
BINARY LINEAR CODES WITH NEAR-EXTREMAL MAXIMUM1

DISTANCE∗2
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Abstract. Let C denote a binary linear code with length n all of whose coordinates are essential,4
i.e., for each coordinate there is a codeword that is not zero in that position. Then the maximum5
distance D is strictly bigger than n/2, and the extremum D = (n + 1)/2 is attained exactly by6
punctured Hadamard codes. In this paper, we classify binary linear codes with D = n/2 + 1. All7
of these codes can be produced from punctured Hadamard codes in one of essentially three different8
ways, each having a transparent description.9
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1. Introduction. The present paper is a follow-up to [16], where binary linear12

codes with near extremal maximum distance were analyzed to obtain classification13

results for an extremal problem about finite permutation groups. More precisely, the14

size S of the support of a finite permutation group G is at most 2s−2, where s denotes15

the maximum degree of elements in the permutation group G, and a description was16

given to those G such that S is 2s − 2, 2s − 3 or 2s − 4. The dual notion µ(G),17

the minimum degree of non-identity elements, is also a central notion in permutation18

group theory. It was particularly well-studied for primitive permutation groups, see19

[13] for a recent improvement on the lower bound. Often the results are phrased for20

the fixity S − µ(G) of G, see [17, 19, 20].21

The main direct motivation is a recent paper [1]. It was shown that an upper22

estimation to S in terms of s can be applied to obtain results about the asymp-23

totic probability that a finite structure over a given finite relational language has an24

automorphism group isomorphic to some permutation group H, provided that the au-25

tomorphism group contains a given permutation group G. It follows that only finitely26

many H occurs with positive asymptotic probability, and that the probability for any27

such H is a rational number. This generalizes the well-known theorem that, given a28

finite relational vocabulary, asymptotically almost all finite structures are rigid; see29

[4, 6, 7, 10] for further details. In order to compute the family of possible H corre-30

sponding to a given G, it is crucial to refine the upper bound on S in terms of s, and31

study the near extremal cases.32

In [16] the cases S = 2s−2 and S = 2s−3 were fully characterized. The proof relies33

on a refinement of Burnside’s lemma [14], and mainly on the following classification34

of punctured Hadamard codes up to equivalence in terms of the maximum distance35

of the code. We say that a coordinate is essential in a code if not all codewords are36

zero in that position.37
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2 ANDRÁS PONGRÁCZ

Theorem 1.1. Let n ∈ N and assume that a binary linear code C of length n has38

maximum distance D ≤ n+1
2 . Assume that all coordinates of the code are essential.39

Then D = n+1
2 = 2k−1 for some k ≥ 1, and the code is equivalent to the punctured40

Hadamard code Hk with parameters [2k − 1, k, 2k−1]2.41

The case S = 2s − 4 hinges on a partial result about binary linear codes with42

length n and maximum distance D = n
2 + 1 all of whose coordinates are essential (see43

Theorem 2.2). Some further preliminary results were shown in [16] about codes with44

these properties, and the description to the above extremal problem S = 2s − 4 was45

reduced to a classification of such codes. The main contribution of the present paper46

is the complete description of such codes, see Theorem 2.6. Many of these codes are47

two- or three-weight binary linear codes (and give rise to further constructions like48

that), a concept actively studied lately, see [5, 11, 12, 23]. We recommend [3, 18] for49

an introduction to linear codes. An upper bound on the maximum distance is in [2].50

2. Constructions and the main result. We recall a construction from [16].51

Definition 2.1. Let Hk be the [2k − 1, k, 2k−1]2 punctured Hadamard code, and52

let m ≤ k. We define Hk×m := Hk × Hm, i.e., producing all concatenations of53

codewords in Hk and Hm. The code Hk|m can be obtained from Hk by picking 2m− 154

coordinates such that the restriction of Hk to those is isomorphic to Hm, and repeating55

those coordinates simultaneously. Any code C with Hk|m ≤ C ≤ Hk×m has length56

n = 2k + 2m − 2 and maximum distance D = 2k−1 + 2m−1 = n
2 + 1, and moreover,57

all coordinates of C are essential.58

For example, a generating matrix of H3|2 is M3|2 below.59

M3|2 =

0 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0 1 1
1 0 1 0 1 0 1 1 0 1


We also provide a generating matrix M3×2 of H3×2.60

M3×2 =


0 0 0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1


It was noted in [16] that the list of codes in Definition 2.1 is not exhaustive.61

However, the following positive result was shown in [16].62

Theorem 2.2. Let C be a binary linear code all of whose coordinates are essential63

with length n ∈ N and maximum distance D = n
2 + 1. Then there exist 1 ≤ m ≤ k64

such that n = 2k + 2m − 2, D = 2k−1 + 2m−1, and Hk|m ≤ C.65

To obtain a full classification of codes with D = n
2 + 1, we present some further66

constructions.67

Definition 2.3. As usual, we say that two coordinates i, j are equivalent with68

respect to a code C, if for all codewords c ∈ C we have ci = cj. The equivalence69

classes of Hm|m are pairs. We say that a partition X ∪X ′ of the coordinates of Hm|m70

is symmetrical if X intersects all these pairs in exactly one element. More generally,71

for any k ≥ m we can talk about symmetrical partitions X ∪ Y ∪ X ′ of the set of72

coordinates of Hk|m: Y consists of the non-repeated coordinates, and X ∪ X ′ is a73

symmetrical partition of the code restricted to X ∪X ′ (which is isomorphic to Hm|m).74
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BINARY CODES WITH SMALL WEIGHTS 3

Note that there are 2m symmetrical partitions of the coordinates of Hk|m. In75

Definition 2.1 we somewhat loosely put Hk|m ≤ C ≤ Hk×m. In order to represent76

the codes Hk|m and Hk×m, we need to fix a symmetrical partition X ∪ Y ∪X ′ of the77

set of coordinates of Hk|m, so that the supports of Hk and Hm are specified, namely78

these are X ∪Y and X ′, respectively. This problem is going to cause some difficulties79

later on. E.g., if we are looking for nontrivial examples for codes C with Hk|m ≤ C80

and D = n
2 + 1, i.e., not of the form Hk|m ≤ C ≤ Hk×m, then we need to make sure81

that such a containment does not hold with respect to any symmetrical partition.82

Definition 2.4. Let X ∪ X ′ be a symmetrical partition of the coordinates of83

Hm|m. We say that a vector c is Hm|m-balanced (with respect to the partition X∪X ′),84

if there exist 1 ≤ ` ≤ m and ` independent codewords c1, . . . , c` ∈ Hm|m such that85

supp(c) = X ′ ∩
⋃̀
i=1

supp(ci). Later on (cf. Lemmas 3.1 and 3.5), we are going to see86

that these are exactly the vectors such that 〈Hm|m, c〉 has the same maximum distance87

D = 2m as Hm|m. Thus it is natural for a code C with Hm|m < C ≤ Hm×m to say88

that a vector c be C-balanced if 〈C, c〉 has maximum distance D = 2m.89

Clearly, C -balanced vectors for Hm|m < C ≤ Hm×m are Hm|m-balanced, thus90

they are as described in Definition 2.4. It is not hard to find such vectors for a given C,91

e.g., by solving a system of linear equations over Q. We provide a non-trivial example.92

The following matrix is a generating matrix of a code C with H3|3 < C ≤ H3×3.93

M3|3 =


0 0 0 1 1 1 1 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 1 1 0 0 1 1
1 0 1 0 1 0 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1


Then (0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0) is a C-balanced vector.94

Finally, we present an infinite family of codes of the form 〈Hm+1|m, c〉.95

Definition 2.5. Let X ∪ Y ∪ X ′ be a symmetrical partition of the coordinates96

of Hm+1|m. Let a, b ∈ Hm+1|m be two codewords such that supp(a) ∩ supp(b) ∩ Y is97

nonempty and the restriction of a and b to X are different nonzero vectors. Let c be the98

vector whose support is supp(c) = ((supp(a)∪supp(b))∩X ′)∪(supp(a)∩supp(b)∩Y ).99

Then we say that c is Hm+1|m-balanced (with respect to the partition X ∪ Y ∪X ′).100

As an example, the second and third rows in M3|2 can be chosen as a and b. (Here,101

X and X ′ are the set of first three and last three coordinates, respectively.) Then the102

matrix is extended by the row (0, 0, 0, 0, 0, 0, 1, 1, 1, 1). Note that as the construction103

requires two different nonzero vectors in Hm, such Hm+1|m-balanced vectors exist iff104

2 ≤ m. Also note that the definition of Hm|m- and Hm+1|m-balanced vectors depend105

on the symmetrical partition of the coordinates, an issue that causes some difficulties106

in proofs to come. We are now ready to state the main theorem of the paper.107

Theorem 2.6. Let C be a binary linear code all of whose coordinates are essential108

with length n ∈ N and maximum distance D. Then the following are equivalent.109

1. The equation D = n
2 + 1 holds.110

2. For some 1 ≤ m ≤ k we have either111

(a) Hk|m ≤ C ≤ Hk×m (with respect to some symmetrical partition), or112

(b) k = m, C = 〈C0, c〉 with Hm|m ≤ C0 ≤ Hm×m and a C0-balanced c not113

in Hm×m (with respect to any symmetrical partition), or114

(c) 2 ≤ m, k = m+ 1, C = 〈Hm+1|m, c〉, and c is Hm+1|m-balanced.115
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4 ANDRÁS PONGRÁCZ

3. Correctness of the constructions and minimal examples. We show the116

implication 2.⇒ 1. in Theorem 2.6 in the next two lemmas (3.1 and 3.2).117

Lemma 3.1. Let m ∈ N.118

1. Let c be an Hm|m-balanced vector. Then C = 〈Hm|m, c〉 has the same length119

and maximum distance as Hm|m (and all coordinates are essential in C).120

2. Let X ∪ X ′ be a symmetrical partition of the coordinates of Hm|m. Then121

a vector c such that supp(c) ∩ X ′ 6= ∅ is Hm|m-balanced with respect to the122

partition X ∪X ′, iff supp(c) = X ′ or the restriction of Hm|m to X ′ \ supp(c)123

is equivalent to a punctured Hadamard code. In particular, there exists a124

0 ≤ m′ ≤ m − 1 such that for all codewords c′ ∈ 〈Hm|m, c〉 \ Hm|m, the125

number of Hm|m-equivalent pairs of coordinates (x, x′) such that the value of126

c′ in x and x′ coincides is 2m
′ − 1.127

Proof. We use the notations of Definition 2.4.128

For item 1. we need to show that for all u ∈ Hm|m we have w(c+ u) ≤ 2m. This129

clearly holds for u = 0. Assume that u ∈ Hm|m is not zero. Then u is a concatenation130

aa′, where a and a′ are identical maximum weight codewords in the two copies of Hm.131

If supp(a′) ⊆ supp(c), then w(c+ u) < w(u) = 2m.132

Hence, assume that supp(a′) 6⊆ supp(c). In particular, ` ≤ m − 1. By using133

induction on `, it is easy to show that supp(a′) \ supp(c) = supp(a′) \
⋃̀
i=1

supp(ci) has134

size 2m−1−` (we note that this fails for ` = m). Consequently, | supp(a′) ∩ supp(c)| is135

2m−1− 2m−1−`. It is also clear by using induction on ` that w(c) = 2m− 2m−`. Thus136

w(c+ u) = 2m−1 + ((2m − 2m−`) + 2m−1 − 2 · (2m−1 − 2m−1−`)) = 2m.137

The only if part in item 2. is trivial by induction on `, as the cancellation of the138

support of a nonzero codeword from a punctured Hadamard code Hr yields Hr−1.139

We use induction on m for the if part. It clearly holds if supp(c) = X ′ by the140

definition of an Hm|m-balanced vector, hence we may assume that supp(c) 6= X ′.141

In particular, the initial step m = 1 is trivial. Hence, assume that m ≥ 2 and the142

assertion holds for m− 1.143

Let Hr be the punctured Hadamard code obtained as the restriction of Hm|m144

to X ′ \ supp(c). Then 1 ≤ r ≤ m − 1 by assumption. Restriction of codewords145

to X ′ \ supp(c) is a homomorphism, and as every coordinate of Hm|m is essential,146

the kernel of this homomorphism is nontrivial. Thus there is a nonzero codeword147

c1 ∈ Hm|m whose support is disjoint from X ′ \ supp(c). Let us puncture the code148

Hm|m by omitting supp(c1). Then we obtain the code Hm−1|m−1 with the same149

properties (the punctured version of c takes the role of c), and then we are done by150

the induction hypothesis.151

We denote the characteristic vector of Y by 1Y . Note that 1Y ∈ Hm+1|m.152

Lemma 3.2. Let 2 ≤ m and let a, b, c ∈ Hm+1|m as in Definition 2.5. Then153

w(c) = w(c+ a) = w(c+ b) = w(c+ a+ b+ 1Y ) = 2m, and w(c+u) = 3 · 2m−1 for all154

other codewords u ∈ Hm+1|m. In particular, the code C = 〈Hm+1|m, c〉 has the same155

length and maximum distance as Hm+1|m (and all coordinates are essential in C).156

Proof. It is easy to see that if u ∈ 〈a, b, 1Y 〉, then we have w(c + u) = 2m if157

u ∈ {0, a, b, a+b+1Y }, and w(c+u) = 3·2m−1 for the other four vectors u ∈ 〈a, b, 1Y 〉.158

So assume that u ∈ Hm+1|m \ 〈a, b, 1Y 〉. Then both supp(c)∩X ′ and supp(c)∩ Y are159

cut in half by supp(u). As w(c) = 2m, supp(c)∩X is empty, | supp(u)∩(X ′∪Y )| = 2m160

and | supp(u)∩X| = 2m−1, we have w(c+u) = 2m−1+(2m+2m−2· 12 ·2
m) = 3·2m−1.161
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BINARY CODES WITH SMALL WEIGHTS 5

Now we turn our attention to the implication 1.⇒ 2. in Theorem 2.6. According162

to Theorem 2.2, all codes C that satisfy item 1. of Theorem 2.6 contain some Hk|m.163

It is a natural idea to first understand the minimal examples.164

Definition 3.3. Throughout the rest of the paper, we call a binary linear code165

C with Hk|m ≤ C for some 1 ≤ m ≤ k (making every coordinate of C essential166

automatically) a minimal example, if |C : Hk|m| = 2 and D = n
2 + 1, where n =167

2k + 2m − 2 is the length of C and D = 2k−1 + 2m−1 is the maximum distance of C.168

Recall that the union of singleton Hk|m equivalence classes is denoted by Y .169

The next proposition classifies minimal examples as a special case of Theorem 2.6.170

Proposition 3.4. Let 1 ≤ m ≤ k and let Hk|m ≤ C be a minimal example (cf.171

Definition 3.3). Then either172

• Hk|m ≤ C ≤ Hk×m (with respect to some symmetrical partition), or173

• k = m, C = 〈Hm|m, c〉 with some Hm|m-balanced c not in Hm×m (with respect174

to any symmetrical partition), or175

• 2 ≤ m, k = m+ 1, C = 〈Hm+1|m, c〉, and c is Hm+1|m-balanced.176

For the sake of transparency, we break the proof of Proposition 3.4 down into two177

cases: k = m and k > m. If k = m, then the first two items can be merged: note178

that vectors in Hm×m are Hm|m-balanced (with ` = 1 in Definition 2.4).179

Lemma 3.5. Let m ∈ N and let Hm|m ≤ C be a minimal example (cf. Defini-180

tion 3.3). Then C = 〈Hm|m, c〉 for some Hm|m-balanced vector c.181

Proof. Assume that a codeword c ∈ C \Hm|m is one in a pair of repeated coordi-182

nates. We can pick c1, . . . , cm−1 ∈ Hm|m so that their supports cover all coordinates183

except for that pair. Thus all coordinates of C ′ = 〈c1, . . . , cm−1, c〉 are essential, and184

dimC ′ = m. Clearly, the length of C ′ is n = 2m+1 − 2, and its maximum distance is185

D = 2m. Hence, according to Theorem 2.2, C ′ is equivalent to Hm|m. In particular,186

w(c) = D > n
2 . As the average weight in C \ Hm|m is n

2 , this cannot hold for all187

c ∈ C \ Hm|m. Thus we can pick a c ∈ C \ Hm|m that is zero in at least one posi-188

tion within each pair of repeated coordinates. Then there is a symmetrical partition189

X ∪X ′ such that supp(c) ⊆ X ′. Let Z := X ′ \ supp(c) and r = |Z|. If r = 0 then c190

is indeed an Hm|m-balanced vector (with ` = m in Definition 2.4).191

Assume that r ≥ 1, and pick a codeword c′ ∈ Hm|m. If c′ has t ones in Z, then192

w(c+ c′) = 2m−1 + t+ ((2m−1− r)− (2m−1− t)) = 2t− (r+ 1) + 2m ≤ D = 2m, thus193

t ≤ r+1
2 . By Theorem 1.1, the restriction of Hm|m to Z is equivalent to the punctured194

Hadamard code Hr, and the assertion follows from Lemma 3.1.195

The rest of this section is all about minimal examples with k > m.196

Lemma 3.6. Let 1 ≤ m < k and let Hk|m ≤ C be a minimal example (cf. Def-197

inition 3.3). Assume that there is a symmetrical partition X ∪ Y ∪ X ′ of the co-198

ordinates of Hk|m such that for some c ∈ C \ Hk|m we have supp(c) ⊆ X ′. Then199

Hk|m ≤ C ≤ Hk×m (with respect to some symmetrical partition).200

Proof. We need to show that the restriction c0 of c to X ′ is in the punctured201

Hadamard code Hm obtained as the restriction of Hm+1|m to X ′. Assuming this is202

not the case, by Theorem 1.1 the code 〈c0, Hm〉 contains a codeword that has bigger203

weight than 2m−1. This codeword cannot be c0, as otherwise w(c+ c′) > D for some204

nonzero c′ ∈ Hk|m with supp(c′) ⊆ Y , as all such c′ have weight 2k−1. Thus such a205

codeword in Hm is obtained as the restriction of c + c′ with some maximum weight206

c′ ∈ Hk|m. But then the weight of the restriction of c′, and also of c+ c′ to X ∪ Y is207

D − 2m−1, making w(c+ c′) > D, a contradiction.208
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6 ANDRÁS PONGRÁCZ

Lemma 3.7. Let 1 ≤ m < k and let Hk|m ≤ C be a minimal example (cf. Defini-209

tion 3.3). Assume that there is a codeword c ∈ C \Hk|m such that supp(c) ∩ Y = ∅.210

Then Hk|m ≤ C ≤ Hk×m (with respect to some symmetrical partition).211

Proof. We have w(c) ≤ 2m−1, as otherwise w(c + c′) > D for some nonzero212

c′ ∈ Hk|m with supp(c′) ⊆ Y . If we puncture the code by omitting Y , then we obtain213

Hm|m. The punctured version c0 of c has the same weight as c, and thus c0 /∈ Hm|m.214

If the maximum distance of 〈Hm|m, c0〉 is larger than 2m, then there is a nonzero215

c′ ∈ Hk|m such that | supp(c + c′) \ Y | > 2m. The support of c′ intersects Y in216

2k−1 − 2m−1 coordinates, thus w(c+ c′) > D, a contradiction.217

Hence, 〈Hm|m, c0〉 is a minimal example, and then it contains an Hm|m-balanced218

vector u0 with respect to a symmetrical partition X ∪ Y ∪ X ′ by Lemma 3.5. By219

Lemma 3.6 we have u0 6= c0, thus u0 must be the punctured version of c+ c′ for some220

nonzero c′ ∈ Hk|m with supp(c′) 6⊆ Y . Hence, supp(c+ c′) ∩X = supp(u0) ∩X = ∅,221

which means that c and c′ agree on X, and consequently, | supp(c) ∩X| = 2m−1. As222

w(c) ≤ 2m−1, we have supp(c) ⊆ X, and then we are done by Lemma 3.6.223

Lemma 3.8. Let 1 ≤ m < k and let Hk|m ≤ C be a minimal example (cf. Def-224

inition 3.3). If supp(c) ∩ Y 6= ∅ for some c ∈ C \ Hk|m, then either w(c) = D or225

w(c) = D − 2m−1.226

Proof. As c is one in a coordinate of the Hk-component, there are k − 1 inde-227

pendent vectors in Hk such that together with the Hk-component of c their supports228

cover every coordinate of Hk. Let c1, . . . , ck−1 be the corresponding k − 1 indepen-229

dent vectors in Hk|m. As the Hm-component is produced by repetition, the supports230

of c1, . . . , ck−1, c cover every coordinate of Hk|m. Then the code C ′ generated by231

these k vectors has dimension k, length n = 2k + 2m − 2 and maximum distance232

D = 2k−1 + 2m−1, and all coordinates of C ′ are essential. According to Theorem 2.2,233

C ′ is equivalent to Hk|m, all of whose nonzero codewords have weight D or D−2m−1.234

Lemma 3.9. Let 1 ≤ m < k and let Hk|m ≤ C be a minimal example (cf. Defini-235

tion 3.3). If the support of a codeword c ∈ C \Hk|m contains a pair of Hk|m-equivalent236

coordinates (x, x′), then w(c) = D.237

Proof. There exist m − 1 independent vectors in the Hm-component with set of238

coordinates X ′ whose total support is X ′ \ {x′}. Pick extensions c1, . . . , cm−1 ∈ Hk|m239

of these vectors. Then the supports of c1, . . . , cm−1, c cover X ∪ X ′. There are240

k−m independent vectors cm+1, . . . , ck ∈ Hk|m whose total support is Y . Hence, the241

code C ′ := 〈c1, . . . , cm−1, c, cm+1, . . . , ck〉 has dimension k, length n = 2k + 2m − 2242

and maximum distance D = 2k−1 + 2m−1, and all coordinates of C ′ are essential.243

According to Theorem 2.2, C ′ is equivalent to Hk|m. As the support of c contains a244

pair of equivalent coordinates in C ′, it must be a maximum weight codeword.245

In order to finish the proof of Proposition 3.4, we need the following lemma.246

Lemma 3.10. Let 1 ≤ m < k and let Hk|m ≤ C 6≤ Hk×m (with respect to any247

symmetrical partition) be a minimal example (cf. Definition 3.3). Then 2 ≤ m,248

k = m+ 1 and C = 〈Hm+1|m, c〉 with some Hm+1|m-balanced vector c.249

Proof. Let C0 denote the index 2 subcode in C isomorphic to Hk|m. For all250

c ∈ C \C0 we have supp(c)∩Y 6= ∅ according to the assumption and Lemma 3.7, and251

w(c) = 2k−1 or w(c) = 2k−1 + 2m−1 by Lemma 3.8. As the average weight in C \ C0252

is n
2 , there are 2k−m+1 codewords in C \ C0 with weight 2k−1 and 2k − 2k−m+1 with253

weight 2k−1 + 2m−1. Pick a c ∈ C \ C0 with w(c) = 2k−1. By Lemma 3.9 there is a254

symmetrical partition X ∪ Y ∪X ′ such that supp(c) ∩X = ∅.255
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Let y ∈ supp(c) ∩ Y be arbitrary, and let c1, . . . , ck−1 ∈ C0 be such that their256

supports cover all coordinates except for y. Then with respect to 〈c1, . . . , ck−1〉 there257

are 2m − 1 equivalence classes of the coordinates with size three, 2k−1 − 2m with size258

two and 1 with size one. The three-element 〈c1, . . . , ck−1〉-classes are obtained from259

the pairs in X ∪X ′ by adjoining an element from Y . By Theorem 2.2 we have that260

C ′ := 〈c1, . . . , ck−1, c〉 is equivalent to Hk|m, a code with no three-element equivalence261

classes. Thus c splits all three-element 〈c1, . . . , ck−1〉-classes into one with size two262

and one with size one, and since w(c) = 2k−1, the support of c is contained in the263

singleton coordinates of C ′. Thus a three-element 〈c1, . . . , ck−1〉-class {x, x′, z} with264

x ∈ X,x′ ∈ X ′, z ∈ Y is split by c so that the two-element class obtained is outside265

supp(c), and the singleton class obtained is inside supp(c). As x /∈ supp(c), we have266

that x is a repeated coordinate in C ′, and its pair with respect to C ′ is either x′ or267

z, hence it is outside X. Consequently, if we puncture C ′ by omitting X, then we268

obtain a code isomorphic to Hk.269

If there is a coordinate y ∈ Y where some c′ ∈ C0 is zero and c is one, then in270

the above argument c′ can be chosen as one of the generators of C ′. In particular, if271

w(c′) = D, then w(c+ c′) = D, as the weight of c+ c′ is 2k−1 in the restriction of C ′272

to X ′ ∪ Y (isomorphic to Hk), and inside X the weight of c + c′ is 2m−1. Similarly,273

if w(c′) = 2k−1, then w(c + c′) = 2k−1, provided that c′ ∈ C0 has a zero in Y where274

c is one. As there are 2k−m − 1 codewords in C0 with weight 2k−1 and there are275

2k−m+1 codewords in C \ C0 with weight 2k−1, there exists a codeword a ∈ C0 such276

that w(a) = 2k−1 + 2m−1 and w(c + a) = 2k−1. Then supp(c) ∩ Y ⊆ supp(a) ∩ Y ,277

and moreover, as a ∈ C0 is a maximum weight codeword, we have | supp(a) ∩ Y | =278

2k−1 − 2m−1, and | supp(a) ∩X| = | supp(a) ∩X ′| = 2m−1.279

Let K denote the set {c1 ∈ C0 | w(c1) = 2k−1}. Assume that for all c1 ∈ K280

we have w(c + c1) = 2k−1. Let C1 := 〈{c} ∪ K}〉, and let n1 be the number of281

essential coordinates of C1. The average weight in C1 is n1

2 = 2k−m+1−1
2k−m+1 · 2k−1,282

thus n1 = 2k − 2m−1. Note that
⋃

c1∈K
supp(c1) = Y with size 2k − 2m. Hence,283

| supp(c) ∩X ′| = 2m−1, and then | supp(c) ∩ Y | = 2k−1 − 2m−1 = | supp(a) ∩ Y |. As284

supp(c)∩Y ⊆ supp(a)∩Y , we have supp(c)∩Y = supp(a)∩Y , and then c+a ∈ C \C0285

is all zero in Y , a contradiction by Lemma 3.7.286

Thus there is a c1 ∈ C0 with w(c1) = 2k−1 = w(c) and w(c+ c1) = 2k−1 + 2m−1,287

and consequently, | supp(c) \ supp(c1)| = 2k−2 + 2m−2. We have shown above that288

w(c1) = 2k−1 and w(c + c1) = 2k−1 + 2m−1 is not possible if there is a coordinate289

in Y where c1 is zero and c is one, thus supp(c) ∩ Y ⊆ supp(c1) ∩ Y . In particular,290

supp(c) \ supp(c1) ⊆ X ′, thus 2k−2 + 2m−2 ≤ 2m− 1, and then k = m+ 1. Moreover,291

as c1 ∈ K, we have supp(c1) ⊆ Y . Hence, supp(c) \ supp(c1) = supp(c) ∩X ′. Thus292

| supp(c) ∩ X ′| = 2m−1 + 2m−2 = 3 · 2m−2 and | supp(c) ∩ Y | = 2m−2. Moreover,293

w(a) = 3 · 2m−1, w(c + a) = 2m, and | supp(a) ∩ Y | = 2m−1. Then we have that294

| supp(c+a)∩Y | = 2m−2, | supp(c+a)∩X| = | supp(a)∩X| = 2m−1, and consequently,295

| supp(c+a)∩X ′| = w(c+a)−| supp(c+a)∩Y |− | supp(c+a)∩X| = 2m−2. Hence,296

| supp(c)∩ supp(a)∩X ′| = 1
2 · (| supp(c)∩X ′|+ | supp(a)∩X ′|− | supp(c+a)∩X ′|) =297

2m−1 = | supp(a) ∩X ′|, thus supp(a) ∩X ′ ⊆ supp(c) ∩X ′.298

We now revisit the ideas in the first and third paragraphs of the proof, using the299

additional information that k = m + 1. In particular, there is a unique codeword in300

C0 with weight 2k−1 = 2m, namely 1Y . Thus all the remaining 2m+1 − 2 nonzero301

codewords in C0 have maximum weight 3 · 2m−1. In C \ C0, there are 2k−m+1 = 4302

codewords with weight 2k−1 = 2m and 2k − 2k−m+1 = 2m+1 − 4 codewords with303

maximum weight D = 3 · 2m−1. Recall that w(c) = 2k−1 = 2m. As | supp(c) ∩ Y | =304
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2m−2 and |Y | = 2m, we have w(c+ 1Y ) = w(c) + 2m − 2 · 2m−2 = 3 · 2m−1 = D, thus305

c+1Y is one of the 2m+1−4 maximum weight codewords in C \C0. Hence, out of the306

2m+1−2 maximum weight codewords in C0\{0, 1Y }, there are exactly three codewords307

c′ with w(c+ c′) = 2m. One of those three is a, and there are exactly two codewords308

in C0 with the same restriction to X ′ as a, namely a and a+1Y . Thus there must be a309

codeword b ∈ C0\{0, 1Y } such that w(c+b) = 2m and the restrictions of a and b to X ′310

are different. In particular, there exist two different nonzero codewords in Hm, thus311

m ≥ 2. Moreover, every claim that we have proved about a can be copied to b, namely:312

supp(c) ∩ Y ⊆ supp(b) ∩ Y , supp(b) ∩X ′ ⊆ supp(c) ∩X ′, | supp(b) ∩ Y | = 2m−1, and313

| supp(b) ∩X| = | supp(b) ∩X ′| = 2m−1. Thus supp(c) ∩ Y ⊆ supp(a) ∩ supp(b) ∩ Y ,314

and both have size 2m−2, and consequently, supp(c) ∩ Y = supp(a) ∩ supp(b) ∩ Y .315

Furthermore, (supp(a) ∩ X ′) ∪ (supp(b) ∩ X ′) ⊆ supp(c) ∩ X ′, and both have size316

3 · 2m−2, so (supp(a) ∪ supp(b)) ∩X ′ = supp(c) ∩X ′.317

Hence, c is Hm+1|m-balanced with the choice of a, b as above in Definition 2.5.318

Proof of Proposition 3.4. Done by Lemmas 3.5 and 3.10.319

4. The general case. The next lemma finishes the proof of the classification if320

k = m.321

Lemma 4.1. Let Hm|m ≤ C be a code with maximum distance 2m. Then there322

exists a C0 ≤ C with index at most two such that Hm|m ≤ C0 ≤ Hm×m.323

Proof. We may assume that Hm|m < C. Pick Hm|m ≤ C0 ≤ C together with a324

symmetrical partition such that Hm|m ≤ C0 ≤ Hm×m (with respect to that partition)325

and the dimension of C0 be maximal. Let X ∪ X ′ be a symmetrical partition such326

that Hm|m ≤ C0 ≤ Hm×m. Assume indirectly that |C : C0| > 2.327

Pick c1, c2 ∈ C \ C0 from different cosets of C0. Then both Ci = 〈Hm|m, ci〉328

are minimal examples (cf. Definition 3.3), and then by Lemma 3.5 we may assume329

that both ci are Hm|m-balanced (with respect to potentially different symmetrical330

partitions that may also differ from X ∪X ′). By Lemma 3.1, the number of Hm|m-331

equivalent pairs (x, x′) such that the value of ci in x and in x′ coincide is 2mi − 1 for332

some 0 ≤ m1 ≤ m2 ≤ m− 1, without loss of generality.333

First, assume that m2 ≤ m − 2. Then 2m1 − 1 ≤ 2m2 − 1 < 1
4 · (2

m − 1), where334

2m − 1 is the number of all Hm|m-equivalent pairs. Hence, the number of Hm|m-335

equivalent pairs (x, x′) such that the value of c1 + c2 in x and x′ differ is less than336
1
2 · (2

m − 1). If c1 + c2 /∈ Hm|m then 〈Hm|m, c1 + c2〉 is a minimal example, and337

consequently, every codeword in 〈Hm|m, c1 + c2〉 \Hm|m differs in more than half of338

the pairs. Thus c1 + c2 ∈ Hm|m, and then c1 and c2 are in the same C0-coset, a339

contradiction.340

Hence, m2 = m− 1, and then there exists a symmetrical partition X2 ∪X ′2 such341

that c2 is the restriction of a nonzero codeword in Hm|m to X ′2. In particular, we have342

Hm|m < C0 by maximality of the dimension of C0.343

Let c ∈ C0 \ Hm|m be any vector with weight 2m−1. If the support of c and c2344

intersect the same pairs of Hm|m-equivalent coordinates nontrivially, then c+ c2 have345

a symmetrical support: each Hm|m-equivalent pair is either fully contained or fully346

not contained in it. Thus the 〈Hm|m, c + c2〉-classes coincide with the Hm|m-classes,347

and then 〈Hm|m, c + c2〉 is the repetition of an index 2 extension of Hm. According348

to Theorem 1.1 any extension of Hm has larger maximum weight than 2m−1, and349

thus the code 〈Hm|m, c+ c2〉 has larger maximum distance than 2m, a contradiction.350

Hence, c2 must be the restriction of a nonzero codeword to X ′2 that is different from351

any codeword whose restriction to X or X ′ is in C0. Due to the large degree of352
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symmetry of Hm|m, it makes no difference which nonzero codeword we choose among353

those. The illustration below is for m = 4.354

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 e1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 e2
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 e3
0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 e4
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 c
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1

355

X X ′

2m−1 ≤ i ≤ 2m − 1356

Let us represent Hm|m in the standard way. That is, we produce the generating357

matrix by writing the binary representation of all numbers from 1 to 2m−1 in columns,358

and then by repeating all these columns. Let e1, . . . , em denote the rows of this matrix359

from top to bottom; this is the standard basis of the code. Then we sort the codewords360
m∑
i=1

εiei, εi ∈ {0, 1}, so that the sequence of coefficients ε1 · · · εm corresponding to the361

r-tk codeword is the binary representation of r (extended by zeros on the right) for362

r = 0, . . . , 2m−1. That is, the list of codewords is 0, e1, e2, e2+e1, e3, . . . , em+· · ·+e1.363

Without loss of generality, we may assume that c is the restriction of e1 to X ′, and364

c2 is the restriction of e2 to X ′2. The vectors c + u ∈ c + Hm|m are listed according365

to the order of the elements u ∈ Hm|m. Note that in this coset, every codeword366

has the same value in the pair of Hm|m-equivalent coordinates x, x′ if x′ /∈ supp(c),367

that is, in the first 2m−1 − 1 pairs from the left. In particular, regardless of the368

choice of X2 and X ′2, every codeword of the form c2 + c + u ∈ c2 + c + Hm|m with369

u ∈ {1, e1, e2, e2 +e1} (i.e., the first four vectors in Hm|m) has 2m−2 ones in the union370

of the first 2m−1−1 pairs, and every codeword of the form c2+c+u ∈ c2+c+Hm|m with371

u ∈ Hm|m \ {1, e1, e2, e2 + e1} has 2m−1 ones in the union of the first 2m−1 − 1 pairs.372

Let us focus on the latter vectors, i.e., the ones of the form c2 + c+u ∈ c2 + c+Hm|m373

with u ∈ Hm|m \ {1, e1, e2, e2 + e1}. Note that these are listed in consecutive pairs374

This manuscript is for review purposes only.
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of vectors that have opposite value in every coordinate from index 2m−1 to 2m − 1375

in both X and X ′. Thus in two such rows, the number of ones in those coordinates376

is 2m altogether, regardless of the choice of X2 and X ′2. According to the above377

observations, the number of ones in the first 2m−1 − 1 pairs of coordinates is also 2m378

in such a codeword, making the sum of weights of a consecutive pair of codewords379

2m+1. As the maximum weight in the code is 2m, both codewords have weight exactly380

2m. Thus for all u ∈ Hm|m \ {1, e1, e2, e2 + e1}, we have w(c2 + c+ u) = 2m.381

This gives rise to a system of linear equations over Q. Let us introduce pairs of
variables corresponding to the pairs of Hm|m-equivalent coordinates denoted by x1, x

′
1,

x2, x
′
2, · · · , x2m−1, x′2m−1 with x1, . . . , x2m−1 corresponding to coordinates in X, such

that xi = 1 if the i-th coordinate in X is in supp(c2) and zero otherwise, and x′i = 1
if the i-th coordinate in X ′ is in supp(c2) and zero otherwise. Let yi := xi − x′i. The
above observation that w(c2+c+u) = 2m for all u ∈ Hm|m\{1, e1, e2, e2+e1} translates
to linear equations, one for each u. We do not pay attention to the first 2m−1 − 1
pairs of variables, as the role of the corresponding coordinates are symmetrical, thus
it makes no difference where the ones in c2 are in those coordinates: we can redefine
X ∪ X ′ if need be so that the code 〈Hm|m, c〉 be unaffected. More importantly, we
are more interested in showing that there is a very limited number of possibilities for
the position of ones in the last 2m−1 pairs of coordinates. So we produce a system of
linear equations with variables xi, x

′
i where 2m−1 ≤ i ≤ 2m − 1. Note that in all such

positions i for all u ∈ Hm|m \ {1, e1, e2, e2 + e1}, the codeword c2 + c+u has opposite
values in the i-th coordinate of X and that of X ′. If the former coordinate is 1 and
the latter is 0, then the contribution of the i-th pair of coordinates to the weight of
c2 + c+ u is 1− xi + xi′ = 1− yi, and if the former coordinate is 0 and the latter is
1, then the contribution of the i-th pair of coordinates to the weight of c2 + c + u is
xi + 1−xi′ = 1 +yi. This can be summarized in the formula 1 + (−1)u[i]yi, where u[i]
is the i-th coordinate of u in X, which is the same as that in c + u in X. There are
altogether 2m−1 ones in pairs of coordinates with index i ≤ 2m−1−1 in c2 +c+u, and
the above expressions 1+(−1)u[i]yi contribute 2m−1 summands 1 in the left hand side
of the equation. The right hand side of the equation corresponding to u is 2m, as we
have seen above that w(c2 + c+ u) = 2m. Thus for all u ∈ Hm|m \ {1, e1, e2, e2 + e1},
we obtain the linear equation

2m−1∑
i=2m−1

(−1)u[i]yi = 0

by double counting. If we arrange the vector u into consecutive pairs, then inside382

every pair we obtain essentially the same equation: namely, one can be obtained from383

the other by multiplication with (−1), since two such consecutive vectors complement384

each other in the coordinates 2m−1 ≤ i ≤ 2m − 1. Thus we can erase every other385

equation. Then we obtain an Hadamard matrix with two rows missing as the matrix386

of coefficients: indeed, if we produce the matrix with entries (−1)u[i] for all u ∈ Hm|m,387

i.e., including the first four vectors as well, where 2m−1 ≤ i ≤ 2m−1, and delete every388

other row, then we obtain an Hadamard matrix. Hadamard matrices are invertible,389

thus the punctured matrix obtained by the omission of the first two rows has co-rank390

2. Clearly, all vectors with y2m−1 = · · · = y2m−1+2m−2−1 and y2m−1+2m−2 = · · · =391

y2m−1 satisfy the system of linear equations. As these conditions define a co-rank 2392

subspace in Q2m−1

, the conditions are equivalent to the system of linear equations.393

As the vector c2 has exactly 2m−2 ones in pairs of coordinates in X ∪X ′ with index394

2m−1 ≤ i ≤ 2m − 1, exactly one out of the following four possibilities occur:395
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• x2m−1 = · · · = x2m−1+2m−2−1 = 1 and the remaining xi, x
′
i are 1 for 2m−1 ≤396

i ≤ 2m − 1, or397

• x2m−1+2m−2 = · · · = x2m−1 = 1 and the remaining xi, x
′
i are 1 for 2m−1 ≤398

i ≤ 2m − 1, or399

• x′2m−1 = · · · = x′2m−1+2m−2−1 = 1 and the remaining xi, x
′
i are 1 for 2m−1 ≤400

i ≤ 2m − 1, or401

• x′2m−1+2m−2 = · · · = x′2m−1 = 1 and the remaining xi, x
′
i are 1 for 2m−1 ≤402

i ≤ 2m − 1, or403

By replacing c2 with its mirror image if necessary (also contained in 〈Hm|m, c2〉),404

that is, switching the roles of X2 and X ′2, we may assume that we are in one of405

the last two possibilities. Note that in particular | supp(c2) ∩ supp(c) ∩X ′| = 2m−2.406

After a suitable rearrangement of the symmetrical partition X ∪X ′ to X3 ∪X ′3 that407

does not affect the code 〈Hm|m, c〉 and only involves potential transposition of pairs408

of coordinates with index 1 ≤ i ≤ 2m−1 − 1, we obtain that c2 is the restriction of409

e2 to X ′3. But then 〈Hm|m, c, c2〉 together with the modified symmetrical partition410

X3 ∪ X ′3 is a code between Hm|m and Hm×m. By maximality of the dimension of411

C0, we have that there must be at least one more Hm|m-balanced vector c′ ∈ C0412

different from c. It cannot be the restriction of e2 or e2 + e1 to X ′: in that case,413

the support of c′ or c + c′ would intersect the same pairs of equivalent coordinates414

nontrivially as the support of c2, which was earlier shown to be impossible (in the415

above arguments, c was an arbitrary Hm|m-balanced vector in C0). Without loss of416

generality, c′ is the restriction of e3 to X ′. In particular, the transposition of pairs417

of coordinates with index 1 ≤ i ≤ 2m−1 − 1 to obtain the new symmetrical partition418

X3 ∪X ′3 could not have involved pairs with indices 2m−2 ≤ i ≤ 2m−1− 1, as the same419

argument as we have applied for c yields that | supp(c2)∩supp(c′)∩X ′| = 2m−2. Then420

we can again rearrange X3 ∪X ′3 to some X4 ∪X ′4 by transposing pairs with indices421

1 ≤ i ≤ 2m−2− 1, and obtain that c2 is the restriction of e2 to X ′4. Again, this means422

that 〈Hm|m, c
′, c, c2〉 is a good candidate for C0, thus C0 itself must contain at least423

one more Hm|m-balanced vector c′′ ∈ C0 that is the restriction of e3 to X ′, without424

loss of generality. By carrying on in the same fashion, after m steps, we obtain a425

symmetrical partition Xm+2∪X ′m+2 such that 〈Hm|m, c
(m−1), . . . , c′, c, c2〉 is between426

Hm|m and Hm×m with respect to Xm+2 ∪X ′m+2, and this has the same dimension as427

Hm×m, which is the biggest dimension that C0 can possibly have. Thus C0 = Hm×m428

(with the symmetrical partition Xm+2 ∪X ′m+2), and c2 ∈ C0, a contradiction.429

Now we focus on the k > m case. According to Proposition 3.4, we only need to430

show that there are no unknown examples for 2 ≤ m, k = m+ 1.431

Lemma 4.2. Let 2 ≤ m and let Hm+1|m ≤ C 6≤ H(m+1)×m (with respect to432

any symmetrical partition) be a minimal example (cf. Definition 3.3 and item 3. of433

Proposition 3.4). Then C cannot be extended to a code C ′ with the same length n and434

maximum distance D.435

Proof. Let C0 denote the copy of Hm+1|m in C. Let C = 〈C0, c〉 with some436

codeword c that is C0-balanced with respect to the symmetrical partition X ∪Y ∪X ′.437

Let c′ ∈ C ′ \C; we may assume that C ′ = 〈C, c′〉. Then 〈C0, c
′〉 is a minimal example,438

thus either C0 ≤ 〈C0, c
′〉 ≤ H(m+1)×m with respect to some symmetrical partition439

(potentially different from X ∪ Y ∪X ′), or 〈C0, c
′〉 is as in item 3. of Proposition 3.4.440

Assume first that c′ ∈ H(m+1)×m with respect to some symmetrical partition. We441

may assume that supp(c′) ∩ Y = ∅, and then w(c′) = 2m−1.442

There are four codewords u ∈ C \C0 with weight 2m, and all four has 2m−2 ones443

in Y . Thus w(c′ + u + 1Y ) = w(c′ + u) + |Y | − 2 · 2m−2 = w(c′ + u) + 2m−1 ≤ D,444
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which makes w(c′+u) ≤ D− 2m−1 = w(u). Clearly, if u ∈ C \C0 has weight D, then445

w(c′ + u) ≤ w(u). Thus w(c′ + u) ≤ w(u) for all u ∈ C \ C0, and
∑

u∈C\C0

w(c′ + u) =446 ∑
u∈C\C0

w(u). Hence, w(c′ + u) = w(u) for all u ∈ C \ C0, and consequently, the447

support of any u ∈ C \ C0 cuts the support of c′ in half.448

This yields a system of linear equations over Q. Introduce pairs of variables449

corresponding to the pairs of C0-equivalent coordinates denoted by x1, x
′
1, x2, x

′
2,450

· · · , x2m−1, x′2m−1 with x1, . . . , x2m−1 corresponding to coordinates in X, such that451

xi = 1 if the i-th coordinate in X is in supp(c′) and zero otherwise, and x′i = 1 if the452

i-th coordinate in X ′ is in supp(c′) and zero otherwise. Then each u ∈ C \C0 yields a453

linear equation by equating the sum of variables corresponding to supp(u) in X with454
w(c′)

2 = 2m−1.455

Given an 1 ≤ i ≤ 2m − 1, let us add the linear equations corresponding to the456

2m codewords u ∈ C \ C0 such that the value of u is one in the i-th coordinate of457

X, and subtract the remaining 2m equations. If we did this with codewords in C0,458

then xi and x′i would have coefficient 2m and all the remaining variables would have459

coefficient 0, thus yielding the equation 2m · (xi + x′i) = 0. As C \ C0 = c+ C0, thus460

zeros and ones are flipped in the support of c, the equation obtained is of the form461

2m · (xi +x′i) = 0 if i′ is not in the support of c, and it is of the form 2m · (xi−x′i) = 0462

if i′ is in the support of c. Thus xi + x′i = 0, or equivalently xi = x′i = 0 for all the i463

such that i′ is not in the support of c, and xi = x′i for all the i such that i′ is in the464

support of c. As c′ has nonzero coordinates in X ∪ X ′, the latter possibility occurs465

with some i such that xi = x′i = 1. But then there are C0-equivalent coordinates466

where c′ is one, a contradiction.467

Hence, 〈C0, c
′〉 is as in item 3. of Proposition 3.4 for all c′ ∈ C ′ \C0. That is, if we468

partition C ′ into C0-cosets C ′ = C0∪K∪K ′∪K ′′, then there are C0-balanced vectors469

each of c ∈ K, c′ ∈ K ′ and c′′ ∈ K ′′ (with respect to possibly different symmetrical470

partitions), where c and c′ have already been chosen along with the symmetrical471

partition X ∪ Y ∪X ′ corresponding to c. Let a, b ∈ C0 be as in Definition 2.5 for c.472

All nonzero codewords in C ′ have weight 2m or 3 · 2m−1. The four codewords in473

each of K,K ′ and K ′′ with weight 2m are exactly those u with | supp(u)∩Y | = 2m−2.474

In each of K,K ′ and K ′′, these four sets of the form supp(u)∩Y partition Y . Given the475

intersection of two maximal weight codewords in Y as in Definition 2.5, if we produce476

the C0-balanced vector and its C0-translates with weight 2m, the partition obtained477

either coincides with the above one, or the two partitions bisect each other (i.e.,478

their intersection consists of eight classes with half the size of the original classes).479

Clearly, these intersections bisect each other, as otherwise there were two vectors480

u ∈ K,u′ ∈ K ′ with the same support inside Y , and then u + u′ ∈ K ′′ would be all481

zero in Y , a contradiction. In particular, 3 ≤ m. Moreover, we cannot choose the482

same pair u, v to define c′, but we may assume that supp(c)∩Y and supp(c′)∩Y cut483

each other in half, and in particular that c′′ = c+ c′. However we pick a pair u′, v′ to484

define c′ so that this condition is met, we obtain equivalent binary linear codes.485

So we are going to work in a particular example, for the sake of transparency.486

First of all, let us represent C0
∼= Hm+1|m in the standard way. The illustration below487

is for m = 3.488
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1Y
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 a
0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 b
0 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1
0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 b′

1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0
1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0
1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1 0
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 c
0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0
0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0
0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1
0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0
1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1
1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1
1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1
1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1 0 1 1 0

489

C0

K

X Y X ′

2m−1 ≤ i ≤ 2m − 1

sp
ecial

sp
ecial

490

Hence, we produce the generating matrix as in Section 2 (see M3|2), by writing491

the binary representation of all numbers from 1 to 2m+1 − 1 in columns, and then492

by repeating the first 2m − 1 columns. Let e1, . . . , em+1 denote the rows of this493

matrix from top to bottom; this is the standard basis of the code. Then we sort494

the codewords
m+1∑
i=1

εiei, εi ∈ {0, 1}, so that the sequence of coefficients ε1 · · · εm+1495

corresponding to the r-tk codeword is the binary representation of r (extended by496

zeros on the right) for r = 0, . . . , 2m+1 − 1. That is, the list of codewords is 0, e1 =497

1Y , e2, e2 + e1, e3, . . . , em+1 + · · · + e1. Let a = a′ = e2, b = e3, b
′ = e4 (note that498

this is possible as 3 ≤ m). So 〈C0, c〉 is uniquely determined (together with the fixed499

symmetrical partition of coordinates), and so are the vectors a′, b′ in C0 to define c′.500

The difficulty in showing that this cannot yield an appropriate code is that there are501

2m possibilities for the symmetrical partition corresponding to c′.502

Considering the way we represented the code C0, note that the restriction of503
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14 ANDRÁS PONGRÁCZ

codewords to Y have an alternating nature: supp(u2k−1) ∩ Y = Y \ (supp(u2k) ∩ Y ).504

Inside X (and symmetrically inside X ′), the restrictions to supp(a) ∩ X is a list of505

identical pairs of vectors, and the restrictions to (supp(b) \ supp(a)) ∩ X is a list of506

identical quartets of vectors. Since supp(c) ∩ X = ∅, the same holds for the coset507

K (whose elements c + u are listed in the same order as the vectors u ∈ C0 are).508

That is, the list can be partitioned into consecutive quartets with the same restriction509

to (supp(b) \ supp(a)) ∩ X, and each quartet consists of two consecutive pairs with510

the same restriction to supp(a) ∩ X. It is easy to see that the eight codewords in511

c+ u ∈ K such that supp(c+ c′+ u)∩ Y has size 2m−2 or 3 · 2m−1, which are exactly512

those codewords in K ′′ whose weight in X ∪ X ′ is 3 · 2m−2 rather than 2m, is the513

union of two such quartets. Thus the indices of these eight vectors are independent514

from the choice of the symmetrical partition corresponding to c′, as we can find them515

by only studying the restriction of vectors to Y .516

Introduce pairs of variables corresponding to the pairs of C0-equivalent coordi-517

nates denoted by x1, x
′
1, x2, x

′
2, · · · , x2m−1, x′2m−1 with x1, . . . , x2m−1 corresponding518

to coordinates in X, such that xi = 1 if the i-th coordinate in X is in supp(c′) and519

zero otherwise, and x′i = 1 if the i-th coordinate in X ′ is in supp(c′) and zero oth-520

erwise. As a first step, we are going to simplify the notations, so that it is enough521

to focus on the variables x1, . . . , x2m−1. Fist of all, if 1 ≤ i ≤ 2m − 1 is such that522

both supp(a) ∪ supp(b) and supp(a) ∪ supp(b′) are one in the i-th coordinate of X ′,523

then xi + x′i = 1 and every c + u ∈ K has opposite values in the i-th coordinate524

in X and the i-th coordinate of X ′, respectively. Note that this applies exactly to525

3 · 2m−3 ≤ i ≤ 2m − 1. Thus if the i-th coordinate of c+ u in X is u[i] = 0, then the526

sum of the i-th coordinates in X and in X ′ of c′ + c + u ∈ K ′′ (as rational numbers527

rather than elements of Z2) is528

• 0 if xi = 0, and529

• 2 if xi = 1.530

Similarly, if the i-th coordinate of c + u in X is u[i] = 1, then the sum of the531

i-th coordinates in X and in X ′ of c′ + c+ u ∈ K ′′ (as rational numbers rather than532

elements of Z2) is533

• 2 if xi = 0, and534

• 0 if xi = 1.535

Hence, the sum of the i-th coordinates in X and in X ′ of c′ + c + u ∈ K ′′ is536

2u[i] + 2(−1)u[i] · xi for all 3 · 2m−3 ≤ i ≤ 2m − 1. In case of the remaining values537

1 ≤ i ≤ 3 · 2m−3, the choice of the symmetrical partition in the definition of c′ does538

not affect the sum of the i-th coordinates in X and in X ′ of c′ + c+ u ∈ K ′′. Let us539

denote this sum by s(u, i) for 1 ≤ i ≤ 3 · 2m−3 − 1.540

Then each codeword c + u ∈ K yields a linear equation. Namely, if c + u is541

one of the eight codewords with either 2m−2 or 3 · 2m−2 ones in Y , then we have542

3·2m−3−1∑
i=1

s(u, i)+
2m−1∑

i=3·2m−3

(2u[i]+2(−1)u[i] ·xi) = 3 ·2m−2, and in case of the rest of the543

codewords in K, the equation is
3·2m−3−1∑

i=1

s(u, i) +
2m−1∑

i=3·2m−3

(2u[i] + 2(−1)u[i] ·xi) = 2m.544

After rearranging the equations, we obtain545

•
2m−1∑

i=3·2m−3

2(−1)u[i] · xi = 3 · 2m−2 −

(
3·2m−3−1∑

i=1

s(u, i) +
2m−1∑

i=3·2m−3

2u[i]

)
in case546

of the eight special vectors u, and547
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•
2m−1∑

i=3·2m−3

2(−1)u[i] · xi = 2m −

(
3·2m−3−1∑

i=1

s(u, i) +
2m−1∑

i=3·2m−3

2u[i]

)
for the rest.548

In each quartet, the identical restriction to X yield identical equations. So we549

obtain two different linear equation from each quartet.550

We study the equations corresponding to the first quartet of vectors in K sep-551

arately, as they are essentially different from the rest. The first equation (obtained552

from the first two vectors in K) is
2m−1∑

i=3·2m−3

xi = 2m−1, and the second equation is553

2m−1−1∑
i=3·2m−3

xi −
2m−1∑

i=·2m−1

xi = 2m−1 = −2m−1. By adding up these two linear equations,554

we obtain
2m−1−1∑
i=3·2m−3

xi = 0. As all the xi are non-negative rational numbers, this is555

only possible if xi = 0 for all 3 · 2m−3 ≤ i ≤ 2m−1 − 1. Thus it is enough to focus on556

the variables xi with 2m−1 ≤ i ≤ 2m − 1, and the equations557

•
2m−1∑

i=2m−1

(−1)u[i] ·xi = 3 · 2m−3−

(
3·2m−3−1∑

i=1

s(u,i)
2 +

2m−1∑
i=3·2m−3

u[i]

)
in case of the558

eight special vectors u, and559

•
2m−1∑

i=2m−1

(−1)u[i] · xi = 2m−1 −

(
3·2m−3−1∑

i=1

s(u,i)
2 +

2m−1∑
i=3·2m−3

u[i]

)
for the rest.560

For each remaining quartet, let us subtract the first equation from the second.561

Fortunately, the right sides of the two equations are equal: in all quartets (other than562

the first), the number of ones in X in the indices 3 · 2m−2 ≤ i ≤ 2m− 1 is the same in563

all four vectors, and the restriction of the vectors to the first 1 ≤ i ≤ 2m−1 coordinates564

in X is also the same, making s(u, i) independent from u (within a quartet). Thus565

the right hand side of the difference of equations is 0. On the left hand side, we have566

all the xi with opposite sign in the two equations, as there are opposite coordinates in567

the region 2m−1 ≤ i ≤ 2m− 1 in X in the two different vectors of each quartet. After568

subtracting the two equations and dividing by 2, we obtain the same coefficients as569

if we simply subtracted the restrictions of the two vectors in K to the coordinates570

2m−1 ≤ i ≤ 2m− 1 in X (where the 0-1 vectors are considered as rational vectors). If571

we do this for all quartets, including the first, then the coefficients in the 2m equations572

obtained form an Hadamard matrix. On the right hand side, we have 2m−2 in the first573

equation, and 0 everywhere else. Since Hadamard matrices are invertible, this system574

of linear equations has a unique solution in Q2m−1

. As x2m−1 = · · · = x2m−1 = 1
2575

is obviously a solution, this is the unique solution of the system of linear equations576

obtained. However, each xi should be 0 or 1, a contradiction.577

The proof of the main theorem is now complete.578

Proof of Theorem 2.6. By Theorem 2.2, Proposition 3.4 and Lemmas 4.1, 4.2.579

5. Further comments. Although our sole purpose was to (nearly) minimize580

the maximum distance of a binary linear code, the codes obtained turn out to have581

a relatively large minimum distance. According to the Plotkin bound [15], a binary582

linear code C with length n and minimum distance d such that n = 2d has dimension583

dimC ≤ 1+blog2 nc. This upper bound is attained by the codes C = 〈Hm|m, c〉, where584

c is the Hm|m-balanced vector that is all one in X ′, given a symmetrical partition585

X ∪ X ′ of the coordinates. Indeed, dimC = m + 1, d = 2m − 1 and n = 2d =586

2m+1−2, thus blog2 nc = m. Moreover, these codes also meet the Griesmer bound [8]:587
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16 ANDRÁS PONGRÁCZ

m∑
i=0

⌈
2m−1
2i

⌉
= 2m − 1 +

m∑
i=1

2m−i = 2m − 1 + 2m − 1 = n. We note that the Griesmer588

bound is also attained by the code C = 〈Hm|m, c, 1〉 where 1 is the all one vector. In589

that case, dimC = m+ 1 and the minimum distance is d = 2m − 2.590

Again, by the Griesmer bound, a binary linear code of length n = 10 and di-591

mension dimC = 4 cannot have minimum distance d ≥ 5. The optimal minimum592

distance d = 4 is attained by C = 〈H3|2, c〉 with any H3|2-compatible c. In fact, we593

can improve the dimension by once again extend the code by the all one vector 1,594

to obtain a [10, 5, 4]2 code. This example cannot be further improved in the sense595

that there is no [10, 6, 4]2 code. According to [22], there are exactly four inequivalent596

binary linear codes with parameters [10, 5, 4]2; the above example C is Code 2 in that597

document. It is noted in [22] that C is not self-dual. However, the dual of C has598

the same weight distribution as C, and thus - as the remaining three examples have599

different weight distribution - we have C ∼= C⊥. It is also mentioned in [22] that600

according to the Assmus-Mattson theorem [9, Theorem 8.4.2], the supports of the601

weight 4 codewords in C form a 2− (10, 4, 2) block design.602

The concepts of two- and three-weight codes are getting more and more popular603

recently, see [5, 11, 12, 23]. Every code of the form C = 〈Hm|m, c〉, where c is an604

Hm|m-balanced vector, is a two-weight code. According to Lemma 3.2, every code605

of the form C = 〈Hm+1|m, c〉, where c is an Hm+1|m-balanced vector, is also a two-606

weight code. Furthermore, for m = 2, the latter example can be extended by the all607

one vector to obtain a three-weight binary linear code. For all 1 ≤ m < k, Hk|m is a608

two-weight code, and the trivial examples Hk|m < C ≤ Hk×m are three-weight codes.609

610
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[16] A. Pongrácz, Extremal solutions of an inequality concerning supports of permutation groups640

This manuscript is for review purposes only.



BINARY CODES WITH SMALL WEIGHTS 17

and punctured Hadamard codes. submitted, 2018.641
[17] C. Ronse, On permutation groups of prime power order, Math. Z., 173 (1980), pp. 211–215.642
[18] R. Roth, Introduction to coding theory, Cambridge Universty Press, 2006.643
[19] J. Saxl and A. Shalev, The fixity of permutation groups, J. Algebra, 174 (1995), pp. 1122–644

1140.645
[20] A. Shalev, On the fixity of linear groups, Proc. Lond. Math. Soc., 68 (1994), pp. 265–293.646
[21] J. J. Sylvester, Thoughts on inverse orthogonal matrices, simultaneous sign successions, and647

tessellated pavements in two or more colours, with applications to newton’s rule, ornamen-648
tal tile-work, and the theory of numbers, Philosophical Magazine, 34 (1867), pp. 461–475.649

[22] H. N. Ward, The four [10,5,4] binary codes. The manuscript can be found on the homepage650
http://www.people.virginia.edu/˜hnw/Four104.pdf.651

[23] Z. Zhou, N. Li, C. Fan, and T. Helleseth, Linear codes with two or three weights from652
quadratic Bent functions, Des. Codes Cryptogr., 81 (2016), pp. 283–295.653

This manuscript is for review purposes only.


	Introduction
	Constructions and the main result
	Correctness of the constructions and minimal examples
	The general case
	Further comments
	References

