
ar
X

iv
:1

90
9.

11
21

6v
3

 [
m

at
h.

O
C

]
 4

 D
ec

 2
02

0

EFFICIENT ALGORITHMS FOR DISTRIBUTIONALLY ROBUST STOCHASTIC
OPTIMIZATION WITH DISCRETE SCENARIO SUPPORT ∗

ZHE ZHANG† , SHABBIR AHMED , AND GUANGHUI LAN‡

Abstract. Recently, there has been a growing interest in distributionally robust optimization (DRO) as a principled
approach to data-driven decision making. In this paper, we consider a distributionally robust two-stage stochastic optimization
problem with discrete scenario support. While much research effort has been devoted to tractable reformulations for DRO
problems, especially those with continuous scenario support, few efficient numerical algorithms are developed, and most of
them can neither handle the non-smooth second-stage cost function nor the large number of scenarios K effectively. We fill
the gap by reformulating the DRO problem as a trilinear min-max-max saddle point problem and developing novel algorithms
that can achieve an O(1/ǫ) iteration complexity which only mildly depends on K. The major computations involved in each
iteration of these algorithms can be conducted in parallel if necessary. Besides, for solving an important class of DRO problems
with the Kantorovich ball ambiguity set, we propose a slight modification of our algorithms to avoid the expensive computation
of the probability vector projection at the price of an O(

√
K) times more iterations. Finally, preliminary numerical experiments

are conducted to demonstrate the empirical advantages of the proposed algorithms.

Keywords: stochastic programming, convex optimization, distributionally-robust optimization, smoothing, bundle-level,
primal-dual smoothing.

AMS 2000 subject classification: 90C25, 90C15, 90C47, 49M27, 49M29

1. Introduction. Two-stage stochastic programming (SP) problems are the most widely used stochas-
tic optimization models in practice [26]. In this paper, we consider a distributionally robust two-stage
stochastic convex optimization problem with a finite set of scenarios {ξi}Ki=1,

min
x∈X

{
f(x) := f0(x) + max

p∈P

∑K
k=1pkg(x, ξk)− φ∗(p)

}
, (1.1)

where X ⊂ R
n is a convex and compact feasible region for the first-stage decision variable x, and P ⊂ R

K

is a convex and compact ambiguity set for the scenario probability vector p ∈ R
K . We assume that the

first-stage cost function f0(·) and the second-stage cost functions g(·, ξk) are proper closed convex (p.c.c.)
and Lipschitz continuous, and that φ∗① is a simple p.c.c. function of p. The goal is to minimize the expected
cost with respect to the worst probability vector in P .

Such a problem arises naturally under the following situations.
• Data driven SP with finite scenario support. We want to minimize the expected cost with
respect to the true distribution p∗. However, p∗ is usually unknown, and only partial information
about it can be obtained from either historical observations or simulation. In this case, one can
construct an 1 − α confidence ambiguity set Pα, i.e., p

∗ ∈ Pα with a probability of at least 1 − α,
and solve for the DRO problem associated with Pα. The true cost for DRO solution x̂ would be less
than the DRO cost with a probability of at least 1− α. There exist an expansive literature on such
confidence ambiguity sets, including the Phi-divergence ball [21, 22], the ζ-distance ball [27], and
the hypothesis testing set [4].

• Data driven SP with continuous scenario support. An important metric-based ambiguity
set is the Kantorovich ball. This is because when g(x, ξ) is Lipschitz continuous in ξ for all x, the
expected cost Ep[g(x, ξ)] is Lipschitz continuous in p with respect to the Kantorovich distance. In
two-stage stochastic programming, the radius δ for the Kantorovich Pα ball [28, 7], the sufficient
conditions for the Lipschitz-continuity of g(x, ξ) and the convergence of DRO solutions to true

∗ This work was funded by Army Research Office W911NF-18-1-0223.
†H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 .

(email: jimmy zhang@gatech.edu).
‡H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332 .

(email: george.lan@isye.gatech.edu).
①Notice that φ∗ is usually identically zero in DRO problems, however we include it to handle some non-coherent risk

measures for risk-averse stochastic programming problem.

1

http://arxiv.org/abs/1909.11216v3

Table 1.1: Theoretical Performance Comparison for Major Deterministic Algorithms

Algorithm Iteration Complexity Most Expensive Computation in Each Iteration1

Benders Decomposition [27, 12] O(1/ǫn) K separable m× n LPs in parallel

Bundle Level [14] O(1/ǫ2) K separable m× n LPs in parallel
Mirror Descent [3] O(1/ǫ2) K separable m× n LPs in parallel

Constraint PDHG [15] O(1/ǫ) One large-scale and non-separable (Km)× n QP
Separabale PDHG [7] O(K/ǫ) K separable m× n QPs in parallel

Euclidean SD & SSL O(
√
K/ǫ) K separable m× n QPs in parallel

Entropy SD & SSL O(
√
logK/ǫ) K separable m× n QPs in parallel

1 Based on solving distributionally robust two-stage LP.
2 The complexity of Benders decomposition (or Kelley’s cutting plane method) was established in [12] with n
being the dimension of the problem.

solutions [23] are well studied. However, computing the DRO solution remains challenging because
it involves finding the maximal in the infinite dimensional space of distributions. One approach to
address such a difficulty is to use a duality argument to simplify the problem to

min
x∈X,λ≥0

f0(x) + λδ +
1

N

∑N
i=1 max

ξ∈Ξ
g(x, ξ) − λd(ξi, ξ),

where λ is the Lagrange multiplier for the total transportation cost constraint and d is the distance
function. To solve the simplified problem, [8] reformulates it to a large deterministic convex problem,
[9] suggests using the mirror-prox algorithm and [28] suggests using the Benders decomposition
algorithm. The successes of [9, 8] hinge on the concavity of g(x, ξ) with respect to ξ, while [28]
carries some other structural assumptions on g(x, ξ) and Ξ. These requirements can be restrictive.
For example, the concavity of g(x, ξ) is not satisfied even for a two-stage linear stochastic program
with right-hand side uncertainty. A more general approach is to use a discrete grid of scenarios ΞK

to approximate the whole scenario space Ξ and solve the DRO problem restricted to ΞK [7, 27]. The
approximation error can be bounded by the Hausdorff distance between ΞK and Ξ, so a fine grid,
i.e., a large number of scenarios, is necessary for a moderately accurate solution.

• Risk-averse SP with finite scenario support: In finance, the preference for less risk can be
formulated using a risk measure φ, so the goal is to find a decision x with minimal φ. For example,
in portfolio selection [16], given a finite number of scenarios about possible returns {g(x, ξk)}, we
want to select a portfolio x with minimum φ(g(x, ξ1), ..., g(x, ξK)). If such a risk measure is p.c.c.
and monotone, say the piecewise linear dis-utility function, then we can use bi-conjugation [1] to

rewrite the problem as minx∈X maxp∈R
K
+

∑K
k=1pkgk(x) − φ∗(p). In addition if φ is a coherent risk

measure [26], for example the average value-at-risk (AVaR), then φ∗ ≡ 0 and p’s domain must be a
subset of the probability simplex.

Now returning to (1.1), we can simply denote the g(x, ξk) by gk(x). In many cases, the function g(x, ξk)
may involve a linear transformation Tk on x, for example, the technology matrix in stochastic programming.
Then it is often desirable to process such a linear transformation differently from other nonlinear components
of g(x, ξk) in the design of algorithms. Therefore, we rewrite g(x, ξk) as gk(Tkx) to arrive at the following
equivalent reformulation of (1.1),

min
x∈X

{
f(x) := f0(x) + max

p∈P

∑K
k=1pkgk(Tkx)− φ∗(p)

}
. (1.2)

Apparently, if one does not need to process Tk separately or such a linear transformation does not exist, we
can simply set Tk = I in (1.2).

Problem (1.2) is a convex-concave saddle point problem and can be solved by the mirror descent method
[3] or the bundle level method [14] directly. However gk is often non-smooth, for example, the minimum

2

objective of a linear program. So direct applications of these methods would lead to an O(1/ǫ2) iteration
complexity bound, which is independent of the number of scenarios K. In each iteration, the function values
and sub-gradients for {gk} can be computed in parallel.

To improve the iteration complexity bound, Liu et al. put the second-stage cost functions in the con-
straint to obtain a composite bilinear saddle point problem in [15],

min
x∈X,vk≥gk(Tkx)

max
p∈P

f0(x) +
∑K

k=1pkvk − φ∗(p). (1.3)

They applied the primal-dual hybrid gradient (PDHG) algorithm in [6] to obtain an O(1/ǫ) iteration com-
plexity bound. However, this algorithm may not be practical because each iteration involves projecting (x, v)
onto a jointly constrained set, {vk ≥ gk(Tkx), ∀k}. More recently, Chen et al. [7] address the non-separability
issue by introducing a copy of x for each scenario, {xk}, and uses Lagrange multipliers {λk} to enforce their
consensus to arrive at the following reformulation:

min
x0,xk∈X,vk≥gk(Tkxk)

max
p∈P

max
λk∈Rn

〈v, p〉+ f0(x0) +
∑K

k=1〈x0 − xk, λk〉 − φ∗(p). (1.4)

The objective is jointly concave (linear) with respect to (p, λ), so (1.4) is again a bilinear saddle point problem
to which the PDHG algorithm can be applied. Moreover, the (xk, vk) projections can be performed in parallel
if needed. However such an approach still has two major limitations. Firstly, the combined (p, λ) dual block
prevents us from exploiting the special geometry of P , a subset of the probability simplex, to improve the
iteration complexity bound’s dependence on K. More specifically, since the Euclidean Bregman distance is
used in [7], the radii of both the primal feasibility region for {x0, (x1, v1)...(xK , vK)} and the dual feasibility
region for {(p1, p2...pK);λ1;λ2; ...λK} are O(

√
K). So it follows from [6] that the iteration complexity bound

is O(K/ǫ). Secondly, the projection onto a non-smooth function constrained set {vk ≥ gk(Tkxk)} in each
iteration could be computationally expensive.

An interesting research problem is whether there exists an O(1/ǫ) algorithm which can handle both the
large number of scenarios and the non-smooth second-stage cost gk(Tkx) effectively. Towards this end, we
use bi-conjugation [1] to reformulate the non-smooth gk(Tkx) as maxπk∈Π(k)〈πk, Tkx〉 − g∗k(πk) to arrive at
a trilinear saddle point problem,

min
x∈X

f0(x) + max
p∈P

∑K
k=1 max

πk∈Π(k)
pk(〈Tkx, πk〉 − g∗k(πk))− φ∗(p)

︸ ︷︷ ︸
F (x)

, (1.5)

where Π(k) is the domain of the conjugate function g∗k(πk), Π(k) := {πk | g∗k(πk) < ∞}②. As compared to
(1.4), (1.5) is no longer jointly concave in p and {πk}, and the projection in (p, {πk}) is not parallelizable.
So the simple reduction to a convex-concave saddle-point problem is not possible. However, because p is
non-negative, the non-concave maximization in (1.5) can be evaluated efficiently in a sequential manner:
given a x ∈ X , first maximize {πk} in parallel and then maximize p.

In this paper, we take advantage of such a sequential structure by treating p and {πk} as separate dual
blocks and develop two new algorithms: a simple sequential dual (SD) method and a more complicated but
more efficient sequential smoothing level (SSL) method. The SD method extends the popular primal-dual
method; it has a novel momentum step and an additional p-projection step. The SSL algorithm extends
Nesterov’s smoothing scheme to build a two-layer smooth approximation of (1.5) and then applies the
accelerated prox-level method in [10] to an adaptively smoothed approximation of f . The SSL algorithm
is parameter-free. It is worth noting that bundle-level type methods are classical methods for solving two-
stage stochastic programming problems, but they have not been studied for solving distributionally robust
problems before.

In addition, since P is now a standalone block, we have more flexibility to exploit its favorable geometry
to obtain either a better iteration complexity or cheaper computations in each iteration. More specifically,
if P is simple, we can use entropy p projection to reduce the iteration complexity bound to O(

√
logK/ǫ). If

②Notice that if gk is a p.c.c. function, then g∗
k
must also be p.c.c., so Π(k) is closed and convex. Moreover, if gk is Lipschitz

continuous, then Π(k) must be bounded, i.e., Π(k) is compact.

3

P is the computationally challenging Kantorovich ball, we can substitute the expensive p projection with a
cheaper joint probability matrix projection at the price of increasing the iteration complexity to O(

√
K/ǫ).

Due to the separation of the p-block from the other blocks, only stepsize modifications are needed for our SD
and SSL methods. To the best of our knowledge, all these complexity results appear to be new for solving
trilinear saddle point problems given in the form of (1.5).

The paper is organized as follows. Section 2 proposes the simple sequential dual (SD) algorithm, and
Section 3 develops the parameter-free sequential smoothing level (SSL) method. Section 4 introduces the
specialized modifications of the SD and SSL algorithms for the challenging Kantorovich ball. Finally, en-
couraging numerical results are presented in Section 5 and concluding remarks are made in section 6.

1.1. Notations and Assumptions. Throughout the paper, we use x∗ denote an arbitrary optimal
solution to (1.2). For any convex function f defined on X , we use ∂f(x) to denote the set of all sub-
gradients and use f ′(x) to denote an arbitrary element in ∂f(x). If the set X is associated with some
norm ‖·‖X , we use ‖·‖X ∗ to denote its dual norm. Moreover, we call f L-smooth if it satisfies f(x1) −
f(x2) − 〈x1 − x2, f

′(x2)〉 ≤ L
2 ‖x1 − x2‖2X for all x1, x2 ∈ X , and we call f µ-strongly convex if it satisfies

f(x1)− f(x2)− 〈x1 − x2, f
′(x2)〉 ≥ µ

2 ‖x1 − x2‖2X for all x1, x2 ∈ X .
To take advantage of the geometry of P , we need the Bregman distance function. Given a closed and

convex set Y③, let F : Y → R be differentiable and convex, and 1-strongly convex over dom(∂F) := {y ∈ Y :
∂F (y) 6= ∅} with respect to some ‖·‖F , the Bregman distance function dF : dom(∂F)× Y → R is defined as

dF (y1, y2) = F (y2)− F (y1)− 〈F ′(y1), y1 − y2〉.

In the following analysis, we will consider a general Bregman distance function W (·, ·) for P . Dis-

tance functions of practical interests consist of the Euclidean W (p1, p2) := ‖p1 − p2‖2 and the entropy

W (p1, p2) :=
∑K

i=1p1,i log(p2,i/p1,i), which are 1-strongly convex with respect to ‖·‖2 and ‖·‖1 respec-

tively. For X and Π(k), we will use the Euclidean distance functions V (x1, x2) := ‖x1 − x2‖22 /2 and

U(π1,k, π2,k) := ‖π1,k − π2,k‖22 /2 for simplicity.
To facilitate analyzing how our algorithms scale with K, we need some scenario independent radii and

operator norms. Define Ω2
X := maxx∈X V (x0, x) and Ω2

P := maxp∈P W (p0, p) for some initial points x0 and
p0. ΩX is independent of K, but ΩP can depend on K. More specifically, if p0 is the empirical distribution
and P is the whole probability simplex, then ΩP is O(1) for Euclidean W and O(

√
logK) for entropy W .

For the multi-block {πk}, we use boldface letters to denote the concatenation of individual scenarios:
πππ := [π1, π2, . . . , πK], TTT := [T1;T2; . . . ;TK], ggg∗(πππ) := [g∗1(π1), . . . , g

∗
K(πK)], and ΠΠΠ := Π(1)×Π(2) · · · ×Π(K).

We use the following shorthand notations for multi-scenario functions: pTTTπ :=
∑K

k=1pkTkπk, 〈x,πππ〉TTT :=
[〈T1x, π1〉, 〈T2x, π2〉, ..., 〈TKx, πK〉] and UUU(πππ1,πππ2) := [U(π1,1, π2,1), U(π1,2, π2,2), ..., U(π1,K , π2,K)] and their
k-th components: 〈x,πππ〉Tk

:= 〈Tkx, πk〉 and Uk(πππ1,πππ2) := U(π1,k, π2,k). Let the multi-block (2,q)-norm be
‖πππ‖2,q := ‖[‖π1‖2 , ‖π2‖2 , ..., ‖πK‖2]‖q , then the scenario independent radius and operator norm for πππ and
TTT are defined as :

Ω2
ΠΠΠ := max

k∈K
max
πππ∈ΠΠΠ

Uk(πππ0,πππ) for some initial πππ0 ∈ ΠΠΠ, MTTT := max
k∈[K]

‖Tk‖2,2 and MΠΠΠ := max
πππ∈ΠΠΠ

‖πππ‖2,∞. (1.6)

Because gk(·) is p.c.c. and Lipschitz-continuous, every Π(k) is a convex closed and bounded, so MΠΠΠ <∞.

2. Sequential Dual Algorithm. In this section, we consider (1.5) from a saddle point perspective:

min
x∈X

max
(p,πππ)∈P×ΠΠΠ

{L(x, p,πππ) := f0(x) +
∑K

k=1pk(〈Tkx, πk〉 − g∗k(πk))− φ∗(p)}. (2.1)

One challenge is the non-concavity of L with respect to (p,πππ), so existing saddle point algorithms cannot be
directly applied. However, upon a closer inspection, we find the ingredients required to design a primal-dual
saddle point algorithm [13] still applicable due to the non-negativity of the p-block. More specifically, in
Subsection 2.1, we show a duality relationship between L in (2.1) and f in (1.2), and a conversion from the

③In general the Bregman distance function can be defined over any set, not necessary a closed and convex set. For the
general definition, please refer to [13].

4

primal-dual gap (see Definition 2.2) to the functional optimality gap. Then in Subsection 2.2, we present
a decomposition of the primal-dual gap into individual optimality gaps of the x, p and πππ blocks. These
individual optimality gaps are composite linear, i.e., of the form 〈·, y〉 + h(·), where h(·) are some simple
convex functions. So, as is standard in first-order methods [13], these quantities can be gradually decreased
by iterative proximal updates. We introduce some novel momentum terms in these proximal updates, which
then leads to the SD method.

2.1. Duality and Primal-Dual Function. The following duality relationship between f and L is
straightforward because it boils down to switching the order of a non-negative weighted summation and a
maximization.

Proposition 2.1. Let f and L be defined in (1.2) and (2.1), then the following statements hold for all
x ∈ X.

a) Weak Duality: f(x) ≥ L(x, p,πππ) for all p ∈ P,πππ ∈ ΠΠΠ.
b) Strong Duality: f(x) = L(x, p̄, π̄ππ) for some p̄ ∈ P, π̄ππ ∈ ΠΠΠ.

Proof. We consider the strong duality first. Pick π̄k ∈ ∂gk(Tkx) such that 〈Tkx, π̄k〉 − g∗k(π̄k) = gk(Tkx)

and p̄ ∈ argmaxp∈P

∑K
k=1pkgk(Tkx)− φ∗(p), then it is easy to verify L(x, p̄, π̄ππ) = f(x).

Next, we show the weak duality. Notice that

f(x) =f0(x) + max
p∈P

∑K
k=1pk[max

πk∈Π(k)
〈Tkx, πk〉 − g∗k(πk)]− φ∗(p)

(a)
=f0(x) + max

p∈P
max

πk∈Π(k)

∑K
k=1pk[〈Tkx, πk〉 − g∗k(πk)]− φ∗(p) = max

(p,πππ)∈P×ΠΠΠ
L(x, p,πππ),

where (a) follows from the non-negativity of P . So f(x) = max(p,πππ)∈P×ΠΠΠ L(x, p,πππ) ≥ L(x, p,πππ) for any
feasible p and πππ.

We define a primal-dual gap function [13] for analyzing the saddle point problem (2.1) as follows.

Definition 2.2. Let z := (x, p,πππ) ∈ Z := X × P ×ΠΠΠ and u := (ux, up, uπππ) ∈ Z. Then the primal-dual
gap function is given by

Q(z, u) := L(x, up, uπππ)− L(ux, p,πππ).

Q(z, u) measures the saddle point optimality of z in comparison to some u; if z is a saddle point, then
Q(z, u) ≤ 0 for all feasible u. In our analysis, we use Q(z, u) as an upper bound for the functional optimality

gap, f(x)− f(x∗). With a carefully chosen u, we can show
∑N

t=1Q(zt, u) providing an upper bound for the
optimality gap of an ergodic average solution x̄N , which is illustrated in the following proposition.

Proposition 2.3. Let u := (x∗, up, uπππ) and a feasible sequence {zt := (xt, pt,πππt)} be given. If

max(up,uπππ)∈P×ΠΠΠ

∑N
t=1Q(zt, u) ≤ B for some finite B. Then the ergodic solution x̄N :=

∑N
t=1xt/N sat-

isfies

f(x̄N)− f(x∗) ≤ B
N .

Proof. From the strong duality result in Proposition 2.1, we have L(x̄N , p̄N , π̄ππN) = f(x̄N) for some
p̄N and π̄ππN . But L(x, p̄N , π̄ππN) is convex with respect to x, so it follows from the Jensen’s inequality that

Nf(x̄N) = NL(x̄N , p̄N , π̄ππN) ≤ ∑N
t=1L(xt, p̄N , π̄ππN). Moreover, the weak duality in Proposition 2.1 implies

that f(x∗) ≥ L(x∗, pt,πππt) ∀t, so Nf(x∗) ≥
∑N

t=1L(x∗, pt,πππt). Therefore we have

N(f(x̄N)− f(x∗)) ≤ ∑N
t=1L(xt, p̄N , π̄ππN)− L(x∗, pt,πππt) =

∑N
t=1Q(zt, (x

∗, p̄N , π̄ππN)) ≤ B.

Dividing both sides by N, we get the desired result.

2.2. The Sequential Dual Method. The development of the sequential dual method (see Algo-
rithm 1) is inspired by the following decomposition of Q(z;u): Q(z;u) ≡ Qx(z;u) + Qp(z;u) + Qπ(z;u)

5

where

Qπ(z;u) := L(x, up, uπππ)− L(x, up,πππ) = 〈up, 〈x, uπππ〉TTT − ggg∗(uπππ)〉−〈up, 〈x,πππ〉TTT − ggg∗(πππ)〉︸ ︷︷ ︸
πππ gap

.

Qp(z;u) := L(x, up,πππ)− L(x, p,πππ) = 〈up, 〈x,πππ〉TTT − ggg∗(πππ)〉 − φ∗(up)−〈p, 〈x,πππ〉TTT − ggg∗(πππ)〉+ φ∗(p)︸ ︷︷ ︸
p gap

.

Qx(z;u) := L(x, p,πππ)− L(ux, p,πππ) = f0(x) + 〈x, pTTTπππ〉︸ ︷︷ ︸
x gap

−(f0(ux) + 〈ux, pTTTπππ〉).

(2.2)

Observe that inside each Q(·) function, the under-braced terms associated with the (·) argument are of the
form 〈y, ·〉 + h(·) for some simple convex h(·), for example, −〈up, 〈x, ·〉TTT − ggg∗(·)〉 in the πππ gap. So we can
use proximal updates to decrease them iteratively. However, at least two of (x, p,πππ) appear together in
every decomposed gap term. Thus we need to use some guesses for the other blocks if they have not been
evaluated in the sequential update scheme, and care must be taken in designing those guesses to ensure the
cancellation of the consequent prediction errors. More specifically, given a sequence {zi ≡ (xi, pi,πππi)}ti=0,
we propose the following sequential proximal update for the πππ, p and x blocks (in that order) to obtain a
possibly smaller Qx(zt+1;u), Qp(zt+1;u) and Qπ(zt+1;u).

1. πππ block: we need to decrease the value of −〈up, 〈xt+1,πππ〉TTT − ggg∗(πππ)〉 in (2.2). But since up is non-
negative, we might as well reduce every component of the vector −〈xt+1,πππ〉TTT + ggg∗(πππ) separately.
Moreover, xt+1 is currently unknown, so we use the guess xt +(xt − xt−1) to arrive at the following
πππ−proximal update step, i.e., Line 4 in Algorithm 1,

πk,t+1 = argmin
πk∈Π(k)

−〈2xt − xt−1,πππ〉Tk
+ g∗k(πππ) + σUk(πππt,πππ).

2. p block: we wish to decrease the value of −〈p, 〈xt+1,πππt+1〉TTT − ggg∗(πππt+1)〉 + φ∗(p) in (2.2). Again,
the information about 〈xt+1,πππt+1〉TTT is unavailable, so we use the guess 〈xt,πππt〉TTT + (〈xt,πππt+1〉TTT −
〈xt−1,πππt〉TTT) to obtain the following p−proximal update step, i.e., Line 5 in Algorithm 1,

pt+1 = argmin
p∈P

−〈p, 〈xt,πππt+1〉TTT + 〈xt − xt−1,πππt〉TTT − ggg∗(πππt+1)〉+ φ∗(p) + τW (pt, p).

3. x block: This is the simplest. We intend to decrease the value of f0(x) + 〈x, pt+1TTTπππt+1〉. But since
we already know (pt+1,πππt+1) from the previous two updates, the x-proximal update step, Line 6 in
Algorithm 1, is simply

xt+1 = argmin
x∈X

〈x, pt+1TTTπππt+1〉+ f0(x) + ηV (xt, x).

The algorithm is named sequential dual method because both the πππ and p blocks can be viewed as dual
blocks and they need to be updated sequentially before the primal x block can be updated.

Our goal in the remaining part of this section is to analyze the convergence properties of the SD method.
To highlight the dependence of the iteration complexity bound on K, we need to relate the dual norm
‖πππ‖2,W∗ , which possibly depends on K, to ‖πππ‖2,∞, which is independent of K.

Definition 2.4. Let ‖·‖W be the norm associated with P , we call any Cp ≥ 0 a norm adjustment
constant for the ambiguity set P if it satisfies Cp ‖πππ‖2,∞ ≥ ‖πππ‖2,W∗ for all πππ ∈ ΠΠΠ.
In the following analysis, we use some specific choices of norm adjustment constants to make explicit depen-
dence of the iteration complexity bound on K.

a) When ‖·‖1 and entropy W are used for P , we fix Cp =1.

b) When ‖·‖2 and Euclidean W are used for P , we fix Cp =
√
K.

Proposition 2.5 below shows that the SD method achieves an O(1/N) reduction in Q(zN ;u).
Proposition 2.5. If the non-negative stepsizes satisfy

η ≥ C2
pM

2
TTTM2

ΠΠΠ

τ +
M2

TTT

σ , (2.3)

6

Algorithm 1 Sequential Dual Algorithm

Input: (x0, p0,πππ0) ∈ X × P ×ΠΠΠ and stepsizes σ, τ, η > 0
Output: (x̄N , p̄N , π̄ππN)
1: Initialization set x−1 = x0.
2: for t = 1, 2, 3...N do
3: set x̃t = 2 ∗ xt−1 − xt−2.
4: set πk,t = argmaxπk∈Π(k)(〈Tkx̃t, πk〉 − g∗k(πk, ξk))− σUk(πk,t−1, πk), ∀k ∈ [K].

5: set f̃t,k = 〈xt−1,πππt〉TTT + 〈(xt−1 − xt−2),πππt−1〉TTT − g∗k(πk,t).

6: set pt = argmaxp∈P 〈p, f̃t,k〉−φ∗(p)−τW (pt−1, p).
7: set xt = argminx∈X f0(x) + 〈x, ptTTTπππt〉+ ηV (xt−1, x).
8: end for
9: Return x̄N =

∑N
t=1

xt

N .

where MTTT , MΠΠΠ and Cp are defined in Section 1.1 and Definition 2.4, then the following inequality holds for
all u ∈ Z,

∑N
t=1Q(zt;u) ≤ σ〈up, Uk(πππ0, uπππ)〉+ τW (p0, up) + ηV (x0, ux). (2.4)

Proof. First, consider the three projection steps of Algorithm 1 for a fixed iteration t ≥ 1. In the πππ
update step, it follows from the standard three point inequality of proximal update, e.g., Lemma 3.4 in [13],
that for a fixed k scenario,

−〈2xt − xt−1,πππt+1〉Tk
+g∗k(πππt+1) + σ(Uk(πππt,πππt+1) + Uk(πππt+1, uπππ))

≤ −〈2xt − xt−1, uπππ〉Tk
+ g∗k(uπππ) + σUk(πππt, uπππ),

or equivalently,

〈xt+1, uπππ − πππt+1〉Tk
− g∗k(uπππ) + g∗k(πππt+1)

≤ σ(Uk(πππt, uπππ)− Uk(πππt+1, uπππ)) + (σUk(πππt,πππt+1) + 〈xt+1 − (2xt − xt−1), uπππ − πππt+1〉Tk
).

Summing up both sides with weight up, we get

Qπ(zt+1;u) ≤ σ〈UUU(πππt, uπππ)−UUU(πππt+1, uπππ), up〉
+ 〈〈xt+1 − xt, uπππ − πππt+1〉TTT − 〈xt − xt−1, uπππ − πππt〉TTT , up〉TTT + ǫπ(πππt+1), (2.5)

where

ǫπ(πππt+1) = 〈up, 〈xt − xt−1,πππt+1 − πππt〉TTT − σUUU(πππt,πππt+1)︸ ︷︷ ︸
≤ 1

2σ ‖xt−xt−1‖2
2M

2
TTT

for each component

〉 ≤ 1
2σ ‖xt − xt−1‖22M2

TTT . (2.6)

Next in the p update step, again it follows from Lemma 3.4 in [13] that

〈up − pt+1, 〈xt,πππt+1〉TTT + 〈xt − xt−1,πππt〉TTT − ggg∗(πππt+1)〉+φ∗(pt+1)− φ∗(up) + τ(W (pt, pt+1) +W (pt+1, up))

≤ τW (pt, up).

After adding 〈up − pt+1, 〈xt+1,πππt+1〉TTT 〉 to both sides of the inequality, we have

Qp(zt+1;u) ≤ 〈up − pt+1, 〈xt+1 − xt,πππt+1〉TTT − 〈xt − xt−1,πππt〉TTT 〉+ τ(W (pt, up)−W (pt+1, up)−W (pt, pt+1))

≤ τ(W (pt, up)−W (pt+1, up)) + (〈up − pt+1, 〈xt+1 − xt,πππt+1〉TTT 〉 − 〈up − pt, 〈xt − xt−1,πππt〉TTT 〉)
+ ǫp(pt+1), (2.7)

7

where

ǫp(pt+1) = 〈pt+1 − pt, 〈xt − xt−1,πππt〉TTT 〉 − τW (pt, pt+1)

≤ ‖pt+1 − pt‖W ‖xt − xt−1‖2
∥∥[‖T1πππt,1‖2 , ..., ‖TKπππt,K‖2]

∥∥
W∗

− τW (pt, pt+1)

≤ 1
2τ ‖xt − xt−1‖22 (CpMTTTMΠΠΠ)

2. (2.8)

Moreover, when computing xt+1 in x update step, we can obtain the following simple inequality

Qx(zt+1;u) = 〈xt+1 − ux, pt+1TTTπππt+1〉+ f0(xt+1)− f0(ux)

≤ η(V (xt, ux)− V (xt+1, ux))− ηV (xt, xt+1). (2.9)

Finally, summing up (2.5), (2.7), (2.9) for t = 1, 2, 3, . . . , N and applying the telescoping cancellation, we
have

∑N−1
t=0 Q(zt+1;u) ≤ σ〈up,UUU(πππ0, uπππ)〉+ τW (p0, up) + ηV (x0, ux)− ηV (xN , ux)

+ 〈up, 〈xN − xN−1, uπππ − πππN〉TTT − σUUU(πππN , uπππ)〉+ (〈up − pN , 〈xN − xN−1,πππN 〉TTT 〉 − τW (pN , up))

+
∑N−1

t=1 (ǫp(pt+1) + ǫπ(πππt+1)− ηV (xt−1, xt))︸ ︷︷ ︸
Notice that ǫp(p1) = 0 and ǫπ(πππ1) = 0 because x0 = x−1.

−ηV (xN−1, xN). (2.10)

Observe that the stepsize requirement η ≥ C2
pM

2
TTTM

2
ΠΠΠ/τ +M2

TTT /σ implies that the following parts of (2.10)
are smaller than 0:

∑N
t=2ǫp(pt) + ǫπ(πππt)− ηV (xt−1, xt)

≤ ∑N
t=2

1
2τ ‖xt − xt−1‖22 (CpMTTTMΠΠΠ)

2 + 1
2σ ‖xt − xt−1‖22M2

TTT − η
2 ‖xt − xt−1‖22 ≤ 0.

〈up, 〈xN − xT−1, uπππ − πππN 〉TTT − σUUU(πππN , uπππ)〉
+ (〈up − pN , 〈xN − xT−1,πππN 〉TTT 〉 − τW (pN , up))− ηV (xN−1, xN) ≤ 0.

So (2.4) follows by substituting the previous two inequalities and −ηV (xN , ux) ≤ 0 into (2.10).
The next theorem suggests a stepsize choice for Algorithm 1 and shows its convergence in terms of

function value gap.
Theorem 2.6. If we set

σ =MTTT
ΩX

ΩΠΠΠ
, τ =MTTTMΠΠΠCp

ΩX

ΩP
, and η =MTTTMΠΠΠCp

ΩP

ΩX
+MTTT

ΩΠΠΠ

ΩX
, (2.11)

then after N iterations of Algorithm 1, we have

f(x̄N)− f(x∗) ≤ 2ΩXMTTT

N (ΩΠΠΠ + CpMΠΠΠΩP). (2.12)

Proof. Observe that the stepsize choices in (2.11) satisfies the requirement in (2.3) and Ω2
ΠΠΠ, Ω

2
P , and

Ω2
X are upper bounds for 〈up,UUU(πππ0, uπππ)〉,W (p0, up) and V (x0, x

∗) for any feasible up, uπππ. So it follows from
Proposition 2.5 that

∑N
t=1Q(zt, (x

∗, up, uπππ)) ≤ σΩ2
ΠΠΠ + τΩ2

P + ηΩ2
X ∀(up, uπππ) ∈ P ×ΠΠΠ.

Thus Proposition 2.3 implies that f(x̄N) − f(x∗) ≤ σΩ2
ΠΠΠ+τΩ2

P+ηΩ2
X

N . The bound (2.12) then follows from
substituting the stepsize choices into the preceding inequality.

We remark here that, by using
√
2MΠΠΠ as an upper bound for ΩΠΠΠ, the above convergence rate could be

further simplified to ΩXMTTTMΠΠΠ(
√
2 + CpΩP)/N , i.e., O((1 + ΩPCp)/N) if we ignore constants independent

of K. Then substituting in the values of Cp and ΩP , the iteration complexity bounds become O(
√
logK/ǫ)

for entropy W and O(
√
K/ǫ) for Euclidean W. It is also worth noting that the aforementioned rate of

convergence for SD seems to be tight for solving problem (2.1) since the O(1/N) rate of convergence is not
improvable even for solving the simpler convex-concave bilinear saddle point problems [17, 20].

8

3. Sequential Smooth Level Method. In this section, we view (1.5) from the perspective of a
structured non-smooth problem,

F (x) := max
p∈P

∑K
k=1 max

πk∈Π(k)
pk(〈Tkx, πk〉 − g∗k(πk))− φ∗(p). (3.1)

(3.1) contains an additional maximization layer than those considered by Nesterov in [19]. Moreover, these
two maximization layers cannot be combined because of non-separability and non-concavity issues. So the
current smoothing technique are not directly applicable. To address such a difficulty, Subsection 3.1 extends
the Nesterov’s framework to build a two-layer smoothing scheme for F and analyzes its smooth approximation
properties with respect to a sequence of points. Such a sequence-based approach helps us to determine a
suitable smoothing scheme for the encountered points, rather than for the whole feasible region.

Another challenge is deciding the smoothing parameters to balance the conflicting goals of a small
approximation gap (for a sound solution) and a small Lipschitz smoothness constant (for fast convergence).
In fact, to calculate an optimal choice of those parameters for a fixed smoothing scheme, we would need to
know the distance to the output solution even before the algorithm is run, which is preposterous. Subsection
3.2 resolves such a difficulty by introducing a parameter-free bundle level type algorithm that operates on a
dynamically smoothed F , where the smoothness parameters adjust in an on-line fashion to the encountered
points.

3.1. Sequential Smoothing Scheme. By a smooth approximation for a non-smooth function f , we
mean a convex function f̃ which is both L-smooth and close to f everywhere on its domain.

Definition 3.1. Let f be a convex function on X ⊂ Rn equipped with norm ‖·‖X . We call a convex

function f̃ its (α, β)-domain smooth approximation if

a)
∥∥∥∇f̃(x1)−∇f̃(x2)

∥∥∥
X ∗

≤ α ‖x1 − x2‖X ∀x1, x2 ∈ X ,

b) f̃(x) ≤ f(x) ≤ f̃(x) + β ∀x ∈ X .
For our purpose of designing an adaptive smoothing algorithm, we need a weaker notion of smooth

approximation. More specifically, since we use the accelerated proximal level (APL) method in [10] as the
backbone of the SSL algorithm, it is useful to note that the L-smoothness constant is only used to bound
the upper curvature constants associated with the linearization centers {xlt} and the search points {xmd

t }.
So we should focus on the upper curvature constant and the approximation gap associated with these points
and define an (α, β)-sequence smooth approximation.

Definition 3.2. Let f be a convex function on X ∈ Rn equipped with norm ‖·‖X and let {(xlt, xmd
t)}Nt=1

be some sequence of points in X . Then we call a convex differentiable function f̃ an (α, β)-sequence smooth
approximation of f over {(xlt, xmd

t)}Nt=1 if the following conditions hold.

a) f̃(xmd
t)− f̃(xlt)− 〈∇f̃(xlt), xmd

t − xlt〉 ≤ α
2

∥∥xmd
t − xlt

∥∥2
X .

b) f̃(xmd
t) ≤ f(xmd

t) ≤ f̃(xmd
t) + β ∀t ∈ [N].

It is worth noting that if f̃ is an (α, β)-domain smooth approximation, then it must be an (α, β)-sequence

smooth approximation for all sequences. Moreover, if f̃ is an (α, β)-sequence smooth approximation for
all singleton sequences {xlt, xmd

t }1t=1, then it must be an (α, β)-domain smooth approximation. Because
of such a close relationship, we use the generic name “smooth approximation” when referring to both of them.

Now we develop the two-layer smooth approximation scheme for (1.5). Let us briefly review Nesterov’s
smoothing scheme in [19] for the following structured non-smooth function H : X → R,

H(x) = max
y∈Y

〈x,Ay〉 − ψ(y), (3.2)

where ψ(y) is some simple p.c.c. function defined on Y . Nesterov suggests adding a µ-multiple of some
1-strongly convex term ω to the inner y-maximization to obtain

Hµ(x) = max
y∈Y

〈x,Ay〉 − ψ(y)− µω(y). (3.3)

The following properties of Hµ are established in Theorem 1 of [19].

9

Lemma 3.3. Let ω be 1-strongly convex with respect to some ‖·‖ω, then the following statements hold
for Hµ defined in (3.3).

a) Hµ(·) is convex and continuously differentiable with gradient H ′
µ(x) = AT ŷ, where ŷ is the unique

solution to the maximization problem in Hµ(x).
b) For any x1, x2 ∈ X and their corresponding maximizers in Hµ(·), ŷ1, ŷ2, we have

〈A(x1 − x2), ŷ1 − ŷ2〉 ≥ µ〈∇ω(ŷ1)−∇ω(ŷ2), ŷ1 − ŷ2〉 ≥ µ
2 ‖ŷ1 − ŷ2‖2ω.

c) If Ω2
Y := maxy∈Y ω(y), Hµ(·) is an (

‖A‖2
ω,X

µ , µΩ2
y)-domain smooth approximation of H(x).

Returning to our problem (1.5), the subgradient of F (x) is pTTTπππ. So to make it Lipschitz continuous, we
can consider the following product rule type decomposition④:

p1TTTπππ1 − p2TTTπππ2 = (p1 − p2)︸ ︷︷ ︸
p smoothing

TTTπππ1 + p2TTT (πππ1 − πππ2)︸ ︷︷ ︸
πππ smoothing

. (3.4)

If we smooth both the p-block and the πππ-block, pTTTπππ should be a Lipschitz continuous function of x. More
specifically, we consider the following Fµπππ ,µp

(x) smooth approximation,

gµπππ,k(x) := max
πk∈Π(k)

〈πk, Tkx〉 − g∗k(πk)− µπππU(0, πk), (πππ smoothing)

Fµπππ ,µp
(x) := max

p∈P

∑K
k=1pkgµπππ,k(x) − φ∗(p)− µpW (p̄, p), for some p̄ ∈ P. (p smoothing)

(3.5)

Notice that proxy center for U(π̄k, πk) is set to π̄k := 0. Such a choice allows us to use MΠΠΠ/
√
2 to bound

ΩΠΠΠ so that we need to dynamically estimate only two problem parameters, MΠΠΠ and ΩP .
Now we analyze the properties of the proposed smooth approximation (3.5). The following domain

smooth approximation properties of (3.5) are direct consequences of Lemma 3.3.
Lemma 3.4. The following statements hold for Fµπππ ,µp

in (3.5).
a) As a function of x, gµπππ,k is a (M2

TTT /µπππ, µπππM
2
ΠΠΠ/2)-domain smooth approximation of gk(Tkx).

b) As a function of gµπππ
(x), Fµp,µπππ

(·) is a (‖I‖g,W /µp, µpΩ
2
P)-domain smooth approximation of

F (gµπππ
(x)) := maxp∈P

∑K
k=1pkgµπππ,k(x) − φ∗(p).

Proof. Part b) is clear.

For part a), Lemma 3.3 implies that gµπππ,k is a (‖Tk‖22,2 /µπππ, µπππ(maxπk∈Π(k) U(0, πk))-domain smooth

approximation of gk. But MTTT and M2
ΠΠΠ/2 are upper bounds for ‖Tk‖2,2 and maxπk∈Π(k) U(0, πk) for all k, so

a) follows immediately.

Just like the chain rule in calculus, we need the following technical result to reduce the above p-block
L-smoothness property with respect to gµπππ

(x) to that with respect to x.
Lemma 3.5. Let ‖·‖W∗ be the dual norm of the p-block. Then for any feasible (x1, x2) and their

corresponding maximizers in the definition of gµπππ
, (πππ1, πππ2), we have

‖gµπππ
(x1)− gµπππ

(x2)‖W∗ ≤ CpMTTT max{‖πππ1‖2,∞ , ‖πππ2‖2,∞} ‖x1 − x2‖2 . (3.6)

Proof. First, we derive the following Lipschitz-continuity constant for each gµπππ,k:

|gµπππ,k(x1)− gµπππ,k(x2)| ≤ max{‖T ⊺

k π1,k‖2 , ‖T
⊺

k π2,k‖2} ‖x1 − x2‖2 .

Because |gµπππ,k(x1) − gµπππ ,k(x2)| is the difference of two maximal values attained over the same domain, we
can use the maximizer of the larger value in place of the maximizer of the smaller value to derive an upper
bound. More specifically, if gµπππ ,k(x1) ≥ gµπππ,k(x2), then

gµπππ,k(x1)− gµπππ ,k(x2)

④Recall that pTTTπππ is not matrix multiplication; it is merely a short hand for
∑K

i=1
pkTkπk. However the decomposition in

(3.4) is valid because
∑K

i=1
pkTkπk is linear with respect to p and πππ.

10

:= 〈π1,k, Tkx1〉 − g∗k(π1,k)− µπππU(0, π1,k)− max
πk∈Π(k)

(〈πk, Tkx2〉 − g∗k(πk)− µπππU(0, πk))

≤ 〈Tkπ1,k, x1 − x2〉 ≤ ‖x1 − x2‖2 ‖Tkπ1,k‖2 .

A similar bound can also be obtained when gµπππ,k(x1) ≤ gµπππ,k(x2). So we have

|gµπππ,k(x1)− gµπππ,k(x2)| ≤ max{‖Tkπ1,k‖2 , ‖Tkπ2,k‖2} ‖x1 − x2‖2 ≤MTTT max{‖πππ1‖2,∞ , ‖πππ2‖2,∞} ‖x1 − x2‖2 .

Finally (3.6) follows from the definition of Cp in Definition 2.4.

Combining the previous two results, we obtain the following sequence smooth approximation property
of (3.5).

Proposition 3.6. Let {xlt, xmd
t }Nt=1 be given. Let {p̂ut , π̂ππu

t } be the maximizers for {F (xmd
t)} in

(3.1), and let {plt, πl
t} and {put , πu

t } be the maximizers for {Fµπππ,µp
(xlt)} and {Fµπππ,µp

(xmd
t)} in (3.5).

If Ω̄2
p ≥ maxt∈[N]W (p̄t, p) and M̄ΠΠΠ ≥ maxt∈[N]max{‖π̂ππu

t ‖2,∞ , ‖πππu
t ‖2,∞ ,

∥∥πππl
t

∥∥
2,∞}, then Fµπππ ,µp

is a

(2M2
TTT /µπππ + 2C2

pM̄
2
ΠΠΠM

2
TTT /µp, µpΩ̄

2
p + µπππM̄

2
ΠΠΠ/2)-sequence smooth approximation of F on {xlt, xmd

t }Nt=1.

Proof. Let a t ∈ [N] be given. For simplicity, we use x1 and x2 to denote xmd
t and xlt and use

(p1,πππ1) and (p2,πππ2) to denote their corresponding maximizers in Fµπππ ,µp
(3.5). Denoting F̃µp,µπππ

(x, p,πππ) :=∑K
k=1pk(〈πππ, x〉TTT − g∗k(πππ) − µπππV (π̄k,πππ)) − φ∗(p) − µpW (p̄, p), we have the following decomposition for the

upper curvature error,

Fµπππ ,µp
(x1)− Fµπππ ,µp

(x2)− 〈∇Fµπππ ,µp
(x2), x1 − x2〉

= F̃µp,µπππ
(x1, p1,πππ1)−max

p,πππ
F̃µp,µπππ

(x2, p,πππ)− 〈p2TTTπππ2, x1 − x2〉
(a)

≤ F̃µp,µπππ
(x1, p1,πππ1)− F̃µp,µπππ

(x2, p1,πππ1)− 〈p2TTTπππ2, x1 − x2〉
= 〈p1TTTπππ1, x1 − x2〉 − 〈p2TTTπππ2, x1 − x2〉
= 〈p1TTTπππ1 − p2TTTπππ2, x1 − x2〉
= 〈p1TTT (πππ1 − πππ2), x1 − x2〉︸ ︷︷ ︸

A

+ 〈(p1 − p2)TTTπππ2, x1 − x2〉︸ ︷︷ ︸
B

,

where (a) follows from using F̃µp,µπππ
(x2, p1,πππ1) as a lower bound for maxp,πππ F̃µp,µπππ

(x2, p,πππ). To bound A, we
conclude from Lemma 3.4.a) that

A ≤ ‖x1 − x2‖2
∑K

k=1pk,1 max
k∈K

‖T ′
k(π1,k − π2,k)‖2 ≤ M2

TTT

µπππ
‖x1 − x2‖22 . (3.7)

To bound B, we use Lemma 3.4.b) and Lemma 3.5 to obtain

‖p1 − p2‖W ≤ ‖I‖W∗,W

µp
‖gµπππ

(x1)− gµπππ
(x2)‖W∗

≤ 1
µp
CpMTTT max{‖πππ1‖2,∞ , ‖πππ2‖2,∞} ‖x1 − x2‖2 ≤ 1

µp
CpMTTT M̄ΠΠΠ ‖x1 − x2‖2 ,

which implies that

B = 〈p1 − p2, 〈πππ2, x1 − x2〉TTT 〉
≤ ‖p1 − p2‖W

∥∥[‖T ⊺

1 π2,1‖2 ‖x1 − x2‖2 , ..., ‖T
⊺

Kπ2,K‖2 ‖x1 − x2‖2]
∥∥
W∗

≤ 1
µp
CpMTTT M̄ΠΠΠ

∥∥[‖T ⊺

1 π2,1‖2 , ..., ‖T
⊺

Kπ2,K‖2]
∥∥
W∗

‖x1 − x2‖22
(b)

≤ 1
µp

(CpMTTT M̄ΠΠΠ)
2 ‖x1 − x2‖22 ,

(3.8)

where (b) follows from the the definition of Cp in Definition 2.4. Combining (3.7) and (3.8), we obtain the
desired upper-curvature constant of 2M2

TTT /µπππ + 2C2
pM̄

2
ΠΠΠM

2
TTT /µp. Moreover, it is easy to see that for a given

xmd
t , we have

gµπππ,k(x
md
t) ≤ gk(x

md
t) ≤ gµπππ,k(x

md
t) + µπππU(0, π̂ππut,k) ≤ gµπππ,k(x

md
t) + µπππ

M̄2
ΠΠΠ

2 ,

11

and hence

Fµπππ ,µp
(xmd

t) ≤ F (xmd
t) ≤ Fµπππ,µp

(xmd
t) +

∑K
k=1p̂

u
t,kµπππ

M̄2
ΠΠΠ

2 + µpW (p̄, p̂ut)

≤ Fµπππ,µp
(xmd

t) + µpΩ̄
2
p + µπππ

M̄2
ΠΠΠ

2 .

UsingMΠΠΠ and ΩP as upper bounds for M̄ΠΠΠ and Ω̄p for any (x1, x2) ∈ X×X , we obtain the following domain
smooth approximation properties of (3.5) below as an immediate corollary.

Corollary 3.7. Fµπππ ,µp
is a (2M2

TTT/µπππ +2C2
pM

2
ΠΠΠM

2
TTT /µp, µpΩ

2
P +µπππM

2
ΠΠΠ/2)-domain smooth approxima-

tion of F.

The need to select two smoothing parameters, µp and µπππ, makes (3.5) rather complicated. The next
result shows a reduction to a single-parameter smoothing scheme by fixing an optimal ratio between µp and
µπππ.

Lemma 3.8. Let Fµπππ ,µp
be a (2M2

TTT /µπππ + 2C2
pM̄

2
ΠΠΠM

2
TTT /µp, µpΩ̄

2
p + µπππM̄

2
ΠΠΠ/2)-smooth approximation of F,

then the optimal ratio is

µp

µπππ
=

CpM̄
2
ΠΠΠ√

2Ω̄p

.
Proof. To achieve the smallest gap while maintaining a Lipschitz constant at 1/µ, we solve the following

optimization problem analytically by the KKT condition,

min
µp,µπππ≥0

{
µpΩ̄

2
p + µπππ

M2
ΠΠΠ

2 :
2C2

pM
2
TTT M̄2

ΠΠΠ

µp
+

2M2
TTT

µπππ
= 1

µ

}
.

Using the above optimal ratio, Fµ defined below is then a (M2
TTT /µ, (1+

√
2CpΩ̄p)

2M̄2
ΠΠΠµ)-sequence smooth

approximation of F :

Fµ(x) = Fµ̄p,µ̄π
(x) with µ̄π := µ(2 + 2

√
2CpΩ̄p) and µ̄p := µ(

√
2 + 2CpΩ̄p)M̄

2
ΠΠΠCp/Ω̄p. (3.9)

Moreover, if we replace Ω̄πππ and M̄ΠΠΠ with their uniform upper bounds, ΩP and MΠΠΠ, then (3.9) must be a
(M2

TTT /µ, (1 +
√
2CpΩP)

2M2
ΠΠΠµ)-domain smooth approximation of F . Observe that the smooth approximation

properties of Fµ in (3.9) and Hµ in (3.3) studied by Nesterov [19] differ only by a constant factor, therefore
any variant of Nesterov’s accelerated gradient method could be applied to a fixed fµ := f0 + Fµ to achieve
an O(CpΩP /ǫ) iteration complexity bound. However, this approach suffers from the same drawback as
Nesterov’s smoothing scheme in [19], i.e., one has to use conservative estimates of ΩΠΠΠ and ΩP to guarantee
an O(ǫ/2) uniform approximation gap. This usually leads to a large L-smoothness constant for Fµ, and thus
a slow convergence. To address this shortcoming, we present in the next subsection a novel SSL algorithm
which operates on an adaptively smoothed Fµ.

3.2. Sequential Smooth Level Method. The bundle level method maintains both an upper and a
lower bound on f∗. The upper bound f̄ is the minimum function value of all the encountered points, while
the lower bound f is the minimum value of a lower approximation model h(x), namely bundle, consisted

of all evaluated cutting planes for f . In each iteration, f̄ and f are used to construct a level set, say

{x : h(x) ≤ l := (f̄ + f)/2}, in which the next search point and the next cutting plane will be found. By
repeating this process many times, the gap between such lower and upper bounds can be decreased to ǫ,
upon which an ǫ-optimal solution must have been found.

To build an adaptive smoothing algorithm, we follow [2, 10] to partition the iterations into phases, inside
which some important parameters are fixed. In [2], the constant l for defining a level set is fixed to allow
the use of a restricted memory localizer. A phase of the NERML algorithm in [2] is terminated only when
the upper bound or the lower bound has made enough progress to warrant a new l for the next phase. In
our SSL algorithm, similar to [10], we fix both l and the smooth approximation function Fµ in a phase. The
smoothing parameters (µ̄p, µ̄π) in (3.9) are computed using current radii estimates. If these radii estimates

12

Algorithm 2 SSL Phase

Input: x̄, lb, M̄2
ΠΠΠ, Ω̄

2
p, λ̄

Output: x̃, l̃b, M̃2
π, Ω̃

2
p, λ̃

1: Initialization: set xu0 := x̄, v̄0 := f(xu0), v0 := lb, l := 1
2 (v0 + v̄0), θ := 1

2 , and µ := θ(v̄0−l)

M̄2
ΠΠΠ
(1+

√
2Ω̄pCp)2λ̄

.

Set the initial localizer X ′
0 := X and t := 1.

2: while True do
3: Update the lower bound : set xlt := (1 − αt)x

u
t−1 + (αt)xt−1. Evaluate fµ at xlt to get

(plt,πππ
l
t) and construct a supporting function s(xlt, x) := f0(x) + Fµ(x

l
t) + 〈∇Fµ(x

l
t), x− xlt〉. Let

st := argminx∈X′

t−1
s(xlt, x) and vt := max{vt−1,min{st, l}}.

If vt ≥ l − θ(l − v0), return (xut−1, vt, M̄
2
ΠΠΠ, Ω̄

2
p, λ̄).

4: Update the prox center : set xt := argminx∈X′

t−1,s(x
l
t,x)≤l{V (x0, x)}.

5: Update the upper bound : set xmd
t := (1 − αt)x

u
t + αtxt and evaluate f and fµ at xmd

t to get

(p̂md
t , π̂ππmd

t) and (pmd
t ,πππmd

t). Set v̄t := min{v̄t−1, f(x
md
t)} and choose xut such that f(xut) = v̄t.

If v̄t ≤ l + θ(v̄0 − l), return (xut , vt, M̄
2
ΠΠΠ, Ω̄

2
p, λ̄).

6: Check π radius: let M̃2
πππ := maxk∈K max{U(0, πl

k,t), U(0, π̂md
k,t), U(0, πmd

t,k)}.
If M̃2

πππ > M̄2
ΠΠΠ, return (xut , vt, 2M̃

2
πππ , Ω̄

2
p, λ̄).

7: Check p radius: let Ω̃2
p :=W (p̄, pmd

t). If Ω̃2
p > Ω̄2

p, return (xut , vt, M̄
2
ΠΠΠ, 2Ω̃

2
p, λ̄).

8: Check aggressiveness param λ: if fµ(x
md
t) ≤ l + θ

2 (v̄0 − l), return (xut , vt, M̄
2
ΠΠΠ, Ω̄

2
p, 2λ̄).

9: Update the localizer : choose an arbitrary X ′
t such that Xt ⊂ X ′

t ⊂ X̄t where

Xt := {x ∈ X ′
t−1 : s(xlt, x) ≤ l} and X̄t := {x ∈ X : 〈∇x=xk

V (x0, x), x − xk〉 ≥ 0}.
10: Set t := t+ 1.
11: end while

are violated by a new point, we also terminate the current phase such that a more appropriate smoothing
scheme can be constructed for the next phase. So each phase has two goals: to reduce the gap between the
lower and upper bounds, and to update the radii estimates and hence the smoothing scheme.

• Radius Update: Line 6, 7, and 8 of the SSL Phase in Algorithm 2. For each phase, we should
construct a sequence smooth approximation Fµ with the smallest possible upper curvature constant
for fast termination. In the USL method in [10], the L-smoothness constant of the smooth approx-
imation Hµ is O(Ω̄Y) and the estimate of Ω̄Y is updated only when it is absolutely necessary; the
objective value achieved by the smooth approximation is well below the upper bound termination
threshold, i.e., Hµ(x

u
t) ≤ l + θ(v̄0 − l)/2, while the true objective value is above the upper bound

termination threshold, i.e., H(xut) ≥ l+ θ(v̄0 − l). In this way, [10] underestimates Ω̄Y to encourage
an aggressively small upper curvature constant. Our situation is different because we need both
accurate estimates of radii M̄ΠΠΠ and Ω̄p to determine the optimal ratio between µp and µπππ in Lemma
3.8 and an aggressively small upper curvature constant for fast convergence. So we create a sepa-
rate variable λ to control the aggressiveness of the smooth approximation and use M̄ΠΠΠ and Ω̄p for
estimating MΠΠΠ and ΩP only. The radius update block in Algorithm 2 thus has two components: 1)
Line 6 and 7 check our estimates against the distances of encountered points to the fixed smoothing
centers, p̄ and 0. Once we find any violations, the violated radius estimate is doubled and the phase
is terminated so that the next phase can construct a more appropriate smooth approximation. 2)
Line 8 updates the aggressiveness parameter λ in the same fashion as the Ω̄Y update in the USL
method. It is doubled only when the objective value achieved by the smoothed approximation is
well below the upper bound termination threshold, fµ(x

u
t) ≤ l+θ(v̄0− l)/2, while the true objective

value is above the upper bound termination threshold, f(xut) ≥ l+ θ(v̄0 − l), i.e., the approximation
gap is too large.

• Gap Reduction: Line 3, 4, 5, and 9 of the SSL Phase in Algorithm 2. This is essentially the compos-
ite accelerated proximal level (APL) method [10] applied to the composite smooth approximation
function fµ := f0 + Fµ. Notice that, similar to Nesterov’s accelerated gradient method [18], we use

13

three sequences of points {xlt}, {xmd
l } and {xt}; we pick xlt := (1− αt)x

u
t−1 + (αt)xt−1 to construct

the composite cutting plane model and xmd
t := (1−αt)x

u
t + αtxt to evaluate the objective value. It

is shown in [10] that the following convergence result holds for any composite smooth function, and
our fµ in particular.

Lemma 3.9. Let αt = 2/(t+1), and also let {xlt}, {xmd
t } and {xut } be the sequences of points generated

by Algorithm 2 before it terminates. If {xlt, xmd
t }Nt=1 satisfy fµ(x

md
t)− s(xlt;x

md
t) ≤ M

2

∥∥xmd
t − xlt

∥∥2 for some
M ≥ 0, then we have

fµ(x
u
N)− l ≤ MΩ2

X

N2 .

Before Algorithm 2 terminates, our estimates M̄ΠΠΠ and Ω̄p satisfy assumptions in Proposition 3.6, so
Fµ in (3.9) is a (M2

TTT /µ, (1 +
√
2CpΩ̄p)

2M̄2
ΠΠΠµ)-sequence smooth approximation of F . Therefore our choice of

µ := θ(v̄0−l)

M̄2
ΠΠΠ
(1+

√
2Ω̄pCp)2λ̄

in Algorithm 2 implies that

Fµ is a (
M2

TTT M̄2
ΠΠΠ(1+

√
2Ω̄pCp)

2λ̄
θ(v0−l) , θ(v0−l)

λ̄
)-sequence smooth approximation of F over {xlt, xmd

t }. (3.10)

By substituting M =
M2

TTT M̄2
ΠΠΠ(1+

√
2Ω̄pCp)

2λ̄
θ(v0−l) into Lemma 3.9, we can obtain the following bound on the number

of iterations performed by the SSL Phase in Algorithm 2.
Proposition 3.10. Let αt := 2/(t+ 1) and ∆0 := f(x̄)− lb. The SSL Phase in Algorithm 2 terminates

in at most (4
√
2ΩXMTTT M̄ΠΠΠ

√
λ̄(1 +

√
2CpΩ̄p))/∆0 iterations.

Proof. Assuming that all other termination conditions have not been reached, then Algorithm 2 will
terminate in Line 8 if fµ(x

md
N) − l ≤ 1

2θ(v̄0 − l) := 1
8∆0. So it follows from (3.10) and Lemma 3.9 that the

maximum number of iterations, NSSL, is bounded by

1
8∆0 ≤ M2

TTT M̄2
ΠΠΠ(1+

√
2Ω̄PCp)

2λ̄Ω2
X

1
4∆0

1
N2

SSL

.

After some simplification, we obtain the desired finite termination bound.

Algorithm 3 Sequential Smoothing Level Method

Input: x̄0 ∈ X , tolerance ǫ > 0, initial estimate Ω̄2
p,0 ∈ (0,Ω2

P], Ω̄
2
π,0 ∈ (0,Ω2

ΠΠΠ], q̄0 ∈ (0, 1] and λ0 ∈ (0, 1)
Output: x̄, an ǫ−suboptimal solution
1: Initialization Set x̄1 = argminx∈X{h(x̄0, x) = f0(x) + F (x̄0) + 〈∇F (x̄0), x− x̄0〉}, lb1 = h(x̄0, x̄1) and

ub1 = min{f(x̄0), f(x̄1)}. Set s = 0.
2: while True do
3: If ubs − lbs ≤ ǫ, terminate with x̄ = x̄s.
4: Set (x̄s+1, lbs+1, M̄

2
π,s+1, Ω̄

2
p,s+1, λ̄s+1) = SSL-Phase(x̄s, lbs, M̄

2
π,s, Ω̄

2
p,s, λ̄s) and set ubs+1 = f(x̄s+1).

5: Set s = s+ 1.
6: end while

There are two ways for the SSL Phase Algorithm 2 to terminate. If it terminates in Line 3 or Line 5, the
gap between the lower and upper bounds is reduced by a factor of at least 1/4. So we call it a gap reduction
phase. Otherwise, if it terminates in Line 6, 7, or 8, then one of the estimates Ω̄2

p, M̄
2
ΠΠΠ and λ̄ must have

been enlarged by a factor of two. So we call it an estimate enlargement phase. Because Ω̄2
p or M̄2

ΠΠΠ is doubled

only when a p or a πππ exceeding its current radius estimate is found, Ω̄2
p and M̄2

ΠΠΠ are upper bounded by 2Ω2
P

and 2M2
ΠΠΠ respectively. Similarly, since the difference between f and fµ on observed points xmd

t is at most
θ(v0 − l)/(λ̄) (by (3.10)), the termination condition, f(xmd

t) > l + θ(v0 − l) and fu(x
md
t) < l + θ

2 (v0 − l) in
Line 8 can be satisfied only if λ̄ < 2, i.e., λ̄ must be bounded by 4. Therefore, if we repeat the SSL Phase
Algorithm with updated lb, x̄, M̄ΠΠΠ, Ω̄p and λ̄ in Algorithm 3, there will only be a finite number of estimate
enlargement phases, and the gap reduction phases should reduce the gap to ǫ eventually. Thus we have the
following iteration complexity result for the SSL Algorithm.

Theorem 3.11. Let αt := 2/(t + 1) and f0 be Lipschitz continuous with constant M0. To obtain an
ǫ-suboptimal solution, the SSL algorithm requires at most Ps = log4/3(2ΩX(

√
2M0+MTTTΩΠΠΠ(

√
2+CpΩP))/ǫ)

14

gap reduction phases and PN = log2(Ω
2
ΠΠΠ/Ω̄

2
π,0) + log2(Ω

2
P /Ω̄

2
p,0) + log2(1/q̄0) + 4 parameter enlargement

phases. In total, the number of iterations performed by Algorithm 2 can be bounded by

16(7
√
2 + log2

Ω2
P

Ω̄2
p,0

√
2 + 2)

ΩXMTTTΩΠΠΠ(1+2CpΩP)
ǫ .

Proof. Firstly, let us consider the gap reduction phases. A bound for the initial gap is

ub1 − lb1 ≤ f(x̄1)− f(x̄0)− 〈f ′(x̄0), x̄1 − x̄0〉 ≤ 〈f ′(x̄1)− f ′(x̄0), x̄1 − x̄0〉
= 〈f ′

0(x̄1)− f ′
0(x̄0), x̄1 − x̄0〉︸ ︷︷ ︸
A

+ 〈∇F (x̄1)−∇F (x̄0), x̄1 − x̄0〉︸ ︷︷ ︸
B

.

By the Cauchy Schwartz inequality and the triangle inequality, the following bounds on A and B hold,

A ≤ (‖f ′
0(x̄1)‖2 + ‖f ′

0(x̄0)‖2) ‖x̄1 − x̄0‖2 ≤ 2M0

√
2ΩX = 2

√
2M0ΩX ,

B ≤ ‖x̄1 − x̄0‖2 (‖(p1 − p2)TTTπππ1‖2 + ‖p2TTT (πππ1 − πππ2)‖)
≤

√
2ΩX(

√
2MTTTΩPMΠΠΠCp + 2MTTTMΠΠΠ) = 2MTTTMΠΠΠΩX(

√
2 + CpΩP).

So we have ub1 − lb1 ≤ 2ΩX(
√
2M0 +MTTTΩΠΠΠ(

√
2 + CpΩP)), and that number of gap reduction phases are

bounded by Ps = log4/3(2ΩX(
√
2M0 +MTTTΩΠΠΠ(

√
2 + CpΩP))/ǫ). For the estimate enlargement phases, as

discussed before, the upper bounds for M̄2
ΠΠΠ, Ω̄

2
p and λ̄ are 2Ω2

ΠΠΠ, 2Ω2
P and 4 respectively, hence there are at

most PN = log2(Ω
2
ΠΠΠ/Ω̄

2
π,0) + log2(Ω

2
P /Ω̄

2
p,0) + log2(1/λ̄0) + 4 phases.

Next, we develop separate bounds on the total number of iterations required for the gap reduction phases,
M̄2

ΠΠΠ enlargement phases, Ω̄2
p enlargement phases and λ̄ enlargement phases. For the gap reduction phases, let

g1 ≤ g2 ≤ g3 ≤ ... ≤ gS be their indices in Algorithm 3. Then by the construction of Algorithm 3, the initial
gap for each phase ∆s := f(xs)− lbs must satisfy ∆gi ≥ ǫ(34)

i−S . Thus it follows from Proposition 3.10 and

the relations M̄π,s ≤
√
2MΠΠΠ, Ω̄p,s ≤

√
2ΩP and λ̄s ≤ 4 ∀s that the total number of iterations in the gap

reduction phases is bounded by

∑S
i=1

8
√
2ΩXMTTT (

√
2MΠΠΠ)(1+2CpΩP)

√
2

3
4

i−S

ǫ

≤ ∑∞
j=0(

3
4)

j 8
√
2ΩXMTTT (

√
2MΠΠΠ)(1+2CpΩP)

√
2

ǫ ≤ 8
√
2(8)

ΩXMTTT (MΠΠΠ)(1+2CpΩP)
ǫ .

For the M̄ΠΠΠ enlargement phases, let s1 ≤ s2 ≤ ... ≤ sL be their indices in Algorithm 3. Similar to the
previous analysis, we use the geometric upper bound M̄π,si ≤ MΠΠΠ(1/

√
2)L−i and uniform upper bounds 4,√

2ΩP , 1/ǫ for λ̄s, Ω̄p,s, 1/∆s, ∀s to conclude that the number iterations in the M̄ΠΠΠ enlargement phases is
bounded by

∑L
i=1

8
√
2ΩXMTTT (MΠΠΠ)(1+2CpΩP)

√
2

ǫ (1√
2
)L−i

≤ ∑∞
j=0(

1√
2
)j

8
√
2ΩXMTTT (MΠΠΠ)(1+2CpΩP)

√
2

ǫ ≤ 16(
√
2 + 1)

ΩXMTTT (MΠΠΠ)(1+2CpΩP)
ǫ .

Similarly, the number of iterations in the λ̄ enlargement phases can be bounded by 16
√
2(ΩXMTTT (MΠΠΠ)(1 +

2CpΩP))/ǫ. Next, since there are at most (log2(Ω
2
P /Ω̄

2
p,0) + 1) Ω̄p-enlargement phases and the number

of iterations in each phase is bounded uniformly by 16
√
2(ΩXMTTT (

√
2MΠΠΠ)(1 + 2CpΩP))/ǫ, the number of

iterations in the Ω̄p enlargement phases should be bounded by

16(log2
Ω2

P

Ω̄2
p,0

√
2 +

√
2)

ΩXMTTT (MΠΠΠ)(1+2CpΩP)
ǫ .

The desired iteration complexity bound follows by adding up these individual bounds.

We remark here that the above iteration complexity bound has the same dependence on ǫ and K as
that of the SD algorithm, i.e., O((1 + CpΩP)/ǫ), which does not seem to be improvable for solving general
trilinear saddle point problems.

15

4. Adaptation For Kantorovich Ball. In the previous sections, we assumed P being simple such
that the p proximal update is easy. However, this is not always the case; when P is the Kantorovich ball,
a projection onto it is expensive. To avoid such an expensive computation, we propose to use the joint
probability matrix projection instead. Because of the standalone P block in our reformulation (1.5), such
an alternative update can be incorporated into the SD and SSL algorithms with only a change of stepsizes.

4.1. Kantorovich Ball and Joint Probability Matrix Proximal Update. Given K scenarios and
a distance matrix D ∈ RK×K

+ , i.e., Di,j = d(ξi, ξj), the δ-Kantorovich ball around the empirical distribution
vector p̄ = [1K ,

1
K ...

1
K] is

Pδ :=
{
p ∈ RK

+ s.t ∃ H ∈ R
K×K
+ ,

p̄i =
∑K

j=1Hi,j , ∀i, (source constraints)

pj =
∑K

i=1Hi,j , ∀j, (target constraints)

〈D,H〉F ≤ δ} , (transportation cost constraint)

(4.1)

where 〈D,H〉F represents the Frobenius inner product,
∑K

i=1

∑K
j=1Di,jHi,j . Since every row and every

column of the joint probability matrix H is constrained by a linear equality, the computation for the p
proximal update, argmaxp∈Pδ

〈c, p〉 +W (p̄, p)⑤, is not separable across scenarios. In particular, when W
is the Euclidean distance function, we have to solve a quadratic program (QP) with O(K2) variables and
O(K) linear constraints, and when W is the entropy distance function, we have to solve an exponential cone
problem of the same size. In fact, even checking whether a given p is inside Pδ involves solving an expensive
optimal transport problem.

Alternatively, we can remove the target constraints in (4.1) by representing p in terms of H and consider
a proximal update of H . Moreover, the rows of H , i.e., {Hi}, would become separable after we dualize the
single transportation cost constraint.

More specifically, to implement a separable H proximal update, we need a row separable Bregman
distance function WWW for H constructed from the Bregman distance function W for p,

WWW (H̄,H) :=
∑K

i=1W (H̄i, Hi).

Notice that WWW is 1-strongly convex with respect to ‖H‖WWW :=

√∑K
i=1 ‖Hi‖2W . Moreover, by fixing H̄ for

the SSL algorithm and H0 for the SD algorithm to be a uniform matrix with 1/K2 on every entry, the radii
Ω2

H := maxH∈Hδ
WWW (H̄,H) are bounded by 1/K for the EuclideanWWW and log(K) for the entropyWWW . In the

later analysis, to emphasize the relationship between Ω2
H and Ω2

p, we define another constant Ω̃2
p which has

approximately the same range as Ω2
P :

a) When EuclideanWWW is used, set Ω̃2
p := KΩ2

H .

b) When entropyWWW is used, set Ω̃2
p := Ω2

H .

Now if Hδ denote the feasibility region of H , given by {H ≥ 0 | p̄i =
∑K

j=1Hi,j ∀i, 〈H,D〉F ≤ δ}, the
proximal update for H usingWWW and the consequent update for the probability vector q are:

Ĥ := argmax
H∈Hδ

〈c,∑K
i=1Hi〉 − µqWWW (H̄,H), and q̂ :=

∑K
i=1Ĥi. (4.2)

To differentiate it from the usual probability vector proximal update, we refer to (4.2) as the q-update.
By dualizing the 〈H,D〉F ≤ δ constraint, (4.2) becomes

min
λ≥0

λδ +
∑K

i=1 max
Hi≥0,〈Hi,e〉=p̄i

〈c,Hi〉 − µqW (Ht,i, Hi)− λ〈Hi, Di〉. (4.3)

Notice that for a fixed λ, the inner maximization problem consists of K independent simplex projection
sub-problems, so it requires O(K2) algebraic operations. If the bisection method is used to search for the

⑤Notice that φ∗ ≡ 0 for Kantorovich ball ambiguity set.

16

optimal scalar λ∗, we can find an ǫλ-suboptimal λ̂ and Ĥ in roughly O(K2 log(1/ǫλ)) algebraic operations,
a significant improvement over the original QP and the exponential cone problem. As shown in Table 4.1,
our numerical experiments written in MATLAB 2017a (with Mosek 8.1 as the QP/exponential cone solver)
and tested on a Macbook Pro with 2.40GHz Intel Core i5 processor and 8GB of 1600MHz DDR3 memory
demonstrate the significant performance improvement for the q-update.

Table 4.1: Typical Projection Time for Pδ(Sec)

Modified Original

#Scenarios Entropy Euclidean Entropy Euclidean

20 .0011 .019 0.180 0.140
100 .0028 .030 0.538 0.228
500 .047 .16 16.15 6.615

1000 .16 .97 93.38 37.54
5000 7.58 20.72 Out.Mem Out.Mem

4.2. Modified SD Method. To use the more efficient q-update, we need to replace the update of pt
in Line 6 of Algorithm 1 by

Ht := argmax
H∈Hδ

〈∑k
i=1Hi, f̃t,k〉 − τqWWW (Ht−1, H), (4.4)

and use qt :=
∑K

i=1Ht,i in place of pt in all other parts of the algorithm.

Now we modify the arguments in Section 2 to establish the convergence properties of the modified SD
method and suggest some stepsize choices. Recall that the analysis in Section 2 revolves around solving the
saddle point problem minx∈X max(p,πππ)∈P×ΠΠΠL(x, p,πππ). Here we consider a modified saddle point problem
associated with H instead, i.e.,

min
x∈x

max
(H,πππ)∈Hδ×ΠΠΠ

{L(x,H,πππ) := f0(x) + 〈H, (〈x,πππ〉TTT − ggg∗(πππ))e⊺〉F }, (4.5)

where e⊺ ∈ R
K is a row vector of ones, [1, 1, . . . , 1]. Similar to Proposition 2.1 and 2.3, the non-negativity of

H implies the duality results between L and f . Then if the gap function Q in Definition 2.2 is constructed
from L(x,H,πππ) in (4.5), we have N(f(x̄N) − f(x∗)) ≤ maxuH ,uπππ

∑N
t=1Q [(xt, Ht,πππt), (x

∗, uH , uπππ)]. Next,

similar to Proposition 2.5 and Theorem 2.6, the following convergence bounds of
∑N

t=1Q(zt, u) and the
function value f(x̄N) hold.

Proposition 4.1. If the non-negative stepsizes η, τ and σ satisfy

η ≥ C2
pM

2
TTTM2

ΠΠΠK

τq
+

M2
TTT

σ , (4.6)

then for any u ∈ Z := X ×H ×ΠΠΠ, we have

∑N
t=1Q(zt;u) ≤ σ〈up, Uk(πππ0, uπππ)〉+ τqWWW (H0, uH) + ηV (x0, ux). (4.7)

Moreover, for x̄N =
∑N

t=1
xt

N we have

f(x̄N)− f(x∗) ≤ σΩ2
ΠΠΠ+τqΩ

2
H+ηΩ2

X

N , (4.8)

where Ω2
H := maxH∈Hδ

WWW (H0, H).
Proof. We only need to modify the inequalities, (2.7) and (2.8), related to the p-update. The modified

Line 6 for the q-update in (4.4) implies that

QH(zt+1;u)

17

≤ 〈uH −Ht+1, (〈xt+1 − xt,πππt+1〉TTT − 〈xt − xt−1,πππt〉TTT)e⊺〉F + τq(WWW (Ht, uH)−WWW (Ht+1, uH)−WWW (Ht, Ht+1))

≤ τq(WWW (Ht, uH)−WWW (Ht+1, uH)) + [〈uH −Ht+1, 〈xt+1 − xt,πππt+1〉TTT e⊺〉F
− 〈uH −Ht, 〈xt − xt−1,πππt〉TTT e⊺〉F] + ǫp(Ht+1), (4.9)

where

ǫp(Ht+1) = 〈∑K
i=1Ht+1,i −Ht,i, 〈xt − xt−1,πππt〉TTT 〉+ τqWWW (Ht, Ht+1)

(a)

≤
√
K ‖Ht+1 −Ht‖WWW ‖xt − xt−1‖2

∥∥[‖T1πππt,1‖2 , ..., ‖TKπππt,K‖2]
∥∥
W∗

+ τqWWW (Ht, Ht+1)

≤ 1
2τq

(CpMTTTMΠΠΠ)
2K ‖xt − xt−1‖22 . (4.10)

Note that (a) above follows from the algebraic fact
∥∥∥
∑K

i=1Ht,i −Ht+1,i

∥∥∥
W

≤
√
K ‖Ht −Ht+1‖WWW . The rest

of the proof for (4.7) is the same as that for (2.4). Finally, (4.8) follows directly from (4.7) and the relation

N(f(x̄N)− f(x∗)) ≤ maxuH ,uπππ

∑N
t=1Q(zt, (x

∗, uH , uπππ)).

Observe that the stepsize requirement (4.6) and the convergence result (4.8) are exactly the same as
their counterparts, (2.3) and (2.6) in Section 2, except for some constant factor. So we can apply a change
of variables to reuse the stepsize policy developed in Theorem 2.6. More specifically, if

a) τ̃ := τq and C̃p :=
√
K for entropyWWW ;

b) τ̃ := τq/K and C̃p :=
√
K for Euclidean WWW ,

then we have τqΩ
2
H = τ̃ Ω̃2

p and C2
pk/τq = C̃p

2
/τ̃ . So the following convergence result and stepsize choice

follow immediately from Proposition 4.1 and Theorem 2.6.
Corollary 4.2. For either the entropy WWW or the Euclidean WWW , if the non-negative stepsizes satisfy

η ≥ C̃p
2
M2

TTTM2
ΠΠΠ

τ̃ +
M2

TTT

σ , then we have

f(x̄N)− f(x∗) ≤ σΩ2
ΠΠΠ+τ̃Ω̃2

p+ηΩ2
X

N .

In particular, if we choose σ :=MTTT
ΩX

ΩΠΠΠ
, τ̃ :=MTTTMΠΠΠC̃p

ΩX

Ω̃p

, and η :=MTTTMΠΠΠC̃p
Ω̃p

ΩX
+MTTT

ΩΠΠΠ

ΩX
, then

f(x̄N)− f(x∗) ≤ 2ΩXMTTT

N (ΩΠΠΠ + C̃pΩΠΠΠΩ̃p).

4.3. Modified SSL Algorithm. We replace the p-smoothing in (3.5) with a q-smoothing to obtain a

modified smooth approximation F̃µq ,µπππ
(x) given by

gµπππ,k(x) := max
πk∈Π(k)

〈πk, Tkx〉 − g∗k(πk)− µπππU(0, πk), (πππ smoothing)

F̃µπππ ,µq
(x) := max

H∈Hδ

〈H,gµπππ
(x)e⊺〉F − µqWWW (H̄,H) for some H̄ ∈ Hδ. (q smoothing)

(4.11)

To establish the (α, β)-smooth approximation properties of F̃µπππ ,µq
(x), we need the following domain smooth

approximation properties of the q-smoothing as a counterpart to Lemma 3.4.b).

Lemma 4.3. As a function of gµπππ
(x), F̃µπππ ,µq

is a (K ‖I‖g,W /µq, µqΩ
2
H)-domain smooth approximation

of F (gµπππ
(x)) := maxH∈Hδ

〈H,gµπππ
(x)e⊺〉F , where Ω2

H := maxH∈Hδ
WWW (H̄,H).

Proof. Let g1 := gµπππ
(x1) and g2 := gµπππ

(x2) be given, and let Ĥ1 and Ĥ2 be the corresponding
maximizers in (4.11). Then we have

‖q̂1 − q̂2‖2W :=
∥∥∥
∑K

i=1Ĥ1,i −
∑K

i=1Ĥ2,i

∥∥∥
2

W

(a)

≤ K
∥∥∥Ĥ1 − Ĥ2

∥∥∥
2

WWW

(b)

≤ K
µq
〈Ĥ1 − Ĥ2, (g1 − g2)e

⊺〉F
18

Table 4.2: Theoretical Performance Comparison for O(1/ǫ) Algorithms for Kantorovich P Problem

Algorithm Iteration Complexity Computation Required for p Update

Separable PDHG[7] O(K/ǫ) Solving a 2K ×K2 QP

Euclidean SD/SSL O(
√
K/ǫ) Solving a 2K ×K2 QP

Entropy SD/SSL O(
√
logK/ǫ) Solving a 2K ×K2 Exponential Cone Program

Modified Euclidean SD/SSL O(
√
K/ǫ) O(K2 log(1/λǫ)) Algebraic Computations

Modified Entropy SD/SSL O(
√
K logK/ǫ) O(K2 log(1/λǫ)) Algebraic Computations

1 We set λǫ to the machine precision.

= K
µq
〈q̂1 − q̂2,g1 − g2〉

(c)

≤ K
µq

‖q̂1 − q̂2‖W ‖I‖g,W ‖g1 − g2‖g ,

where (a) follows from the algebraic fact that
∥∥∥
∑K

i=1Hi

∥∥∥
2

W
≤ (

∑K
i=1 ‖Hi‖W)2 ≤ K ‖H‖2WWW , (b) follows from

Lemma 3.3.b), and (c) follows from the definition of the operator norm ‖I‖g,W . Dividing both sides by

‖q̂1 − q̂2‖W , we conclude that F̃µπππ ,µq
is a Lipschitz smooth function of gµπππ

(x) with constant K ‖I‖g,W /µq.

The approximation gap follows from the definition of Ω2
H := maxH∈Hδ

WWW (H̄,H).

The other parts needed to derive the smooth approximation properties of F̃µπππ ,µq
, including the πππ smooth

approximation properties and the Lipschitz continuity constant of gµπππ,k, are exactly the same as those in
Section 3. Therefore Corollary 4.4 below follows as an immediate consequence of Lemma 4.3 and Proposition
3.6.

Corollary 4.4. F̃µπππ ,µq
is a (2C2

pKM
2
TTTM

2
ΠΠΠ/µq + 2M2

TTT/µπππ, µqΩ
2
H + µπππΩ

2
πππ)-smooth approximation of

F .
Similar to the analysis of the modified SD algorithm, we can define a change of variables to simplify

the above smooth approximation properties to the same form as that of Fµπππ,µp
in (3.5) such that the SSL

algorithm can be applied readily. More specifically, we set
a) C̃p :=

√
k and µ̃p := µq for entropyWWW ;

b) C̃p :=
√
k and µ̃p := µq/k for EuclideanWWW ,

such that KC2
p/µq = C̃p

2
/µ̃p and µqΩ

2
H = µ̃pΩ̃

2
p. Then F̃µπππ ,µq

(x) is a (2C̃p

2
M2

TTTM
2
ΠΠΠ/µ̃p + 2M2

TTT/µπππ, µ̃pΩ̃
2
p +

µπππΩ
2
πππ)-smooth approximation of F⑥, which is almost the same as Fµπππ ,µp

being a (2C2
pM

2
TTTM

2
ΠΠΠ/µp+2M2

TTT/µπππ,

µpΩ̃
2
p + µπππΩ

2
πππ) smooth approximation (shown in Proposition 3.6). Since both the optimal smooth ratio

(Lemma 3.8) and the SSL algorithm’s convergence analysis depend only on those smooth approximation

properties, we conclude from Theorem 3.11 that the SSL algorithm applied to F̃µπππ ,µq
(x) has an iteration

complexity of O(ΩXMTTTΩΠΠΠ(1 + 2C̃pΩ̃p)/ǫ).

4.4. Iteration complexity. Both the modified SD and the modified SSL algorithms have the same
iteration complexity bound of O((1 + C̃pΩ̃p)/ǫ), i.e., O(

√
K/ǫ) for Euclidean WWW and O(

√
K logK/ǫ) for

entropy WWW . It is worth noting that the extra
√
K factor for entropy WWW arises because the entropy radius

scales sub-linearly, i.e. Ω∆/K = Ω∆/
√
K while the Euclidean radius scales linearly, i.e. Ω∆/K = Ω∆/K.

Although the iteration complexity for the entropyWWW is O(
√
logK) larger than that for the EuclideanWWW , it

is still preferable in practice because each entropy projection is cheaper (shown in Table 4.1).

5. Numerical Studies. We use distributionally robust two-stage linear programs to demonstrate the
empirical performance of our algorithms .

Firstly, we test our algorithms by measuring their average performance on some randomly generated
instances of a synthetic problem. We consider the following capacity installation problem of an electricity

⑥The sequence smooth approximation properties of F̃µq ,µπππ can also be derived in a similar fashion.

19

utility company.

min
x∈Rn

c⊺x+max
p∈P

∑K
k=1pkgk(Tkx)

s.t. 0 ≤ xi ≤ U ∀i,
where gk(Tkx) := min

yk∈R
m
+

y⊺kek

s.t. Ryk ≥ dk − Tkx.

(5.1)

The company is planning for the capacities of n technologies, x ∈ R
n, to be installed for the coming year, with

a unit cost vector c ∈ Rn. Moreover, being the sole provider of electricity in the region, it has to satisfy all
demands in different periods of the year, d ∈ R

m, using a combination of power generated by those installed
capacities, with an availability factor of T ∈ [0, 1]m×n, and power purchased from the outside grid at a unit
cost of e ∈ Rm. The stochastic parameters e, d, and T are unavailable at the planning time, so the company
needs to find either a data-driven or risk-averse solution. In our experiments, we set m = 20, n = 40 and
generate random instances in the following fashion.

1. c generated entry-wise IID from Unif[0.5 1].
2. ek ∈ Rm generated entry-wise IID from Unif[2,4].
3. dk ∈ Rm generated entry-wise IID from Unif[50, 100].
4. Tk ∈ Rm×n generated entry-wise IID from Unif[0.5 1].
5. R = Im,m is the simple complete recourse matrix.

Since R is the identity matrix, the scenario sub-problems are simple. They admit closed-form solutions
for a given x, and each Π(k) is a box in (1.5), so the πππ-proximal update is also simple. However, in
reformulation (1.4) of [7], the projection of (xk, vk) onto a non-smooth functional constrained feasibility set,
{(xk, vk)|vk ≥ gk(Tkxk), xk ∈ X}, is more difficult; we have to solve a QP.

We also verify our results on a real-world test instance, namely the telecommunication network expansion
problem with uncertain demands, SSN(50) [24]. However, rather than the original expected total unfilled
demand, we use some risk-averse function of the total unfilled demands as the objective function. Moreover,
since we have to solve for the flow over the network for each demand scenario, the scenario sub-problems are
more difficult (R is not the simple identity matrix and Π(k)s are not boxes). So we have to use LP and QP
solvers for them and their proximal updates.

5.1. Implementation Details. The numerical experiments are implemented in MATLAB 2017b with
Mosek 8.1 as the optimization solver and are tested on an Alienware Desktop with 4.20GHz Intel Core i7
processor and 16GB of 2400MHz DDR4 memory. The x proximal updates and level set projection problems
are solved using Mosek QP and the πππ proximal updates are solved using closed-form solutions for the synthetic
problem and using Mosek QP for the network expansion problem. The p proximal updates are solved to
machine accuracy using a binary search for the Lagrange multipliers associated with the coupling constraints
in P . Their computation complexities are listed in Table 5.1.

Given a test instance, SD and PDHG are first fine-tuned by selecting among a few parameter choices
the one achieving the smallest objective value in 100 iterations, f(x̄100)(see Table 5.2 for these parameter
choices). Next, the fine-tuned SD and PDHG and the parameter-free SSL are used to solve the instance. We
record the number of iterations and the wall clock time required for these algorithms to achieve a relative
optimality gap of ǫ ∈ {10%, 1%, 0.1%}, i.e., f(xt)−f∗ ≤ ǫf∗. If the target accuracy is not reached after 2,000
seconds, we record both the number of iterations and the time as NA. To obtain an estimate of the true
objective f∗, we use the parameter-free SSL algorithm and terminate only when the absolute gap between
the lower and upper bound decreases to 1e−3.

5.2. Synthetic Problem: Probability Simplex Ambiguity Set. Notice that both SD and SSL
have the same iteration complexity bound of O(1 + CpΩP /ǫ). So to best illustrate how they scale with K,
we conduct experiments on the probability simplex, which has the largest ΩP . We make a few remarks about
the result obtained in Table 5.3.

1. In general when the number of scenarios is large, both SSL and SD show significant improvement
over PDHG in both computation time and iteration number. This is consistent with numerical
experiments in [7], where a toy example (with m = 3 and n = 2) takes a significant amount of time

20

Table 5.1: # Algebraic Operations Required for p proximal update

Distance Function W & Ambiguity Set Constraints in P # Algebraic Operations

Euclidean or Entropy W & Simplex Box + One Linear O(K log(1/ǫ))

Euclidean or Entropy W & AVaR Box + One Linear O(K log(1/ǫ))

Euclidean W & Modifed X2 Box + One Linear O(K log2(1/ǫ))
+ One Quadratic

Modified Entropy or Euclidean WWW & Kantorovich See Section 4 O(K2 log(1/ǫ))

Table 5.2: Parameter Selections

Algorithm # Step-sizes

Over-relaxation parameter ρ = 2.
PDHG 27 η ∈ {10−3, 10−2, ..., 102, 103}.

τ ∈ {10−2, 10−1, 1}/η.
(σ, τ, η) ∈ {.1σ̄, σ̄} × {.1τ̄ , τ̄} × {.1η̄, η̄},

SD 16 where σ̄, τ̄ are η̄ calculated using the stepsize choice in Theorem 2.6
with conservative estimates of ΩX ,ΩP ,ΩΠΠΠ and with {.1MΠΠΠ,MΠΠΠ}.

SSL 1 λ0 = 2−6, Ω2

p,0 = W (p̄, p0), M
2

π,0 = 2maxk Uk(π̄ππ,πππ0),
where p̄,πππ0 are the maximizers for x0 in (1.5).

Note that the parameter estimation for the PDHG algorithm is difficult because both the
primal and the dual feasibility region are unbounded.

even for a small number of scenarios, K ≤ 200. Besides, SSL seems to outperform SD in finding
solutions with high accuracy.

2. Dependence on accuracy ǫ: both SD and PDHG match the theoretical complexity guarantee of
O(1/ǫ). In contrast, SSL enjoys a linear rate of convergence in practice, i.e., O(ct), for some c < 1.
Such a behavior is often observed for bundle level methods [2, 10, 14], but there is no rigorous
theoretical explanation to the best of our knowledge.

3. Dependence on the number of scenarios K: both the computation time and the number of iter-
ations required for PDHG increase quickly with K. However, the numbers of iterations required
for entropy SD and SSL are nearly scenario independent. In fact, they seem to decrease slightly
with increasing K. One plausible explanation is that more scenarios make f smoother, thus our
accelerated algorithms might converge faster. However for Euclidean W , the number of iterations
required for SD increases for large K while that for SSL stays the same.

4. Per iteration computation time: the per iteration computation time of PDHG is larger than that
of SD and SSL. Moreover, the projection of x onto a level set in SSL is more expensive than the
simple x-proximal update in SD. So when the number of scenarios is small (K = 50 ∼ 2000) such
that the level set projection dominates computation cost, SD seems to be faster than SSL for finding
1%, 10%-suboptimal solutions, even though its numbers of iterations required are larger. However,
when the number of scenarios is large and the πππ projection dominates the computation cost, SSL is
faster.

5.3. Synthetic Problem: Risk-Averse AVaR Ambiguity Set. Given the empirical probability
vector p̄, we use the following reformulation in [25] of AVaR risk measure in our experiments.

AV aR1−α[g1(x), ..., gK(x)] =max
p≥0

〈p,g(x)〉

s.t
∑K

k=1pk = 1

21

0 ≤ pk ≤ 1
α p̄k.

Observe that results shown in Table 5.4 are consistent with our findings in Subsection 5.2. In addition, both
the iteration numbers and the computation times for all algorithms increase slightly in the 97.5% AVaR
quantile case because of the larger ΩP .

5.4. Synthetic Problem: Modified X2 Ambiguity Set. The modified X2 in [7] is defined as

Pr :=
{
p ∈ R

k
+ :

∥∥p− [1K ,,
1
K]

∥∥2

2
≤ r,

∑K
i=1pi = 1

}
.

Since the entropy projection onto a quadratically constrained Pr is difficult, we conduct experiments using
only Euclidean W . The obtained result in Table 5.5 is consistent with our previous findings.

5.5. Synthetic Problem: Kantorovich Ball Ambiguity Set. We test the modified SD and mod-
ified SSL algorithms developed in Section 4 for the more challenging Kantorovich ball. The results are
presented in Table 5.6. When K = 200, the computation time in each iteration due to the Euclidean p-
update in PDHG is 0.2 second, while that for the entropy q-update in both SD and SSL algorithms is 0.02
second. When K is larger, the saving from the q-update is even more significant.

5.6. Real-world instance: SSN(50). We conduct tests on the SSN(50) problem in [24] with all the
above-mentioned ambiguity sets. The obtained results in Table 5.7 show that our SD and SSL algorithms
significantly outperform the PDHG algorithm in computation time. Notice that the number of iterations of
SD is comparable to that of PDHG and its saving derives mainly from easier πππ proximal updates (as compared
to the joint (x, vk, yk) epigraph projection in PDHG). For problems with a large number of scenarios, we
expect our scenario-independent algorithms to have a more significant advantage over PDHG in iteration
number as well.

5.7. Comparison with the Benders Decomposition Algorithm. Finally, we compare the SSL
algorithm with another frequently used cutting plane method, the Benders decomposition [5]. Our imple-
mentation considers the following master problem,

min
x∈X,Ψ,vk

c⊺x+Ψ

s.t. Ψ ≥ φ(v1, ..., vK) (5.2)

vk ≥ gk(Tkx) ∀k ∈ [K]. (5.3)

In each iteration, the algorithm first computes (xt,Ψt, {vk,t}) by minimizing a master model, and then adds
optimality cuts for the risk function in (5.2) and for the scenario cost functions in (5.3) to the master model.

We test these algorithms on the synthetic problem with both 50 and 1000 scenarios and on the SSN(50)
problem, and the results are listed in Table 5.8, 5.9, and 5.10 respectively. It is clear that the Benders
decomposition algorithm outperforms our SSL algorithm when the number of scenarios is small and the
scenario sub-problems are simple (Table 5.8). However, when either the number of scenarios is large (Table
5.9) or the scenario sub-problems are difficult (Table 5.10), the SSL algorithm converges much faster.

To sum up, our experiments demonstrate that the proposed SD and SSL algorithms show significant per-
formance improvement over the PDHG algorithm, especially for problems with a large number of scenarios.
Between SSL and SD, SSL seems to be a better choice because it does not require any parameter tuning and
it has a linear rate of convergence in practice. However, the SD algorithm is simpler to implement and may
have some performance advantages over SSL for small problems with a low accuracy requirement. Moreover,
the flexibility to choose a Bregman distance appropriate for the P geometry has a significant influence on
the per iteration computation time, which is evident in the Kantorovich ball experiment.

22

Table 5.3: Synthetic Problem: Simplex
mean number of iterations and time(sec) to reach desired relative optimality

gap

#Scenarios Gap PDHG SD Euclid SD Entropy SSL Euclid SSL Entropy

10% 333, 11.3s 268, 0.18s 200, 0.13s 74, 0.28s 74, 0.26s
20 1% 3940, 146s 4060, 3.04s 2510, 1.57s 153, 0.60s 142, 0.58s

0.1% NA, NA NA, NA 23600, 16.1s 260, 1.09s 246, 1.02s

10% NA, NA 62, 0.35s 44, 0.27s 94, 1.12s 94, 1.14s
200 1% NA, NA 602, 3.26s 476, 2.65s 181, 2.43s 181, 2.45s

0.1% NA, NA 6010, 32.1s 4810, 26.0s 307, 4.32s 311, 4.50s

10% NA, NA 48, 1.02s 44, 0.94s 101, 7.49s 91, 6.75s
1000 1% NA, NA 471, 10.4s 394, 8.62s 184, 15.0s 177, 14.3s

0.1% NA, NA 4710, 102s 3840, 83.3s 293, 24.7s 291, 24.7s

10% NA, NA 123, 46.4s 34, 14.6s 86, 64.0s 94, 76.1s
20000 1% NA, NA 1210, 461s 220, 92.8s 168, 139s 178, 160s

0.1% NA, NA NA, NA 2020, 821s 285, 248s 285, 274s

Table 5.4: Synthetic Problem: AVaR

#Scenarios Gap PDHG SD Entropy SSL Entropy

95% AVaR quantile

10% 1170, 104s 111, 0.19s 63, 0.59s
50 1% 12100, 1040s 1340, 2.61s 115, 0.90s

0.1% NA, NA 13700, 23.6s 225, 1.98s

10% NA, NA 30,0.15s 57, 0.49s
200 1% NA, NA 362, 2.08s 120, 1.22s

0.1% NA, NA 3570, 19.8s 233, 2.55s

10% NA ,NA 9, 0.15s 40, 0.94s
1000 1% NA, NA 122, 2.70s 69, 1.94s

0.1% NA, NA 1180, 25.8s 120, 3.90s

97.5% AVaR quantile

10% 1390, 108s 118, 0.16s 70, 0.32s
50 1% 14400, 1140s 1410, 1.98s 154, 0.76s

0.1% NA, NA 14600, 21.3s 290, 1.49s

10% 4140, 1250s 34, 0.29s 60, 0.48s
200 1% NA, NA 410, 2.28s 139, 1.36s

0.1% NA, NA 4090, 21.6s 259, 2.76s

10% NA, NA 24, 0.51s 47, 1.11s
1000 1% NA, NA 205, 4.34s 88, 2.60s

0.1% NA, NA 2030, 43.2s 176, 5.85s

Table 5.5: Synthetic Problem: Modified X2

#Scenarios Gap PDHG SD Euclid SSL Euclid

r = 0.01

10% 514, 40.2s 112, 0.18s 43, 0.22s
50 1% 4120, 330s 1530, 1.96s 82, 0.60s

0.1% NA, NA 15200, 18.0s 157, 1.32s

10% 1040, 314s 26, 0.19s 40, 0.38s
200 1% 4570, 1370s 268, 1.94s 70, 0.92s

0.1% NA, NA 2110, 11.8s 116, 1.77s

10% NA, NA 20, 0.47s 43, 1.50s
1000 1% NA, NA 95, 2.64s 67, 2.97s

0.1% NA, NA 330, 8.80s 99, 4.89s

r = 0.1

10% 996, 76.1s 163, 0.19s 59, 0.37s
50 1% 9970, 804s 2340, 2.69s 121, 0.94s

0.1% NA, NA 20400, 21.6s 245, 2.14s

10% 3390, 997s 68, 0.29s 62, 0.76s
200 1% NA, NA 860, 3.81s 128, 1.91s

0.1% NA, NA 8920, 39.0s 238, 3.81s

10% NA, NA 70, 1.48s 64, 2.83s
1000 1% NA, NA 717, 15.3s 126, 6.37s

0.1% NA, NA 7160, 151s 230, 12.2s

Table 5.6: Synthetic Problem: Kantorovich Ball

#Scenarios Gap PDHG Modified SD Entropy Modified SSL Entropy

δ = 0.01 × median distance in D

10% 247, 27.0s 89, 0.18s 43, 0.33s
50 1% 1560, 181s 846, 1.96s 70, 0.66s

0.1% NA, NA 8170, 19.2s 130, 1.41s

10% 498, 297s 16, 0.28s 38, 1.69s
200 1% 1590, 883s 163, 3.05s 55, 2.90s

0.1% NA, NA 1180, 23.0s 90, 5.74s

10% NA, NA 16, 13.6s 36, 76.5s
1000 1% NA, NA 131, 106s 50, 127s

0.1% NA, NA 602, 443s 73, 221s

δ = 0.1 × median distance in D

10% 420, 49.9s 93, 0.23s 55, 0.59s
50 1% 2940, 363s 847, 2.10s 101, 1.30s

0.1% NA, NA 8270, 17.9s 175, 2.45s

10% 756, 557s 20, 0.43s 52, 3.79s
200 1% NA, NA 111, 2.62s 87, 7.24s

0.1% NA, NA 564, 13.0s 136, 12.1s

10% NA, NA 20, 20.6s 51, 171s
1000 1% NA, NA 96, 96.0s 78, 297s

0.1% NA, NA 358, 334s 117, 485s

23

Table 5.7: SSN(50)

Ambiguity Set Gap PDHG(1) SD Euclid SD Entropy SSL Euclid SSL Entropy

Simplex 10% 420, 873s 360, 63.3s 309, 54.4s 142, 40.0s 107, 31.3s
1% NA, NA 996, 176s 631, 111s 195, 55.2s 187, 54.0s

AVaR 10% 1116, 2310s 366, 64.4s 233, 40.8s 69, 19.3s 135, 40.3s
95% 1% NA, NA 1016, 179.5s 640, 113s 148, 41.6s 211, 61.8s

AVaR 10% 420, 880s 355, 62.9s 310, 55.1s 94, 26.5s 117, 36.0s
97.5% 1% NA, NA 818, 146s 634, 113s 152, 43.0s 190, 57.0s

X2 10% 167, 337s 61, 10.7s 144, 44.3s
r = 0.01 1% NA, NA 129, 22.8s 181, 55.0s

X2 10% 582, 1210s 96, 17.3s 128, 40.6s
r = 0.1 1% NA, NA 477, 84.9s 192, 60.3s

Kantorovich(2) 10% 179, 373s 285, 119s 784, 137s 119, 73.1s 90, 25.0s
δ = 0.01 1% 837, 1750s 768, 306s 2133, 382s 177, 110s 135, 43.1s

Kantorovich 10% 210, 445s 235, 107s 1105, 198s 108, 66.7s 104, 29.2s
δ = 0.1 1% NA, NA 533, 234s 3281, 595s 167, 105s 179, 51.0s

(1) Both SD and PDHG use the best iterate encountered (instead of the ergodic average) to measure the
optimality gap for faster convergence.
(2) Modified Euclidean and entropy projections used for SD and SSL.

Table 5.8: Synthetic(50)

Ambiguity Set Gap SSL(1) Benders

Simplex 10% 101, 0.48s 37, 0.36s
1% 202, 1.08s 38, 0.38s

AVaR 10% 79, 0.35s 14, 0.08s
95% 1% 129, 0.64s 15, 0.09s

AVaR 10% 64, 0.27s 22, 0.17s
97.5% 1% 150, 0.77s 23, 0.19s

X2 10% 46, 0.19s 7, 0.03s
r = 0.01 1% 96, 0.52s 10, 0.07s

X2 10% 49, 0.22s 10, 0.07s
r = 0.1 1% 103, 0.57s 11, 0.08s

Kantorovich 10% 47, 0.31s 8, 0.08s
δ = 0.01 1% 71, 0.67s 19, 0.22s

Kantorovich 10% 56, 0.49s 5, 0.04s
δ = 0.1 1% 107, 1.10s 7, 0.07s

(1) SSL uses entropy projection for all but the X2 am-
biguity set.

Table 5.9: Synthetic(1000)

SSL(1) Benders

103, 3.04s 101, 58.0s
184, 5.76s 106, 60.5s

48, 1.15s 12, 6.23s
88, 2.44s 19, 7.96s

48, 1.16s 17, 7.02s
92, 2.66s 26, 8.89s

35, 0.79s 8, 5.06s
64, 2.04s 22, 8.36s

49, 1.37s 26, 10.3s
95, 3.19s 37, 12.4s

42, 60.0s 5, 16.6s
52, 96.8s 6, 19.0s

50, 101s 5, 15.8s
76, 187s 16, 40.0s

Table 5.10: SSN(50)

SSL(1) Benders

106, 30.4s NA, NA
185, 52.4s NA, NA

135, 39.4s NA, NA
211, 60.4s NA, NA

117, 35.1s NA, NA
174, 51.1s NA, NA

144, 44.1s 975, 578s
179, 54.2s NA, NA

128, 39.7s NA, NA
187, 57.4s NA, NA

90, 24.7s NA, NA
145, 40.2s NA, NA

104, 29.0s NA, NA
159, 44.7s NA, NA

6. Conclusion. This paper considers the distributionally robust two-stage stochastic convex program
with a discrete scenario support. To handle the large number of scenarios and the non-smooth second stage
cost function, we propose a sequential maximization reformulation of the problem and develop a simple
SD algorithm and a parameter-free SSL algorithm. Both algorithms are able to achieve a nearly scenario
independent iteration complexity of O(

√
logK/ǫ). Moreover, for the difficult but important Kantorovich

ball, we develop a modification of our algorithms to avoid the expensive projection onto P at the price of
O(

√
K) times more iterations. The empirical performance of our algorithms is demonstrated by encouraging

numerical experiment results.

Moreover, since the subproblems in the SD and SSL algorithms are assumed to be solved exactly, an
interesting question is how our algorithms would perform when using quick but not-so-accurate solutions.
Indeed, this type of question can inspire the development of new algorithms (e.g, gradient sliding methods
[11]), but it would require substantial modifications to both our algorithms and their analysis. So we will
consider it in our future research.

REFERENCES

[1] Amir Beck, First-order methods in optimization, vol. 25, SIAM, 2017.
[2] Aharon Ben-Tal and Arkadi Nemirovski, Non-Euclidean restricted memory level method for large-scale convex opti-

24

mization, Mathematical Programming, 102 (2005), pp. 407–456.
[3] Aharon Ben-Tal and Arkadii Semenovich Nemirovskii, Lectures on modern convex optimization: analyse, algorithms,

and engineering applications, SIAM, 2001.
[4] Dimitris Bertsimas, Vishal Gupta, and Nathan Kallus, Data-driven robust optimization, Mathematical Program-

ming, 167 (2018), pp. 235–292.
[5] Dimitris Bertsimas and John N Tsitsiklis, Introduction to linear optimization, vol. 6, Athena Scientific Belmont, MA,

1997.
[6] Antonin Chambolle and Thomas Pock, On the ergodic convergence rates of a first-order primal–dual algorithm,

Mathematical Programming, 159 (2016), pp. 253–287.
[7] Yannan Chen, Hailin Sun, and Huifu Xu, Decomposition methods for solving two-stage distributionally robust opti-

mization problems, Manuscript, optimization-online, (2018).
[8] Peyman Mohajerin Esfahani and Daniel Kuhn, Data-driven distributionally robust optimization using the Wasserstein

metric: Performance guarantees and tractable reformulations, Mathematical Programming, 171 (2018), pp. 115–166.
[9] Rui Gao and Anton J Kleywegt, Distributionally robust stochastic optimization with Wasserstein distance, arXiv

preprint arXiv:1604.02199, (2016).
[10] Guanghui Lan, Bundle-level type methods uniformly optimal for smooth and nonsmooth convex optimization, Mathe-

matical Programming, 149 (2015), pp. 1–45.
[11] , Gradient sliding for composite optimization, Mathematical Programming, 159 (2016), pp. 201–235.
[12] , Complexity of stochastic dual dynamic programming, Manuscript, arXiv, (2019). Mathematical Programming,

under revision.
[13] Guanghui Lan, First-order and Stochastic Optimization Methods for Machine Learning, Springer-Nature, 2020.
[14] Claude Lemaréchal, Arkadii Nemirovskii, and Yurii Nesterov, New variants of bundle methods, Mathematical

programming, 69 (1995), pp. 111–147.
[15] Yongchao Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang, Primal–dual hybrid gradient method for distribution-

ally robust optimization problems, Operations Research Letters, 45 (2017), pp. 625–630.
[16] Harry Markowitz, Portfolio selection, The journal of finance, 7 (1952), pp. 77–91.
[17] A.S. Nemirovsky, Information-based complexity of linear operator equations, Journal of Complexity, 8 (1992), pp. 153–

175.
[18] Yurii Nesterov, A method for unconstrained convex minimization problem with the rate of convergence o (1/kˆ 2), in

Doklady AN USSR, vol. 269, 1983, pp. 543–547.
[19] Yu Nesterov, Smooth minimization of non-smooth functions, Mathematical programming, 103 (2005), pp. 127–152.
[20] Yuyuan Ouyang and Yangyang Xu, Lower complexity bounds of first-order methods for convex-concave bilinear saddle-

point problems, Mathematical Programming, (2019), pp. 1–35.
[21] Leandro Pardo, Statistical inference based on divergence measures, Chapman and Hall/CRC, 2018.
[22] Georg Ch Pflug and Alois Pichler, Approximations for probability distributions and stochastic optimization problems,

in Stochastic optimization methods in finance and energy, Springer, 2011, pp. 343–387.
[23] Alois Pichler and Huifu Xu, Quantitative stability analysis for minimax distributionally robust risk optimization,

Mathematical Programming, (2017), pp. 1–31.
[24] Suvrajeet Sen, Robert D Doverspike, and Steve Cosares, Network planning with random demand, Telecommuni-

cation systems, 3 (1994), pp. 11–30.
[25] Alexander Shapiro and Shabbir Ahmed, On a class of minimax stochastic programs, SIAM Journal on Optimization,

14 (2004), pp. 1237–1249.
[26] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński, Lectures on stochastic programming: modeling

and theory, SIAM, 2009.
[27] Chaoyue Zhao and Yongpei Guan, Data-driven risk-averse two-stage stochastic program with ζ-structure probability

metrics, Available on Optimization Online, (2015).
[28] , Data-driven risk-averse stochastic optimization with Wasserstein metric, Operations Research Letters, 46 (2018),

pp. 262–267.

25

