BINARY LINEAR CODES WITH NEAR-EXTREMAL MAXIMUM
DISTANCE*

ANDRAS PONGRACZ'

Abstract. Let C denote a binary linear code with length n all of whose coordinates are essential,
i.e., for each coordinate there is a codeword that is not zero in that position. Then the maximum
distance D is strictly bigger than n/2, and the extremum D = (n + 1)/2 is attained exactly by
punctured Hadamard codes. In this paper, we classify binary linear codes with D = n/2 4+ 1. All
of these codes can be produced from punctured Hadamard codes in one of essentially three different
ways, each having a transparent description.
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1. Introduction. The present paper is a follow-up to [16], where binary linear
codes with near extremal maximum distance were analyzed to obtain classification
results for an extremal problem about finite permutation groups. More precisely, the
size S of the support of a finite permutation group G is at most 2s—2, where s denotes
the maximum degree of elements in the permutation group G, and a description was
given to those G such that S is 2s — 2,2s — 3 or 2s — 4. The dual notion u(G),
the minimum degree of non-identity elements, is also a central notion in permutation
group theory. It was particularly well-studied for primitive permutation groups, see
[13] for a recent improvement on the lower bound. Often the results are phrased for
the fixity S — u(G) of G, see [17, 19, 20].

The main direct motivation is a recent paper [1]. It was shown that an upper
estimation to S in terms of s can be applied to obtain results about the asymp-
totic probability that a finite structure over a given finite relational language has an
automorphism group isomorphic to some permutation group H, provided that the au-
tomorphism group contains a given permutation group G. It follows that only finitely
many H occurs with positive asymptotic probability, and that the probability for any
such H is a rational number. This generalizes the well-known theorem that, given a
finite relational vocabulary, asymptotically almost all finite structures are rigid; see
[4, 6, 7, 10] for further details. In order to compute the family of possible H corre-
sponding to a given G, it is crucial to refine the upper bound on S in terms of s, and
study the near extremal cases.

In [16] the cases S = 25—2 and S = 2s—3 were fully characterized. The proof relies
on a refinement of Burnside’s lemma [14], and mainly on the following classification
of punctured Hadamard codes up to equivalence in terms of the maximum distance
of the code. We say that a coordinate is essential in a code if not all codewords are
zero in that position.
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2 ANDRAS PONGRACZ

THEOREM 1.1. Let n € N and assume that a binary linear code C' of length n has
maximum distance D < "T“ Assume that all coordinates of the code are essential.
Then D = "T'H = 25=1 for some k > 1, and the code is equivalent to the punctured
Hadamard code Hy, with parameters [2F — 1,k 2k~ 1];.

The case S = 2s — 4 hinges on a partial result about binary linear codes with
length n and maximum distance D = % 41 all of whose coordinates are essential (see
Theorem 2.2). Some further preliminary results were shown in [16] about codes with
these properties, and the description to the above extremal problem S = 2s — 4 was
reduced to a classification of such codes. The main contribution of the present paper
is the complete description of such codes, see Theorem 2.6. Many of these codes are
two- or three-weight binary linear codes (and give rise to further constructions like
that), a concept actively studied lately, see [5, 11, 12, 23]. We recommend [3, 18] for
an introduction to linear codes. An upper bound on the maximum distance is in [2].

2. Constructions and the main result. We recall a construction from [16].

DEFINITION 2.1. Let Hy, be the [28 — 1,k, 2% 1]y punctured Hadamard code, and
let m < k. We define Hyxm, := Hyp X Hy,, i.e., producing all concatenations of
codewords in Hy and Hy,. The code Hy|,, can be obtained from Hj, by picking 2™ —1
coordinates such that the restriction of Hy to those is isomorphic to H,,, and repeating
those coordinates simultaneously. Any code C with Hy,, < C < Hgxm has length
n = 2F 4+ 2™ — 2 and mazimum distance D = 2k=1 4 om—1 = 5 + 1, and moreover,
all coordinates of C' are essential.

For example, a generating matrix of Hgp is M3j2 below.

0001111000
Mzp=10 1 1.0 0 1 1 0 1 1
1 01 0101101
We also provide a generating matrix Ms3xo of H3xs.
0001111000
0110011000
Mzo=1]11 0 1 0 1 0 1 0 0 O
0 00O O0OO0OO0OTO0OT11
0000 O0OO0OO0OT1TQO01

It was noted in [16] that the list of codes in Definition 2.1 is not exhaustive.
However, the following positive result was shown in [16].

THEOREM 2.2. Let C be a binary linear code all of whose coordinates are essential
with length n € N and marimum distance D = 5 + 1. Then there erist 1 <m < k
such that n = 2F +2m — 2 D =2F-1 y om=1 gpnd Hym < C.

To obtain a full classification of codes with D = 5 + 1, we present some further
constructions.

DEFINITION 2.3. As usual, we say that two coordinates i,j are equivalent with
respect to a code C, if for all codewords ¢ € C' we have ¢; = c¢j. The equivalence
classes of Hy,|m are pairs. We say that a partition X UX' of the coordinates of Hy,y,
is symmetrical if X intersects all these pairs in exactly one element. More generally,
for any k > m we can talk about symmetrical partitions X UY U X’ of the set of
coordinates of Hyjm,: Y consists of the non-repeated coordinates, and X U X' is a
symmetrical partition of the code restricted to X UX' (which is isomorphic to Hy, |, ).

This manuscript is for review purposes only.
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BINARY CODES WITH SMALL WEIGHTS 3

Note that there are 2 symmetrical partitions of the coordinates of Hyj,,. In
Definition 2.1 we somewhat loosely put Hyj, < C < Hgxm. In order to represent
the codes Hy, and Hpym, we need to fix a symmetrical partition X UY U X’ of the
set of coordinates of Hy,,,, so that the supports of Hy and H,, are specified, namely
these are X UY and X', respectively. This problem is going to cause some difficulties
later on. E.g., if we are looking for nontrivial examples for codes C with Hy,, < C
and D = § + 1, i.e., not of the form Hy,, < C < Hyypm, then we need to make sure
that such a containment does not hold with respect to any symmetrical partition.

DEFINITION 2.4. Let X U X' be a symmetrical partition of the coordinates of
Hoppm- We say that a vector ¢ is H,y,|m-balanced (with respect to the partition X UX'),
if there exist 1 < £ < m and { independent codewords ci,...,c¢ € Hp)p, such that

¢
supp(c) = X' N | supp(c;). Later on (¢f. Lemmas 3.1 and 3.5), we are going to see
i=1

that these are exactly the vectors such that (H,y,|p,, c) has the same maximum distance
D = 2™ as Hy|pm- Thus it is natural for a code C' with Hy,)y, < C < Hyyxm to say
that a vector ¢ be C-balanced if (C,c) has mazimum distance D = 2™,

Clearly, C' -balanced vectors for H,,,, < C < Hpxm are H,,,,-balanced, thus
they are as described in Definition 2.4. It is not hard to find such vectors for a given C,
e.g., by solving a system of linear equations over Q. We provide a non-trivial example.
The following matrix is a generating matrix of a code C' with Hg3 < C < H3xs.

0 0011110001111
011001101 100T11
Mygs=|11 0 1 0 1 01 1010101
0 0000 O0O0O0OO0OO0OO0ODTI1TT1T171
0 00o000OO0OO0OO0OT1T1O0O0T1T1

Then (0,0,0,1,0,1,0,1,1,0,0,0,0,0) is a C-balanced vector.
Finally, we present an infinite family of codes of the form (H,, 41|, c).

DEFINITION 2.5. Let X UY U X' be a symmetrical partition of the coordinates
of Hpyi1|m- Let a,b € Hy, i1}y, be two codewords such that supp(a) N supp(b) NY is
nonempty and the restriction of a and b to X are different nonzero vectors. Let ¢ be the
vector whose support is supp(c) = ((supp(a)Usupp(b))NX")U(supp(a)Nsupp(b)NY).
Then we say that ¢ is Hy, {1)m-balanced (with respect to the partition X UY U X').

As an example, the second and third rows in Mj, can be chosen as a and b. (Here,
X and X' are the set of first three and last three coordinates, respectively.) Then the
matrix is extended by the row (0,0,0,0,0,0,1,1,1,1). Note that as the construction
requires two different nonzero vectors in Hy,, such H,,1},,-balanced vectors exist iff
2 < 'm. Also note that the definition of H,,|,,- and H,,1|,,-balanced vectors depend
on the symmetrical partition of the coordinates, an issue that causes some difficulties
in proofs to come. We are now ready to state the main theorem of the paper.

THEOREM 2.6. Let C be a binary linear code all of whose coordinates are essential
with length n € N and mazimum distance D. Then the following are equivalent.

1. The equation D = 5 + 1 holds.

2. For some 1 < m < k we have either
(a) Hyjm < C < Hisen (with respect to some symmetrical partition), or
(b) k=m, C = (Co,c) with Hp,jp, < Co < Hyyxm and a Co-balanced c not

in Hyywm (with respect to any symmetrical partition), or

() 2<m, k=m+1, C= (Hpiim,0), and ¢ is Hp,1)m-balanced.

This manuscript is for review purposes only.
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4 ANDRAS PONGRACZ

3. Correctness of the constructions and minimal examples. We show the
implication 2. = 1. in Theorem 2.6 in the next two lemmas (3.1 and 3.2).

LemMmA 3.1. Let m € N.

L. Let ¢ be an H,,|m,-balanced vector. Then C = (Hy,|m,c) has the same length
and mazximum distance as Hy,|,,, (and all coordinates are essential in C).

2. Let X U X' be a symmetrical partition of the coordinates of H,|,,. Then
a vector ¢ such that supp(c) N X' # 0 is H | -balanced with respect to the
partition X U X', iff supp(c) = X' or the restriction of Hy, |y, to X'\ supp(c)
is equivalent to a punctured Hadamard code. In particular, there exists a
0 < m' < m—1 such that for all codewords ¢ € (Hyjm,¢) \ Hpjm, the
number of H,, |, -equivalent pairs of coordinates (x,x") such that the value of

. . . . /
c inx and 2’ coincides is 2™ — 1.

Proof. We use the notations of Definition 2.4.

For item 1. we need to show that for all u € H,,|,,, we have w(c+u) < 2™. This
clearly holds for u = 0. Assume that u € H,,,, is not zero. Then u is a concatenation
aa’, where a and a’ are identical maximum weight codewords in the two copies of H,,.
If supp(a’) C supp(c), then w(c+ u) < w(u) = 2™.

Hence, assume that supp(a’) € supp(c). In particular, /£ < m — 1. By using

¢
induction on ¢, it is easy to show that supp(a’) \ supp(c) = supp(a’) \ U supp(c;) has
i=1

size 2™~ 17 (we note that this fails for £ = m). Consequently, |supp(a’) Nsupp(c)| is
2m—1 _9m=1-f Tt is also clear by using induction on £ that w(c) = 2™ —2™~*. Thus
’LU(C+ U) — 2m71 4 ((2m . 2m7[) 4 2m71 —_9. (2m71 o 2m717£)) — 9m.

The only if part in item 2. is trivial by induction on ¢, as the cancellation of the
support of a nonzero codeword from a punctured Hadamard code H,. yields H,_;.

We use induction on m for the if part. It clearly holds if supp(c) = X’ by the
definition of an H,,|,,-balanced vector, hence we may assume that supp(c) # X'.
In particular, the initial step m = 1 is trivial. Hence, assume that m > 2 and the
assertion holds for m — 1.

Let H, be the punctured Hadamard code obtained as the restriction of H,,,,
to X’ \ supp(c). Then 1 < r < m — 1 by assumption. Restriction of codewords
to X'\ supp(c) is a homomorphism, and as every coordinate of H,,,, is essential,
the kernel of this homomorphism is nontrivial. Thus there is a nonzero codeword
c1 € Hp,y, whose support is disjoint from X'\ supp(c). Let us puncture the code
H,,|mm by omitting supp(ci). Then we obtain the code H,,_ij,,—1 with the same
properties (the punctured version of ¢ takes the role of ¢), and then we are done by
the induction hypothesis. 0

We denote the characteristic vector of Y by 1y. Note that 1y € Hyyq1jm-

LEMMA 3.2.  Let 2 < m and let a,b,c € Hp, 1), as in Definition 2.5. Then
w(c) =w(c+a) =w(c+b) =wlc+a+b+1ly)=2", and w(c+u) =3-2m1 for all
other codewords u € Hy, 1. In particular, the code C' = <Hm+1\m7 ) has the same
length and mazimum distance as Hy,q1jm (and all coordinates are essential in C').

Proof. It is easy to see that if u € (a,b,ly), then we have w(c 4+ u) = 2™ if
u € {0,a,b,a+b+1y}, and w(c+u) = 3-2™1 for the other four vectors u € (a, b, 1y ).
So assume that u € Hy,y1)m \ (@, b, 1y). Then both supp(c) N X’ and supp(c) Y are
cut in half by supp(u). As w(c) = 2™, supp(c)NX is empty, | supp(u)N(X'UY)| = 2™

and | supp(u)NX| = 2m~1, we have w(c4u) = 2™~ 14 (2m42m—2.1.2m) = 3.2m~1 0

This manuscript is for review purposes only.
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BINARY CODES WITH SMALL WEIGHTS 5

Now we turn our attention to the implication 1. = 2. in Theorem 2.6. According
to Theorem 2.2, all codes C' that satisfy item 1. of Theorem 2.6 contain some Hp|,,.
It is a natural idea to first understand the minimal examples.

DEFINITION 3.3. Throughout the rest of the paper, we call a binary linear code
C with Hyy, < C for some 1 < m < k (making every coordinate of C essential
automatically) a minimal example, if |C : Hypy| = 2 and D = 5 + 1, where n =
2k 4 2™ — 2 s the length of C and D = 2F=1 4 2™~ js the mazimum distance of C.
Recall that the union of singleton Hy,, equivalence classes is denoted by Y.

The next proposition classifies minimal examples as a special case of Theorem 2.6.

PROPOSITION 3.4. Let 1 < m < k and let Hy,, < C be a minimal example (cf.
Definition 3.3). Then either
o Hyjp < C < Hpxm (with respect to some symmetrical partition), or
o k=m, C = (Hpm,c) with some H,|p,-balanced c not in Hy, s (with respect
to any symmetrical partition), or
e 2<m, k=m+1, C= (Hpii|m;C), and c is Hy, 1|y -balanced.

For the sake of transparency, we break the proof of Proposition 3.4 down into two
cases: k = m and k > m. If k = m, then the first two items can be merged: note
that vectors in Hy,xm are Hy,n,-balanced (with £ =1 in Definition 2.4).

LEmMMA 3.5. Let m € N and let H,,),, < C be a minimal evample (cf. Defini-
tion 3.3). Then C = (Hp|p, c) for some Hy,m,-balanced vector c.

Proof. Assume that a codeword ¢ € C'\ H,,|,, is one in a pair of repeated coordi-
nates. We can pick c1,...,¢n—1 € Hp,p, so that their supports cover all coordinates
except for that pair. Thus all coordinates of C' = (¢1,...,¢m—1,¢) are essential, and
dim ¢’ = m. Clearly, the length of C' is n = 2™*! — 2 and its maximum distance is
D = 2™, Hence, according to Theorem 2.2, C’ is equivalent to H - In particular,
w(c) = D > §. As the average weight in C'\ H,,,, is §, this cannot hold for all
c € C\ Hym. Thus we can pick a ¢ € C'\ H,,, that is zero in at least one posi-
tion within each pair of repeated coordinates. Then there is a symmetrical partition
X U X’ such that supp(c) C X’. Let Z := X’ \ supp(c) and r = |Z|. If r = 0 then c
is indeed an H,,|,,,-balanced vector (with £ = m in Definition 2.4).

Assume that 7 > 1, and pick a codeword ¢ € Hyp - If ¢ has t ones in Z, then
wle+d)=2m"t4t4(2m—1—r)— (2™ 1 —¢)) =2t — (r+1)+2™ < D = 2™, thus
t < % By Theorem 1.1, the restriction of H,,|,, to Z is equivalent to the punctured
Hadamard code H,, and the assertion follows from Lemma 3.1. O

The rest of this section is all about minimal examples with k > m.

LEMMA 3.6. Let 1 < m < k and let Hy,,, < C be a minimal example (cf. Def-
inition 3.3). Assume that there is a symmetrical partition X UY U X' of the co-
ordinates of Hy)y, such that for some ¢ € C'\ Hy,, we have supp(c) € X'. Then
Hyjm < C < Hyx (with respect to some symmetrical partition,).

Proof. We need to show that the restriction ¢y of ¢ to X’ is in the punctured
Hadamard code H,, obtained as the restriction of H,, 1, to X'. Assuming this is
not the case, by Theorem 1.1 the code (cg, H,,) contains a codeword that has bigger
weight than 2™~!. This codeword cannot be cg, as otherwise w(c + ¢’) > D for some
nonzero ¢’ € Hy,, with supp(c’) C Y, as all such ¢’ have weight 2°~!. Thus such a
codeword in H,, is obtained as the restriction of ¢ + ¢ with some maximum weight
¢ € Hy)m,- But then the weight of the restriction of ¢/, and also of ¢ + ¢’ to X UY is
D —2m~1 making w(c+ ¢') > D, a contradiction. d

This manuscript is for review purposes only.
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6 ANDRAS PONGRACZ

LEMMA 3.7. Let 1 <m < k and let Hyj,,, < C be a minimal example (cf. Defini-
tion 3.3). Assume that there is a codeword ¢ € C'\ Hy,,, such that supp(c) NY = (.
Then Hyp, < C < Hpxm (with respect to some symmetrical partition).

Proof. We have w(c) < 2m~1 as otherwise w(c + ¢’) > D for some nonzero
¢ € Hy)y, with supp(c’) C Y. If we puncture the code by omitting Y, then we obtain
H - The punctured version cq of ¢ has the same weight as ¢, and thus co ¢ Hypr,-

If the maximum distance of (H,,|m, co) is larger than 2™, then there is a nonzero
¢ € Hy)y, such that |supp(c+ ¢) \ Y| > 2™. The support of ¢’ intersects Y in
2k=1 _ 9m=1 coordinates, thus w(c + ¢’) > D, a contradiction.

Hence, (H,, |, co) is a minimal example, and then it contains an H,,,,-balanced
vector ug with respect to a symmetrical partition X UY U X’ by Lemma 3.5. By
Lemma 3.6 we have ug # cg, thus ug must be the punctured version of ¢+ ¢’ for some
nonzero ¢’ € Hy),, with supp(c’) € Y. Hence, supp(c + ¢’) N X = supp(ug) N X = 0,
which means that ¢ and ¢’ agree on X, and consequently, |supp(c) N X | =2m"1. As
w(c) < 2™~ we have supp(c) C X, and then we are done by Lemma 3.6. d

LEmMMA 3.8. Let 1 < m < k and let Hy,,, < C be a minimal example (cf. Def-
inition 3.3). If supp(c) NY # O for some ¢ € C' \ Hy)y,, then either w(c) = D or
w(c) =D —2m~ 1L

Proof. As c is one in a coordinate of the Hjy-component, there are k — 1 inde-
pendent vectors in Hy, such that together with the Hy-component of ¢ their supports
cover every coordinate of Hy. Let c¢1,...,cy_1 be the corresponding k& — 1 indepen-
dent vectors in Hy,,. As the H,,-component is produced by repetition, the supports
of c1,...,¢ck_1,c cover every coordinate of Hy,,. Then the code C' generated by
these k vectors has dimension k, length n = 2F + 2™ — 2 and maximum distance
D =2F-1 4 2m=1 and all coordinates of C’ are essential. According to Theorem 2.2,
C'" is equivalent to Hyp,, all of whose nonzero codewords have weight D or D — 2m-10

LEMMA 3.9. Let 1 <m < k and let Hyj,,, < C be a minimal example (cf. Defini-
tion 3.3). If the support of a codeword ¢ € C\ Hyy, contains a pair of Hy|,,-equivalent
coordinates (x, '), then w(c) = D.

Proof. There exist m — 1 independent vectors in the H,,-component with set of
coordinates X’ whose total support is X\ {#'}. Pick extensions ci,...,¢n-1 € Hyjm
of these vectors. Then the supports of cq,...,¢m_1,c cover X U X’. There are
k —m independent vectors ¢y y1, ...,k € Hy)my whose total support is Y. Hence, the
code C" := (c1,.-,Cm—1,C,Cms1,---,ck) has dimension k, length n = 2% 4 2™ — 2
and maximum distance D = 2¢¥~1 4 2m~1 and all coordinates of C’ are essential.
According to Theorem 2.2, C" is equivalent to Hyj,,. As the support of ¢ contains a
pair of equivalent coordinates in C”, it must be a maximum weight codeword. ]

In order to finish the proof of Proposition 3.4, we need the following lemma.

LEMMA 3.10. Let 1 < m < k and let Hy,, < C £ Hixm (with respect to any
symmetrical partition) be a minimal example (cf. Definition 3.3). Then 2 < m,
k=m+1 and C = (Hpy1)m,c) with some Hy, | 1|m-balanced vector c.

Proof. Let Cy denote the index 2 subcode in C' isomorphic to Hy,. For all
¢ € C\ Cp we have supp(c) NY # () according to the assumption and Lemma 3.7, and
w(c) = 2871 or w(c) = 2F1 4+ 2™~ ! by Lemma 3.8. As the average weight in C'\ Cy
is %, there are 2"~ %1 codewords in C'\ Cy with weight 2871 and 2% — 28=F1 with
weight 28— 4+ 2m~1 Pick a ¢ € C'\ Cp with w(c) = 2¥~1. By Lemma 3.9 there is a
symmetrical partition X UY U X’ such that supp(c) N X = 0.

This manuscript is for review purposes only.
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BINARY CODES WITH SMALL WEIGHTS 7

Let y € supp(c) NY be arbitrary, and let ¢1,...,ck—1 € Cy be such that their
supports cover all coordinates except for y. Then with respect to {(c1,...,cp—1) there
are 2™ — 1 equivalence classes of the coordinates with size three, 251 — 2™ with size
two and 1 with size one. The three-element {ci,...,c,_1)-classes are obtained from
the pairs in X U X’ by adjoining an element from Y. By Theorem 2.2 we have that
C":=(c1,...,cr—1,0) is equivalent to Hy,, a code with no three-element equivalence
classes. Thus c splits all three-element (cy,...,ck_1)-classes into one with size two
and one with size one, and since w(c) = 27!, the support of ¢ is contained in the
singleton coordinates of C’. Thus a three-element (cy,...,c,—1)-class {x,2’, z} with
rz € X,r' € X',z €Y is split by ¢ so that the two-element class obtained is outside
supp(c), and the singleton class obtained is inside supp(c). As x ¢ supp(c), we have
that x is a repeated coordinate in C’, and its pair with respect to C’ is either z’ or
2z, hence it is outside X. Consequently, if we puncture C’ by omitting X, then we
obtain a code isomorphic to Hy.

If there is a coordinate y € Y where some ¢’ € Cy is zero and c is one, then in
the above argument ¢’ can be chosen as one of the generators of C’. In particular, if
w(c') = D, then w(c+ ¢’) = D, as the weight of ¢ + ¢’ is 2871 in the restriction of C’
to X’ UY (isomorphic to Hy), and inside X the weight of ¢ + ¢ is 2™~ 1. Similarly,
if w(c’) = 281, then w(c+ ¢’) = 281, provided that ¢’ € Cy has a zero in Y where
c is one. As there are 25=™ — 1 codewords in Cy with weight 2*~! and there are
2k—m+1 codewords in C \ Cp with weight 2k=1 there exists a codeword a € Cj such
that w(a) = 2871 + 2™~ and w(c + a) = 2¥~1. Then supp(c) NY C supp(a) NY,
and moreover, as a € Cj is a maximum weight codeword, we have |supp(a) NY| =
2k=1 — 9m=1"and |supp(a) N X| = |supp(a) N X'| = 2m~1,

Let K denote the set {c; € Cp | w(er) = 2871}, Assume that for all ¢; € K
we have w(c+ ¢;) = 2871 Let C; := ({c} U K}), and let n; be the number of

essential coordinates of Cy. The average weight in Cy is 5t = % . ok—1
thus n; = 2% — 2m~1. Note that (J supp(c;) = Y with size 28 — 2™, Hence,

cieEK
|supp(c) N X'| = 2m~1 and then |supp(c) N Y| = 2F"1 —2m~1 = |supp(a) N Y|. As
supp(c)NY C supp(a)NY, we have supp(c)NY = supp(a)NY, and then c+a € C\Cy
is all zero in Y, a contradiction by Lemma 3.7.

Thus there is a ¢; € Cy with w(c;) = 287! = w(e) and w(c +¢p) = 281 4 2m7 1,
and consequently, |supp(c) \ supp(c;)| = 2872 + 2m~2. We have shown above that
w(cy) = 2871 and w(c + ¢1) = 28~ +2m~1 is not possible if there is a coordinate
in Y where ¢; is zero and ¢ is one, thus supp(c) NY C supp(c¢;) NY. In particular,
supp(c) \ supp(cy) € X', thus 2572 42m~2 < 2™ — 1, and then k = m + 1. Moreover,
as ¢; € K, we have supp(c;) C Y. Hence, supp(c) \ supp(c;) = supp(c) N X’. Thus
|supp(c) N X'| = 2m~1 4 2m=2 = 3.2m=2 and |supp(c) N Y| = 2™~2. Moreover,
w(a) = 3-2"7 1 w(c+a) = 2™, and |supp(a) NY| = 2~ Then we have that
|supp(c+a)NY| = 2m=2, |supp(c+a)NX| = [supp(a)NX| = 2™~1, and consequently,
|supp(c+a)NX'| = w(c+a)—|supp(c+a)NY| —|supp(c+a) N X| = 2m"2. Hence,
|supp(c) Nsupp(a) N X’| = & - (|supp(c) N X'| + | supp(a) 1 X'| | supp(c-+a) N X']) =
2m=1 = | supp(a) N X'|, thus supp(a) N X’ C supp(c) N X".

We now revisit the ideas in the first and third paragraphs of the proof, using the
additional information that kK = m + 1. In particular, there is a unique codeword in
Co with weight 28=1 = 2™ namely 1y. Thus all the remaining 2”*! — 2 nonzero
codewords in Cy have maximum weight 3 - 2m~1. In C \ Cy, there are 2F—m+1 = 4
codewords with weight 2¥=1 = 2™ and 2F — 2k—m+1 = 2m+1 _ 4 codewords with
maximum weight D = 3-2™m~1. Recall that w(c) = 2871 = 2™. As |supp(c) N Y| =

This manuscript is for review purposes only.



Qr

337
338
339
340
341
342
343

8 ANDRAS PONGRACZ

2m=2 and |Y| = 2™, we have w(c+ 1y) = w(c) + 2™ —2-2m"2 =3.2m~1 = D, thus
c+ 1y is one of the 2™+ — 4 maximum weight codewords in C'\ Cy. Hence, out of the
2m+1 2 maximum weight codewords in Cp\ {0, 1y }, there are exactly three codewords
¢ with w(c+ ¢’) = 2™. One of those three is a, and there are exactly two codewords
in Cy with the same restriction to X’ as a, namely a and a+1y. Thus there must be a
codeword b € Cp\ {0, 1y } such that w(c+b) = 2™ and the restrictions of a and b to X’
are different. In particular, there exist two different nonzero codewords in H,,, thus
m > 2. Moreover, every claim that we have proved about a can be copied to b, namely:
supp(c) NY C supp(b) NY, supp(b) N X’ C supp(c) N X', |supp(b) N Y| =2m~1 and
|supp(b) N X| = |supp(b) N X’| = 2™~ Thus supp(c) NY C supp(a) Nsupp(b)NY,
and both have size 272, and consequently, supp(c) N'Y = supp(a) N supp(b) NY.
Furthermore, (supp(a) N X’) U (supp(b) N X’) C supp(c) N X', and both have size
3-2m2 50 (supp(a) Usupp(b)) N X’ = supp(c) N X'.

Hence, ¢ is H,,1}m,-balanced with the choice of a,b as above in Definition 2.5. O

Proof of Proposition 3.4. Done by Lemmas 3.5 and 3.10. O

4. The general case. The next lemma finishes the proof of the classification if
k=m.

LEMMA 4.1. Let Hpy)p, < C be a code with maximum distance 2™. Then there
exists a Cy < C with index at most two such that Hm|m <Co< H,xm-

Proof. We may assume that H,,|,, < C. Pick H,,,, < Cp < C together with a
symmetrical partition such that H,, |, < Co < Hy,xom (With respect to that partition)
and the dimension of Cy be maximal. Let X U X’ be a symmetrical partition such
that Hy,j,, < Co < Hypyxm. Assume indirectly that [C': Co| > 2.

Pick c1,c2 € C '\ Cy from different cosets of Cy. Then both C; = (Hpm, i)
are minimal examples (cf. Definition 3.3), and then by Lemma 3.5 we may assume
that both ¢; are H,,,,-balanced (with respect to potentially different symmetrical
partitions that may also differ from X U X’). By Lemma 3.1, the number of H,,,-
equivalent pairs (z,z’) such that the value of ¢; in z and in 2’ coincide is 2™ — 1 for
some 0 < mj < mo <m — 1, without loss of generality.

First, assume that my < m — 2. Then 2™ —1 < 2™2 —1 < L. (2™ — 1), where
2™ — 1 is the number of all H,,,,-equivalent pairs. Hence, the number of H,,,,-
equivalent pairs (z,z’) such that the value of ¢; + ¢2 in x and 2’ differ is less than
1.(2m—1). If c + ¢ ¢ Hyyy then (Hypyppm,c1 + c2) is a minimal example, and
consequently, every codeword in (H,y,m,c1 + c2) \ Hy, |, differs in more than half of
the pairs. Thus ¢; + ca € Hy,ypp,, and then c; and cp are in the same Cp-coset, a
contradiction.

Hence, mgy = m — 1, and then there exists a symmetrical partition Xo U X} such
that ¢y is the restriction of a nonzero codeword in H,,,,, to X3. In particular, we have
Hjm < Co by maximality of the dimension of Cy.

Let ¢ € Co \ Hpyjy, be any vector with weight 2m=1_ If the support of ¢ and ¢y
intersect the same pairs of H,,|,,-equivalent coordinates nontrivially, then ¢+ cz have
a symmetrical support: each H,,,,-equivalent pair is either fully contained or fully
not contained in it. Thus the (H,m, ¢ + c2)-classes coincide with the H,,,,-classes,
and then (H,,|n,,c+ c2) is the repetition of an index 2 extension of H,,. According
to Theorem 1.1 any extension of H,, has larger maximum weight than 2™~! and
thus the code (H,,|m, c + c2) has larger maximum distance than 2™, a contradiction.
Hence, co must be the restriction of a nonzero codeword to X} that is different from
any codeword whose restriction to X or X’ is in Cy. Due to the large degree of
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BINARY CODES WITH SMALL WEIGHTS 9

symmetry of H,,|,,, it makes no difference which nonzero codeword we choose among
those. The illustration below is for m = 4.

X

"

€1
€2

€3

€4

HHHHOOOORRHKHOODOODRREREREHEHOODOORREEREEHEHOOOO
COO0OOCOHFERFRFMFHEPERFEMH R OODOOOOOORMFEREMKERMRMEKHMEOOOO
H R, OOFR P OORFRFOOIFHFFEFOOFRFEFOOFR P OOREFEFOORRFEOO
SO HOORFRFHFRFRPFRPOOFRFFROODODOOFRRFRFOORRRRFROORFRRFROO
HHROOOOHFH,FROORKHHFRPOOHPFFPFOODOOHRHFOORRHHREOO
HOHOFROFROROROIFROHOIFOROHOROROROKHORO
O OROFRFOFRFOFRFOFOHFHOOFROFRFOFORFEFORFRORORO
OROFHRFRPROFROOFRORFOFROOFRFOFRRFRPROFRFOOFRORRFORO
HO R OOHROFROFRFORFHFOFOFOFRFROOFROFOHFRFORFRFORO
HOOHRHROOFRORRHOORHOIFOOHRHOOROREFREOORRO
—H OO OFRFOFRFOOROFEFOFOOHRFORFEFOROORORRO

H R, OFR OO, P OOROHFEFOOR FFORFROORRFEFOORORRFO
H R R R RRERPR OO0 OR R RFREEFREFEFRFODODODODODODOO
HER R, OOOOR R HREOODOORFEFHEFEPOODODOHFRFHFHREOOOO
OO0 IMHMEEMEMHMHF R OOOOOO OO MHEMFRMFMHMH B OO OO
=, OO PR OORFFOOFHFFEFOOFRFFEFOOFRFEFOOREFEFOORREOO
SO P OORFHFFEFRFROOFFRP,OOOORFRFOORRFERFEROORERFOO
SO PR P OOOOFRRFFROODOORFRRFRFRERPFPOODOORFRRERFRRFROO
HRFOOOOFR R OORRHFFPOOFPFFPFOODODOHRRFOORFRFHKFERFEOO
O OFRFOHOFRFOFHFORFROFFOHFHFOFEFOFOFROFOREORRORO
—HOROFRFOFROOF,FOROFHFOHOFOFRFOROFERFROFEORORO
—HOROORROFR P, OFROIOHOHOFRFORFEFOHFRFOOHFORRFRORO
OO R OFROHROROOFROHMFHOFROORRORRORHRORRFORO
—H OO R PR OO MHOORMHOOHOFRFOOFREFEFOORKFEFOORRFRO
O OO+, MR O+, OO IMHOOHFRF OO, EFHROOH,ROHMFHOORRFRO
O P OFROOHORFROHFOORHOORORKRHOHOORORRO
—H OO OFRFFOOFRFRFOIFOOHOFR P OFOORFRFEFOORORRFRO

R R R RRRRPRPROOOOCOCOCOCOOOO|HFHEHEEFEERERERROOODODODODOO
OO P P OO0 PP PO OORRFRPF PR PR OODODORRFERFERFEOO

(=)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
<

N
3
IN

2m —1

Let us represent H,,),, in the standard way. That is, we produce the generating
matrix by writing the binary representation of all numbers from 1 to 2" —1 in columns,
and then by repeating all these columns. Let ey, ..., e, denote the rows of this matrix
from top to bottom; this is the standard basis of the code. Then we sort the codewords

m
> eieq, g5 € {0,1}, so that the sequence of coefficients &1 -, corresponding to the
i=1

r-tk codeword is the binary representation of r (extended by zeros on the right) for
r=0,...,2"—1. That is, the list of codewords is 0, e, e2,ea+€1,€3,...,€mn+---+e1.
Without loss of generality, we may assume that ¢ is the restriction of e; to X', and
¢y is the restriction of es to Xj. The vectors ¢+ u € ¢+ H,p)m are listed according
to the order of the elements u € H,,,,. Note that in this coset, every codeword
has the same value in the pair of H,,|,,-equivalent coordinates x,z" if 2’ ¢ supp(c),
that is, in the first 27! — 1 pairs from the left. In particular, regardless of the
choice of X5 and X3, every codeword of the form ¢y +c+u € ¢z + ¢ + Hy,p, with
u € {1,e1,e2,ea+e1} (i.e., the first four vectors in H,,,,) has 2™~2 ones in the union
of the first 21 —1 pairs, and every codeword of the form co+c+u € c» +c+Hypy i with
U € Hppp \ {1,€1,€2,€2 + €1} has 2™~1 ones in the union of the first 271 — 1 pairs.
Let us focus on the latter vectors, i.e., the ones of the form ca +c+u € co+c+ Hpy
with u € Hp,m \ {1,€1,e2,e2 + e1}. Note that these are listed in consecutive pairs
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10 ANDRAS PONGRACZ

of vectors that have opposite value in every coordinate from index 2™~! to 2™ — 1
in both X and X’. Thus in two such rows, the number of ones in those coordinates
is 2™ altogether, regardless of the choice of X5 and X). According to the above
observations, the number of ones in the first 2™ ~! — 1 pairs of coordinates is also 2™
in such a codeword, making the sum of weights of a consecutive pair of codewords
2m+1 - As the maximum weight in the code is 2™, both codewords have weight exactly
2™. Thus for all u € Hy,m, \ {1,e1,€2,e2 +e1}, we have w(cy + ¢+ u) = 2™,

This gives rise to a system of linear equations over Q. Let us introduce pairs of
variables corresponding to the pairs of H,,|,,,-equivalent coordinates denoted by x1, z7,
Xy Thy -+, Tom _1, Lhm 1 With z1,...,x9m_1 corresponding to coordinates in X, such
that x; = 1 if the i-th coordinate in X is in supp(cz) and zero otherwise, and =} = 1
if the i-th coordinate in X’ is in supp(cz) and zero otherwise. Let y; := z; — z}. The
above observation that w(co+c+u) = 2™ for allu € H,,|;, \{1, €1, €2, e2+e1 } translates
to linear equations, one for each u. We do not pay attention to the first 2m~1 — 1
pairs of variables, as the role of the corresponding coordinates are symmetrical, thus
it makes no difference where the ones in ¢ are in those coordinates: we can redefine
X U X' if need be so that the code (H,,m,c) be unaffected. More importantly, we
are more interested in showing that there is a very limited number of possibilities for
the position of ones in the last 2™~ pairs of coordinates. So we produce a system of
linear equations with variables x;, x; where 2m~1 < j < 2™ _ 1. Note that in all such
positions i for all u € Hy,j,, \ {1, €1, €2, €2 +e1}, the codeword ¢z + ¢ +u has opposite
values in the i-th coordinate of X and that of X’. If the former coordinate is 1 and
the latter is 0, then the contribution of the i-th pair of coordinates to the weight of
cot+ct+uisl—x; +x; =1—y,;, and if the former coordinate is 0 and the latter is
1, then the contribution of the i-th pair of coordinates to the weight of ¢o + ¢+ u is
x;+1—xy = 1+y;. This can be summarized in the formula 1+ (—1)“[1y;, where u[i]
is the i-th coordinate of u in X, which is the same as that in ¢ 4+« in X. There are
altogether 2™ ! ones in pairs of coordinates with index 7 < 2™~ —1 in ¢y +c+u, and
the above expressions 1+ (—1)*l1y; contribute 2™~ summands 1 in the left hand side
of the equation. The right hand side of the equation corresponding to u is 2™, as we
have seen above that w(co + ¢ +wu) = 2™. Thus for all u € Hy,),,, \ {1, €1, 2,2 + €1},
we obtain the linear equation

2m—1

> (~1fly =0

j=2m—1

by double counting. If we arrange the vector w into consecutive pairs, then inside
every pair we obtain essentially the same equation: namely, one can be obtained from
the other by multiplication with (—1), since two such consecutive vectors complement
each other in the coordinates 2m~! < 5 < 2™ — 1. Thus we can erase every other
equation. Then we obtain an Hadamard matrix with two rows missing as the matrix
of coefficients: indeed, if we produce the matrix with entries (—1)“l? for all u € Hoppjm,s
i.e., including the first four vectors as well, where 2m~! <4 < 2™ —1, and delete every
other row, then we obtain an Hadamard matrix. Hadamard matrices are invertible,
thus the punctured matrix obtained by the omission of the first two rows has co-rank
2. Clearly, all vectors with yom-1 = -+ = yom-149m—2_1 and Yom-1,0m-2 = -+ =
yom _1 satisfy the system of linear equations. As these conditions define a co-rank 2
subspace in szfl, the conditions are equivalent to the system of linear equations.
As the vector ¢y has exactly 272 ones in pairs of coordinates in X U X’ with index
2m—1 < < 2™ — 1, exactly one out of the following four possibilities occur:
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® Tom-1 =+ = Tym-149m-2_1 = 1 and the remaining z;,x} are 1 for 2™~ <
1 <2™ —1, or

® Tym-1igm-2 = --- = Tgm_1 = 1 and the remaining z;, 2} are 1 for 271 <
1 < 2™ —1, or

® Ty = = Thu 1 gm-2_; = | and the remaining z;, z are 1 for om—l <

1 <2™—1 or
:c’2m_1+2m_2 = .-+ = 2hm_, = 1 and the remaining ;, 2} are 1 for 271 <
1< 2™ —1, or

By replacing ¢, with its mirror image if necessary (also contained in (H,,|,,, c2)),
that is, switching the roles of X5 and XJ, we may assume that we are in one of
the last two possibilities. Note that in particular | supp(cz) Nsupp(c) N X'| = 2m~2,
After a suitable rearrangement of the symmetrical partition X U X’ to X5 U X} that
does not affect the code (H,y,m,c) and only involves potential transposition of pairs
of coordinates with index 1 < ¢ < 2m~1 — 1, we obtain that ¢y is the restriction of
ez to X3, But then (H,,,,,c, c2) together with the modified symmetrical partition
X3 U X3 is a code between H,,|,,, and Hy,xm. By maximality of the dimension of
Co, we have that there must be at least one more H,,,,-balanced vector ¢’ € Co
different from c. It cannot be the restriction of e; or e; + e; to X’: in that case,
the support of ¢’ or ¢ + ¢ would intersect the same pairs of equivalent coordinates
nontrivially as the support of ¢z, which was earlier shown to be impossible (in the
above arguments, ¢ was an arbitrary H,,|,,-balanced vector in Cy). Without loss of
generality, ¢’ is the restriction of e3 to X’. In particular, the transposition of pairs
of coordinates with index 1 < ¢ < 2™~! — 1 to obtain the new symmetrical partition
X3 UXé could not have involved pairs with indices om—2 < g < ogm—l 1, as the same
argument as we have applied for ¢ yields that |supp(co) Nsupp(¢/)NX’| = 22, Then
we can again rearrange X3 U X} to some X4 U X by transposing pairs with indices
1 <4< 2™72 -1, and obtain that c, is the restriction of e to X}. Again, this means
that (H,,|,,,c, ¢, c2) is a good candidate for Cp, thus Cy itself must contain at least
one more H,,|,-balanced vector " € Cp that is the restriction of ez to X', without
loss of generality. By carrying on in the same fashion, after m steps, we obtain a
symmetrical partition X, o UX], ,, such that (H,,,, cm=D_ ..., ¢ cy) is between
Hoppjp, and Hop, o With respect to Xy, 12U X 1, and this has the same dimension as
H,, «m, which is the biggest dimension that Cj can possibly have. Thus Cy = Hp,xm
(with the symmetrical partition X,,;2 U X ,5), and ¢ € Cp, a contradiction. d

Now we focus on the & > m case. According to Proposition 3.4, we only need to
show that there are no unknown examples for 2 < m, k =m + 1.

LEMMA 4.2. Let 2 < m and let Hy i < C £ Hpy1)xm (with respect to
any symmetrical partition) be a minimal example (cf. Definition 3.3 and item 3. of
Proposition 3.4). Then C cannot be extended to a code C' with the same length n and
maximum distance D.

Proof. Let Cy denote the copy of Hp, 1y, in C. Let C' = (Co,c) with some
codeword c¢ that is Cy-balanced with respect to the symmetrical partition X UY U X',
Let ¢ € C"\ C; we may assume that C’ = (C,¢’). Then (Cp, ¢’) is a minimal example,
thus either Cy < (Co, ') < H(mq1)xm With respect to some symmetrical partition
(potentially different from X UY U X'), or (Cy, ') is as in item 3. of Proposition 3.4.

Assume first that ¢’ € H, (m+1)xm With respect to some symmetrical partition. We
may assume that supp(c’) NY = (), and then w(c’) = 2m~1.

There are four codewords u € C'\ Co with weight 2™, and all four has 2™~2 ones
in Y. Thus w(c' +u+1y) = w(d +u) + Y] -2-2""2 = w(c +u) +2m"1 < D,
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which makes w(c’ +u) < D —2m"1 = w(u). Clearly, if u € C'\ Cp has weight D, then
w(d +u) <w(u). Thus w(d +u) <w(u) forallu € C\ Cy, and > w(d +u)=
ueC\Co

> w(u). Hence, w(d +u) = w(u) for all w € C\ Cp, and consequently, the
ueC\Co
support of any u € C'\ Cy cuts the support of ¢’ in half.

This yields a system of linear equations over Q. Introduce pairs of variables

corresponding to the pairs of Cp-equivalent coordinates denoted by xi,z], zo, x5,

- Tgm_1, Thm_ with x1, ..., xom_;1 corresponding to coordinates in X, such that
x; = 1 if the i-th coordinate in X is in supp(c’) and zero otherwise, and z = 1 if the
i-th coordinate in X’ is in supp(c’) and zero otherwise. Then each u € C'\ Cj yields a
linear equation by equating the sum of variables corresponding to supp(u) in X with
w(c') = gm—1

2
Given an 1 <4 < 2™ — 1, let us add the linear equations corresponding to the

2™ codewords u € C'\ Cp such that the value of w is one in the i-th coordinate of
X, and subtract the remaining 2™ equations. If we did this with codewords in Cj,
then z; and z; would have coefficient 2™ and all the remaining variables would have
coefficient 0, thus yielding the equation 2™ - (z; + 2%) = 0. As C'\ Cp = ¢ + Cj, thus
zeros and ones are flipped in the support of ¢, the equation obtained is of the form
2™ (x; +x}) = 0 if ¢’ is not in the support of ¢, and it is of the form 2 - (z; —z}) =0
if i’ is in the support of ¢. Thus z; + 2 = 0, or equivalently z; = z; = 0 for all the i
such that 4’ is not in the support of ¢, and z; = z for all the 7 such that ¢’ is in the
support of c. As ¢’ has nonzero coordinates in X U X', the latter possibility occurs
with some ¢ such that x; = 2, = 1. But then there are Cy-equivalent coordinates
where ¢’ is one, a contradiction.

Hence, (Cp, ) is as in item 3. of Proposition 3.4 for all ¢ € C"\ Cy. That is, if we
partition C” into Cy-cosets C' = CoUKUK'UK", then there are Cy-balanced vectors
each of ¢ € K,¢ € K" and ¢’ € K" (with respect to possibly different symmetrical
partitions), where ¢ and ¢’ have already been chosen along with the symmetrical
partition X UY U X’ corresponding to c¢. Let a,b € Cy be as in Definition 2.5 for c.

All nonzero codewords in C’ have weight 2™ or 3 -2™~!. The four codewords in
each of K, K’ and K" with weight 2™ are exactly those u with |supp(u)NY| = 2m~2,
In each of K, K’ and K", these four sets of the form supp(u)NY partition Y. Given the
intersection of two maximal weight codewords in Y as in Definition 2.5, if we produce
the Cy-balanced vector and its Cy-translates with weight 2™, the partition obtained
either coincides with the above one, or the two partitions bisect each other (i.e.,
their intersection consists of eight classes with half the size of the original classes).
Clearly, these intersections bisect each other, as otherwise there were two vectors
u € K,u' € K' with the same support inside Y, and then v + v’ € K" would be all
zero in Y, a contradiction. In particular, 3 < m. Moreover, we cannot choose the
same pair u, v to define ¢/, but we may assume that supp(c) NY and supp(¢’)NY cut
each other in half, and in particular that ¢’ = ¢+ ¢’. However we pick a pair u/, v’ to
define ¢’ so that this condition is met, we obtain equivalent binary linear codes.

So we are going to work in a particular example, for the sake of transparency.
First of all, let us represent Co = H,,, 11|, in the standard way. The illustration below
is for m = 3.
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X Y X'
0000O0OTO0[OOOOO0OOOO|0OODO0OOTO0GO0O
0000O0O0ODO[11111111/0000000 ly
0001 111{00001111/000T1T1T1T1 a
000111 1|1 1110000000 T1T11°1
01 10011{001 1007110110011 b
01100111 100110001100 11
011110000111 100/011 1100
0111 100/1 100001 1/01 11100
101010101 01010711 010101 ¥
10101011 0101010101010 1
1011010[01011010[(10T110T10
1011010[1010010T1{1 011010
11001 10[01 10071101 100T1T10
11001 10[1 0017100 T1(1 100110
110100101 1010011 101001
1101001100101 101101001
00000O0O0[0O0O0DO0O0OGOTLTI[0L11T1T1T1 ¢),
00000O0OO0ODGO|1 11111000111 1111 el
000111100001 100/0110000 &
00011111 1110011/0110000 .
0110011001 10000/00O0T1T100 .
01100111 100111 1/000T1T100 e
01 11100(00111111{00000T11 o
01111001 100000O0GO0l000O0O0TO0T1]1 -
Kfio10101/01010110[11010T1°0
10101011 01010011 101010
1011010[0101100T1|1 100101
1011010[10100T1T1Q0[(1 100101
11001 10[01 10010711 011001
110011010011 010[(101100°1
110100101 10101010101 T10
11010011 001010 1{1 010110

)
3
A
IN
DO
3

-1

Hence, we produce the generating matrix as in Section 2 (see Ms|5), by writing
the binary representation of all numbers from 1 to 2™*! — 1 in columns, and then

by repeating the first 2™ — 1 columns. Let ej,...,e,,4+1 denote the rows of this

matrix from top to bottom; this is the standard basis of the code. Then we sort
m—+1

the codewords Y ee;, g; € {0,1}, so that the sequence of coefficients &1 €11
i=1

corresponding to the r-tk codeword is the binary representation of r (extended by

zeros on the right) for r = 0,...,2™"1 — 1. That is, the list of codewords is 0,e; =

ly,ea,ea +€1,€3,...,emr1 + - +e1. Let a = a’ = ey, b = e3,b' = ey (note that

this is possible as 3 < m). So (Co, ¢) is uniquely determined (together with the fixed
symmetrical partition of coordinates), and so are the vectors o/, in Cj to define ¢'.
The difficulty in showing that this cannot yield an appropriate code is that there are
2™ possibilities for the symmetrical partition corresponding to ¢’.

Considering the way we represented the code Cpy, note that the restriction of
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14 ANDRAS PONGRACZ

codewords to Y have an alternating nature: supp(uskx—1)NY =Y \ (supp(uzi) NY).
Inside X (and symmetrically inside X'), the restrictions to supp(a) N X is a list of
identical pairs of vectors, and the restrictions to (supp(b) \ supp(a)) N X is a list of
identical quartets of vectors. Since supp(c) N X = (), the same holds for the coset
K (whose elements ¢ + u are listed in the same order as the vectors v € Cj are).
That is, the list can be partitioned into consecutive quartets with the same restriction
to (supp(b) \ supp(a)) N X, and each quartet consists of two consecutive pairs with
the same restriction to supp(a) N X. It is easy to see that the eight codewords in
c+u € K such that supp(c+ ¢ +u) NY has size 272 or 3-2™~ ! which are exactly
those codewords in K" whose weight in X U X’ is 3 - 2™~2 rather than 2™, is the
union of two such quartets. Thus the indices of these eight vectors are independent
from the choice of the symmetrical partition corresponding to ¢, as we can find them
by only studying the restriction of vectors to Y.

Introduce pairs of variables corresponding to the pairs of Cp-equivalent coordi-
nates denoted by 1,2}, o, 25, «-+ ,Zam_1,Thm_ with z1,...,29m_1 corresponding
to coordinates in X, such that z; = 1 if the é-th coordinate in X is in supp(c’) and
zero otherwise, and z; = 1 if the i-th coordinate in X’ is in supp(¢’) and zero oth-
erwise. As a first step, we are going to simplify the notations, so that it is enough
to focus on the variables z1,...,xom_q. Fist of all, if 1 < ¢ < 2™ — 1 is such that
both supp(a) U supp(b) and supp(a) U supp(d’) are one in the i-th coordinate of X',
then z; + 2, = 1 and every ¢ + v € K has opposite values in the i-th coordinate
in X and the i-th coordinate of X', respectively. Note that this applies exactly to
3.2m=3 <4 < 2™ — 1. Thus if the i-th coordinate of ¢ + u in X is u[i] = 0, then the
sum of the i-th coordinates in X and in X’ of ¢/ + ¢+ u € K" (as rational numbers
rather than elements of Zs) is

e 0if z; =0, and
o 2if €Ty = 1.

Similarly, if the i-th coordinate of ¢ + w in X is w[i] = 1, then the sum of the
i-th coordinates in X and in X’ of ¢/ + ¢+ u € K" (as rational numbers rather than
elements of Zs) is

e 2if x; =0, and
e (if T; = 1.

Hence, the sum of the i-th coordinates in X and in X’ of ¢ +c+u € K" is
2ufi] 4+ 2(—1)"l - z; for all 3-2m~3 < i < 2™ — 1. In case of the remaining values
1 <4< 3-2m3 the choice of the symmetrical partition in the definition of ¢’ does
not affect the sum of the i-th coordinates in X and in X’ of ¢ + ¢+ u € K”. Let us
denote this sum by s(u,i) for 1 <i <3-2m73 — 1.

Then each codeword ¢ 4+ u € K yields a linear equation. Namely, if ¢ + u is
one of the eight codewords with either 2™~2 or 3 - 2™~2 ones in Y, then we have
3.2m=31 2m—1

Sos(ud)+ S (2ufi]4+2(—1)4 . 2;) = 3-272 and in case of the rest of the

i=1 i=3.2m=3

3.9m—3_1 om_q _
codewords in K, the equationis >  s(u,i)+ Y. (2u[i] +2(—1)“.2;) = 2™,
i=1 4=3.9m—3
After rearranging the equations, we obtain
2m—1 ) 3.2m 31 2m—1
o > 2(-1)ull.g; =3.2m"2 >os(u, i)+ > 2ufd] | in case
i=3.2m=3 i=1 j=3.9m—3

of the eight special vectors u, and
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2m—1 ) 3.2m=3 1 2m—1
o > 2(—1)ull. gy =2m >ooos(u, i)+ > 2ufd] | for the rest.
i=3.2m—3 =1 ;i=3.9m—3

In each quartet, the identical restriction to X yield identical equations. So we
obtain two different linear equation from each quartet.
We study the equations corresponding to the first quartet of vectors in K sep-
arately, as they are essentially different from the rest. The first equation (obtained
271
from the first two vectors in K)is Y. a; = 2™ !, and the second equation is
i=3.2m—3
gm—1_1 om_q
Sz~ Y, x;=2m"1 = -2m"1 By adding up these two linear equations,
i=3.2m—3 i=.2m—1
oam—1_1
we obtain Y, x; = 0. As all the z; are non-negative rational numbers, this is
i=3.2m—3
only possible if z; = 0 for all 3-2™3 <4 < 2™~1 — 1. Thus it is enough to focus on
the variables ; with 27! < { < 2™ — 1, and the equations

om _1 ) 3.0m—3_1 . 2™m—1
o 3 (—1)ud.g;=3.9m3 3 S(Lzl) + > wuli] | in case of the

i=gm—1 i=1 i=3.2m—3

eight special vectors u, and

DR gt (P T swn o P ) for the rest
° i:;A( ) T; Z; 5 —&—1:3%;%3 u[é] | for the rest.

For each remaining quartet, let us subtract the first equation from the second.
Fortunately, the right sides of the two equations are equal: in all quartets (other than
the first), the number of ones in X in the indices 3 - 2m=2 < § < 2™ —1 ig the same in
all four vectors, and the restriction of the vectors to the first 1 < i < 2™~1 coordinates
in X is also the same, making s(u,4) independent from w (within a quartet). Thus
the right hand side of the difference of equations is 0. On the left hand side, we have
all the x; with opposite sign in the two equations, as there are opposite coordinates in
the region 2™~ ! < < 2™ —1in X in the two different vectors of each quartet. After
subtracting the two equations and dividing by 2, we obtain the same coefficients as
if we simply subtracted the restrictions of the two vectors in K to the coordinates
om—l < <om_1in X (where the 0-1 vectors are considered as rational vectors). If
we do this for all quartets, including the first, then the coefficients in the 2" equations
obtained form an Hadamard matrix. On the right hand side, we have 2™~2 in the first
equation, and 0 everywhere else. Since Hadamard matrices are invertible, this system

of linear equations has a unique solution in QT%I. AS xom—1 = -+ = Togm_1 = %
is obviously a solution, this is the unique solution of the system of linear equations
obtained. However, each x; should be 0 or 1, a contradiction. 0

The proof of the main theorem is now complete.

Proof of Theorem 2.6. By Theorem 2.2, Proposition 3.4 and Lemmas 4.1, 4.2. O

5. Further comments. Although our sole purpose was to (nearly) minimize
the maximum distance of a binary linear code, the codes obtained turn out to have
a relatively large minimum distance. According to the Plotkin bound [15], a binary
linear code C' with length n and minimum distance d such that n = 2d has dimension
dim C' < 14 |logy n|. This upper bound is attained by the codes C' = (H,y, |, ¢), where
c is the H,,|,-balanced vector that is all one in X', given a symmetrical partition
X U X'’ of the coordinates. Indeed, dimC = m+1,d = 2™ —1 and n = 2d =
2m+1 2 thus [log, n] = m. Moreover, these codes also meet the Griesmer bound [8]:

This manuscript is for review purposes only.



612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

16 ANDRAS PONGRACZ

m m
S [ =2m -1+ > 2m7=2m —1+2™ — 1 =n. We note that the Griesmer
i=0 i=1

bound is also attained by the code C' = (H,,m, ¢, 1) where 1 is the all one vector. In
that case, dim C' = m + 1 and the minimum distance is d = 2™ — 2.

Again, by the Griesmer bound, a binary linear code of length n = 10 and di-
mension dim C' = 4 cannot have minimum distance d > 5. The optimal minimum
distance d = 4 is attained by C' = (H3z,c) with any Hjjs-compatible c. In fact, we
can improve the dimension by once again extend the code by the all one vector 1,
to obtain a [10,5,4]s code. This example cannot be further improved in the sense
that there is no [10,6,4]s code. According to [22], there are exactly four inequivalent
binary linear codes with parameters [10, 5, 4]2; the above example C' is Code 2 in that
document. It is noted in [22] that C is not self-dual. However, the dual of C' has
the same weight distribution as C', and thus - as the remaining three examples have
different weight distribution - we have C = C+. It is also mentioned in [22] that
according to the Assmus-Mattson theorem [9, Theorem 8.4.2], the supports of the
weight 4 codewords in C' form a 2 — (10,4, 2) block design.

The concepts of two- and three-weight codes are getting more and more popular
recently, see [5, 11, 12, 23]. Every code of the form C = (H,,,,c), where ¢ is an
H,,|m-balanced vector, is a two-weight code. According to Lemma 3.2, every code
of the form C = (Hm+1|m7c>, where c is an H,,41)m-balanced vector, is also a two-
weight code. Furthermore, for m = 2, the latter example can be extended by the all
one vector to obtain a three-weight binary linear code. For all 1 <m < k, Hy,, is a
two-weight code, and the trivial examples Hy,, < C' < Hpxpm are three-weight codes.
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