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THE DIRECT RADIAL BASIS FUNCTION PARTITION OF UNITY
(D-RBF-PU) METHOD FOR SOLVING PDES

DAVOUD MIRZAEI∗

Abstract. In this paper, a new localized radial basis function (RBF) method based on partition
of unity (PU) is proposed for solving boundary and initial-boundary value problems. The new method
is benefited from a direct discretization approach and is called the ‘direct RBF partition of unity
(D-RBF-PU)’ method. Thanks to avoiding all derivatives of PU weight functions as well as all lower
derivatives of local approximants, the new method is faster and simpler than the standard RBF-PU
method. Besides, the discontinuous PU weight functions can now be utilized to develop the method
in a more efficient and less expensive way. Alternatively, the new method is an RBF-generated finite
difference (RBF-FD) method in a PU setting which is much faster and in some situations more
accurate than the original RBF-FD. The polyharmonic splines are used for local approximations,
and the error and stability issues are considered. Some numerical experiments on irregular 2D and
3D domains, as well as cost comparison tests, are performed to support the theoretical analysis and
to show the efficiency of the new method.

Key words. Radial Basis Function (RBF), Partition of Unity (PU), RBF-FD, Partial Differential
Equations (PDEs).
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1. Introduction. Approximation by kernels and in particular by radial basis
functions (RBFs) has received a lot of attention due to many attractive advantages
such as ease of implementation, flexibility with respect to geometry and dimension and
giving spectral accuracy in some situations. However, the global RBF approximations
produce full and ill-conditioned matrices which make them restricted for large scale
problems. So, localized approaches, such as RBF-generated finite difference (RBF-FD)
and RBF partition of unity (RBF-PU) methods, are currently being developed.

The earliest reference to RBF-FD seems to be a conference presentation in 2000
[43]. Then, this method was developed in three simultaneous studies [41, 44, 48] in
2003. As in the classical FD methods, RBF-FD results in sparse matrices with an
additional advantage that has all the flexibility of global RBFs in terms of handling
irregular geometries and scattered node layouts. To avoid the ill-conditioning at the
near flat cases, i.e. for very small values of RBF shape parameters, some technical
algorithms have been introduced in [14, 16, 24] for Gaussian RBF and in [3, 17, 18, 49]
for all types of RBFs. Equipping with such algorithms, the RBF-FD method has
been successfully applied on a large class of PDEs in Euclidian spaces and on smooth
sub-manifolds [12, 15, 13].

Although a PU method has been introduced by Shepard in 1968 [40], the first
combination with RBF interpolation goes back to [46] in 2002. However, a PU finite
element method for solving PDEs has been proposed in [2, 26] few years earlier. The
RBF-PU collocation method for solving transport equations on the unit sphere has
been developed in [1]. The capability of the RBF-PU method for numerical solution
of parabolic PDEs in financial mathematics has been investigated in [29, 30, 38, 39].
Preconditioning schemes are studied in [21] and a least square RBF-PU method is
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2 D-RBF-PU Method for Solving PDEs

proposed in [25]. Adaptivity and stability issues via variably scaled kernels are recently
given in [8]. Other applications can be found in [4, 7, 9].

In this paper we introduce a new RBF-PU method for solving boundary value
problems. We use the idea of direct discretization and link the RBF-PU to the RBF-FD
and construct a direct RBF-PU method which is more efficient than both RBF-FD
and RBF-PU methods. Indeed, the classical FD method as well as the RBF-FD
method use the direct approach for discretizing a PDE operator to a finite dimensional
differentiation matrix. The direct approach has been also used in [28] to speed up the
computations of moving least squares derivatives and then in [27] to accelerate the
meshless local Petrov-Galerkin method. We refer the reader to [32] for more details
about the direct discretization methods.

The rest of this paper is organized as follows. In section 2, the idea of PU in
approximation theory is reviewed. In section 3, the combination of RBF approximation
with PU weights and the classical RBF-PU method for solving PDEs are presented.
In section 4, the well-known RBF-FD method which is in connection with the new
method is briefly reviewed. In section 5, the new direct RBF-PU method is introduced
and its connections to some variations of the RBF-FD method are derived. Also, the
scaling property of polyharmonic kernels and a stabilization technique based on scaling
are recalled. In section 6, the theoretical foundation of the method is provided and the
consistency and stability issues are considered. Finally, in section 7, some numerical
experiments and comparisons with other RBF-based methods are given.

As a remark on notation, we will use bold math symbols for vectors as far as we
are writing in numerical linear algebra. Matrices are also denoted by capital non-bold
symbols.

2. Partition of unity. Let {Ωℓ}
Nc

ℓ=1 be an open and bounded covering of Ω

that means all Ωℓ are open and bounded and Ω ⊂
⋃Nc

ℓ=1 Ωℓ. A family of nonnegative

functions {wℓ}
Nc

ℓ=1 is called a partition of unity (PU) with respect to the covering {Ωℓ}
if

(1) supp(wℓ) ⊆ Ωℓ,

(2)

Nc∑

ℓ=1

wℓ(x) = 1, ∀x ∈ Ω.

Sometimes, for a differentiation purpose, one needs to impose more regularity on PU
weight functions wℓ, and may assume wℓ ∈ Ck(Rd) and for every α ∈ Nd

0 with |α| 6 k
there exists a constant Cα such that

(2.1) ‖Dαwℓ‖L∞(Ωℓ) 6 Cαρ
−|α|
ℓ ,

where ρℓ = 1
2 supx,y∈Ωℓ

‖x − y‖2. In this case, {wℓ} is called a k-stable PU with
respect to {Ωℓ} [47].

We start with an overlapping covering {Ωℓ}
Nc

ℓ=1 of Ω. If we assume Vℓ is an
approximation space on Ωℓ and sℓ ∈ Vℓ is a local approximant of a function u on Ωℓ,
then

(2.2) s =

Nc∑

ℓ=1

wℓsℓ

is a global approximation of u on Ω which is formed by joining the local approximants
sℓ via PU weights wℓ. For example, if X = {x1, . . . , xN} ⊂ Ω, Xℓ = X ∩ Ωℓ and sℓ
are u interpolants on Xℓ then we can simply show that s is a u interpolant on X .
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A possible choice for wℓ is the Shepard’s weights

(2.3) wℓ(x) =
ψℓ(x)∑Nc

j=1 ψj(x)
, 1 6 ℓ 6 Nc,

where ψℓ are nonnegative, nonvanishing and compactly supported functions on Ωℓ.
If wℓ and sℓ are smooth enough then the PU approximation (2.2) can be used

for solving differential equations. To see some applications see [2, 26] that apply the
PU method on finite element spaces, and [1, 4, 7, 8, 9, 20, 25, 29, 30, 38, 39] which
combine the PU method with RBF approximations.

To describe the overall approach, assume that we are looking for the approximate
solution of a PDE problem of the form

Lu = f, in Ω,(2.4)

Bu = g, on Γ(2.5)

where Ω is a domain in Rd, Γ = ∂Ω denotes its boundary and L and B are linear
differential operators defined and continuous on some normed linear space U in which
the true solution of (2.4)-(2.5) should lie. Here B is the boundary operator describing
the Drichlet and/or Neumann boundary conditions. To obtain a numerical solution,
the PDE operators L and B should operate on s (and hence on products wℓsℓ) in
(2.2) to get

Lu ≈ Ls =

Nc∑

ℓ=1

L(wℓsℓ), Bu ≈ Bs =

Nc∑

ℓ=1

B(wℓsℓ),

where sℓ is local approximation of u in patch Ωℓ. Differential operators L and B
should contain certain partial derivatives Dα for multi-indices α ∈ Nd

0. Using the
Leibniz’s rule we have

Dαs =

Nc∑

ℓ=1

∑

|β|6|α|

(
β

α

)
DβwℓD

α−βsℓ,

provided that both wℓ and sℓ are smooth enough. For example if L = ∆ = D(2,0,...,0)+
D(0,2,...,0) + · · ·+D(0,0,...,2), the well-known Laplacian operator, then

∆s =

Nc∑

ℓ=1

(sℓ∆wℓ + 2∇wℓ · ∇sℓ + wℓ∆sℓ) ,

where derivatives of wℓ are even more complicated if wℓ is defined as (2.3). This
will also increase the computational costs of the method. This paper proposes an
alternative approach that avoids the above computations and reduces both computational
cost and algorithmic complexity.

3. RBF-PU method. Let φ : Rd → R be a radial and conditionally positive
definite function of order n andX = {x1, x2, . . . , xN} be a set of trial points distributed
in Ω ⊂ Rd, the domain in which the PDE is posed. Let {Ωℓ}

Nc

ℓ=1 be an open and
bounded covering of Ω and Xℓ = X ∩Ωℓ, 1 6 ℓ 6 Nc, be sets of trial points in patches
Ωℓ. Assume further that

Jℓ := {j ∈ {1, . . . , N} : xj ∈ Xℓ}.
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Local RBF approximation spaces in Ωℓ are defined as

Vℓ = Vφ,Xℓ
:= span{φ(· − xj) : j ∈ Jℓ} ⊕ Pn−1(R

d), 1 6 ℓ 6 Nc,

and local approximants sℓ ∈ Vℓ of function u are expressed as

sℓ(x) =
∑

j∈Jℓ

cjφ(x − xj) +

Q∑

k=1

bkpk(x), x ∈ Ωℓ ∩ Ω,

where {p1, . . . , pQ} is a basis for polynomial space Pn−1(R
d) and Q = (n+d−1)!

d!(n−1)! is

its dimension. For an interpolation problem, coefficient vectors c and b are obtained
by enforcing interpolation conditions sℓ(xj) = u(xj) for j ∈ Jℓ together with side
conditions

∑

j∈Jℓ

cjpk(xj) = 0, j ∈ Jℓ, 1 6 k 6 Q,

leading to linear system of equations

[
Φ P
PT 0

] [
c
b

]
=

[
u|Xℓ

0

]
,

where Φ(i, j) = φ(xj − xi), i, j ∈ Jℓ, P (j, k) = pk(xj), j ∈ Jℓ, 1 6 k 6 Q, and
u|Xℓ

= (u(xj)), j ∈ Jℓ. This system is uniquely solvable if and only if Xℓ is a
Pn−1(R

d)-unisolvent set, meaning that the only polynomial from Pn−1(R
d) which is

zero on Xℓ is the zero function.
The interpolant sℓ can also be written in the Lagrange form as

(3.1) sℓ(x) =
∑

j∈Jℓ

u∗j (ℓ;x)u(xj),

where Lagrange functions u∗j (ℓ; ·) are solution of

[
Φ P
PT 0

] [
u∗(ℓ;x)
v∗(ℓ;x)

]
=

[
φ(· − x)|Xℓ

p(x)

]
,

for p(x) = [p1(x), . . . , pQ(x)]
T , and satisfy u∗j (ℓ;xi) = δij . Substituting (3.1) into

(2.2) yields

(3.2) s(x) =

Nc∑

ℓ=1

∑

j∈Jℓ

(
wℓ(x)u

∗
j (ℓ;x)

)
u(xj), x ∈ Ω.

For a fixed x ∈ Ω since wℓ(x) = 0 if x /∈ Ωℓ, we may introduce the index family

I(x) :=
{
ℓ ∈ {1, 2, . . . , Nc} : x ∈ Ωℓ

}

to replace the summation script on ℓ in (3.2) by ℓ ∈ I(x).
Now, we review the known collocation RBF-PU method for solving the PDE

problem (2.4)-(2.5). Assume

Y = {y1, . . . , yM}
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is a set of test points in Ω and on its boundary Γ. This set may be different from the
trial set of points X but for some theoretical reasons (to guarantee the solvability of
the final unsymmetric system) we may assume M > N . Assume Y = YΩ ∪ YΓ where
YΩ and YΓ contain interior and boundary test points, respectively, and YΩ ∩ YΓ = ∅.
In a collocation method the PDE and its boundary conditions are sampled at sets of
points YΩ and YΓ, respectively, to get

(Lu)(yk) =f(yk), yk ∈ YΩ,(3.3)

(Bu)(yk) = g(yk), yk ∈ YΓ(3.4)

which is a semi-discrete form of (2.4)-(2.5).
The standard RBF-PU method, uses the approach given at the end of section 2

where Lu and Bu are approximated by Ls and Bs, respectively, i.e.,

Lu ≈ Ls =

Nc∑

ℓ=1

∑

j∈Jℓ

L
(
wℓ u

∗
j (ℓ; ·)

)
u(xj), Bu ≈ Bs =

Nc∑

ℓ=1

∑

j∈Jℓ

B
(
wℓ u

∗
j (ℓ; ·)

)
u(xj).

Inserting in (3.3)-(3.4) and replacing ‘≈’ by ‘=’ lead to M × N and unsymmetric
linear system of equations

(3.5)

[
AL

AB

]
u =

[
f |YΩ

g|YΓ

]
,

where u = [u1, . . . , uN ]T is the approximate solution for exact nodal vector uex =
u|X = [u(x1), . . . , u(xN )]T . Components of AL and AB are determined by

AL(k, j) =
∑

ℓ∈I(yk)

(
L(wℓ u

∗
j (ℓ; ·))

)
(yk), yk ∈ YΩ,

AB(k, j) =
∑

ℓ∈I(yk)

(
B(wℓ u

∗
j(ℓ; ·))

)
(yk), yk ∈ YΓ.

Differential operators L and B should act on product wℓu
∗
j (ℓ; ·) leading to some

complicated calculations and algorithmic complexity, as pointed out in section 2.

4. RBF-FD method. In this section the RBF-FD is briefly reviewed as it
is connected to the new method of section 5. The RBF-FD arises naturally as a
generalization of standard FD formulas. For a linear differential operator L, the value
of (Lu)(yk) can be locally approximated by values of u at a stencil X̃k ⊂ X of points
nearing yk by obtaining the weights ξj such that

Lu(yk) ≈ ξTu|X̃k

where the test point yk is usually assumed to be located approximately at the center
of stencil X̃k. To obtain the weight vector ξ, we require the stencil to reproduce all
functions spanned by RBFs {φ(· − xj) : xj ∈ X̃k}. This happens if ξ satisfies

∑

xj∈X̃k

ξjφ(xi − xj) = Lφ(xi − yk), xi ∈ X̃k,

or in matrix form

Φξ = Lφ(· − yk)|X̃k
.
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It is beneficial to also augment the stencil with polynomial terms and add matching
constraints to the associated RBF expansion coefficients. This corresponds to requiring
the weights to further reproduce the polynomial space Pn−1(R

d). The augmented
linear system then becomes

(4.1)

[
Φ P
PT 0

] [
ξ
ν

]
=

[
Lφ(· − yk)|X̃k

Lp(yk)

]
.

This system is uniquely solvable if and only if X̃k is a Pn−1(R
d)-unisolvent set. The

k-th row of the differentiation matrix AL contains the RBF-FD weight vector ξ of
test point yk interspersed with zeros. Zeros are corresponded to trial points outside
the stencil X̃k. RBF-FD is extensively used for solving various PDE problems in
engineering and science. For more details see [13] and references therein.

5. The new method. Again consider the PDE problem (2.4)-(2.5). In section
2, the standard PU approach for solving this problem was reviewed. In this section
we present an alternative approach in which Lu and Bu are directly approximated by
the PU approximation as

(5.1) Lu ≈
Nc∑

ℓ=1

wℓs
L
ℓ =: sL, Bu ≈

Nc∑

ℓ=1

wℓs
B
ℓ =: sB ,

where sLℓ and sBℓ are local approximations of Lu and Bu in patch Ωℓ. This will be, of
course, a different approach because (at least) derivatives of wℓ are not required. Since
we have a direct approximation for Lu and Bu without any detour via local functions
sℓ and global approximation (2.2), this approach is called the direct approach. Of
course, if L (or B) is the identity operator then the pure PU approximation (2.2) is
resulted.

Here we combine the new approach with the RBF approximation, although the
above discussion is not limited to this specific approximation technique. To this
aim, we assume sLℓ and sBℓ in (5.1) are local RBF approximations of Lu and Bu,
respectively, having representations

sLℓ (x) =
∑

j∈Jℓ

Lu∗j(ℓ;x)u(xj), sBℓ (x) =
∑

j∈Jℓ

Bu∗j (ℓ;x)u(xj), x ∈ Ωℓ ∩ Ω,

where the (generalized) Lagrange function vector Lu∗(ℓ;x) is the solution of linear
system

(5.2)

[
Φ P
PT 0

] [
Lu∗(ℓ;x)
Lv∗(ℓ;x)

]
=

[
Lφ(· − x))|Xℓ

Lp(x)

]
.

Similarly, Bu∗(ℓ;x) is the solution of the same system where the operator L is replaced
by B. Then, global approximations are written as

sL(x) =

Nc∑

ℓ=1

∑

j∈Jℓ

(
wℓ(x)Lu

∗
j (ℓ;x)

)
u(xj), sB(x) =

Nc∑

ℓ=1

∑

j∈Jℓ

(
wℓ(x)Bu

∗
j (ℓ;x)

)
u(xj),

for x ∈ Ω. It is clear that sLℓ and sBℓ are identical with Lsℓ and Bsℓ on patch Ωℓ,
while global approximants sL and sB are different from their counterparts Ls and Bs.
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Collocating at test points YΩ and YΓ will yield the same system as (3.5) but with
different matrix entries

AL(k, j) =
∑

ℓ∈I(yk)

wℓ(yk)Lu
∗
j (ℓ; yk), yk ∈ YΩ,

AB(k, j) =
∑

ℓ∈I(yk)

wℓ(yk)Bu
∗
j (ℓ; yk), yk ∈ YΓ.

If we set A =

[
AL

AB

]
and b =

[
f |YΩ

g|YΓ

]
then the final linear system is shortened to

(5.3) Au = b.

Again, we note that u = [u1, . . . , uN ]T is the approximate solution for the exact nodal
vector uex = [u(x1), . . . , u(xN )].

Comparing with the first approach, L and B are not needed to be operated
on PU weights wℓ. For example if L = ∆ then in the first method ∆(wℓu

∗
j ) =

wℓ∆u
∗
j +2∇wℓ ·∇u∗j +u∗j∆wℓ is required for computing the components of AL, while

in the second method the single term wℓ∆u
∗
j does the whole job. So, not only all

derivatives of wℓ but also many lower derivatives of Lagrange functions u∗j (ℓ; ·) are
not actually required. At the first glance, one may expect a lost in accuracy since
some terms are ignored in the new approximation. But as we will see in the following
sections, the rates of convergence for both methods are the same.

Consequently, the second approach suggests: avoid approximating u globally
by joining local approximants sℓ and then approximating Lu, in favor of directly
approximating Lu by joining local approximants sLℓ . Thus, the new method is called
the Direct RBF-PU (D-RBF-PU) method. It also has some connections to RBF-FD
methods that will be explored in the following subsections.

5.1. Connection to RBF-FD. There exists a tight connection to the RBF-FD
method. In another point of view, the direct method of this section sets up the
RBF-FD method in a partition of unity environment. Comparing (4.1) with (5.2), the
RBF-FD weights ξj for approximating (Lu)(yk) are (generalized) Lagrange function

values Lu∗j(yk) on set of points (stencil) X̃k. Thus, s
L
ℓ (yk) is an RBF-FD approximation

of Lu(yk) on stencil X̃k = Xℓ. Since yk may belong to more than one patch Ωℓ

(precisely, yk ∈ Ωℓ for all ℓ ∈ I(yk)), all RBF-FD approximants sLℓ (yk), ℓ ∈ I(yk), are
computed and then joined by

∑

ℓ∈I(yk)

wℓ(yk)s
L
ℓ (yk)

to form the RBF-FD partition of unity approximant sL(yk). Note here that yk is not
approximately located at the center of patch Ωℓ for all ℓ ∈ I(yk). The same argument
is obviously true for the boundary operator B.

In RBF-FD, M stencils are formed and thus M local linear systems should be
solved where M is the number of test or evaluation points. This number is reduced to
Nc, Nc ≪M , in D-RBF-PU that makes it much faster than the classical RBF-FD for
setting up the final linear system. Since RBF-FD uses a single stencil per test point,
its resulting differentiation matrix is sparser. However, as we will see, a variation of
D-RBF-PU leads to a differentiation matrix that is as sparse as the one of RBF-FD.
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In theory both methods have the same order of convergence, but numerical results of
section 7 show that the new method is more accurate in some situations such as for
PDEs with Neumann boundary conditions.

At the end of the following subsection, we will show that the standard RBF-FD
can be viewed as a special case of the D-RBF-PU method.

5.2. Constant-generated PU weight functions. Here, we discuss two simple
D-RBF-PU methods that use piecewise constant functions ψℓ to generate the PU
weight functions wℓ on the covering {Ωℓ}. Usually, compactly supported and smooth
functions (on the whole Ω), such as Wendland’s functions [45], are used to generate a
smooth PU weight when derivatives are required. As mentioned before, no smoothness
assumption on the PU weights is required in the new D-RBF-PU method. A simple
case is to assume

ψℓ(x) = χΩℓ
(x) =

{
1, x ∈ Ωℓ,

0, x /∈ Ωℓ,

in (2.3) to obtain

(5.4) wℓ(x) =

{
1

|I(x)| , x ∈ Ωℓ,

0, x /∈ Ωℓ,

where |I(x)| is the cardinality of (number of indices in) I(x). In this case, local
approximants sLℓ (x) (or sBℓ (x)) have the same contribution in global approximation
sL(x) (or sB(x)).

A simpler scheme will be obtained if we choose the PU weight functions as below.
Assume {Ωℓ}

Nc

ℓ=1 is a covering for Ω and ω1, . . . , ωNc
∈ Rd are patches centers. For

example, for circular (or spherical in 3D) patches we have Ωℓ = B(ωℓ, ρℓ) where ωℓ

and ρℓ are centers and radiuses, respectively. We assume the PU weight function
wℓ(x) on Ωℓ is defined to take the constant value 1 if ωℓ is the closest center to x and
the constant value 0, otherwise. For definition, let

Imin(x) = argmin
ℓ∈I(x)

‖x− ωℓ‖2

and Imin,1(x) be the first component of Imin(x), as Imin(x) may contain more than
one index ℓ. Now, we define the weight function

(5.5) wℓ(x) :=

{
1, ℓ = Imin,1(x)

0, otherwise

in D-RBF-PU method. With this definition, we give the total weight 1 to the closet
patch and null weights to other patches. In fact, a local set Xℓ = Ωℓ∩X is a common
trial set for all test points yk with ‖yk − ωℓ‖2 ≤ ‖yk − ωj‖2 for j = 1, . . . , Nc and
j 6= ℓ. In another view in a 2D domain, by drawing the Voronoi tiles of centers
{ω1, . . . , ωNc

}, this means that all test points in tile ℓ use the same local set Xℓ as
their trial set for approximation. This results in a variation of D-RBF-PU that is
much faster but as sparse as RBF-FD method.

This, also, has a connection to the overlapped RBF-FDmethod, recently introduced
in [35]. The idea of the overlapped RBF-FD method is to use a common stencil for test
points located on ball B(yk, (1 − γ)δ) where γ ∈ [0, 1] is the overlap parameter. One
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needs to loop over all the test points, but it is required that weights computed for
any point yi ∈ B(yk, (1 − γ)δ) never be recomputed again by some other stencil

X̃j , j 6= k, wherein yi ∈ B(yj , (1 − γ)δ). Thus, the order in which the points
are traversed determines the RBF-FD weights assigned to a test point. This idea
should give a reasonable accuracy compared with the original RBF-FD but will
reduce the computational costs (the costs for solving local linear systems), remarkably.
For more details, technical issues for implementation and some applications, see
[35, 36, 37]. However, the D-RBF-PU with discontinuous weight (5.5) assigns a
unique closest stencil to any test point. Although the Voronoi algorithm is not used
directly, the D-RBF-PU uses Voronoi tiles (constructed by patch centers) instead
of balls (constructed by test points) allowing to automatically prevent any weight
recomputation, and looping over the patch centers instead of the test points.

Now, we address the question of whether the standard RBF-FD can be viewed
as a special case of the new D-RBF-PU method. Assume that one uses the heavily
overlapped covering {Ωℓ}Mℓ=1 for Ωℓ = B(ωℓ, δ) and ωℓ = yℓ where yℓ for ℓ = 1, . . . ,M
are all the test points. Also, assume that the PU weight function is defined as in (5.5).

In this case, X̃k = Xk = Ωk ∩X and wℓ(yk) = δℓk, k, ℓ = 1, . . . ,M . Thus,

sL(yk) =
∑

ℓ∈I(yk)

wℓ(yk)s
L
ℓ (yk) = sLk (yk) = Lsk(yk) =

∑

j∈Jk

Lu∗j(k; yk)u(xj) = ξTu|X̃k
.

Therefore, in this scenario the RBF-FD method is obtained from the D-RBF-PU
method.

Finally, we note that in the classical RBF-PU method the smoothness of weight
functions determines the global smoothness of the approximation. Here, no derivatives
of weight functions are needed and for the discontinuous weights (such as the above
constant-generated PU functions) the global approximations sL and sB are not continuous.
But, this causes no drawback because sL and sB are not required to be differentiated
anymore. Of course, one can use smooth weight functions to obtain smooth approximations
sL and sB, if required.

5.3. Polyharmonic kernels and scalability. Although all RBFs in the market
[10, 47] can be used for approximation in local domains Ωℓ∩Ω, in this paper we employ
the polyharmonic kernel

ϕm,d(r) :=

{
r2m−d log r, 2m− d even
r2m−d, 2m− d odd

,

for integer m > d/2 and assume φ(x) = ϕm,d(‖x‖2) for x ∈ Rd. The polyharmonic
kernel ϕm,d is (up to a sign) conditionally positive definite of order n = m−⌈d/2⌉+1
and has the Beppo–Levi space

BLm(Rd) :=
{
f ∈ C(Rd) : Dαf ∈ L2(R

d), ∀α ∈ N
d
0 with |α| = m

}

as its native space if it is considered as a conditionally positive definite kernel of order
m. In one and two dimensions m = n while m > n in higher dimensions. This means
that to work with the native space BLm(Rd) for d > 2, higher degree polynomials
than what are actually needed to guarantee the solvability should be added to the
RBF expansion.

A very useful property is that the approximation by polyharmonic kernels is
scalable, allowing to avoid the instability in solving local linear systems for computing
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sℓ, s
L
ℓ and sBℓ . Here we describe this in a more detail. Assume that X is a set of

points in a domain D with maximum pairwise distance h. Assume further that the
polyharmonic approximation ofDαu(x) for a fixed x ∈ D is sought. The polyharmonic
interpolation matrix

[
Φ P
PT 0

]

becomes ill-conditioned as h decreases. The conditioning of this matrix may be
measured by the lower bound of λmin(Φ) := min

v:PT v=0
(vTΦv)/vT v. It is proved in

[47, chap. 12] that λmin(Φ) behaves as h
−4m+2d independent of the number of points

in X . However, this problem can be overcome in a beautiful way. If X is blown
up (scaled) to points X

h of average pairwise distance 1 and Lagrange functions Dαu∗j
are calculated for the blown-up situation, then the Lagrange functions of the original
situation are scaled as h−|α|Dαu∗j . It is clear that in the blown-up situation the
conditioning behaves as O(1). For proofs and more details about the scaling property
of polyharmonic kernels, see [5, 22, 23]. This scaling approach works without serious
instabilities for localized RBF approximations where h (and the size of local domain)
decreases while the number of points inX is fixed; the situation in RBF-FD, RBF-PU,
D-RBF-PU and all other local RBF-based methods. In these cases, if polynomials of
order n are appended and if the monomials {xα}|α|<n are used as a basis for Pn−1(R

d),
then it is better to shift the points by the center of the local domain and then scale
by h to benefit from the local behavior of the monomial basis functions around the
origin. Note that, on behalf of the radial part, we are allowed to shift because our
approximation space is shift (and rotation) invariant.

6. Error and stability. A classical error analysis which reflects the consistency
and stability bounds on the right-hand side of the final estimation is given in this
section. Since the discretization approach is direct in the sense of [32], the theory
given in [33] for nodal meshless methods can be adapted for our analysis. First note
that since the square system of certain meshless methods may be singular, one can
apply overtesting, i.e. choosing M (the number of test points) larger than N (the
number of trial points), to get a full rank system [34]. Thus for solvability we assume
that the matrix A is set up by sufficiently thorough testing so that the matrix has
rank N 6 M . The final overdetermined linear system then should be solved by a
standard residual minimizer of numerical linear algebra techniques.

If we are looking for the errors in nodal values uex = [u(x1), . . . , u(xN )]T , the
consistency is analyzed by finding a sharp upper bound for ‖Auex − b‖q where A and
b are the differentiation matrix and the right-hand side vector in (5.3), respectively,
and ‖ · ‖q is the q-norm in RM . According to the construction, A(k, :)uex = sL(yk)
and bk = f(yk) = Lu(yk) for yk ∈ YΩ, and, similarly, A(k, :)uex = sB(yk) and
bk = g(yk) = Bu(yk) for yk ∈ YΓ. Here, by A(k, :) we mean the k-th row of A. Thus,
for consistency we assume there exist domain and boundary error bounds

|sL(yk)− Lu(yk)| 6ε
L(yk), yk ∈ YΩ,

|sB(yk)−Bu(yk)| 6ε
B(yk), yk ∈ YΓ

to get

‖Auex − b‖q 6 ‖ε‖q,



D. Mirzaei 11

where ε is a vector that consists all εL(yk) and ε
B(yk) values. Furthermore, assume

that û denotes the vector of approximate nodal values ûj that is obtained by some
residual minimizer numerical linear algebra algorithm that solves the system Au = b

approximately. If û is calculated via minimization of the residual ‖Au− b‖q over all
u ∈ R

N then

‖Aû− b‖q = min
u∈RN

‖Au− b‖q 6 ‖Auex − b‖q.

Finally, for stability we define

CS(A) := sup
u 6=0

‖u‖p
‖Au‖q

which is a finite constant for any p and q norms provided that A is full rank. Now,
we can write

‖uex − û‖p 6 CS(A)‖A(uex − û)‖q

6 CS(A)
(
‖Auex − b‖q + ‖Aû− b‖q

)

6 2CS(A)‖Auex − b‖q

6 2CS(A)‖ε‖q.

This is a classical error analysis where the right-hand side contains the product of
a stability constant and a consistency bound. The remaining parts of this section
concern the estimations of these ingredients.

6.1. Consistency. The following theorem states that the partition of unity
approximant is at least as good as its worst local approximant.

Theorem 6.1. Let Ω ⊂ Rd be bounded and {Ωℓ}
Nc

ℓ=1 be an open and bounded

covering of Ω with a partition of unity {wℓ}
Nc

ℓ=1. If u allows the action of L and in
each region Ωℓ ∩ Ω, Lu is approximated by a function sLℓ such that

‖Lu− sLℓ ‖L∞(Ωℓ∩Ω) 6 εLℓ ,

then the global approximant sL satisfies

(6.1) |Lu(x)− sL(x)| 6 max
ℓ∈I(x)

εLℓ =: εL(x), x ∈ Ω

Proof. Since {wℓ} forms a partition of unity, we simply have for any x ∈ Ω

|Lu(x)− sL(x)| 6
∑

ℓ∈I(x)

wℓ(x)
∣∣Lu(x)− sLℓ (x)

∣∣

6
∑

ℓ∈I(x)

wℓ(x)
∥∥Lu− sLℓ

∥∥
L∞(Ωℓ∩Ω)

6
∑

ℓ∈I(x)

wℓ(x)ε
L
ℓ

6 max
ℓ∈I(x)

εLℓ ,

which completes the proof.
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Similarly, if u allows the action of B and

‖Bu− sBℓ ‖L∞(Ωℓ∩Γ) 6 εBℓ ,

then the estimation

|Bu(x)− sB(x)| 6 max
ℓ∈I(x)

εBℓ =: εB(x) , x ∈ Γ

holds true.
Recall that if the PU functions wℓ are continuous on the whole Ω, then the global

approximation sL is also continuous. It is not the case for the constant-generated
PU weights (5.4) and (5.5). However, the only property that is used in the proof of
Theorem 6.1 is the partition of unity property. Thus, the analysis below holds also
true for the discontinuous PU weights and in particular for the standard RBF-FD
method.

For weight (5.4) at each test point x where the number of overlapping patches
change, and for weight (5.5) at each point x on the edge of the Voronoi regions of the
patch centers, we have a discontinuity in wℓ(x) that imposes a discontinuity in global
approximation sL(x) by a jump value of order

max
ℓ∈I(x)

εLℓ

provided that Lu is continuous.
Despite the analysis of the standard derivatives of PU approximation (see [47,

Section 15.4]), here PU functions wℓ need no smoothness and controlling assumption
such as that given in (2.1). Besides, |I(x)| =

∑
χΩℓ

(x) is not assumed to be uniformly
bounded in Ω, although this assumption will increase the computational efficiency of
both algorithms. See [47, Definition 15.18] for comparison.

We will need to work with a variety of Sobolev spaces. For open set Ω ⊂ Rd,
k ∈ N0 and 1 6 p <∞ the Sobolev spacesW k

p (Ω) consist of all u with weak derivatives
Dαu ∈ Lp(Ω), |α| 6 k. The (semi-)norms

|u|p
Wk

p (Ω)
:=

∑

|α|=k

‖Dαu‖pLp(Ω) and ‖u‖p
Wk

p (Ω)
:=

∑

|α|6k

‖Dαu‖pLp(Ω),

are associated with these spaces. The case p = ∞ is defined by

|u|Wk
p (Ω) := sup

|α|=k

‖Dαu‖L∞(Ω) and ‖u‖Wk
p (Ω) := sup

|α|6k

‖Dαu‖L∞(Ω).

The Hilbert space W k
2 (Ω) is usually denoted by Hk(Ω). To introduce the Sobolev

spaces on the boundary, we assume that the bounded domain Ω has a Ck boundary
∂Ω and ∂Ω ⊂

∑K
j=1 Uj, where Uj ⊂ Rd are open sets. Moreover, we assume that Uj

are images of Ck-diffeomorphisms ϕj : B → Uj where B = B(0, 1) denotes here the
unit ball in R

d−1. Finally, if we assume that {wj} is a partition of unity with respect
to {Uj} then the Sobolev norms on ∂Ω can be defined via

‖u‖p
Wk

p (∂Ω)
:=

K∑

j=1

‖(uwj) ◦ ϕj‖
p
Wk

p (B)
, ‖u‖Wk

∞
(∂Ω) := sup

16j6K
‖(uwj) ◦ ϕj‖Wk

∞
(B).

These norms are independent of the chosen atlas {Uj, ϕj}.



D. Mirzaei 13

From here on, we assume that L is a linear differential operator of the form

Lu(x) =
∑

|α|6kL

aα(x)D
αu(x), x ∈ Ω,

where kL is the order L and the coefficients aα lie in space L∞(Ω). We can also simply
show that

(6.2) ‖Lu‖L∞(Ω) 6 Ca‖u‖WkL
∞ (Ω)

,

where Ca = max|α|6kL
‖aα‖L∞(Ω). Since different types of boundary conditions may

be imposed on Γ, we assume Γ = Γ1 ∪ · · · ∪ ΓT such that Γi ∩ Γj = ∅ for i 6= j, and

Bu(x) =

T∑

j=1

χΓj (x)

kj∑

k=0

bj,k(x)
∂ku

∂νk
(x), x ∈ Γ,

where ν is the outward normal to the boundary, and Γj are of smoothness class Ckj

for 1 6 j 6 T in which kj is the order of B on Γj . Also we assume bj,k ∈ L∞(Γj). Here
χΓj (x) is the characteristic function of set Γj , i.e., it is 1 if x ∈ Γj and 0 otherwise. It
is not difficult to prove that

(6.3) ‖Bu‖L∞(Γj) 6 Cbj‖u‖Wkj
∞ (Γj)

, 1 6 j 6 T.

where Cbj = max16k6kj
‖bj,k‖L∞(Γj). If we set kB = max{kj : 1 6 j 6 T } and assume

Γ is of smoothness class CkB then the norm on the right-hand side of (6.3) can be
overestimated by ‖u‖

W
kB
∞ (Γj)

.

In order to achieve high order convergence, the regularity of true solution u needs
to be higher than what is strictly required by the problem itself. In the following we
assume that the domain, the boundary, the boundary conditions and the right-hand
side function f allow the unique solution u ∈ Hm(Ω)∩W kB

∞ (Ω) for somem > kL+d/2.
The local bounds εLℓ and εBℓ for polyharmonic kernels in the Sobolev norms can

be estimated by applying the following theorem.
Theorem 6.2. [47, Theorem 11.36] Let m > k + d/2. Suppose that D ⊂ Rd is

open and bounded and satisfies an interior cone condition. Consider the polyharmonic
kernel ϕm,d as conditionally positive definite of order m. Then the error between
u ∈ Hm(D) and its polyharmonic interpolant s on X ⊂ D can be bounded by

|u− s|Wk
p (D) 6 Ch

m−k−d(1/2−1/p)+
X,D |u|Hm(D)

for 1 6 p 6 ∞ and sufficiently small hX,D. If we use norms instead of seminorms we
have

‖u− s‖Wk
p (D) 6 Ch

m−k−d(1/2−1/p)+
X,D ‖u‖Hm(D).

Here, by x+ we mean max{x, 0}.
The case p = ∞ reduces to error bound

|u− s|Wk
∞

(D) 6 Ch
m−k−d/2
X,D |u|Hm(D),

and will be used in the sequel. If polynomials of higher orders are appended or the
target function has an arbitrary smoothness, the analysis given in [5] for ‘optimal
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stencils in Sobolev spaces’ can be adapted, instead. According to [5], for u ∈ Hm(D),
m > k + d/2, the achievable rate for a large enough stencil X ⊂ D turns out to be

(6.4) |u− s|Wk
∞

(D) 6 C





hm−k−d/2|u|Hm(D), m < q + d/2,

hq−k|u|Hm(D), m > q + d/2,

hm−k−d/2−ǫ|u|Hm(D), m = q + d/2, ǫ arbitrary small,

where h is the stencil size and q is the maximal order of polynomials on which the
approximation is exact. This means that one cannot have a convergence rate better
than m − k − d/2 for functions in Hm(D), no matter how many nodes are used for
approximation, where they are placed and how large q is chosen. On the other side, for
a fixed node set X the convergence rate in any Sobolev space Hm(D) cannot be better
than q − k no matter how large m is. This optimal convergence rate in Hm(D) can
be obtained via polyharmonic kernels ϕm,d provided that the underlying set allows
exactness on polynomials of order q = ⌊m − d/2⌋ + 1. If the target function lies in
some Hn(D) with n > m, and if we manage to have a scalable stencil of polynomial
exactness q > n − d/2, no matter how we get it, maybe from polyharmonics ϕm,d

with a smaller m but additional polynomials up to order q, then according to [5] we
have a stencil with optimal order in Hn(D). If q < n− d/2 the order remains at q− k
no matter how large n is. Thus the error bound (6.4) by replacing m by n is still
valid for u ∈ Hn(D). This means that in a PHS approximation if the target function
is smooth enough then the order of convergence is fully determined by the amount
of appended polynomials, no matter how large or small the exponent of the radial
part is. Of course, the radial part determines the minimal order of polynomials that
should be augmented to the expansion to obtain a unique stencil.

To treat the approximation at the boundary points, we need a kind of trace
theorem holding for infinity norms. If D is a bounded and open set in Rd with a C1

boundary then the Morrey’s inequality implies that there exists CM > 0 such that for
all u ∈W 1

∞(D)

‖u‖C0,1(D) 6 CM‖u‖W 1
∞

(D),

where C0,1(D) is the space of Lipschitz functions on D. Since u is bounded and
Lipschitz, we can extend its domain to D by continuity. Hence we have a trace
operator W 1

∞(D) → L∞(∂D) with

‖u|∂D‖L∞(∂D) 6 ‖u‖L∞(D) 6 ‖u‖W 1
∞

(D).

Considering the first inequality, this also shows that if D has a Ck+1 boundary and
u ∈W k+1

∞ (D) then

‖u‖Wk
∞

(∂D) 6 C‖u‖Wk
∞

(D).

Now, using Theorems 6.1 and 6.2 and the above discursion, we have the following
error estimation.

Theorem 6.3. Let Ω ⊂ R
d be an open and bounded domain with a CkB+1

boundary. Let {Ωℓ}
Nc

ℓ=1 be an open and bounded covering of Ω with PU functions
wℓ. Suppose that all sets Ωℓ ∩ Ω satisfy interior cone conditions. Obtain all local
approximants sLℓ and sBℓ using the polyharmonic kernel ϕm,d where it is considered
as a conditionally positive definite of order m. If sL and sB are the direct PU
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approximations of Lu and Bu, respectively, then

|Lu(x)− sL(x)| 6 Ch
m−kL−d/2
X,Ω ‖u‖Hm(Ω), x ∈ Ω,

|Bu(x)− sB(x)| 6 Ch
m−kB−d/2
X,Ω ‖u‖Hm(Ω), x ∈ Γ,

hold for sufficiently small fill distance hX,Ω and all u ∈ Hm(Ω) ∩W kB
∞ (Ω) with m >

kL + d/2. If, in additions, polynomials of higher order q are appended to the PHS
kernel ϕm,d and u ∈ Hn(Ω) ∩HkB (Ω), n > kL + d/2, then

|Lu(x)− sL(x)| 6 C





h
n−kL−d/2
X,Ω ‖u‖Hn(Ω), n < q + d/2,

hq−kL

X,Ω ‖u‖Hn(Ω), n > q + d/2,

h
n−kL−d/2−ǫ
X,Ω ‖u‖Hn(Ω), n = q + d/2, ǫ arbitrary small,

provided that the stencil sizes are proportional to the fill distance hX,Ω. The same
bound holds true for |Bu(x)− sB(x)| by replacing kL by kB.

Proof. To prove the first error bound, according to Theorem 6.1, it is sufficient
to estimate the upper bounds εLℓ . Using the fact that sLℓ = Lsℓ on Ωℓ ∩ Ω, we can
write for any ℓ ∈ {1, . . . , Nc},

‖Lu− sLℓ ‖L∞(Ωℓ∩Ω) = ‖Lu− Lsℓ‖L∞(Ωℓ∩Ω)

6 Ca‖u− sℓ‖WkL
∞

(Ωℓ∩Ω)

6 CaCh
m−kL−d/2
Xℓ,Ωℓ∩Ω ‖u‖Hm(Ωℓ∩Ω)

=: εLℓ ,

where (6.2) and Theorem 6.2 are applied in the second and third lines, respectively.
Then hXℓ,Ωℓ∩Ω 6 hX,Ω and ‖u‖Hm(Ωℓ∩Ω) 6 ‖u‖Hm(Ω) finish the proof. For the error
estimation on the boundary, we first modify the local domains Ωℓ ∩ Ω to some open
domains Ω̃ℓ such that Ωℓ ∩ Ω ⊆ Ω̃ℓ ⊂ Ω, hXℓ,Ω̃ℓ

= ChXℓ,Ωℓ∩Ω and Ω̃ℓ have CkB+1

boundaries. Then

‖Bu− sBℓ ‖L∞(Ωℓ∩Γj) = ‖Bu−Bsℓ‖L∞(Ωℓ∩Γj)

6 Cb‖u− sℓ‖WkB
∞ (Ωℓ∩Γj)

6 Cb‖u− sℓ‖WkB
∞ (∂Ω̃ℓ)

6 Cb‖u− sℓ‖WkB
∞ (Ω̃ℓ)

6 CbCh
m−kB−d/2

Xℓ,Ω̃ℓ

‖u‖Hm(Ω̃ℓ)

=: εBℓ ,

where Cb is the maximum of Cbj ’s. Finally, hXℓ,Ω̃ℓ
= ChXℓ,Ωℓ∩Ω 6 ChX,Ω and

‖u‖Hm(Ω̃ℓ)
6 ‖u‖Hm(Ω) complete the proof. We note here that, not only the boundary

points on Ωℓ ∩ Γj but also the interior points in Ωℓ ∩ Ω are all contributed in the
approximation process of Bu(x) for x ∈ Ωℓ∩Γj . Thus, the final bound should contain
the domain fill distance hX,Ω, as it does.

The proof of the second bound is the same by using the discussion right after
Theorem 6.2.

Theorem 6.3 proves that εL(yk) = O(h
m−kL−d/2
X,Ω ) for {k : yk ∈ YΩ} and εB(yk) =

O(h
m−kB−d/2
X,Ω ) for {k : yk ∈ YΓ} provided that u ∈ Hm(Ω) ∩W kB

∞ (Ω). In general,
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‖ε‖∞ = O(h
m−kL−d/2
X,Ω ) as kB < kL and hX,Ω is assumed to be sufficiently small. If u is

smooth enough, L and B are scalable and polynomials of higher order q are appended
to the PHS expansion then the rates will be improved to hq−k

X,Ω for k = kL, kB , and

the consistency order ‖ε‖∞ = O(hq−kL

X,Ω ) will be resulted.

6.2. Stability. Despite the lack of a theoretical bound even for simple operators
L = ∆ and B = Id, Schaback [33] has proposed some numerical estimators for the
stability constant CS(A) for an arbitrary matrix A. For example, in case p = q = 2,

CS(A) =

(
min

16j6N
σj

)−1

for the N positive singular values σ1, . . . , σN of A, and these are obtainable by singular
value decomposition (SVD). Also, the (q, p)-norm of the pseudoinverse of A, defined
by

‖A†‖q,p := sup
u 6=0

‖A†u‖q
‖u‖p

,

overestimates CS(A). Finally, a simple possibility, restricted to square systems, is to
use the fact that Matlab’s condest command estimates the L1 condition number,
which is the L∞ condition number of the transpose. Thus

C̃S(A) :=
condest(AT )

‖A‖∞

is an estimate of the L∞ norm of A−1. This is computationally very cheap for sparse
matrices, however an extension to non-square matrices is missing.

Although numerical results of section 7 show an excellent stability for special L
and B operators, it is left for a future work to theoretically estimate CS(A) in terms
of discretization parameters and behaviour of operators. This is an open problem
not only for the method of this paper but also for all previous unsymmetric local
meshless (RBF-based or else) methods. See [6, 42] for recent attempts to tackle a
similar problem in least squares settings for the RBF-FD method.

7. Numerical results. In this section, some numerical results of the D-RBF-PU
method and comparisons with other local RBF-based methods are given. We consider
the Poisson equation and the standard diffusion (heat) equation with Dirichlet and
Neumann boundary conditions (BC) in two and three dimensions.

All algorithms are implemented in Matlab and executed on a machine with an
Intel Core i7 processor, 4.00 GHz and 16 GB RAM.

Domains: The box domain ΩB := (0, 1)2, the circular domain ΩC := {x ∈ R2 :
‖x‖2 < 1}, and the non-convex domain with smooth boundary, defined using polar
coordinates as [25]

ΩS := {x = (r, θ) : r < 0.7 + 0.12(sin 6θ + sin 3θ) =: rS , θ ∈ [0, 2π)},

are used for experiments in R2. In R3 we consider the unit ball ΩU := {x ∈ R3 :
‖x‖2 < 1}, and the non-convex domain

ΩQ := {x = (r, θ, ϕ) : r < rQ(θ, ϕ), θ ∈ [0, 2π), ϕ ∈ [0, π]},
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Fig. 7.1. Three dimensional domains ΩU (left) and ΩQ (right), together with boundary
points. In the case of ΩU , some of the internal trial points are shown in red.

Fig. 7.2. 690 Halton points on domain ΩC (left) and 681 Hammersley points on domain
ΩS (right), together with circular patches.

where rQ =
[
1+sin2(2 sinϕ cos θ) sin2(2 sinϕ sin θ) sin2(2 cosϕ)

]1/2
. The 3D domains

ΩU and ΩQ are shown in Figure 7.1, and the 2D domains ΩC and ΩS are shown in
Figure 7.2.

Boundary conditions: The Neumann boundary condition is imposed on top and
bottom sides of ∂ΩB, on upper semi-circle of ∂ΩC , i.e., on {x = (1, θ) ∈ ∂ΩC : θ ∈
[0, π]}, on upper curve of ∂ΩS , i.e., on {x = (rS , θ) ∈ ∂ΩS : θ ∈ [0, π]}, on north
surface of ∂ΩU , i.e., on {x = (1, θ, ϕ) ∈ ∂ΩU : θ ∈ [0, 2π), ϕ ∈ (π/2, π]}, and on north
surface of ∂ΩQ, i.e., on {x = (rQ, θ, ϕ) ∈ ∂ΩQ : θ ∈ [0, 2π), ϕ ∈ (π/2, π]}. Other parts
of boundaries are constrained by Dirichlet boundary conditions. For comparison in
some experiments, we may also use a pure Dirichlet or a pure Neumann boundary
condition.

Sets of points: Scattered trial and test points with fill distance h = hX,Ω are used
in experiments. Halton points on ΩB, ΩC and ΩU , Hammersley points on ΩS and
gridded points on ΩQ are employed. We construct the points on a cube and use their
restriction to the domain Ω. The fill distance is approximated by h ≈ (cdN)−1/d where
N is the number of trial points, d is the dimension, and cd = volume(B)/volume(Ω)
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where B here is a smallest possible cube that contains Ω. Boundary points {(1, θk) :
1 6 k 6 |YΓ|} and {(rS , θk) : 1 6 k 6 |YΓ|} are used on ∂ΩC and ∂ΩS, respectively,
where {θk} is a set of equidistance points on [0, 2π). The boundary points on ∂ΩU

are constructed by the equal area partitioning algorithm [31]. On ∂ΩQ we use the
projected points from ∂ΩU . See Figure 7.1. In all cases, the fill distance on the
boundary (the number of points on the boundary) is adjusted to the fill distance of
internal points to be approximately of the same size.

The PU covering {Ωℓ} = {B(ωℓ, ρℓ) ∩ Ω} with centers {ω1, ω2, . . . , ωNc
} ⊂ Ω is

used. Gridded patch centers with horizontal and vertical distances hc are used inside
Ω, and boundary centers with a distance of order hc are constructed with the same
techniques discussed above for the boundary test points. For points far from the
boundary, the radiuses of patches are assumed to be constant (independent of ℓ) and
proportional to hc, i.e., ρℓ = ρ = Cchc where Cc determines the amount of overlap
among patches. But, for points on and adjacent to the boundary (up to a radial
hc-distance from the boundary) we increase the radius ρ by a factor of 1.5. See also
subsection 7.1 below. In Figure 7.2, a set of trial points and a covering are shown on
domains ΩC and ΩS .

Weight functions: As a smooth PU weight, the function

(7.1) ψℓ = ψ(‖ · −ωℓ‖2/ρℓ), ψ(r) = (1 − r)6+(35r
2 + 18r + 3),

is used in (2.3) where ψ(r) is the C4 compactly supported Wendland’s function [47,
Chap. 9]. In some experiments, constant-generated PU functions (5.4) and (5.5) are
also employed. We will see that in some cases, a combination of the smooth weight
(for boundary patches) and the constant-generated weight (5.5) (for internal patches)
increases the efficiency of the method in terms of accuracy, complexity and sparsity.

Kernels: Polyharmonic splines ϕ(r) = r6 log(r) (PHS6) and ϕ(r) = r8 log r
(PHS8) are used in 2D, while ϕ(r) = r5 (PHS5) and ϕ(r) = r7 (PHS7) are applied
in 3D cases. These RBFs are conditionally positive definite of orders n = 4, 5, 3
and 4, respectively. Thus, polynomial spaces Pn−1(R

d) are augmented to guarantee
the solvability of approximation problems. However, we will also use polynomials of
higher orders to observe the effect of polynomials on the convergence rates. In the
legend of figures, (for example) by PHS5+P2 we mean an approximation through
PHS kernel r5 augmented with polynomials of degree at most 2 (order 3).

True solutions: In 2D, the known Franke’s function [19], and in 3D the function

u(x) = sin

(
π(x1 − 0.5)x3

log(x2 + 3)

)
, x = (x1, x2, x3) ∈ R

3

are assumed to be the true solutions for the steady state problems [25]. The right-hand
side function f and boundary conditions are obtained, accordingly.

For the time-dependent problem in 2D experiments, the prescribed true solution

u(x, t) = 1 + sin(πx1) cos(πx2) exp(−πt)

is used [35]. The forcing term that makes this solution hold is given by f(x, t) =
π(2πκ− 1) sin(πx1) cos(πx2) exp(−πt). In 3D, we use the true solution

u(x, t) = 1 + sin(πx1) cos(πx2) sin(πx3) exp(−πt)

with f(x, t) = π(3πκ − 1) sin(πx1) cos(πx2) sin(πx3) exp(−πt). Boundary conditions
are obtained by the restriction of exact solutions and/or their derivatives on the
boundary.
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Overtesting: Overtesting is not applied at all, because the results show that square
systems for both regular and irregular points are full rank and extremely stable.

Convergence plots: Since h = O(N−1/d), we plot the errors and the stability
numbers vs. N1/d. All convergence plots are on a log-log scale. Numerical convergence
orders are obtained by the linear least squares fitting to error values, and are written
alongside the figure legends.

7.1. Overlap constant Cc. As pointed out above, in this study we use an
overlapping covering that consists of balls B(ωℓ, ρℓ) for ℓ = 1, . . . , Nc. We assume the
set {ω1, . . . , ωNc

} of covering centers has vertical distance hc which is proportional to
fill distance h of trial points X . We use hc = 4h in all experiments. The covering
radius

ρℓ = ρ = Cchc

affects both the accuracy of numerical solution and the sparsity of final linear system.
For points ωℓ on and close to the boundary ∂Ω, the number of trial points X∩B(ωℓ, ρ)
is decreased by more than a 1

2 factor. Thus, we should increase the radius of patches

by a factor of more than 21/d (≈ 1.41 in 2D and ≈ 1.26 in 3D). To be sure that we
have enough local trial points, we increase ρ by a factor of 1.5 for such patches.

Fig. 7.3. Accuracy (left vertical axis) and sparsity (right vertical axis) with respect to the
overlap constant Cc. First row: PHS8 on 2D domain ΩB; second row: PHS7 on 3D domain
ΩU . In all cases the smooth PU weight is applied.

To choose a proper overlap constant Cc, we illustrate some experiments in Figure
7.3 for 2D (on ΩS) and 3D (on ΩU ) problems. In this figure, errors (left vertical axis)
and percentage of nonzero elements of the final matrix (right vertical axis) are plotted
in terms of overlap constant Cc. For smaller values of Cc which are not covered in
the plots, local RBF systems may not be full rank. According to these and other
experiments we use Cc = 1.0 in all cases except for 3D examples with polynomial
spaces of order more than 6 in which Cc = 1.2 is used. This choices of the overlap
constant make a balance between accuracy and sparsity.
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7.2. Convergence with respect to polynomial degrees. In Figure 7.4, the
errors and convergence orders of the D-RBF-PU method with respect to the degree
of polynomial spaces added to the RBF expansion are shown. As the true solutions
are infinitely smooth and the PDE is of the second order, the theoretical rate of
convergence in all cases should be q − 2 where q is the order (degree + 1) of appended
polynomials. In most cases, this rate is achieved and in some cases we observe a higher
convergence rate. Corresponding plots for stability constant C̃S are presented in
Figure 7.5. In all cases, no significant growth is observed as N is increased. Obviously,
this nice feature is inherited from the local property of the approximation method and
is shared with other local methods such as RBF-FD. In this experiment we have used
the smooth PU weight functions.

Fig. 7.4. Errors and convergence orders of D-RBF-PU method with different polynomial
degrees on domains ΩS (left), ΩU (middle) and ΩQ (right). Theoretical orders are q−2 = q̃−1
where q̃ is the degree of polynomial space. Here (for example) P3 means polynomial space of
degree at most 3. In all cases the smooth PU weight is applied.

Fig. 7.5. The stability constant C̃S(A) of D-RBF-PU method with different polynomial
degrees on domains ΩS (left), ΩU (middle) and ΩQ (right). In all cases, no significant growth
is observed as N is increased. In all cases the smooth PU weight is applied.

7.3. Constant-generated PU weights. Results for the constant-generated
PU weight functions are reported in Figure 7.6. In texts on figures, by ‘Const.
Gen. PU Weight 1’ and ‘Const. Gen. PU Weight 2’ we mean weight functions
(5.4) and (5.5), respectively, and by ‘Hybrid PU Weights’ we mean a combination of
constant-generated weight (5.5) for patches with centers inside Ω and smooth weight
(7.1) for patches with centers on ∂Ω.

Experiments show that in some cases with constant-generated PU weights to
obtain the theoretical order, the number of patches and/or the size of patches (the



D. Mirzaei 21

overlap constant Cc) should be increased. This will increase the computational cost
of the method. However, since this lost of accuracy is caused by approximation
at boundary points, a more efficient trick is to use the hybrid weight. In Figure
7.6 (right-hand side plots), an improvement in accuracies and an enhancement in
numerical orders are observed by using the hybrid PU weight, where the smooth
weight is used for boundary patches.
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Fig. 7.6. Errors and convergence orders of D-RBF-PU method with different polynomial
degrees and with constant-generated PU weights on ΩB (first row) and ΩU (second row).
Theoretical orders are q̃ − 1 where q̃ is the degree of polynomial space. Improvements in
accuracies and orders are observed by the hybrid PU weight.

Since, with the constant-generated PU weight (5.5) the method uses a single
patch for approximation at each test point, the resulting differentiation matrix is the
sparsest one. Combination with the smooth weight on the boundary does not increase
the number of nonzeros, significantly, because the number of boundary points is of
order N1−1/d. In Table 7.1 the percentage of nonzero elements of the final matrix
on 2D domain ΩS and 3D domain ΩU are given for three cases of weights and three
different numbers of trial points. In the 2D case, the number of nonzeros is nearly
halved when the constant-generated weight is used instead of the smooth weight.
The use of hybrid weight does not increase the percentage of nonzeros, remarkably,
compared with the constant-generated weight. In the 3D case, the constant-generated
weight reduces the number of nonzeros by a factor of 1

4 , approximately. Using the
hybrid weight, the number of nonzeros is increased by a factor of 1.5, approximately,
but it is still far fewer than that of the smooth weight. It is obvious that if in the
3D case we increase the number of trial points, the percentages of the hybrid weight
become closer to those of the constant-generated weight.

From the results of Table 7.1 and the error plots of Figure 7.6, we may conclude
that the D-RBF-PU method with the hybrid PU weight is a recommendable choice
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to obtain both reasonable accuracy and sparsity.

Table 7.1

The percentage of nonzero elements of the final matrix with three type of PU weights.

smooth const. gen. hybrid
domains N weight weight (5.5) weight

2705 4.95% 2.15% 2.38%
2D domain ΩS 10462 1.15% 0.51% 0.54%

163554 0.069% 0.031% 0.032%
7241 23.4% 6.4% 9.7%

3D domain ΩU 17174 10.4% 2.7% 3.9%
38765 4.4% 1.1% 1.6%

The overall behaviour of stability plots for constant-generated weights is approximately
the same as that of the smooth weight in Figure 7.5. Thus, we do not present them
here to keep the total number of figures as low as possible.

7.4. Comparison with standard RBF-PU. We compared the errors and
orders of the D-RBF-PU and the standard RBF-PU methods verses N on different
domains and by different kernels. The accuracies of both methods are close to each
other so that in some cases the plots can not be easily distinguished. The same holds
also true for plots of the stability constants. However, to control the number of figures,
we do not present them here. Our observations confirm the theoretical bounds of
section 6 and suggest to use the new method because it bypasses all derivatives of the
PU functions and many lower derivatives of local approximants, while maintaining
a similar accuracy and stability rate. Moreover, the new method allows to use a
discontinuous weight function, a situation that cannot be treated by the standard
RBF-PU method.

7.5. Comparison with RBF-FD. In order to compare the new method with
RBF-FD, it is important to determine the size of stencils and their connection to
the size of local patches in D-RBF-PU. By the size of a stencil in RBF-FD, which is
denoted by δ here, we mean the radius of the smallest ball that contains all the stencil
points. As same as the strategy we applied for near boundary patches, we increase
the radius δ for test points on and close to the boundary (up to a radial δ-distance
from the boundary) by a factor of 1.5 to have more accurate approximations near the
boundary and, in particular, on boundary points.

For each test point, RBF-FD uses a single stencil while D-RBF-PU uses much
fewer number of covering patches and joins them by PU functions. If we compare
with D-RBF-PU with a smooth weight function, we may assume X̃k = {∪ℓ∈Jk

Xℓ},

where Xℓ is the set of trial points in patch Ωℓ and X̃k is the stencil of test point
yk. In this case, the same trial points contribute in approximation of Lu(yk) (or
Bu(yk) if yk is a boundary point) in both methods. However, a larger local RBF
system (4.1) should be solved in RBF-FD while few (exactly |Jk|) number of much
smaller systems (5.2) (that may also be shared with other test points) need to be
solved in D-RBF-PU. Experiments show that in this case, the RBF-FD is very slow
and its results are far away from the exact solutions because the size of stencils are
overestimated. Hence, we do not illustrate the results in this case. On the other hand,
the size of RBF-FD stencils should be large enough to guarantee the solvability of
local linear systems. Here we compare both methods for three different stencil sizes
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Fig. 7.7. Errors and convergence orders of D-RBF-PU (using the smooth PU weight) and
RBF-FD (with three different stencil sizes) on 2D domain ΩS (first row) and 3D domain ΩU

(second row). Convergence orders and magnitude of errors are improved in the D-RBF-PU
method. Here ρ is the radius of covering patches and δ is the size of stencils in RBF-FD.

δ = 0.8ρ, 1.0ρ, 1.2ρ where ρ is the radius of patches. Smaller or bigger values of δ
does not payoff for significantly more accurate results. In Figure 7.7, we present the
results on 2D domain ΩS and 3D domain ΩU . As we see, D-RBF-PU outperforms
almost all cases especially in the 3D problem. While not presented here, the same
is observed on other domains. In Figure 7.8, stability plots on ΩU are illustrated.
Both methods possess a nice stability that does not highly depend on increasing N
and polynomial degrees. The same behaviour is observed for the 2D case but not
illustrated here. However, in the 3D problem the stability numbers of RBF-FD are
approximately 102 − 103 times larger.

Fig. 7.8. The stability constant C̃S of global matrix A of D-RBF-PU (using the smooth
PU weight) and RBF-FD (with three different stencil sizes) on 3D domain ΩU . As N is
increased, no significant growth is observed in the conditioning of A in both methods, although
the stability numbers of RBF-FD are approximately 102 − 103 times larger.
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The above results were obtained for mixed Dirichlet and Neumann boundary
conditions. In Figure 7.9 we show a comparison between the two methods on 3D
domain ΩQ when Dirichlet boundary condition is imposed on the whole boundary.
In this case, both RBF-FD and D-RBF-PU methods produce approximately the
same error and convergence order. We observe the same results on other domains.
Comparing with previous figures, we conclude that D-RBF-PU is more accurate than
RBF-FD in the presence of Neumann boundary conditions. The reason seems to lie
behind the fact that at a Neumann boundary point, in which RBF-FD approximates
derivatives by a single one-sided stencil, D-RBF-PU uses a weighted average approximation
of several neighborhood patches.
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Fig. 7.9. Errors and convergence orders of RBF-FD by stencil size δ = ρ and D-RBF-PU
using the smooth and the hybrid PU weights on 3D domain ΩQ with Dirichlet boundary
conditions. We observe (approximately) the same errors and convergence orders.

7.6. Time dependent PDEs. In this section we focus on numerical solution
of the diffusion equation

∂u

∂t
= κ∆u+ f(x, t), t > 0, x ∈ Ω ⊂ R

d

for d = 2, 3, where f(x, t) is a source term and κ > 0 is the diffusion coefficient.
Boundary condition Bu = g(x, t) for x ∈ ∂Ω should also be added, where B is
either Dirichlet and/or Neumann linear boundary operator. We assign the prescribed
solutions and apply the D-RBF-PU method to test spatial convergence rates.

We apply method of lines (MOL) to time discretization, i.e., we approximate
the spatial differential operators with D-RBF-PU and then solve the resulting set of
ordinary differential equations (ODEs) using a backward time integrator. We assume
X = Y = YΩ ∪ YΓ, u = [uΩ;uΓ], fΩ = f |YΩ

, gΓ = g|YΓ
, AL = [AΩΩ AΩΓ] and

AB = [AΓΩ AΓΓ] to get

[
∂uΩ

∂t (t)
0

]
=

[
κAΩΩ κAΩΓ

AΓΩ AΓΓ

] [
uΩ(t)
uΓ(t)

]
+

[
fΩ(t)
−gΓ(t)

]
.

Let tk+1 = tk + ∆t where ∆t is the time step, and k indexes a time level. Using
superscripts for time levels, the one order backward differentiation formulae (BDF1)
reads as

[
I − κ∆tAΩΩ −κ∆tAΩΓ

AΓΩ AΓΓ

] [
uk+1
Ω

uk+1
Γ

]
=

[
uk
Ω +∆tfk+1

Ω

gk+1
Γ

]
.
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For a pure Dirichlet boundary condition we have AΓΩ = 0 and AΓΓ = I that reduce
the system to

(I − κ∆tAΩΩ)u
k+1
Ω = uk

Ω +∆t(fk+1
Ω + κAΩΓg

k+1
Γ ).

The stability region of BDF1 is S1 := {λ ∈ C : |λ − 1| > 1}. Since the region S1

contains the left half of the complex plane, BDF1 is an A-stable ODE solver. In
Figure 7.10 the spectrum of the discrete Laplacian with the new method is shown for
2D and 3D cases, respectively.

Fig. 7.10. The spectrum of the discrete Laplacian with D-RBF-PU method on 2D domain
ΩC (first row) and 3D domain ΩU (second row). All eigenvalues fall on the left half plane.
In 2D, the case PHS6+P3 and in 3D, the case PHS5+P5 are depicted. In other cases
(alternative set of points or polynomial degrees), the spectrum enjoys similar features.

In all cases the entire spectrum falls in the left half plane. Though not illustrated
here, similar behaviors are observed for other PHS kernels and higher degree polynomials.
The maximum real part of eigenvalues is written in the title of figures; in all cases it
is far away from origin allowing to use higher order backward differentiation formulas
as their stability region exclude small parts near the imaginary axis. Here we use the
BDF4 scheme
[
I − 12

25κ∆tAΩΩ − 12
25κ∆tAΩΓ

AΓΩ AΓΓ

] [
uk+1
Ω

uk+1
Γ

]
=

[
R(uk

Ω,u
k−1
Ω ,uk−2

Ω ,uk−3
Ω ) + 12

25∆tf
k+1
Ω

gk+1
Γ

]
.

where

R(uk
Ω,u

k−1
Ω ,uk−2

Ω ,uk−3
Ω ) =

48

25
uk
Ω −

36

25
uk−1
Ω +

16

25
uk−2
Ω −

3

25
uk−3
Ω .

For a pure Dirichlet boundary condition the above system is reduced to

(
I −

12

25
κ∆tAΩΩ

)
uk+1
Ω = R(uk

Ω,u
k−1
Ω ,uk−2

Ω ,uk−3
Ω ) +

12

25
∆t(fk+1

Ω + κAΩΓg
k+1
Γ ).
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Experimental results show that both systems are invertible.

We start the BDF4 scheme with the exact values for the first three time steps.
However, in a practical problem when the true solution is unknown we can start the
BDF4 scheme with a step each of BDF1, BDF2 and BDF3. In all cases, we set κ = 1
and ∆t = 0.005, and report the results at the final time t = 0.2.

To solve the time-stepping linear system, inspired by [35], the GMRES method
using the incomplete LU preconditioner with a drop tolerance of 10−8 is used. In our
experiments, GMRES scheme converges at each time step in 2-3 iterations without
restart for a relative residual less than a prescribed tolerance of 10−12.

We consider the pure Dirichlet and the mixed Dirichlet-Neumann problems. In
Figures 7.11, the error plots of the RBF-FD and the D-RBF-PU methods are given
for the 2D problem on ΩC and the 3D problem on ΩU [35]. For the Dirichlet problem,
both methods converge and attain the theoretical orders. For the Neumann-Dirichlet
problems, results of the standard RBF-FDmethod are quickly blown up when advancing
in time. Even the BDF1 scheme fails to fix this problem. However, the D-RBF-PU
method converges for both 2D and 3D problems as errors and convergence orders
with the hybrid PU weight are shown in Figure 7.11 (right-hand side plots). The
same result is obtained by the smooth PU weight, which is not illustrated here.

However, the new method, as well as the RBF-FD method, fails to give accurate
results with BDF schemes for the Neumann or Neumann-Dirichlet problems on the
3D domain ΩQ with irregular trial points. This problem might be alleviated by other
improvements such as adding an extra set of points inside the domain adjacent to the
boundary [35, 36] or using a set of ghost points outside the domain boundary [11].
We do not pursue this further and leave it for an independent study.

7.7. Computational costs. In RBF-FD, the stencil X̃k is changed per test
point yk, and if M is the number of total test points, M local linear systems should
be solved for setting up the global matrix A. In D-RBF-PU, this number is highly
reduced to Nc; the number of PU patches. Remember that the number of patches
is much smaller than the number of test points; if hc = αh then in the square case
M = N ≈ αdNc. For example, in Figure 7.2 for the 2D domain ΩS we have 681 test
points while there are 44 patches. Or, for a case in the 3D domain ΩQ, we may have
10078 test points verses 208 patches. This leads to a remarkable difference between
the computational costs of RBF-FD and D-RBF-PU methods for constructing the
final differentiation matrix. More precisely, D-RBF-PU should be approximately αd

times faster than RBF-FD at solving local linear systems. In our experiments with
α = 4, we should obtain speedups of approximately 16x and 64x for solving local
problems in 2D and 3D, respectively. But, D-RBF-PU (with a smooth weight) has
its own cost for computing the PU weights and joining the local approximants. These
may reduce the above speedups for the total cost of the setup phase. On the other
side, since more points are contributed in PU approximations, the final matrix of
the RBF-FD is sparser than that of the D-RBF-PU with a smooth PU weight. This
makes RBF-FD faster at solving the final system. However, the D-RBF-PU with
the constant-generated weight (5.5) is as sparse as RBF-FD, because it uses a single
patch for any test point. Here, we compare the CPU times for both setting up
the final matrix and solving the final system in terms of N , the number of trial
points. RBF-FD with δ = ρ is considered. Results are given for a 2D and a 3D
problem in Figure 7.12. The total time panel is not given in the 2D case because
the CPU times for solving the final systems are neglectable compared with those
for the setting up the matrices. Although in this logarithmic scale the three lines
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Fig. 7.11. Errors and convergence orders of the RBF-FD (left) and the D-RBF-PU
(middle) methods for heat equation on 2D domain ΩC (first row) and 3D domain ΩU (second
row) with Dirichlet boundary conditions. The right-hand side plots show the errors and
convergence orders of the D-RBF-PU method when Neumann-Dirichlet boundary conditions
are imposed. Theoretical orders are q̃ − 1 where q̃ is the degree of appended polynomials.
In all cases, the observed convergence orders are better than those predicted by theoretical
bounds.

of the D-RBF-PU method are close to each other, by looking at the numbers for
large values of N , we find that in the setting up phase of the 2D case, D-RBF-PU
is approximately 5, 9 and 10 times faster than RBF-FD for smooth, hybrid and
constant-generated weights, respectively. These factors are increased to more than
20, 30 and 40, respectively, for the 3D case. However, the solving times for the 3D
systems are increased as they are denser than the 2D systems. Comparing the total
times for large values of N , we again observe speedups of more than 5x, 9x and 10x for
smooth, hybrid and constant-generated weights, respectively. Thanks to the GMRES
algorithm with incomplete LU factorization, these speedups remain (approximately)
unchanged for the heat equation. As a consequence, the hybrid case in D-RBF-PU
is recommended as a first choice because it possesses both high accuracy and low
complexity, simultaneously.

Although the new method is more accurate in presence of the Neumann boundary
conditions (as we observed in subsection 7.5), the CPU time comparison was made for
a pure Dirichlet problem where both methods have approximately the same accuracy.
However, if we compare cost versus accuracy in the Neumann problems the above
observed speedups become twice, approximately, for the 2D case and even more for
the 3D case.

Finally, it is important to note that we do not guarantee that the chosen parameters
and domain sizes are the true optimal ones and nothing more optimal can be found.
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Fig. 7.12. Comparison of the CPU times (sec.) between RBF-FD and D-RBF-PU
methods for 2D (top) and 3D (down) problems.

Conclusion. The direct radial basis function partition of unity (D-RBF-PU)
method is proposed for solving boundary and initial-boundary value problems. The
convergence properties and the stability issues are considered and some advantages
of the new method are outlined. The advantage over the standard RBF-PU is that
the new method avoids the action of PDE operators on PU weight functions. This
reduces both computational cost and algorithmic complexity without any significant
influence on accuracy and stability. More importantly, this provides a possibility to
use some discontinuous PU weights allowing to have even more efficient schemes and
recover the standard RBF-FD method as a special case.

In comparison with the RBF-FD, the new method needs to solve much fewer
number of local linear systems for constructing the final differentiation matrix. This
reduces the computational costs, considerably. In our experiments, average speedups
of 5x with a smooth PU weight, 10x with a constant-generated PU weight and 9x
with a hybrid PU weight are observed in both 2D and 3D examples. Although for a
pure Dirichlet problem both methods have approximately the same accuracy, the new
method gives more accurate results for Neumann or Neumann-Dirichlet boundary
value problems.

Finally, we note that this method can be applied to a large class of PDE problems
in engineering and sciences. In a follow-up work we will explore an application of the
D-RBF-PU method for solving PDEs on surfaces.
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