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Abstract. Dynamic mode decomposition (DMD) is a data-driven method that models high-dimensional time
series as a sum of spatiotemporal modes, where the temporal modes are constrained by linear dy-
namics. For nonlinear dynamical systems exhibiting strongly coherent structures, DMD can be a
useful approximation to extract dominant, interpretable modes. In many domains with large spa-
tiotemporal data—including fluid dynamics, video processing, and finance—the dynamics of interest
are often perturbations about fixed points or equilibria, which motivates the application of DMD
to centered (i.e. mean-subtracted) data. In this work, we show that DMD with centered data is
equivalent to incorporating an affine term in the dynamic model and is not equivalent to computing
a discrete Fourier transform. Importantly, DMD with centering can always be used to compute
eigenvalue spectra of the dynamics. However, in many cases DMD without centering cannot model
the corresponding dynamics, most notably if the dynamics have full effective rank. Additionally,
we generalize the notion of centering to extracting arbitrary, but known, fixed frequencies from the
data. We corroborate these theoretical results numerically on three nonlinear examples: the Lorenz
system, a surveillance video, and brain recordings. Since centering the data is simple and compu-
tationally efficient, we recommend it as a preprocessing step before DMD; furthermore, we suggest
that it can be readily used in conjunction with many other popular implementations of the DMD
algorithm.
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1. Introduction. Recent advances in sensing, data storage, and computing technologies
have resulted in an unprecedented increase in the availability of large-scale measurements.
Many measurements come from high-dimensional, complex systems in which the governing
equations are poorly understood or entirely unknown, which has motivated the development
of data-driven techniques for characterizing and modeling spatiotemporal dynamics. Impor-
tantly, these techniques must be computationally efficient and interpretable, providing insights
into the underlying physics and potentially enabling predictions for rapid manipulation and
control.

One popular method for modeling such systems is the dynamic mode decomposition (DMD)
[39, 40, 38, 31, 46, 24]. Like principal component analysis (PCA) [21, 53] and independent
component analysis (ICA) [20], DMD is a dimensionality reduction technique that decom-
poses data into a set of spatial and temporal modes. Unlike PCA and ICA, DMD makes the
additional assumption that the data are observations from an underlying dynamical system.
In particular, the dynamics are assumed to be approximately linear, and the data are decom-
posed into pairs of interpretable spatial and temporal modes. DMD has been successfully
applied in a wide variety of disciplines, including fluid dynamics [41], neuroscience [5], disease
modeling [36], finance [30], and computer vision [15]. In addition, several extensions and
variations to the DMD algorithm have been developed (see [22, 52, 25, 55, 35, 23, 2], among
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Table 1: Comparison of performance of DMD with and without centering. A 3 indicates that
the method does correctly extract the spectrum and modes of the system in each column.

many others).
For many systems of interest, the dynamics we want to model are perturbations about

equilibria. To name a few specific examples, in hydrodynamics we may model motion of a
fluid about a base flow [32, 44]; in video processing we may extract the foreground from a
static background [43]; and in climate science we may analyze anomalies that depart from
long-term averages [17, 12]. Further, linearizing about equilibria provides key information on
the stability of the system about these fixed points. In general, the mean of the measurement
data is a natural estimate of an unknown equilibrium point; therefore, it is natural to apply
DMD on mean-subtracted data.

In a complementary perspective, we may think of DMD computed over a short time
window as a multivariate Taylor expansion of the dynamics. It follows that the model should
include an affine, or bias, term (Fig. 1), which is usually not a part of the DMD model; if
DMD is computed on centered data, then this affine term is expected to be small (in fact, one
of our results is that it will be zero).

In this work, we show that centering data improves the performance of DMD. Previous
work has suggested that computing the DMD of centered data may be restrictive and have
undesirable consequences [7]. In particular, Chen et al. [7] show that DMD on mean-subtracted
data is equivalent to a temporal discrete Fourier transform (DFT) in time, restricting the
frequencies extracted to be independent of the dataset. This argument hinged on the mean-
subtracted data being full rank; however, here we show that, in linear systems that contain
a fixed point, mean-subtracted data will always have linearly dependent columns. Therefore,
DMD on centered data does not converge to the DFT. Furthermore, our proposed method of
centering the data successfully extracts the equilibrium and dynamics about this equilibrium.

In Section 2 we review the DMD algorithm, focusing on comparing the SVD-based ap-
proach to the companion matrix approach. We propose centering the data in Section 3,
showing that it is equivalent to incorporating an affine term in the DMD model. Section 4
concerns the uniqueness of the DMD modes and whether the DMD problem is well-posed,



CENTERING DATA IMPROVES THE DYNAMIC MODE DECOMPOSITION 3

x

y

x

y

x̄

ȳ
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Figure 1: An illustration of the benefit of centering for one-dimensional regression, where the
data (xj , yj) is generated by an affine model with noise. a) Data fit to affine model y = ax+ b
yields a good fit. b) Data fit to linear model y = ax yields a poor fit. c) Centered data (x̄j ȳj)
fit to linear model ȳ = ax̄ yields a good fit.

generalizing previous results to the case where data may be low rank. Section 5 compares
DMD with and without centering, including theory and numerical examples. We find that,
in the case of linear dynamics about an equilibrium point, DMD with centering can always
extract the correct dynamics; however, DMD without centering sometimes produces an in-
accurate model. These results are summarized in Table 1. The work by Chen et al. [7] is
discussed in detail in Section 6, where we argue that DMD with centering is not equivalent
to a DFT. This notion of data centering is generalized in Section 7 to extract dynamics while
subtracting any known fixed frequencies. Finally, Section 8 demonstrates DMD with centering
and fixed frequency subtraction on three nonlinear examples, the Lorenz system, background-
foreground separation of a video, and brain recordings. As a practical recommendation, we
suggest centering data as a preprocessing step in DMD. All the code used to reproduce results
in the figures is openly available at https://github.com/sethhirsh/DMD with Centering.

2. Background. Initially developed in the fluid dynamics community, dynamic mode de-
composition (DMD) has become a popular tool for analyzing large-scale dynamical systems in
many different application domains [24, 41]. In this section we briefly review two formulations
of this problem.

Consider a set of T + 1 measurement snapshots xj ∈ Rn for j = 1, . . . , T + 1, which are
generated by linear dynamics,

(2.1) xj+1 = Axj .

The goal of DMD is to characterize the dynamics of the system by the eigendecomposition of
the linear operator A ∈ Rn×n:

(2.2) Avi = λivi for i = 1, . . . , n.

The eigenvectors vi are typically refered to as the DMD modes. For our theoretical results,
we typically assume that the eigenvalues λi 6= 0 are distinct. For many systems of interest,

https://github.com/sethhirsh/DMD_with_Centering
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Notation
T + 1 number of time samples
n number of features
A Rn×n matrix that generates a dynamical system
r rank of A
X Rn×T+1 set of measurement snapshots ranging in time

from x1 through xT+1

X1 Rn×T matrix containing x1 through xT

X2 Rn×T matrix containing x2 through xT+1

µ Rn mean of X
µ1 Rn mean of X1

µ2 Rn mean of X2

Â Rn×n matrix computed using SVD-based DMD with-
out centering

Ā Rn×m matrix computed using SVD-based DMD on
centered matrices X1 − µ11

ᵀ and X2 − µ21
ᵀ

C RT×T companion matrix
b Rn affine or bias term in dyanmics
1 RT vector of ones
I identity matrix

the true dynamics may be nonlinear and/or stochastic. In addition, observations may contain
measurement noise. Where the measurements deviate from true linear dynamics, the goal of
DMD is to find the best linear approximation.

2.1. SVD-based DMD. We first summarize the most commonly used formulation of
DMD, the SVD-based approached also known as exact DMD [46]. First, let us define the pair
of snapshot matrices containing the measurement vectors

(2.3) X1 =

 | | |
x1 x2 · · · xT

| | |

 and X2 =

 | | |
x2 x3 · · · xT+1

| | |

 .
If the snapshots satisfy (2.1), then we have that

(2.4) X2 = AX1.

Otherwise, we hope to discover the “best” A which approximately satisfies this equation.
One solution to (2.4) is obtained by regression with least squares minimization; we define

this solution to be Â. In general, (2.4) may be consistent (having at least one solution),
or inconsistent (having no solution). With these two cases, the corresponding minimization
problem takes the form,

(2.5) Â =

{
minA ‖A‖F such that X2 = AX1 if (2.4) is consistent

minA ‖X2 −AX1‖F if (2.4) is inconsistent
.
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The solution in either case is given by the least squares fit,

(2.6) Â := X2X
†
1,

where X†1 denotes the Moore-Penrose pseudo-inverse of X1 [33]. The DMD modes and eigen-
values in the SVD approach are the eigenvectors and eigenvalues of Â, respectively.

When n is large, it may not be practical to compute Â ∈ Rn×n and its eigendecomposition
directly. If X1 is low rank or approximately low rank, we may project the dynamics to a lower
dimensional basis. In particular, if X1 has rank r, we may compute the reduced SVD,

(2.7) Xr
1 := UrΣrV

ᵀ
r ,

where the left singular vectors Ur ∈ Rn×r and right singular vectors Vr ∈ Rr×T are orthogonal
matrices and Σr is a real positive diagonal matrix [14]. When measurement noise is present,
we define r to be the effective rank of the system (discussed in detail in Section 2.3).

We can then define the matrix,

Ã := Uᵀ
rX2VrΣ

−1
r ,

where Ã ∈ Rr×r is much smaller in size than A. Importantly, Tu et al. showed that the eigen-
values of Ã are precisely the nonzero eigenvalues of A [46]. The corresponding eigenvectors
φi of A can be found by first computing the eigenvectors wi of Ã,

Ãwi = λiwi,

and then projecting into the original measurement space,

(2.8) φi =
1

λi
X2VrΣ

−1
r wi.

In the case where the ranges of X1 and X2 are equal, (2.8) reduces to φi = Urwi.

2.2. Companion Matrix Approach. An alternative formulation of DMD focuses on the
computation of a so-called companion matrix. Although it is less commonly used in practice,
this original formulation by Schmid [40] is analytically simpler and has been used in some key
theoretical work [7, 1].

We again consider T +1 snapshots x1, . . . ,xT+1 ∈ Rn which satisfy (2.1). We may express
the last snapshot T + 1 as a linear combination of the first T states and a residual r ∈ Rn

which is orthogonal to these T states,

xT+1 =

T∑
j=1

cjxj + r such that r ⊥ span{x1, . . .xT },

where cj ∈ R. Equivalently, we may write in matrix form,

(2.9) X2 = X1C + reᵀT
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where eT = [0, . . . , 0, 1]ᵀ, and

(2.10) C =


0 0 · · · 0 c1
1 0 · · · 0 c2
0 1 0 c3
...

. . .
...

0 0 1 cT


is called the companion matrix. The least squares solution for c = [c1, . . . , cT ] is then given

by c = X†1xT+1. Note that all of the residual error in the model is placed on the last time
snapshot. The least squares solution C to (2.9) is unique if and only if x1, . . . ,xT are linearly
independent [7]. If x1, . . . ,xT are linearly independent, then C must also equal the least
squares solution,

C = X†1X2.

In some cases, the DMD modes (eigenvalues and eigenvectors ofA, assuming (2.1)) are related
to the eigenvalues and eigenvectors of the companion matrix C [40], but these eigenvalues are,
in general, not equal. In particular, the eigenvalues are only guaranteed to be equal if the
columns of X1 are linearly independent [7, 40].

2.3. Rank vs. Effective Rank. If X1 has full column rank, then the companion matrix
approach described in Section 2.2 is equivalent to computing the DMD modes as in (2.2).
In the presence of measurement noise, X1 will almost surely have full column rank even
in the case where A is low-rank (r < T < n). In that case, even though the companion
matrix approach (2.10) has a well-posed solution, it yields the wrong number of eigenvalues.
Specifically, the companion matrix approach yields T modes while there are only r signal
modes masked by noise. On the other hand, the SVD-based approach (2.7) can filter out
these noise modes with a good estimate of rank(A). Formally, we define the effective rank as
follows:

Definition 2.1. Given a set of noisy measurements Y = X+ηZ, where X is low rank and
elements of Z are drawn independently from a random distribution with zero mean and finite
variance, we define the effective rank of Y to be the rank of X.

In other words, the effective rank of Y is the rank of the data with no measurement
noise (η = 0). In general, the effective rank of the data is unknown. However, it may be
estimated from the SVD spectrum [13, 48]. We now claim (and later show, in Section 6) that
the companion matrix approach yields the DMD modes if and only if X1 not only has full
column rank but also full effective column rank. Although subtle, this distinction will play an
important role in Section 6.

3. Centering Data. DMD as defined in (2.3) and (2.4) can be thought of as a multivariate
regression of the dynamics. If the mean of X is not zero, as would occur with data measured
about a non-zero equilibrium or data acquired over a short time interval, then the DMD model
would be improved with an additional affine term:
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(3.1) X2 = AX1 + b1ᵀ,

where b ∈ Rn and 1 is a vector of length T whose elements are all one. The corresponding
minimization problem to find A and b is given by

(3.2) Ã, b̃ =

{
argminA,b ‖A‖F s.t. AX1 + b1ᵀ = X2 if (3.1) is consistent

argminA,b ‖AX1 + b1ᵀ −X2‖2F if (3.1) is inconsistent.

As illustrated in Fig. 1, the incorporation of an affine term in the one-dimensional regres-
sion model is equivalent to centering xj and yj in the data. For high-dimensional data, we
compute the means of X1 and X2 as

µ1 =
X11

1ᵀ1
and µ2 =

X21

1ᵀ1
.

The corresponding mean-subtracted or centered data matrices are

X̄1 = X1 − µ11
ᵀ and X̄2 = X2 − µ21

ᵀ,

and we now solve the unbiased regression problem

(3.3) X̄2 = ĀX̄1.

The least squares solution to (3.3) is given by

(3.4) Ā =

{
argminA ‖A‖F s.t. AX̄1 = X̄2 if (3.3) is consistent

argminA
∥∥AX̄1 − X̄2

∥∥2
F

if (3.3) is inconsistent
.

Importantly, the minimization problem (3.4) is simpler to solve than the one in (3.2). We
show in Proposition 3.1 that they are equivalent, yielding Ã = Ā. The following Proposi-
tion, which we include for completeness, is well-known among statisticians in the setting of
multivariate regression:

Proposition 3.1. Let X1 and X2 ∈ Rn×T be arbitrary matrices. The minimization problems
(3.2) and (3.4) are equivalent, with solutions Ã = Ā and b̃ = µ2 − Āµ1.

Proof. We have two cases to consider, depending on whether the affine system of equations
(3.1) is linearly consistent (has at least one solution) or inconsistent (has no solution). We
will show that system (3.1) is consistent if and only if (3.3) is consistent as well.

Case 1: Consistent
When (3.1) is consistent, the affine problem (3.2) is in the constrained (at least one solution
for A) case. Note that we do not minimize over the norm of b. Multiplying the constraint by

1
1ᵀ1 yields,

A
X11

1ᵀ1
+ b

1ᵀ1

1ᵀ1
=
X21

1ᵀ1
,



8 S. M. HIRSH, K. DECKER HARRIS, J. N. KUTZ AND B. W. BRUNTON

which can be rearranged to find b̃ = µ2 −Aµ1. Thus we can write (3.2) as

min
A
‖A‖F such that X̄2 = AX̄1,

which is precisely (3.4). Note that, since we assumed the constraint is satisfiable, this implies
that the centered system of equations (3.3) is consistent.

Case 2: Inconsistent
If no solution to (3.1) exists, then we minimize the residual error without constraints. Taking
the gradient with respect to b and setting it equal to 0 yields

1ᵀXT
1 A

ᵀ + bᵀ1ᵀ1 = 1ᵀX2

and rearranging, we again find that b̃ = µ2 − Aµ1. Plugging this into (3.2), yields the
minimization problem

min
A
‖AX1 + (µ2 −Aµ1) 1ᵀ −X2‖2F = min

A
‖A (X1 − µ11

ᵀ)− (X2 − µ21
ᵀ)‖2F

= min
A

∥∥AX̄1 − X̄2

∥∥2
F
,

which is precisely (3.4). Note that this also must be inconsistent, otherwise the affine problem
would be consistent, and we would obtain a contradiction.

Remark 3.2. We make no assumptions about the matrices X1 and X2 in Proposition 3.1.
Therefore, this result does not depend on the system being linear or being generated by a
dynamical system, and thus it is applicable in all regression settings.

Instead of centering X1 and X2 individually, we may also choose to subtract the overall
mean µ = 1

T+1

∑T+1
j=1 xj from the data. Mean-subtraction of data and normalization of

variance is standard in matrix factorization algorithms such as PCA [53] and ICA [20]. In
many cases, µ is very similar to µ1 and µ2. In particular, µ1,µ2, and µ are all approximately
equal in the case of neutral dynamics (all of the DMD eigenvalues lie near the unit circle).
However, in the presence of transients or unstable behavior, these three values may be very
different.

4. Uniqueness of Modes. The remainder of this paper compares DMD modes and eigen-
values computed with and without centering. To perform such a comparison, it is necessary
that we first establish uniqueness of the DMD modes and corresponding eigenvalues for a
linear system (Section 4.1). We then follow with a similar proof for the uniqueness of modes
data generated by an affine linear system (Section 4.2). This is key for showing that the modes
from DMD with centering are well-defined.

4.1. Uniqueness of Dynamic Mode Decomposition. Following (2.1), (2.3), and (2.4),
assume we have sequential snapshots of data x1, . . . ,xT+1 ∈ Rn that are generated by linear
dynamics (2.1). In general, there may be infinitely many matrices A′ that satisfy

xj+1 = A′xj .
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Chen et al. show, using the companion matrix approach, that although A′ is not unique, the
corresponding eigenvectors and eigenvalues of A′ are:

Theorem 4.1 (Chen et al. [7], Theorem 1 (rephrased)). The choice of eigenvalues λ1, . . . , λn
and corresponding eigenvectors v1, . . . ,vn are unique up to a reordering in j, if and only if
x1, . . . ,xT are linearly independent and λ1, . . . , λn are distinct.

In other words, even though A′ is not unique, all n eigenvalues and eigenvectors of A′

are unique if and only if X has full column rank and the eigenvalues are distinct. In the
case of low-rank data, X will not have full column rank and the eigenvalues of A′ will not be
distinct, since A′ may have a zero eigenvalue with multiplicity greater than 1. Consequently,
this Theorem does not provide much relevant information about uniqueness in the case of
low-rank dynamics. To remedy this, we generalize this result to the case of low-rank data
and prove that the nonzero eigenvalues and corresponding eigenvectors are unique. We first
establish two useful lemmas:

Lemma 4.2. Consider the (p+ 1)× q rectangular Vandermonde matrix

Λ =


1 1 · · · 1
λ1 λ2 · · · λq
...

...
...

...
λp1 λp2 · · · λpq

 .
Then the q columns of Λ are linearly independent (Λ has full column rank) if and only if
q ≤ p+ 1 and λ1, λ2, . . . , λq are distinct.

Proof. Assume q ≤ p+ 1 (if not, rank(Λ) ≤ p+ 1 < q). We form the q × q submatrix
1 1 · · · 1
λ1 λ2 · · · λr
...

...
...

...

λq−11 λq−12 · · · λq−1q

 ,
which has nonzero determinant [47] if and only if the eigenvalues are distinct.

Lemma 4.3. Suppose we have sequential time series snapshots x1, . . . ,xT+1 such that xj+1 =
Axj for j = 1, . . . , T , where A is diagonalizable.

• If range(X1) = range(X2), then X may be expressed as

(4.1) X =

 | | |
v1 v2 · · · vr
| | |


︸ ︷︷ ︸

V


1 λ1 λ21 · · · λT1
1 λ2 λ22 · · · λT2
...

...
... · · ·

...
1 λr λ2r · · · λTr


︸ ︷︷ ︸

Λᵀ

,

where λ1, . . . , λr and v1, . . .vr are distinct nonzero eigenvalues and eigenvectors of A,
respectively.
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• If range(X1) 6= range(X2), then X may be expressed as

(4.2) X =

 | | | |
v0 v1 v2 · · · vr
| | | |


︸ ︷︷ ︸

V


1 0 0 · · · 0
1 λ1 λ21 · · · λT1
1 λ2 λ22 · · · λT2
...

...
... · · ·

...
1 λr λ2r · · · λTr


︸ ︷︷ ︸

Λᵀ

,

where v0 ∈ Null(A).

Proof. Assume range(X1) = range(X2). Since X2 = AX1, and range(X1) = range(X2),
then range(X2) ⊆ range(A). Since A is diagonalizable, then we express x1 as a linear
combination of the nonzero eigenvectors of A, scaled appropriately, so that

x1 =

r∑
i=1

vi.

We note that eigenvalues corresponding to the vi’s are distinct. Otherwise, they can be
summed together in the initial condition x1. Recursively applying A to x1,

x2 = Ax1 = A

r∑
i=1

vi =

r∑
i=1

λivr,

x3 = A2x1 =

r∑
i=1

λ2ivi,

and in general,

xk = Ak−1x1 =
r∑

i=1

λk−1i vi.

Putting this in matrix form yields (4.1).
If range(X1) 6= range(X2), then x1 has a component v0 which lies in Null(A). We scale

v0 so that x1 =
∑r

i=0 vi. Since v0 has an associated eigenvalue λ0 = 0, for k ≥ 1,

xk = Ak−1x1 =

r∑
i=0

λk−1i vi =

r∑
i=1

λk−1i vi,

which yields the decomposition in (4.2).

Note that since the columns of V correspond to eigenvectors of distinct eigenvalues of A, V
has full column rank. We now introduce a definition of well-posedness for the DMD problem.

Definition 4.4. Suppose we have sequential time series snapshots x1, . . . ,xT+1 such that
xj+1 = Axj. Let A have r nonzero and distinct eigenvalues λ1, . . . , λr and corresponding
eigenvectors v1, . . . ,vr. We say that the DMD problem is well-posed if the conditions
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1. x1 is not orthogonal to any v1, . . . ,vr, and either
2. T ≥ r and X1 and X2 share the same range, or
3. T ≥ r + 1,

are satisfied.

Now we prove our main uniqueness theorem.

Theorem 4.5 (Uniqueness of Dynamic Mode Decomposition). Suppose we have sequential
time series snapshots x1, . . . ,xT+1 such that xj+1 = Axj for j = 1, . . . , T , where A has r
nonzero and distinct eigenvalues λ1, . . . , λr and corresponding eigenvectors, v1, . . . ,vr. Let
A′ be any other rank r matrix which satisfies xj+1 = A′xj. If the DMD problem is well-
posed, then A′ has the same r nonzero eigenvalues λ1, . . . , λr and corresponding eigenvectors
v1, . . . ,vr as A, and these are unique up to scaling.

Proof. First, suppose range(X1) = range(X2). Since xj+1 = Axj , if we define X to be
the matrix containing all T + 1 snapshots, then by 4.3 we can factor X as follows,

(4.3) X =

 | | |
x1 x2 · · · xT+1

| | |

 =

 | | |
v1 v2 · · · vr
| | |


︸ ︷︷ ︸

V


1 λ1 λ21 · · · λT1
1 λ2 λ22 · · · λT2
...

...
... · · ·

...
1 λr λ2r · · · λTr


︸ ︷︷ ︸

ΛT

,

where vj are the eigenvectors of A scaled appropriately so that x1 =
∑r

i=1 vj . We denote
these matrices V and Λ and note that V and Λ have full column rank (Lemma 4.2).

Suppose there exists another solution with corresponding eigenvalues λ′1, . . . λ
′
r and eigen-

vectors v′1, . . . ,v
′
r. We construct another factorization,

X =

 | | |
v′1 v′2 · · · v′r
| | |




1 λ′1 λ
′2
1 · · · λ

′T
1

1 λ′2 λ
′2
2 · · · λ

′T
2

...
...

... · · ·
...

1 λ′r λ
′2
r · · · λ

′T
r

 .
For the eigenvalues of A and A′ to be different, there must exist some λ′i which does not
equal λ1, . . . , λr. Since

{
[1, λi, λ

2
i , · · · , λTi ] for i = 1, . . . , r

}
spans the row space of X2, then

[1 λ′i λ
′2
i · · ·λ

′T
i ] must lie in this row space. Hence the (r + 1)× (T + 1) matrix,

(4.4)


1 λ1 λ21 · · · λT1
1 λ2 λ22 · · · λT2
...

...
... · · ·

...
1 λr λ2r · · · λTr
1 λ′i λ

′2
i · · · λ

′T
i


must have low row rank. However,since r + 1 ≤ T + 1 by assumption, and all the λj ’s and
λ′i are all distinct, by Lemma 4.2 (4.4) must have full row rank. With this contradiction we
conclude that the nonzero eigenvalues of A are unique.
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For the eigenvectors of A, note that X = V Λᵀ. Since Λ has full column-rank there is a
unique solution for V = XΛᵀ† . Thus, the eigenvectors of A must be unique up to a scaling.
Note that since X and Λ have rank r, V must also have rank r and thus have full column
rank.

Note that we assumed that X1 and X2 share the same range. If they do not, since
X2 = AX1, there must be a component of x1 which is in the nullspace of A. This results
in appending an extra column v0, which is in the nullspace of A, to V and an extra row
[1 0 · · · 0] to Λ as in (4.2). Following the same method, we find that T ≥ r must be replaced
with T ≥ r + 1.

4.2. Uniqueness of Affine Linear Model. As we have seen in Section 3, DMD with
centering is equivalent to an additional affine term. Thus, in addition to proving that the
DMD modes are unique it also important to show uniqueness of the modes for an affine
dynamical system of the form xj+1 = Axj + b. In the following Theorem, we assume that
the matrix A does not contain an eigenvalue equal to 1. If 1 is an eigenvalue of A, then there
is an inherent ambiguity in whether this mode is an eigenvector of A or incorporated into b.
First, we again define some conditions for the problem to be well-posed:

Definition 4.6. Suppose we have sequential time series snapshots x1, . . . ,xT+1 such that
xj+1 = Axj + b. Let A have r nonzero and distinct eigenvalues, λ1, . . . , λr and correspond-
ing eigenvectors v1, . . . ,vr. We say that the affine DMD problem is well-posed if the
conditions

1. A does not have an eigenvalue equal to 1,
2. x1 − c is not orthogonal to v1, . . . ,vr, and either
3. T ≥ r + 1 and X1 − c1ᵀ and X2 − c1ᵀ share the same range, or
4. T ≥ r + 2,

are satisfied, where c = (I −A)−1 b.

Theorem 4.7 (Uniqueness of Affine DMD). Suppose we have sequential time series snap-
shots x1, . . . ,xT+1 such that xj+1 = Axj + b for j = 1, . . . , T , where A has r nonzero and
distinct eigenvalues, λ1, . . . , λr and corresponding eigenvectors v1, . . . ,vr. Let A′ and b′ be
any other rank r matrix and vector which satisfy xj+1 = A′xj + b′. If the affine DMD prob-
lem is well-posed, then b′ = b and A′ has the same r nonzero eigenvalues λ1, . . . , λr and
corresponding eigenvectors v1, . . . ,vr as A, and these are unique up to scaling.

Proof. Since A does not have an eigenvalue of 1, then I −A is invertible. Therefore, we
can shift the origin in order to express xj+1 = Axj + b as xj+1 − c = A(xj − c), where
c = (I −A)−1b. By Lemma 4.3, we may express X − c1ᵀ as

(4.5) X − c1ᵀ = V Λᵀ.

Similarly for A′ and b′, X − c′1ᵀ = V ′Λ′ᵀ. Taking the difference in these equations,

V Λᵀ = V ′Λ′ᵀ + (c− c′)1ᵀ.

First, assume that both c 6= c′ and that A and A′ do not share all of their eigenvalues. (We
will show that this yields a contradiction.) Without loss of generality, let λ be an eigenvalue of
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A but not A′. Hence, λ =
[
1 λ · · · λT

]ᵀ
is a column of Λ but not Λ′. Definining, Λ̃ = [Λ′ 1],

then

V ΛT =
[
V ′ c− c′

] [Λ′ᵀ
1ᵀ

]
=
[
V ′ c− c′

]
Λ̃ᵀ.

Since V has full column rank, applying V † on the left to both sides yields,

Λᵀ = V †
[
V ′ c− c′

]
Λ̃ᵀ.

If we apply the orthogonal projection I − Λ̃ᵀ†Λ̃ᵀ on the right to both sides, we see that the

right hand side is 0. However, Λᵀ
(
I − Λ̃ᵀ†Λ̃ᵀ

)
cannot be 0 since, by assumption, Λ and Λ′

have different column spaces. To see this, consider the solution Y to Λ̃Y = Λ. In particular,
consider a single column of this equation:

(4.6) Λ̃y = λ.

If x1 − c is in range(A), then we have
1 1 · · · 1 1
λ′1 λ′2 · · · λ′r 1

λ′1
2 λ′2

2 · · · λ2r
′

1
...

...
...

...
...

λ′1
T λ′2

T · · · λ′r
T 1


︸ ︷︷ ︸

Λ̃

y =


1
λ
λ2

...
λT

 .

By Lemma 4.2, if T + 1 ≥ r + 2, then since λ, λ′1, . . . , λ
′
r, 1 are all distinct, λ cannot be

expressed as a linear combination of the columns of Λ̃ᵀ. (If x1 − c /∈ range(A), then we must
append an extra column to Λ̃, and the condition in this case is T + 1 ≥ r + 3). Thus, there
does not exist a solution for y in (4.6), and consequently there does not exist a solution for
Y . Thus, Λ̃Λ̃†Λ 6= Λ. Taking the transpose and rearranging we have

Λᵀ
(
I − Λ̃ᵀ†Λ̃ᵀ

)
6= 0.

This yields a contradiction, from which we conclude that either c = c′, or A and A′ have the
same nonzero eigenvalues, or both.

First, consider the case where c = c′. This implies that V ′Λ′ᵀ = V Λᵀ, and using the
same logic as Theorem 4.5, then the nonzero eigenvalues of A′ and A are equal.

Next, suppose that the nonzero eigenvalues of A and A′ are equal. Thus, Λ = Λ′ and(
V − V ′

)
Λᵀ =

(
c− c′

)
1ᵀ.

Applying I −Λᵀ†Λᵀ to both sides,

0 =
(
c− c′

)
1ᵀ
(
I −Λᵀ†Λᵀ

)
,
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and note that the right hand side is an n× (T + 1) rank-1 matrix. Now, 1ᵀ
(
I −Λᵀ†Λᵀ

)
6= 0,

since 1 is not in the column space of Λ. Thus, c = c′.
In either case we have that both c = c′ and Λ′ = Λ. From X = V Λᵀ + c1ᵀ, we see that

V is the unique solution, V = (X − c1ᵀ) Λᵀ† .

5. Comparison of DMD with Centering to DMD without Centering. In this section, we
show that, for linear systems (dynamics generated by xj+1 = Axj), both DMD with centering
and without centering can be used to compute the modes of A. In particular, DMD with and
without centering will yield the same modes, except for the background mode. For DMD
without centering, this background mode corresponds to an eigenvalue equal to 1, while for
DMD with centering, this is replaced by an eigenvalue equal to 0 (see Theorem 5.2).

For affine systems (dynamics generated by xj+1 = Axj + b), DMD with centering can
be used to extract b and the modes of A. In some cases, DMD with centering can also be
used to compute the modes of A and model the dynamics of the system, but in many cases
it cannot, most notably if A is full-rank. Here we provide necessary and sufficient conditions
for when DMD will and will not be able to successfully model the dynamics.

We then illustrate these results with synthetic examples in Section 5.3, and show that
these results generalize to the case of measurement noise in Section 5.4.

5.1. Linear Systems without Bias. Consider a set of snapshots xj which satisfy xj+1 =
Axj . From Theorem 4.5, we know that DMD without centering can be used to extract the
nonzero eigenvalues and eigenvectors of A. We now show that DMD with centering can also
be used to compute the same modes. In particular, if one is not an eigenvalue of A, DMD with
and without centering yield the same DMD modes (Theorem 5.2). If one is an eigenvalue ofA,
then DMD with and without centering will share the same modes, except for the background
mode. For DMD without centering this mode corresponds to an eigenvalue equal to one, while
for DMD with centering this is replaced with an eigenvalue equal to zero.

We first prove a useful lemma.

Lemma 5.1. Suppose we have sequential time series such that xj+1 = Axj, and the DMD

problem is well-posed. Then A has an eigenvalue equal to 1 if and only if 1ᵀX†1X = 1ᵀ.

Proof. Let X1 have rank r.1 By Lemma 4.3, we may decompose X into the product of
two matrices V and Λ which have full column rank.

(5.1) X1 =

 | | |
v1 v2 · · · vr
| | |


︸ ︷︷ ︸

V


1 λ1 λ21 · · · λT−1r

1 λ2 λ22 · · · λT−12
...

...
... · · ·

...
1 λr λ2r · · · λT−1r


︸ ︷︷ ︸

Λᵀ

1In general, we define r to be the rank of A. In many cases, rank(A) = rank(X1). However, if x1 has a
component in the nullspace of A, then rank(X1) = rank(A) + 1 and one of the λj ’s will be 0.
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Thus, V †V = I and

X†1X1 = Λ†
ᵀ
V †V Λᵀ = Λ†

ᵀ
Λᵀ = Λ(ΛᵀΛ)−1Λᵀ = ΛΛ†.

First, suppose that 1 is an eigenvalue ofA. Without loss of generality, let λ1 = 1. Consider
the solution β to the equation Λβ = 1, or more explicitly,

(5.2)


1 1 · · · 1
1 λ2 · · · λr
1 λ22 · · · λ2r
...

... · · ·
...

1 λT−12 · · · λT−1k

β =


1
1
...
1


Clearly, there exists a solution for β, namely β = [1 0 · · · 0]ᵀ. Since the columns of Λ are

linearly independent, β is unique and hence β = Λ†1 = [1 0 · · · 0]ᵀ and X†1X11 = ΛΛ†1 = 1.

Since X†1X1 is symmetric 1ᵀ = 1ᵀX†1X1. To conclude the proof for this direction we must

show that 1ᵀX†1xT+1 = 1. We can express xT+1 as

xT+1 =

 | | |
v1 v2 · · · vr
| | |




1
λT2
...
λTr


︸ ︷︷ ︸
λT

.

Plugging this in,

1ᵀX†1xT+1 = 1ᵀΛ†
ᵀ
V †V λT = 1ᵀΛ†

ᵀ
λT = βᵀλT+1 = 1.

Now suppose 1 is not an eigenvalue of A. Similar to (5.2), we consider the equation,
1 1 · · · 1
λ1 λ2 · · · λr
λ21 λ22 · · · λ2r
...

... · · ·
...

λT−11 λT−12 · · · λT−1r

β =


1
1
...
1

 .
In this case, all of the λi’s are distinct and not equal to 1. By Lemma 4.2, since T − 1 ≥ r, 1
is not in the span of the columns of Λ and hence Λβ 6= 1 for any value of β. Thus, ΛΛ†1 6= 1
and therefore 1ᵀX1X

†
1 6= 1ᵀ.

Theorem 5.2 (DMD with and without Centering for Linear Systems). Suppose we have se-
quential time series snapshots x1, . . . ,xT+1 such that xj+1 = Axj for j = 1, . . . , T . If the

DMD problem is well-posed, then the following holds for Â = X2X
†
1:

1. If Â has an eigenvalue equal to 1, then Ā = X̄2X̄
†
1 will have the same eigenvalues

and corresponding eigenvectors as Â, except the 1 eigenvalue is replaced with a 0
eigenvalue.
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2. If Â does not have an eigenvalue equal to 1, then Ā will have the same eigenvalues
and corresponding eigenvectors as Â.

Proof. DMD with centering obtains the centered matrix

Ā = X̄2X̄
†
1 = (X2 − µ21

ᵀ)(X1 − µ11
ᵀ)†.(5.3)

For part 1, suppose that Â has an eigenvalue equal to 1. Then we have that (I−X†1X1)
ᵀ1 = 0

by Lemma 5.1. Applying the rank one update formula in [34], which is a generalization of the
Sherman-Morrison-Woodbury formula [42] to the case of non-invertible matrices, then

(5.4) (X1 − µ11
ᵀ)† = X†1

(
I − nn

ᵀ

nᵀn

)
,

where n = X†
ᵀ

1 1 (see Appendix A). Plugging (5.4) into (5.3), we find that

Ā = Â− 1

1 +
∥∥∥1ᵀX†1

∥∥∥2X2X
†
1X
†ᵀ
1 11ᵀX†1 = Â

I − X†
ᵀ

1 11ᵀX†1

1 +
∥∥∥1ᵀX†1

∥∥∥2
 .

Again applying Lemma 5.1, 1ᵀX†1Â = 1ᵀX†1, i.e. 1ᵀX†1 is a left eigenvector of Â with eigen-
value 1. By Theorem 2.1 in [10], we conclude that Ā shares all the same eigenvalues Â, except
the eigenvalue of 1 is replaced with 0.

For the eigenvectors, first note that by Lemma 4.3 we can express X1, X2, and Â, in
terms of the eigenvectors of Â,

X1 = V


1 1 1 · · · 1

1 λ1 λ21 · · · λT−11
...

...
...

...
1 λr λ2r · · · λT−1r

 X2 = V


1 1 1 · · · 1
λ1 λ21 λ31 · · · λT1
...

...
...

...
λr λ2r λ3r · · · λTr


and

Â = V


1

λ1
. . .

λr

V †.
In this basis, the mean-subtracted data are

X̄1 =
V

T


0 0 0 · · · 0

1−
∑T−1

i=0 λ
i
1 λ1 −

∑T−1
i=0 λ

i
1 λ21 −

∑T−1
i=0 λ

i
1 · · · λT−11 −

∑T−1
i=0 λ

i
1

...
...

...
...

1−
∑T−1

i=0 λ
i
r λr −

∑T−1
i=0 λ

i
1 λ2r −

∑T−1
i=0 λ

i
1 · · · λT−1r −

∑T−1
i=0 λ

i
1
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X̄2 =
V

T


0 0 0 · · · 0

λ1 −
∑T

i=1 λ
i
1 λ21 −

∑T
i=1 λ

i
1 λ31 −

∑T
i=1 λ

i
1 · · · λT1 −

∑T
i=1 λ

i
1

...
...

...
...

λr −
∑T

i=1 λ
i
r λ2r −

∑T
i=1 λ

i
1 λ3r −

∑T
i=1 λ

i
1 · · · λTr −

∑T
i=1 λ

i
1

 .
We immediately see that

A′ = V


0

λ1
. . .

λr

V †
satisfies X̄2 = A′X̄1. By Theorem 4.5, the nonzero eigenvalues and corresponding eigenvectors
of A′ must be the same as those of Ā. We conclude that the eigenvectors corresponding to
the eigenvalues λ1, . . . , λr of A and Ā must be equal up to scaling.

For part 2, suppose 1 is not an eigenvalue of Â. Like before, we can explicitly compute Ā
as a rank one update to Â (Appendix A). Since 1 is not an eigenvalue of Â, then by Lemma 5.1,(
I −X†1X1

)ᵀ
1 6= 0. We know that, since the data are linearly consistent, then the solution

Â to DMD without centering satisfies X2 = ÂX1, and thus X2

(
I −X†1X1

)
= 0. Now,

Â− Ā =
(
X2X

†
1 − X̄2X̄

†
1

)
=

X2X
†
1 −X2

(
I − 11ᵀ

1ᵀ1

)I −
(
I −X†1X1

)
11ᵀ

1ᵀ
(
I −X†1X1

)
1

X†1


=

X2


(
I −X†1X1

)
11ᵀ

1ᵀ
(
I −X†1X1

)
1

X†1


= 0.

(5.5)

5.2. Linear Systems with Bias. We will now illustrate what can go wrong applying DMD
without centering to data generated by a linear system with bias. Consider the system

xj+1 =

[
2 0
0 3

]
xj +

[
1
2

]
,

with x1 = [1, 1]ᵀ. This yields data matrices,

X1 =

[
1 3 7
1 5 17

]
and X2 =

[
3 7 15
5 17 53

]
.

It can easily be shown that these data are linearly inconsistent, since X2

(
I −X†1X1

)
6= 0,

and so DMD without centering cannot accurately model the data.
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However, for some cases DMD without centering may be able to model data generated
by a linear system with bias, i.e. affine dynamics. In Theorem 5.3, we present necessary and
sufficient conditions for when this is possible. These boil down to (1) having “extra rank”
available to capture the bias with an eigenvector of eigenvalue 1 and (2) a technical condition
on the fixed point c and the eigenvectors of A as captured in V .

Theorem 5.3 (DMD without Centering for Affine Systems). Consider data which satisfy the
recursive affine equation xj+1 = Axj + b for j = 1, . . . , T , such that the affine problem is
well-posed. Suppose A does not have an eigenvalue equal to 1, and define the fixed point
c = (I −A)−1 b. Like in (4.5), we may factor the data X as

X =
[
V c

] [Λᵀ

1ᵀ

]
.

Then there exists a diagonalizable A such that xj+1 = Axj if and only if c is not in the span
of the columns of V .

Corollary 5.4. If A is full rank and has distinct eigenvalues, then DMD without centering
will not be able to accurately represent the dynamics.

Proof. Suppose that c is not in the span of the columns of V . Lemma 4.3 states that fitting
a linear model (xj+1 = Axj) where A is diagonalizable is equivalent to the data satisfying

(5.6) X = Ṽ Λ̃ᵀ,

where Ṽ and Λ̃ have full column rank and Λ̃ is a rectangular Vandermonde matrix. hDefine
Ṽ = [V c] and Λ̃ = [Λ 1]. Then X takes the form of (5.6). By assumption, the columns of Ṽ
are linearly independent, and, since 1 is not an eigenvalue of A, by Lemma 4.2, the columns of
Λ̃ are linearly independent. With this factorization X satisfies a linear model. By Theorem
4.5, reading off from Λ̃, the modes of DMD without centering will be the same eigenvalues
and corresponding eigenvectors of DMD with centering with an additional eigenvalue equal
to 1.

Now suppose that c is in the span of the columns of V . To show that a linear system
cannot model the data, we will use proof by contradiction. Suppose that we can express

[V c][Λ 1]ᵀ = Ṽ Λ̃ᵀ,

where Ṽ and Λ̃ have full column rank (Lemma 4.3). Since rank([V c]) < rank([Λ 1]), this
requires that rank(Λ̃) < rank([Λ 1]).

For a Vandermonde matrix M , let σ(M) denote its “spectrum,” i.e. the eigenvalues that
generate the columns, so that σ(Λ) = {λ1, . . . , λr}. We have three cases:

Case 1: σ(Λ̃) is a proper subset of σ([Λ 1]).
In this case, we can partition the columns of [Λ 1] to form two Vandermonde matrices Λ̃ and
Λ′, where the spectrum of σ(Λ′) = σ([Λ 1]) \ σ(Λ̃). Employing the same partition on the
columns of [V c], we can form matrices V1 and V2, such that

(5.7)
[
V1 V2

] [Λ̃ᵀ

Λ′ᵀ

]
= Ṽ Λ̃ᵀ.
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Consider the solution to

B

[
Λ̃ᵀ

Λ′ᵀ

]
= Λ̃ᵀ.

By assumption, the columns of [Λ̃ Λ′] are linearly independent, and so there is a unique

solution B = Λ̃ᵀ

[
Λ̃ᵀ

Λ′ᵀ

]†
= [I 0]. Multiplying both sides of (5.7) on the right by

[
Λ̃ᵀ

Λ′ᵀ

]†
, we

find

[
V1 V2

]
= Ṽ Λ̃ᵀ

[
Λ̃ᵀ

Λ′ᵀ

]†
=
[
Ṽ 0

]
.

However, V2 cannot be 0, since it comes from a partition of the nonzero columns of [V c].

Case 2: σ(Λ̃) = σ([Λ 1]).
The two spectra cannot be equal, since this would imply that rank(Λ̃) = rank([Λ 1]).

Case 3: There exists some λ ∈ σ(Λ̃) with λ 6∈ σ([Λ 1]).
Therefore, Λ̃ contains a column which is not in the column space of [Λ 1]. This means that
there is a column in Λ̃ which is linearly independent from the columns of [Λ 1]. Thus, there
does not exist a linear combination C such that

C

[
Λᵀ

1ᵀ

]
= Ṽ Λ̃ᵀ,

which is a contradiction.

5.3. Synthetic Examples. To review our results so far, we compare the eigenvalue spectra
from DMD with centering and DMD without centering for four sets of measurements of affine
systems xj+1 = Axj + b. The results are shown in Figure 2. The two top spectra correspond
to data with n < T , while the bottom two correspond to n > T .

For n < T if A is low rank (r < n), then DMD without centering has the same spectra as
DMD with centering, but with an additional eigenvalue equal to 1. If A is full rank (r = n),
DMD with centering computes the correct modes. However, DMD without centering cannot
accommodate the affine term and does not compute the correct eigenvalues and yields a poor

one step reconstruction of
∥∥∥X2 − ÂX1

∥∥∥ = 0.019.

For n > T with A low rank, DMD without centering has the same spectrum as DMD
with centering, but with an additional eigenvalue equal to 1. If r > T , by Theorem 4.5 the
system is under sampled then the DMD problem is not well-posed and the modes of A are
not unique. Consequently, the DMD modes for both with and without centering do not equal
the true modes of A. That being said, since the data are linearly consistent, all of the models
are able to reconstruct the data.

5.4. The Effects of Noise. In Theorem 5.2 we showed that, for a linear system, DMD
with centering and DMD without centering will yield the same modes, except that the constant
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a)

c)

b)

d)

Figure 2: Comparison of the eigenvalues from DMD with centering (green) and DMD without
centering (orange) to the true eigenvalues (black) of A for four different affine systems xj+1 =
Axj + b. a) n < T and A is low rank. DMD with and without centering both yield the
eigenvalues of A, except DMD with centering has an extra eigenvalue of 1, corresponding to
the background mode. b) n < T and A is full rank. DMD with centering yields the true
eigenvalues of A while DMD without centering does not. c) n > T and A is low rank. This
yields the same result as a). d) Since T < r, the DMD problem is not well-posed and neither
DMD with centering nor DMD without centering yields the eigenvalues of A.

mode without centering is replaced with a zero mode. However, one of the key assumptions
in our proofs is that there exists A, so that xj+1 = Axj . For real data with measurement
noise, this assumption will not hold. We find empirically that these predictions do hold true,
with uncertainty on the order of the noise level.

We simulated data Y = X + ηZ, where the elements of Z are from a standard normal
distribution and perform DMD. We performed this for 500 instantiations of Z ranging from
η = 10−9 to 1, and with n = 10, T = 30, and r = 7. For both DMD with centering and DMD
without centering, we compute the sum of the distances from the computed eigenvalues of Ā
and Â to the nearest true eigenvalue of A, then report the median.

Our results are shown in Figure 3. The eigenvalue distances, shown at top, for Â and Ā
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a)

b)

Figure 3: Comparison of DMD with centering and DMD without centering in the presence of
measurement noise. a) For fixed A, we compute the sum of the distances from the computed
eigenvalues of A to the nearest true eigenvalue. For both methods, the sum scales linearly
with noise level. b) For fixed noise level 0.005, we plot the eigenvalues of A computed using
both method for 100 instantiations of noise. The fluctuations of the eigenvalues from the true
values (black crosses) are roughly the same for both methods.

scale linearly with η. These distances are very close for these two methods. Note that, when
computing the sums for DMD without centering, we exclude the eigenvalue closest to one to
establish a fairer comparison between these two methods.

For a specific example, in the bottom of Figure 3 we plot the eigenvalues computed using
these two methods for η = 0.005 over 100 realizations of the noise. The black crosses show
the true eigenvalues. As expected, the deviations of the eigenvalues from the true values are
roughly the same. Note the presence of the additional eigenvalue equal to 1 for DMD without
centering.

6. DMD with Centering is not a Temporal Discrete Fourier Transform. Similar to
DMD, the temporal discrete Fourier transform (temporal DFT) can be used to decompose
the times series data x1, . . .xT+1 into linear combinations of modes with exponential time
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dependence. In particular, the temporal DFT is defined as [8, 16],

x̂j :=

{
1

T + 1

T+1∑
k=1

exp

(
−2πi(j − 1)(k − 1)

T + 1

)
xk

}
,

with inverse transform

(6.1) x′k :=

{
T+1∑
k=1

exp

(
2πi(j − 1)(k − 1)

T + 1
x̂k

)}
.

In [7], Chen argues that when subtracting the mean µ = 1
T+1

∑T+1
j=1 xj the eigenvalues lj of

the companion matrix C are independent of the data:

lj = exp

(
2πij

T + 1

)
j = 1, . . . , T + 1.

and the eigenvectors wj are given by

xk =
T+1∑
j=2

exp

(
2πi(j − 1)(k − 1)

T + 1

)
wj .

Comparing this to (6.1) we see that the eigenvectors of the companion matrix correspond to
those given by the temporal DFT. Most significantly, this has the unintended consequence of
restricting the eigenvalues to be roots of unity.

It is important to note that this argument is based (1) the companion matrix approach
and (2) the fact that the companion matrix is unique and hence the data matrix X1 − µ1ᵀ

has full effective rank. Clearly, subtracting the mean µ1 from X1 will guarantee X1 − µ11
ᵀ

to be low-rank and therefore have linearly dependent columns. Hence, the eigenvalues from
the companion matrix approach will not equal those from SVD-based DMD, and SVD-based
DMD will not be equal to the DFT. However, if there is a stationary mode, then X1 − µ1ᵀ

will also have low effective rank.

Proposition 6.1. Suppose we have sequential time series such that xj+1 = Axj which are
used to define the matrices X and X1 as in (2.3) and (4.3). If

1. the DMD problem is well-posed,
2. Â = X2X

†
1 has eigenvalue 1, and

3. X has nonzero mean µ = 1
T+1X1 6= 0,

then rank(X1 − µ1ᵀ) ≤ rank(X1)− 1.

Proof. To prove that X1−µ1ᵀ is rank deficient, we will show that there exists a nonzero
vector v which is in the nullspace of X1 − µ1ᵀ, but not in the nullspace of X1.

First, we need to show that range(X2) ⊆ range(X1). To see this, we only need to consider
the case where range(X2) 6= range(X1). Then, since the DMD problem is well-posed, T ≥ r+
1. Thus,X1 contains at least r linearly independent vectors which are in the range of Â. Thus,
range(Â) ⊆ range(X1), and since X2 = ÂX1, then range(X2) ⊆ range(Â) ⊆ range(X1).
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Since, range(X2) ⊆ range(X1), then there exists c ∈ Rn−1 such that X1c = xn. One

possible solution to this is c = X†1xT+1. Define α =
1+X†1xT+1

T+1 . By definition,

0 6= µ =
1

T + 1
X1

=
1

T + 1
(X11 + xT+1)

=
1

T + 1
X1 (1 + c)

= X1α.

Thus, α is not in the nullspace of X1 and therefore cannot be 0. By Lemma 5.1, since Â has
eigenvalue 1, then 1ᵀX†1xT+1 = 1ᵀc = 1. Thus,

(X1 − µ1ᵀ)α = X1

(
I − 1

T + 1
(1 + c) 1ᵀ

)
(1 + c)

T + 1

= X1
(1 + c)

T + 1
−X1

1

T + 1
(1 + c) 1ᵀ (1 + c)

T + 1

= X1
(1 + c)

T + 1
−X1

(1 + c)

T + 1

= 0.

In conclusion, the dimension of the null space of the centered data (X1−µ1ᵀ) must be greater
than the dimension of the null space of the uncentered data (X1) and the centered data must
have a lower rank than the uncentered data.

Remark 6.2. Even in the case where the system has measurement noise, X1 − µ1ᵀ is
effectively rank deficient. Thus, the companion matrix modes are not the DMD modes even
if the data is mean subtracted using µ.

To illustrate this point we generate data for an affine system xj+1 = Axj + b (3.1) with
n = 10, T = 7, and r = 5. In Figure 4, we plot the true modes (crosses), the spectrum
computed with DMD with centering and the spectrum computed using the companion matrix
on data with the total mean subtracted. We see that DMD with centering extracts out the
correct modes. However, the companion matrix approach does not. Since the data X1 −µ1ᵀ

is low rank, the eigenvalues of the companion matrix are not the roots of unity. In addition,
note that the companion matrix has seven nonzero eigenvalues even though A has only 5.
Next, we add some Gaussian distributed measurement noise with zero mean and standard
deviation 0.001. Like the noiseless case, DMD with centering extracts the correct eigenvalues.
Since the data are full rank the companion matrix approach yields a temporal DFT. However,
since the data has low effective rank, the eigenvalues of the companion matrix do not equal
the eigenvalues of A.

7. Extracting Arbitrary Frequencies. By subtracting the means of X1 and X2 individ-
ually, we have shown we can successfully extract the dynamics about a background mode
(corresponding to a DMD mode with eigenvalue 1). We generalize this result to modes with
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a) b)

Figure 4: Comparison of performance of DMD with centering and the companion matrix
approach on mean subtracted data. a) DMD modes (green) match with the true modes
(black crosses). Since total mean subtracted data X1 − µ1ᵀ is low rank, the companion
matrix eigenvalues do not equal the true eigenvalues. b) Same system as a) but with added
measurement noise. DMD with centering yields the correct eigenvalues. Since the data is
full-rank, the companion matrix eigenvalues equal the roots of unity. However, since the data
has low effective rank, these modes do not equal the true modes of the system.

fixed frequencies that correspond to known eigenvalues other than 1. As a concrete example,
electrical recordings taken in the presence of an alternating current power source are often
corrupted with a “background” signal at a fixed frequency (60 Hz in most countries). This
line noise corresponds to a mode with a precisely known eigenvalue that we want to subtract
from the measurements.

To subtract a mode of known frequency, note that in (3.1) the eigenvalue of 1 comes in
through the decision to use 1ᵀ. By adding this term we enforce that

(7.1) 1ᵀ =
[
1 1 · · · 1

]
,

appears in the rowspace of the data. We remove this mode by subtracting the mean from the
data or equivalently applying the orthogonal projection,

(7.2) I − 11ᵀ

1ᵀ1
,

to X1 and X2.
If we know that another eigenvalue λ exists in the data, then we simply replace (7.1) with

λᵀ =
[
1 λ λ2 λ3 · · ·λT−1

]
.

Thus, (3.1) becomes

(7.3) X2 = AX1 + bλᵀ.
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Multiplying both sides by λT † = λ∗

λᵀλ∗ , then

X2
λ∗

λT ∗λ
= b

λᵀλ∗

λT ∗λ
+AX1

λ∗

λT ∗λ

b = X2
λ∗

λT ∗λ
−AX1

λ∗

λT ∗λ
.

Plugging this into (7.3)

AX1

(
I − λ

∗λᵀ

λᵀλ∗

)
= X2

(
I − λ

∗λᵀ

λᵀλ∗

)
.

Thus, solving (7.3) is equivalent to applying the orthogonal projection, I − λ∗λᵀ

λᵀλ∗ to the data.
If there are multiple known distinct eigenvalues λ1, . . . , λk, then applying the same proce-

dure we construct the matrix

Λᵀ =


λ1 λ21 λ31 · · · λᵀ1
λ1 λ21 λ31 · · · λT1
...

...
...

. . .
...

λk λ2k λ3k · · · λTk

 ,
and assume that the data satisfies

(7.4) X2 = AX1 +BΛᵀ.

In the case that k < T , since Λ is a Vandermonde matrix it has full column rank (Lemma

4.2), and thus Λ†Λ = I. Multiplying (7.4) by Λᵀ† , and rearranging terms we get

B = X2Λ
ᵀ† −AX1Λ

ᵀ†

Plugging this into (7.4) yields

AX1

(
I −Λᵀ†Λᵀ

)
= X2

(
I −Λᵀ†Λᵀ

)
.

So, solving (7.4) is equivalent to DMD after applying the orthogonal projection I −Λᵀ†Λᵀ to
the data. As an example, we generate data with samples which satisfy,

(7.5) xj+1 = Axj + bλj−1 for j = 1, . . . , T + 1.

We choose n = 10, T = 9, r = 5 and λ = −i. The eigenvalues of A (black crosses) are shown
alongside the eigenvalues computed using DMD without fixing an eigenvalue (orange) and
DMD with a fixed eigenvalue (green). As expected, DMD with a fixed eigenvalue extracts out
the eigenvalues of A while DMD without a fixed eigenvalue includes an additional eigenvalue
with value −i.
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a) b)

Figure 5: Comparison of DMD with fixed frequency subtraction versus ordinary DMD. Data
was generated as in (7.5), where A has six nonzero eigenvalues with one fixed to be −i. a)
Eigenvalues computed using DMD with fixed frequency subtraction (green) compared to true
eigenvalues of A. b) DMD modes computed without a fixed eigenvalue (orange) compared
to true eigenvalues of A. DMD without fixed frequency subtraction contains the additional
eigenvalue equal to −i.

8. Examples. We demonstrate DMD with centering on three nonlinear examples, includ-
ing one synthetic example and two real-world datasets. For the Lorenz system, Section 8.1
shows that DMD with centering improves the model of the dynamics, especially in the pres-
ence of measurement noise. Section 8.2 describes the surveillance video example, where the
data is effectively low rank; DMD with and without centering extract the same foreground and
background modes, as detailed in Section 5. Last, Section 8.3 shows extraction of modes at
arbitrary frequencies (Section 7) using an example of brain activity recordings contaminated
by 60 Hz line noise.

8.1. Lorenz System. As an example, we analyze the Lorenz (1963) system [28] which is
defined by the set of differential equations

ẋ1 = σ(x2 − x1)
ẋ2 = x1 (ρ− x3)− x2

ẋ3 = x1x2 − βx3.

These equations appear in a variety of systems including, fluid dynamics [27], lasers [51], and
chemical reactions [11]. This system is nonlinear and thus the corresponding data matrix
X ∈ R3×T+1 has linearly independent rows.

For this analysis, we will focus on applying DMD to a short trajectory that spirals outward
from the unstable nonzero fixed point (

√
β(ρ− 1),

√
β(ρ− 1), ρ − 1). We choose to use the

common values σ = 10, ρ = 28, and β = 8/3. We simulate 4800 timepoints using the
standard Runge-Kutta 4th-order method with fixed timestep 0.001 and initial condition x1 =
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[6.7673, 6.1253, 25.8706].
In Figure 6 we plot the trajectory along with the reconstructed trajectories (forecasts from

the initial time) using DMD with centering and DMD without centering. The corresponding
eigenvalues from these two methods are shown on the right. DMD with centering and DMD
without centering have different eigenvalues in this case. However, both methods give similar
reconstructions. Note that DMD has an eigenvalue very close to 1, which indicates that there
is a fixed point or nonzero mean in the data.

Next we add Gaussian measurement noise with variance 0.032, which is quite small relative
to the variable scales. It is well-known that noise shrinks DMD eigenvalues towards the origin
[3, 9, 19]. For DMD with centering, even though the eigenvalues shrink towards the origin,
the reconstruction is still centered about the fixed point. In addition, since two of the DMD
with centering eigenvalues remain outside of the unit circle, the reconstructions have the same
growing trend as the simulation. However, for DMD without centering all of the eigenvalues
fall within the unit circle, which causes the reconstruction to decay to the origin. So, we
conclude that not centering the data can result in drastically different forecasts and estimates
of stability.

8.2. Background Subtraction for Video Surveillance. Next we analyze an application to
video surveillance. Here, we focus on one objective, namely foreground/background separation
in video. In particular, we would like to split the data into two pieces: a slowly varying,
highly correlated background and a foreground containing moving objects of interest. Several
techniques have been developed to address this objective [45, 29, 18, 6]. In [15], Grosek and
Kutz show that when DMD is applied to videos with static backgrounds, one of the DMD
modes typically has an eigenvalue close to 1. This mode is a good approximation to the
background and consequently the difference in the data and this mode yields an estimate
for the foreground. For this type of data, we expect the video to be approximately low
rank. Hence, the foreground from Exact DMD should be approximately equal to the mean
subtracted data. In addition, we expect the background to be given by the fixed point c,
where

X2 − c1ᵀ = Ā(X1 − c1ᵀ).

Comparing this to the equation for DMD with centering

X2 − µ21
ᵀ = Ā (X1 − µ11

ᵀ)

we see that

c− Āc = µ2 − Āµ1,

and hence

c = (I − Ā)−1(µ2 − Āµ1).

Note that I − Ā is invertible since Ā does not have an eigenvalue equal to 1.
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Figure 6: Comparison of performance of DMD with and without centering using Lorenz (1963)
attractor data. Top left: Reconstruction of z plotted against reconstruction of y for the two
methods. Top center: Reconstruction of x, y, and z as a function of t individually using
different methods. Both methods produce similar reconstructions. Top right: Eigenvalue
spectra for DMD with and without centering. Bottom row: Same as top row except simulation
has added Gaussian measurement noise. Note that all of the eigenvalues for DMD without
centering have magnitude less than one and decay to zero, causing the reconstructed trajectory
to decay to zero. However, some of the DMD with centering modes have magnitude greater
than one, yielding a better reconstruction. One eigenvalue equal to 0.8866 is not shown for
DMD with centering.

We apply these methods to surveillance video of highway traffic from the CDNET dataset
[50]. In this case, the foreground is the cars and the background is the grass, road, trees, etc.
In Figure 7 we show a sample frame, the stationary mode from DMD without centering, the
fixed point c from DMD with centering, and the overall mean of the data. The stationary
mode and fixed point are visually identical but not equal to the overall mean of the data.
Additionally, as predicted by Theorem 5.2, the spectra for DMD with and without centering
are nearly identical except for the presence of the additional eigenvalue equal to 1 for DMD
without centering.

8.3. Fixed Frequency Subtraction for Brain Activity Recordings. As a final example,
we study an application of our methods to brain activity recordings. In particular, we study
intracranial electrocorticography (ECoG) measurements from electrodes placed on a human
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t

a) c) e)

b) d) f)

Figure 7: a) Sample frames from video of traffic. b) Overall mean µ of video. c) Eigenvalues of
modes computed using DMD and d) static mode corresponding to eigenvalue closest to one. e)
Eigenvalues of modes computed using DMD with centering and f) static mode corresponding
to fixed point. Note that the spectra for these two methods is nearly identical with the
exception of the eigenvalue at 1 corresponding to the static mode/fixed point.

brain surface [49]. The data we use contain 64 channels of measurements and are sampled for
a duration of 5 seconds with a frequency of 1000 Hz.

One common source of signal pollution is 60 Hz power line hum, which results from the
AC current in power lines [4, 26]. Since the frequency we would like to remove is known
precisely, we may apply the results of Section 7 to denoise the signal. In the top left of Figure
8, we plot the subset of these channels. The corresponding power spectra computed using the
temporal DFT and DMD are shown in the middle left and bottom left plots, respectively. As
expected, there is a distinct peak near 60 Hz in both of these plots. On the right we show
the corresponding plots after applying the fixed frequency subraction at 60 Hz. In the power
spectrum we see that the peak near 60 Hz is suppressed by an order of magnitude. In addition,
the mode near 60 Hz in the DMD spectrum is completely removed. Surprisingly, even though
the original mode is not at exactly 60 Hz, frequency subtraction is able to remove it.

9. Discussions. In this paper, we have proposed mean subtraction as a natural and com-
putionally efficient preprocessing step when performing DMD. We have shown that DMD on
mean subtracted data is equivalent to an additional affine term in the DMD framework, but
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Figure 8: Application of fixed frequency subtraction to brain activity recordings . Top left:
Raw voltage signals from subset of channels. Center left: Corresponding discrete Fourier
transform power spectrum. Bottom left: Power spectrum computed using DMD. Right: Same
as left column after fixed frequency of 60 Hz has been subtracted.

is not equivalent to a temporal discrete Fourier transform (temporal DFT). In addition, we
showed that, in a special subset of cases, DMD without centering extracts the same spectra as
DMD with centering. However, in the case where the data are full rank, DMD with centering
can extract the underlying dynamics even when DMD without centering cannot. By thinking
of centering the data as subtracting a zero-frequency mode, we generalized this result to ex-
tracting non-zero, known frequencies in the data. Finally, we illustrated DMD with centering
on three real examples with nonlinear dynamics, namely a trajectory of the Lorenz system, a
surveillance video, and brain recordings.

Many of the Theorems in this work have depended on the assumption of sequential time
series sampled at a fixed frequency. In particular, the uniqueness of the DMD modes (Theo-
rem 4.5) is based on this assumption. However, exact DMD has been shown to successfully
extract modes from data that is not sequential. One potential starting point is the theory of
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exponential Vandermonde matrices [37, 54]. It remains to be demonstrated that the modes
extracted for non-sequential times data by exact DMD, or similar methods such as optimized
DMD, are well-posed and unique. Furthermore, future work remains to more thoroughly
explore the effects of noise on the DMD estimator and obtain a fully statistical theory.

Our analysis in this paper has focused on computing DMD by what is known as the (SVD-
based) exact DMD algorithm [46]. There exist many other algorithms for computing the DMD,
including forward/backward DMD [9], total least squares DMD [19], and optimized DMD [2].
Although we suggest that data centering is generally advantageous, the consequences of cen-
tering remains to be explicitly characterized when using these other algorithms.
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Appendix A. Rank one Update. Here we will derive (5.3) and (5.5). Namely we will
show that if X2 = AX1 then

(A.1) X̄†1 =


X†1
(
I − nnᵀ

nᵀn

)
if (I −X†1X1)

ᵀ1 = 0(
I −

(
I−X†1X1

)
11ᵀ

1ᵀ
(
I−X†1X1

)
1

)
X†1 otherwise

where n = X†
ᵀ

1 1. To derive this we use the rank-one update formula (3.2.7) from [34] to

compute X̄†1 = (X1 − µ11
ᵀ)†.
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First, let’s assume
(
I −X†1X1

)
1 = 0. Letting A = X1, c = −µ1, and d = 1, then

β = 1− 1ᵀX†1µ1 = 1− 1ᵀX†1X11

1ᵀ1
= 0

w = −(I −X1X
†
1)
X11

1ᵀ1
= 0

m = (I −X†1X1)
ᵀ1 =

(
1ᵀ − 1ᵀX†1X1

)ᵀ
= 0

v = −X†1µ1 = −X†1
X11

1ᵀ1
= − 1

1ᵀ1

n = X†
ᵀ

1 1

Note that ‖v‖2 = 1
1ᵀ1 . Since β = ‖m‖ = ‖w‖ = 0, we are in Case 6 and the pseudoinverse is

given by

X̄†1 = X†1 −
1

‖v‖2
vvᵀX†1 −

1

‖n‖2
X†1nn

ᵀ +
vᵀX†1n

‖v‖2 ‖n‖2
vnᵀ

Noting that in first term
vᵀX†1
‖v‖2 = nᵀ and in the third term vᵀX†1n =

1ᵀX†1X
†ᵀ
1 1

1ᵀ1 =

‖n‖2 ‖v‖2, then the first and third terms equal −vnᵀ and vnᵀ. These cancel, yielding the
first case of (A.1). Thus, by Theorem 2.1 in [10], Â and Ā share all the same eigenvalues and
eigenvectors except the eigenvalue of Â equal to 1 which becomes

1− n
ᵀX2X

†
1n

‖n‖2
= 1− n

ᵀÂn

‖n‖2
= 1− nᵀn

‖n‖2
= 0.

Now, let’s assume 1ᵀ
(
I −X†1X1

)
6= 0. This corresponds to Case 3 in [34].

w = −
(
I −X1X

†
1

)X11

1ᵀ1
= 0

m =
(
I −X†1X1

)ᵀ
1 6= 0

β = 1− 1ᵀX†1X11

1ᵀ1
=
‖m‖2

1ᵀ1
6= 0

v = −X
†
1X11

1ᵀ1

n = X†
ᵀ

1 1

X̄†1 = X†1 +
1

β
mvᵀX†1 −

β

‖v‖2 ‖m‖2 + |β|2

(
‖v‖2

β
m+ v

)(
‖m‖2

β

(
X†1

)ᵀ
v + n

)ᵀ

Now

‖m‖2

β

(
X†1

)ᵀ
v + n = −1ᵀ1X†

ᵀ

1 X
†
1

X11

1ᵀ1
+X†

ᵀ

1 1 = 0
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since X†1X1 is symmetric. Hence,

X̄†1 = X†1 +
1

β
mvᵀX†1

=

I −
(
I −X†1X1

)
11ᵀ

1ᵀ
(
I −X†1X1

)
1

X†1.
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