint L∗
N will be determined in the next section. Thus, the

joint probability distribution ρN(t) (for t ≥ 0) of the process (XN
t ,Ξ

N
t ), which is a probability

measure on ΠN , satisfies the Fokker-Planck equation

∂tρN = L
∗
NρN , t ∈ (0,∞).

This equation is in fact a linear parabolic system. From the theory of parabolic equations,
ρN admits a smooth (in xN) density w.r.t. the measure mN , provided that the initial data
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ρ(0) admits a nonnegative L1-density; see Section 6, specifically, Proposition 6.1. Abusing
notation, we will use the same symbol ρN (t, ·) to denote its density.
Our main objective is to show, as N → ∞, the joint distribution ρN converges, in some

sense, to the tensorization ρ̄N = ρ̄⊗N of the solution of the mean field limit equation ρ̄. The
mean field limit equation of this stochastic system, which will be formally derived in Section
3, is the following nonlocal reaction-diffusion system







∂tuξ =
σ(ξ)2

2
∆uξ + F−

ξ + F+
ξ ,

F−
ξ = −

∑

R∈R:R−={k,l}

[δξk(ΦR ∗ ul)uk + δξl(ΦR ∗ uk)ul],

F+
ξ =

∑

R∈R
R:(k,l)→(k′,l′)

[δξk′ΦR ∗ ul)uk + δξl′(ΦR ∗ uk)ul],

uξ(0, x) = u0,ξ(x), 1 ≤ ξ ≤ n,

(2.14)

where ρ̄ = (u1, · · · , un), namely, ρ̄(t, x, ξ) = uξ(t, x) for 1 ≤ ξ ≤ n, and δξl denotes the Dirac
delta, and the operator ∆ is the Laplacian in the spatial coordinate x. The initial data
ρ̄0 = (u0,1, u0,2, · · · , u0,n) is a probability density (with respect to m) on Π, namely,

ρ̄0(x, ξ) = u0,ξ(x) ≥ 0 for 1 ≤ ξ ≤ n,

∫

Π

ρ̄0(y)dm(y) =

n∑

ξ=1

∫

X

u0,ξ(x)dx = 1. (2.15)

Alternatively, ρ̄ satisfies the equation
{

∂tρ̄ =
σ(ξ)2

2
∆ρ̄+ T̄ (ρ̄), (t, x, ξ) ∈ (0,∞)× X×S,

ρ̄(0, x, ξ) = ρ̄0(x, ξ),
(2.16)

where T̄ is the (nonlinear) operator

T̄ =
∑

R∈R

T̄R =
∑

R∈R

(T̄−
R + T̄+

R ), (2.17)

and T̄±
R , for a reaction R ∈ R with (k, l)

R−→ (k′, l′), is given by

T̄−
R (ρ̄)(x, ξ) = − [χk(ξ)(ΦR ∗ ρ̄)(x, l)ρ̄(x, k) + χl(ξ)(ΦR ∗ ρ̄)(x, k)ρ̄(x, l)] , (2.18)

T̄+
R (ρ̄)(x, ξ) = χk′(ξ)(ΦR ∗ ρ̄)(x, l)ρ̄(x, k) + χl′(ξ)(ΦR ∗ ρ̄)(x, k)ρ̄(x, l).

This nonlinear parabolic system (2.14) is a regularized version of the local reaction-diffusion
system ((2.14) with the Dirac delta measure λRδ0, λR > 0, in place of ΦR). The system is in
fact globally well-posed for every nonnegative initial data ρ̄0 ∈ L1(Π) from (2.15). Moreover,
these solutions are nonnegative and regular, with the total mass

∫

Π
ρ̄(t, y)dm(y) conserved

in time. Specifically, solutions are regular in the sense that

ρ̄ ∈ C([0,∞);L1(Π)) ∩ C((0,∞);W 2,p(Π)) ∩ C1((0,∞);Lp(Π)), ∀p ∈ [1,∞).

Thus, the solution {ρ̄(t, ·)}t≥0 is a time-dependent probability density on Π. The proof of
these results (well-posedness, regularity) will be presented in the appendix (Section 6).
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Let ρ̄N = ρ̄⊗N be the tensorized law of ρ̄, namely,

ρ̄N (t,yN) =

N∏

i=1

ρ̄(t, yi), yN = (y1, · · · , yN) ∈ ΠN .

Again, our goal is to show that the distribution ρN of (XN
t ,Ξ

N
t ) converges to ρ̄N in some

appropriate sense. To this end, we consider the renormalized relative entropy between ρN , ρ̄N :

WN(t) = HN (ρN‖ρ̄N )(t) :=
1

N

∫

ΠN

ρN(t,yN) log

(
ρN (t,yN)

ρ̄N (t,yN)

)

dmN (yN), (2.19)

(cf. (2.13)). The main result of this work, stated as follows, shows that this quantity vanishes
uniformly on [0, T ] for any T > 0 as N → ∞, provided WN (0) → 0.

Theorem 2.2. Let d ≥ 1, (S,C,R) be a bimolecular chemical reaction network, and X = T
d.

Let σ, {ΦR}R∈R be the diffusion coefficients and reaction kernels from (2.5), (2.6). For N ≥ 2,
let ρN be the law of the process {(XN

t ,Ξ
N
t )} described by (2.9) with ρN (0) ∈ Psym(Π

N). Let
ρ̄N = ρ̄⊗N , where ρ̄ is the unique global solution to the mean field limit equation (2.16) with
initial data ρ̄0 from (2.15) (guaranteed by Proposition 6.1).
If ρ̄0 ∈ L∞(Π), inf(x,ξ)∈Π ρ̄0(x, ξ) > 0, then for every T > 0, there exists a constant ΛT > 0

depending on ρ̄0 such that the following estimate holds with ‖Φ‖L∞ =
∑

R∈R ‖ΦR‖L∞:

HN(ρN‖ρ̄N)(t) ≤
(
etΛT ‖Φ‖L∞ − 1

)

N
+ etΛT ‖Φ‖L∞HN(ρN‖ρ̄N)(0), ∀ t ∈ [0, T ]. (2.20)

As a direct consequence of the main theorem, we have the propagation of chaos property
for the N -particle system (2.9).

Corollary 2.3 (Propagation of chaos). Assume the same settings as Theorem 2.2. If
HN(ρN‖ρ̄N )(0) → 0 as N → ∞, then for each t ∈ [0, T ], ρN(t) is ρ̄(t)-Kac’s chaotic
(c.f. Definition 2.1).

Proof. First, by Lemma 3.3, the probability distribution ρN (t) is symmetric for any t ∈ [0, T ].
Therefore, thanks to the monotonicity [39] of the normalized relative entropy:

Hk(ρk,N‖ρ̄⊗k) ≤ HN(ρN‖ρ̄⊗N), 1 ≤ k ≤ N

and the Csiszár-Kullback-Pinsker inequality [38, Remark 22.12]:

‖f1 − f2‖L1(Π) ≤
√

2H(f1‖f2), ∀fi ∈ P(Π), (2.21)

one obtains by (2.20) and assumption that for any k ≥ 1,

sup
t∈[0,T ]

‖ρk,N(t)− ρ̄⊗k(t)‖L1(Πk) ≤
√

2k · Hk(ρk,N‖ρ̄⊗N)(t) ≤
√

2k · HN (ρN |ρ̄⊗N)(t)

≤ C(T, k)

√

1

N
+HN(ρN‖ρ̄N)(0) → 0 as N → ∞. �
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Remarks. 1. With additional assumptions imposed for the mean field limit ρ̄, one may
in fact extend the main result to the whole space setting X = R

d; for example, the following:
it holds for some T, CT > 0 that:

max
R:(k,l)→(k′,l′)

sup
(t,x)∈[0,T ]×X

{
ρ̄(t, x, k)

ρ̄(t, x, k′)
,
ρ̄(t, x, l)

ρ̄(t, x, l′)

}

≤ CT . (2.22)

Although unnatural, this comparability assumption is critical in establishing the bound (2.20)
(as ΛT depends on CT ). Indeed, in the case of torus X = T

d, the condition (2.22) alone,
which is weaker than the assumption inf(x,ξ)∈Π ρ̄0(x, ξ) > 0 imposed by Theorem 2.2 (as a
consequence of the maximum principle), is sufficient to imply the main result. Of course, to
extend the result to R

d, one may need more assumptions for ρ̄, for instance, some appropriate
regularity and decay at infinity condition for ρ̄, so that Lemma 4.1 holds. We are by no means
to list down these precise assumptions, and we leave it to the interested reader.

2. Since the relative entropy bound (2.20) from Theorem 2.2 has an explicit dependence in
the L∞-norm of reaction kernels, one may use that to obtain the convergence to mean field
limits for local reaction-diffusion equations. That is, we consider the stochastic system (2.9)
with the reaction kernels ΦR scaled according the the number of particles N . More precisely,
given r > 0, let Φr

R ∈ L1(X) be the L1-rescaled of the reaction kernel ΦR, namely,

Φr
R(x) = r−dΦR

(
r−1x

)
.

Let {(XN,r
t ,Ξ

N,r
t )}t≥0 satisfy the system (2.12) with Φr

R in place of ΦR, ρ
r
N (t) be its distri-

bution, and ρ̄r be the solution of (2.16), with Φr
R taking the role of ΦR in (2.18). Then the

bound (2.20) implies

sup
t∈[0,T ]

HN(ρ
r
N‖(ρ̄r)⊗N)(t) ≤ 1

N
er

−dTΛT ‖Φ‖L∞ + er
−dTΛT ‖Φ‖L∞HN (ρ

r
N‖(ρ̄r)⊗N)(0),

provided that the comparability condition (2.22) holds with ρ̄r in place of ρ̄, for some constant
CT independent of r > 0, namely,

sup
r∈[0,1)

max
R:(k,l)→(k′,l′)

sup
(t,x)∈[0,T ]×X

{
ρ̄r(t, x, k)

ρ̄r(t, x, k′)
,
ρ̄r(t, x, l)

ρ̄r(t, x, l′)

}

≤ CT . (2.23)

From this bound, if we choose r = rN , so that

rN ց 0,
1

N
er

−d
N

TΛT ‖Φ‖L∞ → 0, as N → ∞

(specifically, rN ≫ (logN)−1/d), then the propagation of chaos holds for the dynamics

{(XN,rN
t ,Ξ

N,rN
t )}t≥0, assuming HN(ρ

r
N‖(ρ̄r)⊗N)(0) ≤ O(N−1). In particular, if the initial

N particles are sampled independently from the law ρ̄r(0), then ρrN(0) = (ρ̄r)⊗N(0) and
HN(ρ

r
N‖(ρ̄r)⊗N)(0) = 0. In this case, as N → ∞ the empirical measure (1.4) converges to

a solution ρ̄ of the local chemical reaction-diffusion system (2.14) with ΦR = δ0 (the Dirac
delta measure at origin). Of course, all the claims made here are based on the assumptions
of (2.23), and the L1 convergence of ρ̄r → ρ̄ as r ց 0. We leave the justification of these
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assumptions and other details to the interested reader. See also [12] for discussion of this
issue in the context of different particle systems.

3. Infinitesimal Generator of the Process {(XN
t ,Ξ

N
t )}

The main objective of this section is to determine the infinitesimal generator LN of the
process {(XN

t ,Ξ
N
t )}t≥0, and subsequently, its adjoint operator L∗

N with respect to the inner
product 〈·, ·〉 in L2(ΠN). Throughout this section, N ≥ 1 will be fixed. For the sake of
notational simplicity, we will suppress the subscript N for y = yN = (xN , ξN ) = (x, ξ) ∈ ΠN ,
ρ = ρN , and the superscript for X t = XN

t ,Ξt = ΞN
t in the computations involved.

3.1. Generator of the process. The generator of the process (X t,Ξt) has two components,
corresponding to continuous diffusion (in x) and to jumps in the ξ coordinate (discrete change
of type). For ϕ ∈ C2

0(Π
N ) (C2 in x), let ∆N denote the spatial diffusion operator (in x) on

ΠN :

∆N(ϕ)(yN ) :=
1

2

N∑

i=1

σ(ξi)
2∆xi

ϕ(yN). (3.1)

Next, recall Θij
R from (2.10), and define linear operators Sij

N,R,SN,R,SN : C0(Π
N) → C0(Π

N)

(Sij
N,Rϕ)(yN) := χ−

R(ξi, ξj)ΦR(xi − xj)[ϕ(xN ,Θ
ij
RξN)− ϕ(yN)] (3.2)

SN :=
∑

R∈R

SN,R :=
∑

R∈R

[

1

N

N∑

i=1

N∑

j=1,j 6=i

S
ij
N,R

]

.

Proposition 3.1. (XN
t ,Ξ

N
t ) defined by the N-particles system (2.9) is a Markov process on

ΠN with infinitesimal generator LN = ∆N + SN , where ∆N ,SN are from (3.1), (3.2).

Proof. Fix a smooth function ϕ ∈ C2
0 (Π

N) (C2 in x), and consider ϕ(X t,Ξt). Applying Itô’s
formula (see e.g. [22, Chapter 9.3]) to the jump-diffusion equation (2.9) (see also (2.12)), we
have

ϕ(X t,Ξt) = ϕ(X0,Ξ0) +

N∑

i=1

∫ t

0

σ(Ξi
s)

2

2
∆xi

ϕ(Xs,Ξs)ds+Mt

+
N∑

i=1

[
∑

R∈R

∑

j 6=i

∫ t

0

[
ϕ(Xs,Θ

ij
R(Ξs−))− ϕ(Xs−,Ξs−)

]
dẼ

ij
R (s)

]

,

=: ϕ(X0,Ξ0) +Gt +Mt +Ht (3.3)

where Mt =
∑N

i=1

∫ t

0
σ(Ξi

s)∇xi
ϕ(Xs,Ξs) · dBi

s is a martingale with M0 = 0. Now we take
expectation for each term of the identity above. Since ρ is the law of the process (X t,Ξt),
the expectation of the left hand side is given by

Eϕ(X t,Ξt) =

∫

ΠN

ϕ(y)ρ(t, dy) = 〈ϕ, ρ(t)〉.
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The above also holds for the first term from the right hand side of (3.3) (with t = 0). As for
the second term Gt of (3.3), it again follows by the definition of ρ that

EGt =

∫ t

0

∫

ΠN

N∑

i=1

1

2
σ(ξi)

2∆xi
ϕ(y)ρ(s, dy)ds

=

∫ t

0

∫

ΠN

(∆Nϕ)(y)ρ(s, dy)ds =

∫ t

0

〈∆Nϕ, ρ(s)〉ds.

Now consider the expectation of the last term Ht in (3.3), which is given by

Ht =
∑

R∈R

N∑

i,j=1,i 6=j

L
ij
R(t), L

ij
R(t) :=

∫ t

0

[
ϕ(Xs,Θ

ij
R(Ξs−))− ϕ(Xs−,Ξs−)

]
dẼ

ij
R (s).

Consider Lij
R(t) for a fixed 1 ≤ i, j ≤ N with i 6= j and reaction (k, l)

R−→ (k′, l′) from

R. Observe that the integrand ϕ(Xs,Θ
ij
R(Ξs−))− ϕ(Xs,Ξs−) is left-continuous (and hence

predictable), and the integrator {Ẽij
R (s)}s≥0, by (2.9), has compensator

A
ij
R(s) =

1

N

∫ t

0

χ−
R(Ξ

i
s−,Ξ

j
s−)ΦR(X

i
s −Xj

s )ds.

Therefore, the expectation of the process Lij
R(t) equals to that of the integrand ϕ(Xs,Θ

ij
R(Ξs−))−

ϕ(Xs,Ξs−) integrating against the compensator Aij
R(s). That is,

EL
ij
R(t) = E

∫ t

0

[ϕ(Xs,Θ
ij
R(Ξs−))− ϕ(Xs,Ξs−)]dA

ij
R(s)

=
1

N
E

∫ t

0

χ−
R(Ξ

i
s−,Ξ

j
s−)[ϕ(Xs,Θ

ij
R(Ξs−))− ϕ(Xs,Ξs−)]ΦR(X

i
s −Xj

s )ds

=
1

N

∫ t

0

∫

ΠN

χ−
R(ξi, ξj)ΦR(xi − xj)[ϕ(x,Θ

ij
R(ξ))− ϕ(x, ξ)]ρ(s, dy)ds.

Summing up EL
ij
R(t) for R ∈ R, and 1 ≤ i, j ≤ N with i 6= j, we find that EHt from (3.3)

is given by

EHt =
∑

R∈R

N∑

i,j=1,i 6=j

EL
ij
R(t) =

1

N

∑

R∈R

∑

i 6=j

∫ t

0

〈Sij
N,Rϕ, ρ(s)〉ds =

∫ t

0

〈SNϕ, ρ(s)〉ds.

Combining all the computations for the expectation of (3.3), we conclude

〈ϕ, ρ(s)〉
∣
∣
t

s=0
=

∫ t

0

〈LNϕ, ρ(s)〉ds, LN := ∆N + SN , (3.4)

which shows that the generator of {(X t,Ξt)}t≥0 is LN . �
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3.2. The adjoint equation. Now we turn our attention to the adjoint operator of LN . The
main result of this subsection is stated as follow.

Proposition 3.2. The adjoint of generator LN in the L2(ΠN )-sense is given by L
∗
N =

∆N + S∗
N , where

S∗
N(ψ)(yN) =

1

N

∑

R∈R

N∑

i,j=1
i 6=j

ΦR(xi − xj)
[

χ+
R(ξi, ξj)ψ(xN , Θ̃

ij
RξN)− χ−

R(ξi, ξj)ψ(yN)
]

. (3.5)

The law ρN (t) of the process is the unique strong solution to the Fokker-Planck equation with
initial data ρN(0) ∈ L1(ΠN ):

∂tρN = L
∗
N(ρN ), (t,yN) ∈ (0,∞)×ΠN . (3.6)

Moreover, ρN has the following regularity: for any p ∈ [1,∞)

ρN ∈ C([0,∞);L1(ΠN)) ∩ C((0,∞);W 2,p(ΠN )) ∩ C1((0,∞);Lp(ΠN )). (3.7)

If additionally ρN(0) ∈ W 2,∞(ΠN), then ρN ∈ C([0,∞);W 2,p(ΠN)) ∩ C1([0,∞);Lp(ΠN)).

Proof. Observe that ∆N is self-adjoint (w.r.t. inner product 〈·, ·〉 in L2(ΠN)), and thus
∆∗

N = ∆N . We now compute the dual of the operator SN . Recall the definition from
(3.2). To determine the dual of SN , we begin with that of Sij

N,R. Fix a pair of functions

ϕ, ψ ∈ C0(Π
N). Then

〈Sij
N,Rϕ, ψ〉 =

∫

ΠN

χ−
R(ξi, ξj)ΦR(xi − xj)[ϕ(x,Θ

ij
Rξ)− ϕ(y)]ψ(y)dmN(y).

From here, we claim that the following identity holds:
∫

ΠN

χ−
R(ξi, ξj)ΦR(xi − xj)ϕ(x,Θ

ij
Rξ)ψ(y)dm

N(y)

=

∫

ΠN

χ+
R(ξi, ξj)ΦR(xi − xj)ϕ(y)ψ(x, Θ̃

ij
Rξ)dm

N(y),

Indeed, to verify this identity, by permuting the indices it suffices to check it for (i, j) =

(1, 2). Write ξ = (ξ1, ξ2, ξ̂), with ξ̂ = (ξ3, ξ4, · · · , ξN) ∈ S
N−2. Then by the definitions of

χ−
R,Θ

12
R , Θ̃

12
R (see (2.7), (2.10), (2.11)), and recall also R ∈ R is so that (k, l)

R−→ (k′, l′), we
have

∫

ΠN

χ−
R(ξ1, ξ2)ΦR(x1 − x2)ϕ(x,Θ

12
R ξ)ψ(y, ξ)dmN (y)

=
∑

ξ̂∈SN−2

∫

XN

ΦR(x1 − x2)ϕ(x, k
′, l′, ξ̂)ψ(x, k, l, ξ̂)dx

=

∫

ΠN

χ+
R(ξ1, ξ2)ΦR(x1 − x2)ϕ(x, ξ)ψ(x, Θ̃

12
R ξ)dmN(y).
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Using the identity we just established, it follows

〈Sij
N,Rϕ, ψ〉 =

∫

ΠN

ΦR(xi − xj)ϕ(x, ξ)
[

χ+
R(ξi, ξj)ψ(x, Θ̃

ij
Rξ)− χ−

R(ξi, ξj)ψ(y)
]

dmN (y).

Thus,

(Sij
N,R)

∗ψ(y) = ΦR(xi − xj)
[

χ+
R(ξi, ξj)ψ(x, Θ̃

ij
Rξ)− χ−

R(ξi, ξj)ψ(y)
]

.

Summing these operators up for 1 ≤ i, j ≤ N with i 6= j, and R ∈ R yields (3.5).
Existence, uniqueness, and regularity of solutions to (3.6) follows by the standard theory

of parabolic systems. In order not to disrupt the flow of presentation, we postpone this part
of the proof to the appendix (Proposition 6.1). By the theory of Markov processes, the law
ρN(t) of the process satisfies the forward equation (3.6) [11]. �

Despite being straightforward from our construction, for the sake of completeness we give
the proof to the preservation of exchangeability for the dynamics (2.9) before ending this
subsection.

Lemma 3.3. If ρN (0) ∈ Psym(Π
N), then ρN (t) ∈ Psym(Π

N ) for all t > 0. Equivalently, the
particles Y N

t := (XN
t ,Ξ

N
t ) are exchangeable for any t > 0 if the initial particles Y N

0 are
exchangeable.

Proof. Lemma 3.3 is an immediate consequence of Proposition 3.2, the uniqueness of the
PDE (3.6) correspondent to the initial data, and the symmetry of the operator S∗

N from
(3.5). Specifically, for any permutation τ on {1, . . . , N} the operator S∗

N satisfies

τ(S∗
Nψ) = S∗

N(τψ) (3.8)

Here we are using τψ to denote the action of τ on a function ψ : ΠN → R by (τψ)(yN ) =
ψ(τyN ), where τyN denote the state variables with permuted indices:

τyN = τ ((x1, ξ1), · · · , (xN , ξN)) =
(
(xτ(1), ξτ(1)), · · · , (xτ(N), ξτ(N))

)
,

To see why the symmetry property (3.8) holds, observe that

τ(S∗
Nψ)(y) = S∗

N(ψ)(τy)

=
1

N

∑

R∈R

N∑

i,j=1
i 6=j

ΦR(xτ(i) − xτ(j))
[

χ+
R(ξτ(i), ξτ(j))ψ(τx, Θ̃

ij
Rτξ)− χ−

R(ξτ(i), ξτ(j))ψ(τy)
]

, (3.9)

where here we suppress the subscript N for y,x, ξ. Recalling the definition (2.11), it is easy
to see that for any pair of indices (i, j) with i 6= j, and if (m, ℓ) = (τ−1(i), τ−1(j)), then

Θ̃ij
Rτξ = τΘ̃m,ℓ

R ξ.

Consequently, (3.9) is equivalent to

τ(S∗
Nψ)(y) =

1

N

∑

R∈R

N∑

m,ℓ=1
m6=ℓ

ΦR(xm − xℓ)
[

χ+
R(ξm, ξℓ)ψ(τx, τΘ̃

mℓ
R ξ)− χ−

R(ξm, ξℓ)ψ(τy)
]
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= S∗
N(τψ)(y). �

3.3. Formal derivation of the mean field limit. We now formally derive the mean field
limit equation (2.16) using the result established earlier; a rigorous justification of the mean
field limit is carried out in the next section.
If µN(t) ∈ P(Π) is the empirical measure (1.4) and φ ∈ C∞

C (Π) is any test function, then
we claim that

E〈φ, µN(s)〉
∣
∣
∣

t

s=0
= E

[∫ t

0

(
1

2
〈σ(ξ)2∆φ, µN〉+ 〈φ, T̄µN〉

)

(s)ds

]

+O(N−1), (3.10)

where for the rest of this section 〈·, ·〉 denotes the bilinear form on C0(Π)×M(Π) (i.e. (2.4)
with N = 1). Recall that the nonlinear operator T̄ is defined at (2.17). Therefore, if µN(t) →
ρ̄(t)dm in the appropriate sense as N → ∞, where ρ̄(t) ∈ C(Π) is some smooth deterministic
function, then formally passing to the limit in (3.10) we obtain the weak formulation of
(2.16):

〈φ, ρ̄(s)〉
∣
∣
∣

t

s=0
=

∫ t

0

[
1

2
〈σ(ξ)2∆φ, ρ̄(s)〉+ 〈φ, T̄ ρ̄(s)〉

]

ds for all φ ∈ C∞
C (Π).

The relation (3.10) may be derived as follows. From (3.4) we know that for any test
function ϕ ∈ C2

0 (Π
N),

Eϕ(Xs,Ξs)
∣
∣
∣

t

s=0
=

∫ t

0

ELNϕ(Xs,Ξs)ds =

∫ t

0

E(∆N + SN)ϕ(Xs,Ξs)ds.

In particular, if we choose ϕ of the form ϕ(x, ξ) = N−1
∑N

i=1 φ(xi, ξi) with φ ∈ C∞
C (Π), then

the left side reads

Eϕ(Xs,Ξs)
∣
∣
∣

t

s=0
= E

∫

Π

φ(x, ξ)µN(s, dx, dξ)
∣
∣
∣

t

s=0
= E〈φ, µN(s)〉

∣
∣
∣

t

s=0
. (3.11)

Moreover,

E∆Nϕ(Xs,Ξs) =
1

2
E

[

1

N

N∑

i=1

σ(Ξi
s)

2∆xi
φ(X i

s,Ξ
i
s)

]

= E

[∫

Π

1

2
σ(ξ)2∆xφ(x)µN(s, dx, dξ)

]

=
1

2
E〈σ(ξ)2∆φ, µN(s)〉. (3.12)

Consider E[SNϕ(Xs,Ξs)]. Recall the definition of SN =
∑

R∈R SN,R from (3.2), so consider

E[(SN,Rϕ)(Xs,Ξs)] for a fixed R : (k, l) → (k′, l′) from R. By the definition of Θij
R,

E[(SN,Rϕ)(Xs,Ξs)]

= E

[

1

N

N∑

i=1

N∑

j 6=i

χ−
R(Ξ

i
s,Ξ

j
s)ΦR(X

i
s −Xj

s )[ϕ(X
N
s ,Θ

ij
R(Ξ

N
s ))− ϕ(XN

s ,Ξ
N
s )]

]

= E

[

1

N2

N∑

i,j=1,i 6=j

χ−
R(Ξ

i
s,Ξ

j
s)ΦR(X

i
s −Xj

s )[φ(X
i
s, k

′)− φ(X i
s,Ξ

i
s) + φ(Xj

s , l
′)− φ(Xj

s ,Ξ
j
s)]

]
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= E[IR1 − IR2 + IR3 − IR4 ]. (3.13)

Consider I1 = IR1 . Let us include the diagonal terms (i = j), which is at most CN−1, with
constant C depending on ‖ΦR‖L∞ , φ, into the double summation I1. Noting also by definition
that χ−

R(ξi, ξj) = χk(ξi) · χl(ξj), one then has

I1 +O(N−1) =
1

N2

N∑

i,j=1

χ−
R(Ξ

i
s,Ξ

j
s)ΦR(X

i
s −Xj

s )φ(X
i
s, k

′)

=
1

N2

n∑

ξ=1

N∑

i,j=1

χk′(ξ)χk(Ξ
i
s)χl(Ξ

j
s)ΦR(X

i
s −Xj

s )φ(X
i
s, ξ)

=
1

N

n∑

ξ=1

N∑

i=1

χk′(ξ)χk(Ξ
i
s)φ(X

i
s, ξ)(ΦR ∗ µN)(s,X

i
s, l)

=

n∑

ξ=1

∫

X

χk′(ξ)φ(x, ξ)(ΦR ∗ µN)(s, x, l)dµN(s, dx, k)

=

∫

(x,ξ)∈Π

χk′(ξ)φ(x, ξ)(ΦR ∗ µN)(s, x, l)µN(s, dx, k)d#(ξ),

(# denotes the counting measure on S) where in obtaining the second and third equality
above we used the fact that

φ(x, k′) =

n∑

ξ=1

χk′(ξ)φ(x, ξ),

N∑

j=1

χl(Ξ
j
s)ΦR(X

i
s −Xj

s ) = (ΦR ∗ µN)(s,X
i
s, l).

In the same manner, one can derive similar expressions for the remaining three terms in
(3.13), specifically for I3 we have

I3 +O(N−1) =

∫

(x,ξ)∈Π

χl′(ξ)φ(x, ξ)(ΦR ∗ µN)(s, x, k)µN(s, dx, l)d#(ξ).

Note that to derive the expression above for I3 we also used the symmetry of the kernel ΦR

defined in (2.6), without which the convolution above would have been replaced by Φ−
R ∗ µN

where Φ−
R(·) = ΦR(−·). We make this symmetry assumption to simplify expressions of the

mean field limit (2.14). Summing up I1, I3, and using the notation T̄+
R from (2.18), we have

I1 + I3 = O(N−1) +

∫

Π

φ(x, ξ)T̄+
R µN(dx, dξ) = O(N−1) + 〈φ, T̄+

R µN〉.

Here, T̄±
R from (2.18), initially defined on C0(Π) → C0(Π), can be extended naturally to a

map from the space of signed measures on Π to itself (as ΦR is bounded integrable). The
same computation for I2, I4 gives

−(I2 + I4) = O(N−1) + 〈φ, T̄−
R µN〉,
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and hence by the definition T̄R = T̄−
R + T̄+

R (see (2.17))

(I1 + I3)− (I2 + I4) = O(N−1) + 〈φ, TRµN〉.
Summing up R ∈ R in (3.13) and recalling T̄ from (2.17), we arrive at

E [(SNϕ)(Xs,Ξs)] =
∑

R∈R

E[IR1 − IR2 + IR3 − IR4 ]

= O(N−1) + E

[
∑

R∈R

〈φ, T̄RµN〉
]

= O(N−1) + E
[
〈φ, T̄µN〉

]
.

Combining this with (3.11), (3.12), we have shown (3.10). This concludes the formal deriva-
tion of the mean field limit equation.

4. Proof of the Main Result (Theorem 2.2)

To prove Theorem 2.2, we will compare the joint distribution of N particles with the
tensorized law ρ̄N := ρ̄⊗N of the mean field limit in terms of their relative entropy. Recall that
the joint distribution ρN (t) of the process {(X i

t ,Ξ
i
t)i=1,··· ,N}t≥0, by Proposition 3.2, satisfies

the Fokker-Planck equation (3.6). Before we estimate the relative entropy, let us first identify
the PDE satisfied by the tensorized law ρ̄N . Recall that the mean field limit ρ̄ satisfies the
system (2.16) with initial data (2.15) (see Proposition 6.1 for the existence and uniqueness
result). The tensorized law

ρ̄N(t,yN) =
N∏

i=1

ρ̄(t, yi), yN = (y1, · · · , yN) = ((x1, ξ1), · · · , (xN , ξN)) ∈ ΠN ,

then solves the PDE system

∂tρ̄N = ∆N ρ̄N + T̄N ρ̄N , (t,yN ) ∈ (0,∞)× ΠN , (4.1)

where ∆N is the diffusion operator from (3.1), and T̄N is as follows, with T̄ from (2.17):

(T̄N ρ̄N)(yN) :=
N∑

i=1

[

T̄ (ρ̄)(yi)
N∏

j=1,j 6=i

ρ̄(yj)

]

. (4.2)

Recall the normalized relative entropy of ρN with respect to ρ̄N :

WN(t) = HN (ρN‖ρ̄N )(t) :=
1

N

∫

ΠN

ρN(t) log

(
ρN(t)

ρ̄N(t)

)

dmN .

Our main objective is to establish a differential inequality for this quantity, then invoke
Grönwall lemma to obtain an estimate in terms of N and WN (0). Taking the time derivative
of WN(t) and using equations (3.6), (4.1), we have for all t > 0 that

W ′
N(t) =

1

N

∫

ΠN

[

∂tρN log

(
ρN

ρ̄N

)

+ ρN

(
∂tρN

ρN
− ∂tρ̄N

ρ̄N

)]

dmN = D(t) +G(t), (4.3)
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where

D(t) =
1

N

∫

ΠN

[

L
∗
N(ρN) log

ρN

ρ̄N
+ ρN

(
L

∗
N(ρN )

ρN
− L

∗
N(ρ̄N )

ρ̄N

)]

dmN , (4.4)

G(t) =
1

N

∫

ΠN

ρN
(T̄N − S∗

N)(ρ̄N)

ρ̄N
dmN .

All functions ρN , ρ̄N involved above are evaluated at time t > 0. The calculations above can
be rigorously justified since the solutions have sufficient regularity, namely, for any p ∈ [1,∞),

ρN , ρ̄N ∈ C([0,∞);L1(ΠN )) ∩ C((0,∞);W 2,p(ΠN)) ∩ C1((0,∞);Lp(ΠN)),

and ρN , ρ̄N > 0 are bounded away from zero when t > 0. (See Propositions 3.2, 6.1 and 6.3.)
We proceed with estimating the quantities D(t) and G(t).

4.1. Estimating D(t), Dissipation of Relative Entropy. D(t) is in fact nonpositive, due
to the diffusive nature of the operator L∗

N . Specifically, it is due to the following lemma.

Lemma 4.1. Let ρN , ρ̄N be given in Theorem 2.2, with H(ρN‖ρ̄N )(0) <∞. Then the integral
(4.4) is finite and nonpositive for all t > 0.

Proof of Lemma 4.1. The strict positivity condition for ρ̄0 in the main theorem is not essential
in the proof, and we will prove the lemma with the weaker assumption of ρ̄0 being propagated
in the sense defined before Proposition 6.3. We will first show the following integral is finite
and nonpositive, for any appropriate pair of densities ρ, ρ̃ ∈ L1(ΠN):

∫

ΠN

[

L
∗
N(ρ) log

(
ρ

ρ̃

)

+ ρ

(
L

∗
N (ρ)

ρ
− L

∗
N(ρ̃)

ρ̃

)]

dmN ≤ 0. (4.5)

Let {ut, ũt}t≥0 be the solutions of (3.6), with initial data u0 = ρ, ũ0 = ρ̃, namely,

∂tut = L∗(ut), u0 = ρ, ∂tũt = L∗(ũt), ũ0 = ρ̃. (4.6)

The proof of (4.5) then breaks into two parts: first, we show that the relative entropy between
two solutions W (t) = H(ut‖ũt) is non-increasing w.r.t. the time variable t ≥ 0, then show
that the integral in (4.5) is the derivative of W (t) evaluating at t = 0, and thus must be
non-positive. The precise condition for ρ, ρ̃ will be given later.
We start with verifying the claim that W (t) is non-increasing, for any initial data ρ, ρ̃ ∈

L1(ΠN ) with W (0) = H(ρ‖ρ̃) < ∞. In fact, this monotonicity property of relative entropy,
often referred to as the data processing inequality [40], is well-known in physics and informa-
tion theory community, and we will provide a short proof to it. Let (X , µ) be a measure space
and consider two probability densities p(x, y), p̃(x, y) ∈ L1(X 2, µ⊗2). Denote by p(y|x), p̃(y|x)
their conditional densities, and by p(x), p̃(x) the x-marginals. With a slight abuse of notation,
we denote the averaged conditional relative entropy between p(y|x) and p̃(y|x) by

H(p(y|x)‖p̃(y|x)) =
∫

X

p(x)

∫

X

p(y|x) log p(y|x)
p̃(y|x)dµ(y)dµ(x).

By the chain rule [9, Theorem C.3.1] of the relative entropy, we have

H(p(x, y)‖p̃(x, y)) = H(p(x)‖p̃(x)) +H(p(y|x)‖p̃(y|x)).
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Now return to the solutions {ut, ũt}t≥0 defined earlier, at (4.6). Recall from Proposition
3.1 that they are probability densities of the Markov process {Y t = (X t,Ξt)}t≥0 defined by
(2.9), with initial distribution ρ, ρ̃ respectively. Given t, s ≥ 0, let ut,s, ũt,s denote the joint
probability density of (Y t,Y s). Similarly, let ut|s, ũt|s be the conditioned densities of Y t

given Y s. By the chain rule, for any t, h ≥ 0,

H(ut‖ũt) +H(ut+h|t‖ũt+h|t) = H(ut,t+h‖ũt,t+h) = H(ut+h‖ũt+h) +H(ut|t+h‖ũt|t+h).

Since u, ũ are defined by the same Markov process (with the same transition kernel), their
condition densities coincide, i.e. ut+h|t = ũt+h|t. As a result, the second term of the left hand
side vanishes. By the non-negativity of relative entropy, it follows from the last equation that

W (t+ h) = H(ut+h‖ũt+h) ≤ H(ut‖ũt) = W (t).

Therefore, t 7→W (t) is nonincreasing.
We next proceed with verifying that the integral (4.5) is given by W ′(0). Indeed, formally

differentiating W (t) respect to t and using (4.6) and nonincreasing of W (t) yield

W ′(0) =
d

dt

∣
∣
∣
t=0

∫

ΠN

ut log

(
ut

ũt

)

dmN

=

∫

ΠN

[

L
∗
N (ρ) log

(
ρ

ρ̃

)

+ ρ

(
L

∗
N(ρ)

ρ
− L

∗
N(ρ̃)

ρ̃

)]

dmN ≤ 0.

In conclusion, if ρ, ρ̃ ∈ L1(ΠN ) are so that t 7→ W (t) = H(ut‖ũt) is (right-hand) differentiable
at t = 0, then (4.5) holds.
Now let us apply (4.5) to conclude Lemma 4.1. Fix t0 > 0 and consider the integral D(t0)

from (4.4). Using (4.5) with ρN(t0), ρ̄N(t0) taking the roles of ρ, ρ̃, we then have D(t0) ≤ 0,
provided that the correspondent W (t) is differentiable at t = 0. So it remains to check this
differentiability condition.
First, from the definition, ũt is the solution of (3.6) with initial data ũ0 = ρ̄N (t0) = ρ̄⊗N(t0),

where ρ̄ is the solution of (2.16). By Propositions 6.1 and 6.3 (and under the assumptions
of Theorem 2.2), we know that ρ̄(t0) ∈ W 2,p(Π) for all p ∈ [1,∞), infΠ ρ̄(t0) > 0, and hence
ρ̄N(t0) ∈ W 2,p(ΠN), infΠN ρ̄N (t0) > 0. Thus, by Propositions 6.1 and 6.3 again, we have for
any p ∈ [1,∞) and δ > 0 that

ũt ∈ C1([0,∞);Lp(ΠN)), inf
(t,y)∈[0,δ]×ΠN

ũt(y) > 0.

Next, since ut is the solution of (3.6) with u0 = ρN(t0), we have then ut = ρN (t0+ t). By the
regularity of solutions (Proposition 6.1), we have ut ∈ C1([0,∞);Lp(ΠN)) for any p ∈ [1,∞).
Moreover, by Proposition 6.3, the function ut has the following property: for any ξ ∈ S

N

either ut(x, ξ) ≡ 0 ∀(t,x) ∈ [0,∞)× X
N , or inf

(t,x)∈[0,δ]×XN
ut(x, ξ) > 0 ∀δ > 0.

Let A ⊂ S
N be the set of all ξ so that the latter of the above holds. Then

W (t) =

∫

ΠN

χA(ξ)ut(log ut − log ũt)dm
N .
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Since ut, ũt ∈ C1([0,∞);Lp(ΠN)) are uniformly bounded above, and below from 0 over a
time interval [0, δ] × X

N on the set A, this follows χA log(ut

ũt
) ∈ C1([0, δ);Lp(ΠN)) for any

p ∈ [1,∞). This implies W (t) is differentiable at t = 0, which finishes the proof of Lemma
4.1. �

4.2. Estimating G(t). Next consider G(t) from (4.3). In the coming computation, we
suppress the time variable t for ρN , ρ̄N , and the subscript N for yN ,xN , ξN , T̄N ,S

∗
N and

so on, since N will be fixed. To further ease our notation, we also introduce functions
(u1, · · · , un) = ρ̄, that is,

uξ(t, x) = ρ̄(t, x, ξ) for ξ ∈ S.

Recall that these functions satisfy the mean field limit equation (2.16). Recall also the
quantity G(t) is the expectation, against ρN , of the function ρ̄

−1
N (T −S∗)ρ̄N . We begin with

considering ρ̄−1
N T̄ ρ̄N . By the definitions of T̄ , T̄ from (4.2), (2.17), we have

T̄ ρ̄N

ρ̄N
(y) =

N∑

i=1

(T̄ ρ̄)(xi, ξi)

ρ̄(xi, ξi)

=
∑

R:(k,l)→(k′,l′)

N∑

i=1

χk′(ξi)(ΦR ∗ ul)(xi)uk(xi) + χl′(ξi)(ΦR ∗ uk)(xi)ul(xi)
ρ̄(xi, ξi)

−
∑

R:(k,l)→(k′,l′)

N∑

i=1

[χk(ξi)(ΦR ∗ ul)(xi) + χl(ξi)(ΦR ∗ uk)(xi)]

=
∑

R∈R

N∑

i=1

[AR
t (yi) + ÂR

t (yi)], (4.7)

where, for a given reaction (k, l)
R−→ (k′, l′) from R,

AR
t (y) :=

χl′(ξ)(ΦR ∗ uk)(x)ul(x)
ρ̄(x, ξ)

− χl(ξ)(ΦR ∗ uk)(x), (4.8)

ÂR
t (y) :=

χk′(ξ)(ΦR ∗ ul)(x)uk(x)
ρ̄(x, ξ)

− χk(ξ)(ΦR ∗ ul)(x).

We can symmetrize (4.7) by introducing an extra summation over j = 1, · · · , N , so that

T̄ (ρ̄N )

ρ̄N
(y) =

∑

R∈R

N∑

i=1

[AR
t (yi) + ÂR

t (yi)] =
1

N

∑

R∈R

N∑

i,j=1

[

AR
t (yj) + ÂR

t (yi)
]

. (4.9)

On the other hand, by the definition of S∗
N from (3.5) and the tensorized law ρ̄N ,

S∗(ρ̄N )

ρ̄N
(y) =

1

N

∑

R∈R

N∑

i,j=1,i 6=j

ΦR(xi − xj)

[

χ+
R(ξi, ξj)

ρ̄(xi, k)ρ̄(xj , l)

ρ̄(xi, ξi)ρ̄(xj , ξj)
− χ−

R(ξi, ξj)

]
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=
1

N

∑

R∈R

N∑

i,j=1,i 6=j

BR
t (yi, yj), (4.10)

where

BR
t (y, y

′) := ΦR(x− x′)

[

χ+
R(ξ, ξ

′)
uk(x)ul(x

′)

ρ̄(x, ξ)ρ̄(x′, ξ′)
− χ−

R(ξ, ξ
′)

]

. (4.11)

Now define

FR
t (yi, yj) := AR

t (yj) + ÂR
t (yi)− BR

t (yi, yj), ft(yi, yj) :=
∑

R∈R

FR
t (yi, yj). (4.12)

By (4.9), (4.10), we have

(T̄ − S∗)(ρ̄N)

ρ̄N
(y) =

1

N

N∑

i,j=1,i 6=j

ft(yi, yj) +
1

N

∑

R∈R

N∑

i=1

[

AR
t (yi) + ÂR

t (yi)
]

.

and so the quantity G(t) is given by

G(t) =
1

N

∫

ΠN

ρN
(T̄ − S∗)(ρ̄N )

ρ̄N
dmN

=
1

N2

N∑

i,j=1,i 6=j

∫

ΠN

ρNft(yi, yj)dm
N +

1

N2

N∑

R∈R,i=1

∫

ΠN

ρN

[

AR
t (yi) + ÂR

t (yi)
]

dmN

=: G1(t) +G2(t).

Introduce the quantity

Kt :=
∑

R∈R

{

sup
y∈Π

[

|AR
t (y)|+ |ÂR

t (y)|
]

+ sup
(y,y′)∈Π2

|BR
t (y, y

′)|
}

. (4.13)

Then the diagonal term G2(t) is simply bounded by

G2(t) =
1

N2

∑

R∈R

N∑

i=1

∫

ΠN

ρN (y)
[

At(yi) + Ât(yi)
]

dmN (y) ≤ Kt

N
.

As for G1(t), to set up a differential inequality for Grönwall lemma, we need the following
inequality which essentially follows from the variational characterization for relative entropy.

Lemma 4.2 ( [19, Lemma 1]). Let N ≥ 1 and ρ, ρ̄ be two probability measures on the space
ΠN . For every η > 0 and Ψ ∈ L∞(ΠN), it holds

∫

ΠN

Ψdρ ≤ η

[

HN (ρ‖ρ̄) +
1

N
log

∫

ΠN

eη
−1NΨdρ̄

]

.
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Applying this lemma to G1(t), with Ψ = N−2
∑N

i,j=1,i 6=j ft(yi, yj), ρN (t), ρ̄N(t) in place of

ρ, ρ̄, and with some η > 0 (depending on ft, c.f. (4.12)) to be determined later, we have

G1(t) ≤ ηWN(t) +
η

N
log

∫

ΠN

ρ̄N exp

(

1

ηN

N∑

i,j=1

ft(yi, yj)

)

dmN . (4.14)

To this end, we need an estimate of the exponential moment on the right hand side. This
can be achieved by using the following large deviation inequality.

Lemma 4.3. Let (Π, ρ̄) be a probability space, {Y1, Y2, · · · } be a sequence of i.i.d. Π-valued
random variables with common distribution ρ̄, and f ∈ L∞(Π2, ρ̄⊗2) be a bounded measurable
function satisfying the following marginal mean zero conditions:

E[f(Y1, Y2)|Y1] = 0, E[f(Y1, Y2)|Y2] = 0. (4.15)

Then there exists a constant η = η(f) > 0 such that

sup
N≥2

E

[

exp

(

1

ηN

N∑

i,j=1,i 6=j

f(Yi, Yj)

)]

≤ 2. (4.16)

Specifically, η(f) can be chosen to be 2
√
2e‖f‖L∞(Π2,ρ̄⊗2).

As mentioned earlier, Lemma 4.3 was first proved by Jabin and Wang [19] (see Theorem
4 therein), and we will provide a shorter proof in the coming section, after completing the
proof of the main result. To finish the estimation, we apply this lemma to the second integral
of (4.14). Prior to that, we first verify the marginal mean zero condition (4.15), required by
the lemma, for the function ft(y, y

′).

Lemma 4.4. The function ft(y, y
′) defined in (4.12) satisfies the marginal mean zero condi-

tions (4.15):
∫

Π

ft(y, y
′)ρ̄(t, y)dm(y) = 0 =

∫

Π

ft(y, y
′)ρ̄(t, y′)dm(y′).

Proof. Recall from the definition (4.12) that ft(y, y
′) =

∑

R∈R F
R
t (y, y′), where FR

t (y, y′) =

AR
t (y

′) + ÂR
t (y) − BR

t (y, y
′), with AR

t , Â
R
t , B

R
t from (4.8), (4.11). The lemma is a direct

consequence of the following four identities:
∫

Π

AR
t (y)ρ̄(y)dm(y) = 0 =

∫

Π

ÂR
t (y)ρ̄(y)dm(y),

∫

Π

BR
t (y, y

′)ρ̄(y)dm(y) = AR
t (y

′),

∫

Π

BR
t (y, y

′)ρ̄(y′)dm(y′) = ÂR
t (y).

Let us begin with the first one. By (4.8),
∫

Π

AR
t (y)ρ̄(y)dm(y) =

n∑

ξ=1

∫

X

{χl′(ξ)(ΦR ∗ uk)(x)ul(x)− χl(ξ)ρ̄(x, ξ)(ΦR ∗ uk)(x)} dx
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=

∫

X

[(ΦR ∗ uk)(x)ul(x)− (ΦR ∗ uk)(x)ul(x)]dx = 0.

This establishes the first identity. Swapping the role of k and l, and replacing l′ by k′ in
the computation above yields the second one. Now consider the third identity. Again by the
definition of BR

t (see (4.11)), we have
∫

Π

BR
t (y, y

′)ρ̄(t, y)dm(y)

=

∫

Π

ΦR(x− x′)

[

χ+
R(ξ, ξ

′)
uk(x)ul(x

′)

ρ̄(y)ρ̄(y′)
− χ−

R(ξ, ξ
′)

]

ρ̄(y)dm(y)

=
ul(x

′)

ρ̄(y′)

n∑

ξ=1

∫

X

χ+
R(ξ, ξ

′)ΦR(x− x′)uk(x)dx−
n∑

ξ=1

∫

X

χ−
R(ξ, ξ

′)ΦR(x− x′)ρ̄(x, ξ)dx

=
ul(x

′)

ρ̄(y′)
χl′(ξ

′)(ΦR ∗ uk)(x′)− χl(ξ
′)(ΦR ∗ ρ̄)(x′, ξ) = AR

t (y
′).

The last step is due to
∑n

ξ=1 χ
+
R(ξ, ξ

′) = χl′(ξ
′),
∑n

ξ=1 χ
−
R(ξ, ξ

′) = χl(ξ
′) (see (2.7)). Again,

swapping the role of k, l gives the fourth identity.
From these calculations, it follows that

∫

Π

ft(y, y
′)ρ̄(t, y)dm(y) =

∑

R∈R

∫

Π

(

AR
t (y

′) + ÂR
t (y)−BR

t (y, y
′)
)

ρ̄(t, y)dm(y)

=
∑

R∈R

AR
t (y

′) + 0− AR
t (y

′) = 0,

and similarly for
∫

Π
ft(y, y

′)ρ̄(t, y′)dm(y′) = 0. �

Applying Lemma 4.3 to the integral from (4.14) with ρ̄(t), ft in place of ρ̄, f , and recall
the quantity (4.13), it follows

G1(t) ≤ ηWN(t) +
η log 2

N
, η := 2

√
2e‖ft‖L∞(Π2,ρ̄⊗2) ≤ 2

√
2eKt.

4.3. Conclusion. Substituting D ≤ 0 and the estimates for G1, G2 into (4.3), we have

W ′
N(t) ≤ CKt

(

WN (t) +
1

N

)

, (4.17)

for some universal constant C > 0 and Kt from (4.13). Let us now get a bound for Kt,
assuming ρ̄ satisfies the comparability condition (2.22). Note that if X = T

d, then the solution
ρ̄(t) of the system (2.16) is locally bounded and strictly positive, because of the assumption
of Theorem 2.2 ρ̄0 ∈ L∞(Π), infy∈Π ρ̄(0, y) > 0 (see Propositions 6.1, 6.3). Therefore, for
every T > 0, the condition (2.22) holds for some constant CT > 0 depending on ρ̄0. By (4.8),
(4.11), and Young’s inequality, it follows

sup
y∈Π,t∈[0,T ]

{

|AR
t (y)|, |ÂR

t (y)|
}

≤ ‖ΦR‖L∞ (CT + 1) ,
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sup
(y,y′)∈Π2,t∈[0,T ]

|BR
t (y, y

′)| ≤ ‖ΦR‖L∞

(
C2

T + 1
)
.

Hence, we have

sup
t∈[0,T ]

Kt ≤
(
C2

T + 2CT + 3
)∑

R∈R

‖ΦR‖L∞ =: C̃T‖Φ‖L∞ ,

where recall that ‖Φ‖L∞ =
∑

R∈R ‖ΦR‖L∞ <∞, which is bounded (as R is a finite set). Now
applying Grönwall lemma to (4.17), we establish the bound

WN(t) ≤ eCtC̃T ‖Φ‖L∞WN(0) +
eCtC̃T ‖Φ‖L∞ − 1

N
, ∀ t ∈ [0, T ].

The desired estimate from (2.20) follows, if we set ΛT = CC̃T . This finishes the proof of the
main theorem.

5. The Large Deviation Inequality (Proof of Lemma 4.3)

The main objective of this section is to prove the large deviation inequality (4.16) from
Lemma 4.3. Before proceeding to its proof, let us first make a few comments about the result.
In Lemma 4.3 we do not require that f is continuous. In fact, if f is bounded and continuous
on Π2, then the classical large deviation principle of empirical measures (see e.g. [4]) would
imply that

lim sup
N→∞

eNm · E
[

exp

(

1

ηN

N∑

i,j=1,i 6=j

f(Yi, Yj)

)]

<∞,

where the constant m is characterized by

m = inf
µ∈P(Π)

{

H(µ‖ρ̄)−
∫∫

f(x, y)

η
µ(dx)dµ(dy)

}

= inf
µ∈P(Π)

{

H(µ‖ρ̄)−
∫∫

f(x, y)

η
(dµ(x)− dρ̄(x))(dµ(y)− dρ̄(y))

}

.

The last line above follows from the mean zero condition (4.15). From above one obtains
that m = 0 if η is chosen large enough, which proves

lim
N→∞

1

N
logE

[

exp

(

1

ηN

N∑

i,j=1,i 6=j

f(Yi, Yj)

)]

= 0.

Despite being a weaker estimate compared to (4.16), this qualitative result alone is sufficient
to conclude the propagation of chaos of the particle system (at least for the case of reaction
kernels ΦR being continuous), except without an explicit bound. The quantitative estimate
(4.16) was proved by Jabin and Wang [19] under the assumption that f satisfies

C sup
p≥1

(‖ supz |f(·, z)|‖Lp(ρ̄dx)

p

)2

< 1
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for some constant C > 0, which is a weaker assumption than ‖f‖L∞ < ∞. Their proof
relies on some sophisticated combinatorial analysis by taking account of cancellations due to
the mean zero condition (4.15). We provide a simple probabilistic alternative. Our proof to
Lemma 4.3 relies on a characterization of the exponential moment, given as follows:

Lemma 5.1. Let Z be a random variable satisfying the bound for some γ > 0:

sup
k∈N

k−1|EZk|1/k ≤ γ.

Then it holds

E[e(2eγ)
−1Z ] ≤ 2.

Proof. Let η = 2eγ. Expanding eη
−1Z by Taylor series, and using the assumption,

E

[

eη
−1Z
]

=

∞∑

k=0

1

ηkk!
E
[
Zk
]
≤

∞∑

k=0

γkkk

ηkk!
≤

∞∑

k=0

(
eγ

η

)k

=

∞∑

k=0

2−k = 2.

The only inequality above follows by the simple inequality kk(k!)−1 ≤ ek, which follows from
the Stirling’s approximation. �

In the proof of (4.16) we use a Marcinkiewicz-Zygmund type inequality for martingales,
which, roughly speaking, bounds the Lp-norm of a martingale by the root sums squared of
the Lp-norm of its martingale increments. Specifically, we will use the following sharp version
of inequality (5.1), due to Rio [32]. When p = 2, (5.1) holds as an equality, which is due to
the Itô isometry for discrete martingales. Also, the constant p− 1 on the right hand side of
(5.1) is known to be sharp. We point out also the sharpness of this estimate, specifically the
growth rate as p→ ∞, plays a critical role in our argument.

Lemma 5.2 ( [32, Theorem 2.1]). Let p ≥ 2, and {Xk}k≥1 be a sequence of Lp-martingale
differences with respect to a filtration {Fk}k≥0. That is, for each k ≥ 1, Xk is Fk-measurable,
Xk ∈ Lp, and E[Xk|Fk−1] = 0. Let Sn =

∑n
k=1Xk (which is a martingale). Then for all

n ≥ 1 we have

‖Sn‖2Lp ≤ (p− 1)
n∑

k=1

‖Xk‖2Lp. (5.1)

Now we are ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let {Yj}j∈N be a sequence of Π-valued i.i.d. random variables, and
f ∈ L∞(Π2, ρ̄⊗2) as in the lemma. For N ≥ 2, denote the random variables

AN(f) :=
1

N

N∑

i,j=1,i 6=j

f(Yi, Yj), MN := NAN (f) =

N∑

i,j=1,i 6=j

f(Yi, Yj).

By Lemma 5.1, the statement (4.16) follows if we show the following uniform-in-N bound is
valid:

sup
k∈N

k−1|EAN (f)
k|1/k ≤

√
2‖f‖L∞(Π;ρ̄⊗2). (5.2)
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We first write MN as the sum of martingale differences. Indeed, we have

MN =
N∑

k=1

Dk, where Dk =
k−1∑

i=1

f(Yi, Yk) +
k−1∑

j=1

f(Yk, Yj),

(D1 is set to be zero). Observe here that {Dk}k=1,··· ,N forms a Lp martingale difference w.r.t.
the filtration {Fk = σ(Y1, · · · , Yk)}k≥0 (F0 is set to be the trivial σ-algebra) for any p ∈ [1,∞)
(and hence {Mk}1≤k≤N is an Lp-martingale). Indeed, each Dk ∈ Lp because f is bounded.
Moreover, the marginal mean zero condition (4.15) implies

E[Dk|Fk−1] =

k−1∑

i=1

E[f(Yi, Yk) + f(Yk, Yi)|Y1, · · · , Yk−1] = 0.

Using Lemma 5.2 (with N,MN , Dk in place of n, Sn, Xk), we establish the following bound
for all p ≥ 2:

‖MN‖Lp ≤
√

p− 1

(
N∑

k=1

‖Dk‖2Lp

)1/2

. (5.3)

Now consider ‖Dk‖Lp for each 1 ≤ k ≤ N . We again write Dk as a sum of martingale
difference, namely,

Dk =
k−1∑

j=1

Bk
j , where Bk

j = f(Yk, Yj) + f(Yj, Yk) for 1 ≤ j ≤ k − 1,

Note that ‖Bk
j ‖Lp ≤ 2‖f‖L∞(Π2,ρ̄⊗2) for each k, j, and {Bk

j }1≤j≤k−1 again forms a sequence

of martingale differences w.r.t. the filtration {F̃j}0≤j≤k−1, where Fj = σ(Yk, Y1, · · · , Yj).
Specifically, E[Bk

j |F̃j−1] = 0 follows directly from the marginal mean zero condition (4.15).

So we may again apply Lemma 5.2 (with k − 1, Dk, B
k
j in place of n, Sn, Xk) to obtain

‖Dk‖Lp ≤
√

p− 1

(
k−1∑

j=1

‖Bk
j ‖2Lp

)1/2

≤ 2
√

(k − 1)(p− 1)‖f‖L∞(Π2).

Inserting this estimate into (5.3), it follows

‖MN‖Lp ≤ 2(p− 1)‖f‖L∞(Π2)

(
N∑

k=1

(k − 1)

)1/2

≤
√
2(p− 1)N‖f‖L∞(Π2).

Now we return to AN (f) = N−1MN . Using the Lp-bound for MN that we just established,
we have for all k ≥ 2 that

1

k

(
|EAN(f)|k

)1/k ≤ 1

Nk
|EMk

N |1/k ≤ 1

Nk
‖MN‖Lk ≤

√
2‖f‖L∞(Π2).

For k = 1, we have |EAN (f)| = 0 by (4.15). This concludes the proof of (5.2). �
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6. Appendix: Well-posedness and Regularity of Semilinear Parabolic
Systems

In this appendix, we provide a brief discussion on the systems (3.6) and (2.16), particu-
larly, the well-posedness of the correspondent Cauchy problem, and regularity of solutions.
These results follow by the classical theory of semigroups and the standard construction of
solutions to ODEs using the contraction mapping theorem. Though elementary, for the sake
of completeness we also present their proofs. For a detailed discussion, we point the reader
to, for instance, [31].
To state a result that is applicable for both the (linear) Fokker-Planck equation (3.6) on

ΠN and the (nonlinear) mean field limit system (2.16) on Π, we will consider a general form
of equation. Let X = T

D or RD, with spatial dimension D ∈ N, G be a finite set of indices,
and denote Γ = X × G. Denote also the variables y = (x, ξ) ∈ X × G, and the measure
dm = dx ⊗ d# on X × G, where # denotes the counting measure on the index set G. For
p ∈ [1,∞], denote the Banach space and norm

Xp = L1(Γ, dm) ∩ Lp(Γ, dm), ‖ · ‖Xp
= ‖ · ‖L1(Γ) + ‖ · ‖Lp(Γ),

and X+
p ⊂ Xp be the (closed) subset of all nonnegative (L1 ∩Lp)(Γ)-functions. Similarly, for

k ≥ 0 and p ∈ [1,∞], we denote W k,p(Γ) the Banach space of all functions f on Γ so that
f(·, ξ) ∈ W k,p(X) for every ξ ∈ G, with the norm ‖f‖W k,p(Γ) =

∑

ξ∈G ‖f(·, ξ)‖W 2,p(X).
We consider the evolution equation on X×G, given by

∂tρ = Aρ+ T−(ρ) + T+(ρ), (t, x, ξ) ∈ (0,∞)× X×G, ρ(0) = ρ0 ∈ X+
p , (6.1)

where A is the D-dimensional elliptic operator on X×G given by

Aρ(x, ξ) =

D∑

k=1

αk(ξ)∂
2
kρ(x, ξ), αk(ξ) > 0 for all 1 ≤ k ≤ D, ξ ∈ G, (6.2)

and T± : L1
loc(Γ) → L1

loc(Γ) (possibly nonlinear). If regarding ξ ∈ G as an index, one may
view the forward equation (6.1) as a parabolic system with n = |G| equations in variables
(t, x) ∈ (0,∞)× X. Namely, for each ξ ∈ G, the component uξ(t, x) = ρ(t, x, ξ) satisfies the
parabolic equation

∂tuξ = Aξuξ + T−(ρ)(t, x, ξ) + T+(ρ)(t, x, ξ), (t, x) ∈ (0,∞)× X, (6.3)

where Aξ is the elliptic operator on X given by (6.2) with ξ ∈ G fixed.
Throughout this section we assume the following hypothesis for the maps T±: it holds for

some constant C > 0 that

(T1) (Boundedness and local Lipschitz continuity). For every p ∈ [1,∞) and ρ, ρ̂ ∈
Xp, it holds

‖T±(ρ)‖Xp
≤ Cmax{1, ‖ρ‖L1(Γ)}‖ρ‖Xp

,

‖T±(ρ)− T±(ρ̂)‖Xp
≤ Cmax{1, ‖ρ‖Xp

, ‖ρ̂‖Xp
}‖ρ− ρ̂‖Xp

; (6.4)

(T2) (Nonnegativity of T+). T+ maps nonnegative functions to nonnegative functions;
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(T3) (Pointwise bound of T−). For every ρ ∈ L1(Γ), we have

|T−(ρ)(x, ξ)| ≤ Cmax{1, ‖ρ‖L1(Γ)}|ρ(x, ξ)|, for m-a.e. (x, ξ) ∈ Γ;

(T4) (Mass conservation). For every ρ ∈ L1(Γ), it holds
∫

Γ

[T−(ρ) + T+(ρ)]dm = 0.

Both forward equations (3.6) and (2.16) are special cases of (6.1). For the Fokker-Planck
equation (3.6) on ΠN , we have the spatial domain X = T

dN or RdN , the index set G = S
N

(and so D = dN , Γ = ΠN), A = ∆N from (3.1), and the maps T±, by (3.5), are given by

T−(ρ)(y) = − 1

N

∑

R∈R

N∑

i,j=1,i 6=j

ΦR(xi − xj)χ
−
R(ξi, ξj)ψ(y), T+ = S∗

N − T−.

Since in this case T± are bounded linear in Xp (as ΦR ∈ L∞), (T1)–(T4) hold with C > 0
depending on N and ‖Φ‖L∞ =

∑

R∈R ‖ΦR‖L∞ . ((T4) is a straightforward computation from
the definition (3.5) of S∗

N .) For the limit system (2.16), we have X = T
d or Rd, G = S (hence

D = d, Γ = Π), and A = 1
2
σ(ξ)2∆. The maps T± are given by T± =

∑

R∈R T̄
±
R from (2.17).

Conditions from (T2)–(T4) can be easily verified. For (T1), the boundedness condition (with
C depending on ‖Φ‖L∞) is a direct consequence of Young’s inequality and the definition of
T̄±
R from (2.18). To show the local Lipschitz bound (6.4), it suffices to show (6.4) for a fixed
T̄±
R , R ∈ R. For any ρ̄, ρ̂ ∈ Xp, by (2.18) it holds for all (x, ξ) ∈ Π that

|[T̄±
R (ρ̄)− T̄±

R (ρ̂)](x, ξ)| ≤ 2|(ρ̄− ρ̂)(x, ξ)|‖ΦR ∗ ρ̄‖L∞(Π) + 2|ρ̂(x, ξ)|‖ΦR ∗ (ρ̄− ρ̂)‖L∞(Π).

Taking ‖ · ‖Xp
-norm for the above, and applying Young’s inequality, we have

‖T̄±
R (ρ̄)− T̄±

R (ρ̂)‖Xp
≤ 2‖ρ̄− ρ̂‖Xp

‖(ΦR ∗ ρ̄)(·, ξ)‖L∞(Π) + 2‖ρ̂‖Xp
‖ΦR ∗ (ρ̄− ρ̂)‖L∞(Π)

≤ 2‖ΦR‖L∞

[
‖ρ̄‖L1(Π)‖ρ̄− ρ̂‖Xp

+ ‖ρ̂‖Xp
‖ρ̄− ρ̂‖L1(Π)

]

≤ 4‖ΦR‖L∞ max{‖ρ̄‖Xp
, ‖ρ̂‖Xp

}‖ρ̄− ρ̂‖Xp
.

Hence, in this case T± also satisfy (T1)–(T4).
Notice that, for any p ∈ [1,∞), A is the generator of a contractive (analytic) semigroup on

Xp = (L1 ∩ Lp)(Γ, dm), and denote {etA}t≥0 the correspondent semigroup. This semigroup
is in fact mass-conserving, in the sense that

∫

Γ

etAfdm =

∫

Γ

fdm, ∀f ∈ L1(Γ), t ≥ 0. (6.5)

Moreover, by the estimate of heat potentials, the semigroup has the following Lp → Lr bound
for any 1 ≤ p ≤ r ≤ ∞:

‖etAf‖Lr(Γ) ≤ CD,p,rt
−D

2
( 1
p
− 1

r
)‖f‖Lp(Γ). (6.6)
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We say a Xp-valued function ρ ∈ C([0, t0);Xp) for some t0 ∈ (0,∞] is a mild solution to the
equation (6.1) if

ρ(t) = etAρ0 +

∫ t

0

e(t−s)A[T−(ρ) + T+(ρ)](s)ds, ∀t ∈ [0, t0). (6.7)

It is a local solution if t0 <∞, and a global solution if t0 = ∞. Notice also if a mild solution
possesses higher regularity, namely, ρ ∈ C((0, t0);W

2,p(Γ))∩C1((0, t0);Xp), then it is a strong
solution. If it is C1 in time, C2 in space (with respect to x ∈ X), then it is a classical solution.
The main result of this section, which applies to both Fokker Planck equation (3.6) and

mean field limit equation (2.16), is stated as follows.

Proposition 6.1. Let A be from (6.2) and T± satisfy (T1)–(T4). For every nonnegative
L1(Γ) initial data ρ0, the Cauchy problem (6.1) admits a unique global mild solution. The
solution is nonnegative, and mass-conserving, in the sense that

ρ(t) ≥ 0,

∫

Γ

ρ(t)dm =

∫

Γ

ρ0dm, ∀t ∈ [0,∞). (6.8)

The solution has the following regularity for any p ∈ [1,∞):

ρ ∈ C([0,∞);L1(Γ)) ∩ C((0,∞);W 2,p(Γ)) ∩ C1((0,∞);Lp(Γ)).

If additionally, for some p ∈ [1,∞) ρ0 ∈ Lp(Γ), then ρ ∈ C([0,∞);Lp(Γ)); if ρ0 ∈ W 2,p(Γ),
then ρ ∈ C([0,∞);W 2,p(Γ)) ∩ C1([0,∞);Lp(Γ)).

Proof. Let us first address the local well-posedness of the problem (6.1) with general Xp

initial data with any p ∈ [1,∞). Since the maps T± are assumed to be locally Lipschitz
in Xp, by Picard-Lindelöf theorem for Banach-valued ODEs, a unique local mild solution
ρ ∈ C([0, t0);Xp) exists for every ρ0 ∈ Xp.
We will first prove existence, uniqueness, non-negativity and mass conservation of a global

mild solution ρ ∈ C([0,∞);X+
p ) for every initial data ρ0 ∈ X+

p , p ∈ [1,∞). Proposition 6.1
is then the special case p = 1. Given ρ0 ∈ X+

p , let ρ ∈ C([0, t0);Xp) be the mild solution of
(6.1), guaranteed by the local well-posedness result earlier, and we now show ρ is nonnegative.
To this end, we consider (6.1) with T+(ρ) replaced by any f ∈ C([0,∞);X+

p ), that is,

∂tµ = Aµ+ T−(µ) + f(t, x, ξ), µ(0) = ρ0 ∈ X+
p . (6.9)

We will first show that the above admits a unique nonnegative local mild solution. Existence
and uniqueness of a local solution µ ∈ C([0, t0);Xp) follows by the local Lipschitz bound
(6.4) for T−, and the same argument earlier. To prove its non-negativity, observe that for
each ξ ∈ G, by (T3), (6.3) with f in place of T+ρ, and f ≥ 0, uξ(t, x) = ρ(t, x, ξ) is a
super-solution of the following semilinear equation:

∂tuξ ≥ Aξuξ − β(t)|uξ|, (t, x) ∈ (0, t0)× X, β(t) = Cmax{1, ‖µ(t)‖L1(Γ)} <∞. (6.10)

β(t) is finite on [0, t0) because µ ∈ C([0, t0);L
1(Γ)). By the comparison principle for semi-

linear equations (v ≡ 0 is a solution to above), we have uξ(t) ≥ 0, i.e., µ(t) ∈ X+
p , for all

t ∈ [0, t0). In conclusion, we have shown that the local solution µ of (6.9) is in the space
C([0, t0);X

+
p ), if the initial data ρ0 ∈ X+

p .
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Now let Yt0 = C([0, t0];X
+
p ) for t0 > 0 small, and P(·; ρ0) : Yt0 → Yt0 be the map sending

f ∈ Yt0 to the solution µ ∈ Yt0 of (6.9). Subsequently, define Q(g; ρ0) = P(T+(g); ρ0), which
again is a map from Yt0 → Yt0 , because T

+(g) ∈ X+
p by (T2). Again, by choosing t0 > 0

sufficiently small, using the Lipschitz bound from (T1) for T+, one can show that Q(·; ρ0)
is contractive in Yt0 , and hence has a unique fixed point µ ∈ Yt0 . Since the fixed point also
satisfies the equation (6.1), by uniqueness µ agrees with the unique (local) mild solution ρ
of (6.1). Thus, ρ ∈ C([0, t0];X

+
p ). From here, the conservation of mass (6.8) holds for all

t ∈ [0, t0], as a direct consequence of (6.5), (6.7) and (T4).
To show that the solution can be extended globally, it suffices to establish a global bound

for the ‖ · ‖Xp
-norm of solutions. By the bound from (T1), (6.7), contractive nature of the

semigroup {etA}t≥0 and conservation of mass, a mild solution ρ(t) to (6.1) satisfies

‖ρ(t)‖Xp
≤ ‖ρ0‖Xp

+

∫ t

0

[
‖T−ρ(s)‖Xp

+ ‖T+ρ(s)‖Xp

]
ds

≤ ‖ρ0‖Xp
+ 2C

∫ t

0

max{1, ‖ρ(s)‖L1(Γ)}‖ρ(s)‖Xp
ds = ‖ρ0‖Xp

+ C ′

∫ t

0

‖ρ(s)‖Xp
ds,

where C ′ = 2Cmax{1, ‖ρ0‖L1(Γ)}. Applying Grönwall lemma, we then have ‖ρ(t)‖Xp
≤

‖ρ0‖Xp
eC

′t. With this bound, the solution can be extended indefinitely in time, and thus a
unique global mild solution exists. To conclude, we have just shown if ρ0 ∈ X+

p for some
p ∈ [1,∞), then (6.1) admits a unique global mild solution ρ ∈ C([0,∞);X+

p ).

Now we address the regularity issue. From now on let us assume ρ0 ∈ X+
1 , and let

ρ ∈ C([0,∞);X+
1 ) be the unique global mild solution guaranteed by the previous existence

and uniqueness result. We now prove that C((0,∞);X+
p ) for any p ∈ [1,∞). Using an

induction argument, this follows by the following claim: if ρN ∈ C((0,∞);X+
p ) for some

p ≥ 1, and r > p is such that p−1 − r−1 = D−1 (recall D is the spatial dimension of X), then
ρN ∈ C((0,∞);X+

r ). Indeed, regarding ρN as a solution of (6.1) starting at t = δ0 for some
fixed δ0 > 0, by (T1), (6.7) and the Lp → Lr bound (6.6), we have for all t > 0 that

‖ρN(t + δ0)‖Lr(Γ) ≤ Ct−
1

2‖ρN (δ0)‖Lp(Γ) + C

∫ t

0

(t− s)−
1

2‖ρN (s+ δ0)‖Xp
ds

≤ Ct−
1

2‖ρN (δ0)‖Xp
+ Ct1/2 max

δ0≤s≤δ0+t
‖ρN (s)‖Xp

<∞,

with some constant C = C(D, p, r, ‖ρ0‖L1(Γ)). Now regarding ρN as a solution of the forward
equation (6.1) starting at t = 2δ0, with initial data ρN(2δ0) ∈ X+

r , the previous existence
and uniqueness result then implies ρN ∈ C([2δ0,∞);X+

r ). Since δ0 > 0 is arbitrary, it follows
ρN ∈ C((0,∞);X+

r ), which is our claim.
We have shown ρN ∈ C((0,∞);Lp(Γ)) for any p ∈ [1,∞). By (T1) we have T±(ρ) ∈

C((0,∞);Lp(Γ)). By (6.3), since the forcing T±(ρ) is in Lp(X), the standard parabolic
regularity results implies uξ(t, x) = ρ(t, x, ξ) ∈ C((0,∞);W 2,p(X)) ∩ C1((0,∞);Lp(X)) for
every ξ ∈ G, e.g. see Theorem 7.22 of [27] or Section IV.3 of [26]. Hence, it follows ρN ∈
C((0,∞);W 2,p(Γ))∩C1((0,∞);Lp(Γ)), for any p ≥ 1. Of course, if ρN (0) ∈ W 2,p(Γ) initially,
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we may replace the open time interval (0,∞) above by the closed one [0,∞). This finishes
the proof.

�

Finally, we give a proof to the strict positivity of solutions correspondent to positive initial
data (6.1), for the case of torus X = T

D.

Proposition 6.2. Let X = T
D, ρ0 ∈ L1(Γ) with ρ0(x, ξ) ≥ 0, and let ρ be the corresponding

solution of (6.1). For any ξ ∈ {1, . . . , n}, if ρ0(·, ξ) is positive on a set of positive measure,
then inf(t,x)∈[t0,t1]×Π ρ(t, x, ξ) > 0 for any 0 < t0 < t1. Moreover, if inf(x,ξ)∈Γ ρ0(x, ξ) > 0, then
inf(t,x,ξ)∈[0,t1]×Π ρ(t, x, ξ) > 0 for any t1 > 0.

Proof. As shown in the previous proof, for each ξ ∈ G, uξ(t, x) = ρ(t, x, ξ) is a super-solution
of (6.10). By the conservation of mass, β(t) = β0 for some β0 > 0 depending on ‖ρ0‖L1(Γ).
Hence, we have

∂tuξ ≥ Aξuξ − β0uξ, (t, x) ∈ (0,∞)× T
D. (6.11)

The comparison principle implies

uξ(t, x) ≥ e−β0tHξ(t, x) ∗ ρ0(·, ξ)

where Hξ is the heat kernel on X = T
D for the uniformly elliptic operator Aξ. If ρ0(·, ξ) is

positive on a set of positive measure, then Hξ(t, x)∗ρ0(·, ξ) is strictly positive on any compact
subset of (0,∞)×T

D. Moreover, if ρ0(·, ξ) is bounded below by ǫ > 0, then Hξ(t, x) ∗ ρ0 ≥ ǫ

also holds. �

Now we give an improved positivity result using the particular structure of the forward
equations (3.6) and (2.16). Given a subset of species V0 ⊂ S, we inductively define an
increasing family of sets Vn ⊂ S by

Vn+1 =
⋃

{k′, ℓ′ ∈ S |; {k′, ℓ′} = R+ for some R ∈ R with R− ⊂ Vn}, n ≥ 0. (6.12)

(Recall the notation (2.3) for R±.) That is, Vn+1 is the set of all chemical species (types)
that are the products of reactions having inputs only from Vn. Then, we define the set

V0 =
⋃

n≥0

Vn

We call this set V0 ⊂ S the closure of V0 under the reaction network dynamics. Finally, we
say that an initial density ρ̄0(x, ξ) ≥ 0 on X×S is propagating if V0 = S when

V0 = {ξ ∈ S | ρ̄0(·, ξ) is positive on a set of positive measure}. (6.13)

Proposition 6.3. Let ρ̄ be a probability density on Π satisfying (2.16) with initial condition
ρ̄0(x, ξ). Let V0 = V0(ρ̄0) be defined by (6.13). Then for all ξ ∈ V0, inf(t,x)∈C ρ̄(t, x, ξ) > 0 for

any compact set C ⊂ (0,∞)× T
d. Moreover, for all ξ ∈ S \ V0, ρ̄(t, x, ξ) = 0 holds for all

t ≥ 0, x ∈ T
d.
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Proof. By Proposition 6.2, we know that for any compact set C ⊂ (0,∞)× T
d

inf
(t,x)∈C

ρ̄(t, x, ξ) > 0 (6.14)

holds for all ξ ∈ V0. Now, proceeding inductively, suppose that (6.14) holds for all ξ ∈ Vn,
for some n ≥ 0, with Vn defined via (6.12). Then if ξ′ ∈ Vn+1, the definition of operator T̄+

R

in (2.18) implies

inf
(t,x)∈C

(T̄+
R ρ̄)(t, x, ξ

′) > 0

holds for any compact set C ⊂ (0,∞)× T
d. As in (6.11), this implies that for any compact

C ′ ⊂ (0,∞)× T
d, there is a constant c1 > 0 such that

∂tρ̄(t, x, ξ
′) ≥ σ(ξ′)2

2
∆ρ̄(t, x, ξ′)− β0ρ̄(t, x, ξ

′) + c1

holds for all (t, x) ∈ C ′. This and the maximum principle implies that the condition (6.14)
also holds for ξ′. Since (6.14) holds for all such ξ′ ∈ Vn+1, we conclude by induction on n

that (6.14) holds for all ξ ∈ V0. �
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