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Abstract

We say that a pure simplicial complex K of dimension d satisfies the removal-collapsibility
condition if K is either empty or K becomes collapsible after removing β̃d(K;Z2) facets,
where β̃d(K;Z2) denotes the dth reduced Betti number.

In this paper, we show that if the link of each face of a pure simplicial complex K
(including the link of the empty face which is the whole K) satisfy the removal-collapsibility
condition, then the second barycentric subdivision of K is vertex decomposable and in
particular shellable. This is a higher dimensional generalization of a result of Hachimori,
who proved that if the link of each vertex of a pure 2-dimensional simplicial complex K is
connected, and K becomes simplicially collapsible after removing χ̃(K) facets, where χ̃(K)
denotes the reduced Euler characteristic, then the second barycentric subdivision of K is
shellable.

For the proof, we introduce a new variant of decomposability of a simplicial complex,
stronger than vertex decomposability, which we call star decomposability. This notion may
be of independent interest.

1 Introduction

Shellability and collapsibility (to be defined later) are two widely used approaches for combina-
torial decomposition of a simplicial complex. They are similar in spirit, yet there are important
differences among those two notions. There are shellable complexes homotopy equivalent to
a wedge of spheres, whereas no non-trivial wedge can be collapsible. On the other hand, two
triangles sharing a vertex provide an example of a collapsible complex that is not shellable. Yet
in some important cases, one can relate these two notions.

The easy direction is that shellability implies collapsibility whenever the complex is con-
tractible (in fact, whenever the complex has trivial homology). We will focus here on a more
interesting direction: when collapsibility implies shellability?

In this spirit, Hachimori [Hac08] proved that for a pure 2-dimensional simplicial complex
K, the following statements are equivalent:

(i) The complex K has a shellable subdivision.

(ii) The second barycentric subdivision sd2 K is shellable.

∗This work was supported by the grant no. 19-04113Y of the Czech Science Foundation (GAČR). T.M. is
supported by grant ANR-17-CE40-0033 of the French National Research Agency ANR (SoS project). M.T. is
partially supported by Charles University project UNCE/SCI/004.
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(iii) The link of each vertex of K is connected and K becomes collapsible after removing χ̃(K)
facets where χ̃ denotes the reduced Euler characteristic.

As Hachimori points out, one cannot expect that such an equivalence would be achievable
in higher dimensions. Namely, the implication (i) ⇒ (ii) cannot hold in higher dimensions due
to the examples by Lickorish [Lic91]. However, we will show that it is possible to generalize the
interesting implication (iii) ⇒ (ii). The equivalence of (iii) and (ii) was one of the important
steps in a recent proof of NP-hardness of recognition of shellable complexes [GPP+19]. Though
the hardness reduction requires the implication only in dimension 2, we find it interesting to
provide a higher-dimensional generalization. For example, the computational complexity status
of recognition of shellable/collapsible 3-spheres is unknown and the implication (iii)⇒ (ii) could
provide a link between the two notions.

For explaining our generalization, we briefly introduce some notions (see also Section 2 for
the notions undefined here).

Collapsibility. Let K be a simplicial complex and σ ∈ K be a face which is contained in
only one face τ ∈ K with σ ( τ . (Necessarily dim τ = dimσ + 1 and τ is a facet K, that
is, an inclusion-wise maximal face of K). In this case, we say that σ is a free face of K
and we also say that a complex K′ arises from K by an elementary collapse if there are σ
and τ as above such that K′ = K \ {σ, τ}, we denote this by K ↘ K′. A complex K is
collapsible, if there is a sequence (K1, . . . ,Kr) of complexes such that K1 = K, Kr is a point,
and K1 ↘ K2 ↘ · · · ↘ Kr. An important property of collapsibility is that the elementary
collapses preserve the homotopy type, a fortiori, the homology groups.

Shellability. Let K be a simplicial complex of dimension k. A total order F1, . . . , Ft of facets
of K is called a shelling if Fi∩

⋃i−1
j=1 Fj is a pure (k−1)-dimensional complex. (Purely formally,

we consider the facets in the formula Fi∩
⋃i−1
j=1 Fj above as subcomplexes of K.) K is then said

to be shellable if it admits a shelling order. For comparison with collapsibility, we will also use
the reverse shelling order Ft, . . . , F1.

Removal-collapsibility condition. We will say that a pure complex K satisfies the removal-
collapsibility condition, abbreviated to (RC) condition, if K is either empty or K becomes
collapsible after removing some number of facets. We remark that if dim K = d the number of
removed facets can be easily computed as β̃d(K;Z2) where β̃d(K;Z2) denotes the reduced dth
Betti number, i.e., the rank of the reduced homology group H̃d(K;Z2).

1 Indeed, by a routine
application of the Mayer-Vietoris exact sequence, removing a facet either decreases β̃d(K;Z2)
by one or increases β̃d−1(K;Z2) by one. But we cannot afford the latter case if the complex
becomes collapsible after removing some number of facets. In addition, the lower dimensional
homology remains unaffected when removing a facet (directly from the definition of simplicial
homology or again by a Mayer-Vietoris exact sequence), therefore a complex satisfying (RC)
condition also satisfies β̃i(K;Z2) = 0 for 0 ≤ i ≤ d− 1. In particular, χ̃(K) = (−1)dβ̃d(K;Z2).

We also observe that if d = 1, that is, if K is a graph, then the (RC) condition is equivalent
with stating that K is connected. Also, every 0-complex satisfies the (RC) condition.

Altogether, Hachimori’s condition (iii) for 2-complexes is equivalent to saying that the link
of the empty face (i. e., K) and the link of every vertex satisfies the (RC) condition. This is
furthermore equivalent with saying that the link of every face of K satisfies the (RC) condition
as links of dimension at most 0 always satisfy the (RC) condition. We say that K satisfies

1The choice of coefficients Z2 is not very important here. We could choose an arbitrary field.
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the hereditary removal-collapsibility condition, abbreviated to (HRC) condition, if the link of
every face of K satisfies the (RC) condition. In particular, (HRC) is equivalent to Hachimori’s
condition (iii) for 2-complexes. This condition is hereditary in the following sense: If K satisfies
(HRC) and σ ∈ K, then the link lk(σ,K) also satisfies (HRC). Indeed, the link of σ′ in lk(σ,K)
is just the link of σ ∪ σ′ in K.2

We establish the following generalization of Hachimori’s implication (iii) ⇒ (ii).

Theorem 1. Let K be a pure simplicial d-complex satisfying the (HRC) condition, then the
second barycentric subdivision sd2 K is shellable.

We suspect that the reverse implication does not hold but we are not aware of a concrete com-
plex violating the reverse implication. Possibly interesting examples could be the non-collapsible
triangulations of the 3-ball B15,66 and B17,95 constructed by Benedetti and Lutz [BL13] but we
do not know if their second barycentric subdivisions are shellable.

For the proof of Theorem 1, we will define two coarser notions than shellability called
star decomposability and star decomposability in vertices, which may be of independent interest.
Together with vertex decomposability of Provan and Billera [PB80] we will establish the following
chain of implications, where the last implication is a result of Provan and Billera.

star decomposable in vertices ⇒ star decomposable ⇒ vertex decomposable ⇒ shellable

Therefore, for a proof of Theorem 1 it is sufficient to prove the following generalization
(together with the first two promised implications).

Theorem 2. Let K be a pure simplicial d-complex satisfying the (HRC) condition, then the
second barycentric subdivision sd2 K is star decomposable in vertices.

Additional motivation and background. Both notions, collapsibility and shellability, play
an important role in PL topology because they may help to determine not only the homotopy
type of a given collapsible/shellable space but sometimes even the (PL) homeomorphism type.
For example, a collapsible PL manifold is a ball, and a shelling of a PL-manifold (if it does not
change the homotopy type) preserves the homeomorphism type [RS82].

A relation between collapsibility or shellability of some subdivision of a complex and of some
barycentric subdivision has been studied by Adiprasito and Benedetti [AB17]. Namely, they
show that a simplicial complex is PL homeomorphic to a shellable complex if and only if it is
shellable after finitely many barycentric subdivisions,3 and they show an analogous result for
collapsibility. If we were interested only in shellability of some barycentric subdivision of K in
Theorem 1, it is possible that the proof could be easier, because it would be possible to use
arbitrary suitable subdivisions in the intermediate steps.

Hachimori’s implication (iii)⇒(ii), as well as its generalization, Theorem 1, can be under-
stood as a tool for showing that a concrete complex is shellable. A lot of effort has been
devoted to developing such tools in various contexts; see e.g. [BW83, Koz97]. The advantage
of Theorem 1 could be that the (HRC) condition may naturally follow from the topologi-
cal/combinatorial properties of a considered problem as it is in the case of the application of
Hachimori’s result in [GPP+19]. A possible disadvantage could be that we have to allow some
flexibility on the target complex (it has to be the second barycentric subdivision of another
complex).

An additional piece of motivation may come from commutative algebra. For example, Herzog
and Takayama [HT02] found out that if K is a complex (not necessarily pure) and IK is the

2Note that we do not claim that (HRC) is hereditary with respect to subcomplexes or induced subcomplexes.
3The result is stated in terms of derived subdivisions but there is no difference on the combinatorial level.
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st(e, sd2K)

K sd2K

Figure 1: Decomposition of sd2 K into stars. For example, an edge e of K becomes a vertex in
sd2 K. Consequently, its star in sd2 K is one of the stars in the decomposition.

Stanley-Reisner ideal corresponding to K, then IK has linear quotients if and only the Alexander
dual K∗ is shellable (in the non-pure sense, but the pure case is a special case, of course). Thus,
Theorem 1 may serve as a tool showing that certain Stanley-Reisner ideals have linear quotients.

Finally, the notions of star decomposability and star decomposability in vertices that we in-
troduce along the way may be of independent interest as inductive tools similar to collapsibility,
shellability, vertex-decomposability, etc. Although their definitions are slightly technical, they
appear very naturally in our context, as we sketch in the proof strategy below. It would also
be interesting to know whether these notions admit some counterpart in terms of commutative
algebra (similarly to the Herzog-Takayama equivalence above).

Proof strategy. Here we first sketch Hachimori’s proof (iii) ⇒ (ii), in our words though.
Then we sketch the necessary steps for upgrading the proof to higher dimensions.

Let K be a pure 2-complex satisfying the conditions of (iii). We want to sketch a strategy
how to shell sd2 K. For simplicity of pictures, we will assume that K is already collapsible (as
we want to avoid the non-trivial second homology in the pictures).

The second barycentric subdivision sd2 K is covered by stars of vertices of sd2 K which
correspond to original faces of K; see Figure 1. The stars may overlap, but they overlap only in
their boundaries (in links). Now, let us consider an elementary collapse K↘ K′ while removing
a free face σ and a maximal face τ containing σ. Naturally, in sd2 K we want to emulate this
by a reverse shelling removing the triangles first in st(σ, sd2 K) and then in st(τ, sd2 K);4 see
Figure 2. This is indeed a good strategy as Hachimori [Hac08] showed. However, this quite
heavily depends on the fact that the dimension of the complex is 2 as the structure of sd2 K is
so simple that all steps are obvious.

In general dimension we want to proceed similarly. However it seems out of reach to describe
directly the order of removals of facets of sd2 K and check that this is a shelling order due to
a complicated structure of sd2 K. At least we initially tried this approach but we quickly got
lost in addressing too many cases. Therefore, we instead use the aid of some coarser notions.

The first helpful notion is vertex decomposability of Provan and Billera [PB80]. A simplicial
d-complex K is vertex decomposable if it is pure and

• K is a d-simplex, or

• there is a vertex v ∈ V (K) such that K− v is d-dimensional vertex decomposable (where
K − v denotes the complex obtained by removing v and all faces containing v from K)

4Formally speaking, st(σ, sd2 K) stands for st({{σ}}, sd2 K), etc.; see our convention in the preliminaries.
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Figure 2: Reverse shelling of sd2 K following an elementary collapse of K. The numbers in
triangles indicate a valid order of removing triangles.

σ
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σ

τ
τ

1

2
3

Figure 3: Vertex decomposition (shedding) of sd2 K following an elementary collapse of K. In
this case, we first remove σ, then the vertex in between of σ and τ and finally τ .

and lk(v,K) is (d− 1)-dimensional vertex decomposable.

This recursive definition induces an order v1, . . . , vn−(d+1) of n− (d+ 1) vertices of K according
to the sequence of vertex removals in the second item (where n is the number of vertices of
K). This order is called a shedding order and we artificially extend any shedding order to all
vertices of K so that the remaining vertices follow in arbitrary order. (Intuitively, as soon as
we reach a d-simplex in the first item, we allow removing vertices in arbitrary order.)

Proving that sd2 K is vertex decomposable is stronger than showing that sd2 K is shellable,
and it also seems easier to specify the shedding order as we deal with a smaller number of
objects. For example, in case of the collapse from Figure 2, we specify the order only on three
vertices; see Figure 3.

On the other hand, it is even easier to start removing the closed stars of vertices (and then
taking a closure to get again a simplicial complex). In case of Figure 3, we would first remove
the closed star of σ in sd2 K. Subsequently, when taking the closure, we reintroduce the full
link of σ. Thus in this case, our first step coincides with removing σ (and therefore the open
star of σ). The second step is, however, more interesting (see Figure 4): First we remove the
closed star of τ . Then, when taking the closure, we do not reintroduce the vertex in between of
σ and τ . Therefore, this second step removes simultaneously two vertices.

This will be our notion of star decomposability; however, one of the key steps in our approach
is to identify an appropriate property of order of removals as above, which implies vertex
decomposability of our complex. For sketching the idea, let us again consider the case of
removing the closed star of τ in the second step above. Similarly as in the case of vertex

5



sd2K

τ

O

sd2K

O

Figure 4: Overlap of the link of τ and the rest of the complex.

decomposability, we will need that the link of the center of the removed star (in this case the
link of τ) is star decomposable. However, this is not the only condition that we require. Let
O be the overlap of the link of τ and the remainder of the complex after removing the star of
τ (see Figure 4). We will actually need a star decomposition of the link of τ such that O is
an intermediate step in this decomposition. Overall, this additional condition ensures a well
working induction for deducing vertex decomposability. We postpone the precise definition of
star decomposability to Section 3.

Finally, we will utilize the fact that we are interested in star decomposability of the complex
sd2 K which is a barycentric subdivision of another complex, namely sd2 K = sd L where L =
sd K. We will introduce the notion of star decomposability in vertices which will mean that
we are removing only stars centered in vertices of sd L which are simultaneously vertices of L
as in Figure 4. (Note that vertices of L are faces of K.) This brings one more advantage. We
will essentially need claims of the following spirit: If sd(X) and sd(Y) are star decomposable in
vertices, then sd(X ∗Y) is star decomposable in vertices as well (here X ∗Y denotes the join
of X and Y). In addition, we will also need to describe the order of the star decomposition
in vertices of sd(X ∗ Y). Though it is probable that analogous claims are valid also for star
decomposability, vertex decomposability and/or shellability, the notion of star decomposability
in vertices removes at least one layer of complications in the proof: It is just sufficient to describe
the order of the decomposition of sd(X ∗Y) as some total order on V (X ∗Y) = V (X) t V (Y)
via a suitable way of interlacing the total orders on V (X) and V (Y) (here V (X)tV (Y) denotes
the disjoint union of V (X) and V (Y)).

2 Preliminaries

In this section, we briefly overview the standard terminology regarding simplicial complexes,
including some of the notions mentioned in the introduction without the definition. We generally
assume that the reader is familiar with simplicial complexes. Thus the main purpose is to set
up the notation.

We work with finite abstract simplicial complexes, that is, finite set systems K such that if
σ ∈ K and σ′ ⊆ σ, then σ′ ∈ K. Elements of K are faces; a k-face is a face of dimension k, that
is, a face of size k + 1. Vertices correspond to 0-faces of K (specifically, a vertex v corresponds
to a 0-face {v}); and the set of vertices is denoted V (K). The dimension of K is the dimension
of the largest face (or −∞, if K is empty). The complex K is pure if all inclusion-wise maximal
faces have the same dimension.

A join of two simplicial complexes K1 and K2 is the complex K1 ∗K2 := {σ1 t σ2 : σ1 ∈
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Figure 5: The barycentric subdivision sd K of a complex K. The notation on the right picture
is simplified so that 12 stands for {1, 2}, etc.

K1, σ2 ∈ K2} where t stands for disjoint union.5 In our inductive arguments, we will carefully
distinguish the empty complex ∅ and the complex {∅} containing a single face, which is ∅. Note
that K ∗ ∅ = ∅, whereas K ∗ {∅} = K.

Given a face σ of K, the link of σ in K is defined as lk(σ,K) := {σ′ \ σ : σ′ ∈ K, σ ⊆ σ′}.
The (closed) star of σ in K is defined as st(σ,K) := {σ′ ∈ K : σ′ ∪ σ ∈ K}.

The barycentric subdivision of a simplicial complex K is the simplicial complex

sd K := {{σ1, . . . , σn} : σ1, . . . , σn ∈ K, ∅ 6= σ1 ( σ2 ( · · · ( σn}.

The geometric idea behind the definition of barycentric subdivision is the following: Ac-
cording to the definition, the vertices of sd K are nonempty faces of K. Place a vertex of sd K
into the barycenter of the face it represents in K (in the geometric realization of K, which we
did not define here). Then sd K represents a (geometric) subdivision of K; see Figure 5. (In
the subsequent text, we will not need any details about geometric realization of the barycentric
subdivision. However, we will use this geometric interpretation in motivating pictures.)

Note also that if v is a vertex of K, then {v} is a vertex of sd K. If there is no risk of
confusion, we write v instead of {v} in formulas such as lk(v, sd K). We apply similar conven-
tions to the second barycentric subdivision, so we write lk(v, sd2 K) instead of the cumbersome
lk({{v}}, sd2 K), or lk(σ, sd2 K) instead of lk({σ}, sd2 K) if σ is a face of K.

3 Star decomposability

Given a simplicial complex X and a set W ⊆ V (X), we say that W induces a star partition of
X if

(i) X =
⋃
w∈W st(w,X), and

(ii) any two distinct vertices w1, w2 ∈W are not neighbors in X.

An example of a set inducing a star partition is the set {w1, w2, w3, w4} in Figure 6.
Now, let us assume that W induces a star partition. Given a total order ≺ on W , W ′ ⊆W ,

and w ∈ W , we set W ′�w := {w′ ∈ W ′ : w′ � w} and W ′�w := {w′ ∈ W ′ : w′ � w}. We will also
use the notation

st(W ′,X) :=
⋃

w′∈W ′
st(w′,X)

5We can perform the disjoint union of two sets A and B even if A and B are not disjoint. The standard model
in such case is to take A× {1} ∪B × {2}.
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w1
w2

w3

w4

lk(w2,X)

O(w2,W�w2
)

X

u1

u2

Figure 6: An example of the star decomposition induced by the set W = {w1, w2, w3, w4}
with the order w1 ≺ w2 ≺ w3 ≺ w4 (left) and an example of the set U(w2) = {u1, u2} such
that st(U(w2), lk(w,X)) = O(w2,W�w2) and the pair (lk(w2,X), U(w2)) is star decomposable
(right).

for an arbitrary subset W ′ of V (X). Furthermore given x ∈W and a set W ′ ⊆W , we define6

O(x,W ′) := lk(x,X)∩ st(W ′,X) = lk(x,X)∩
⋃

w′∈W ′
st(w′,X) = lk(x,X)∩

⋃
w′∈W ′

lk(w′,X). (1)

See Figure 6. Note that this is the overlap mentioned in the introduction. Occasionally, if we
need to emphasize dependency on X, we write OX(x,W ′).

Now, we are ready to introduce star decomposability. Following the sketch in the introduc-
tion, we want to introduce star decomposability of a simplicial complex X. However, in order
to formulate all conditions correctly, we need to state this definition for pairs.

Definition 3 (Star decomposability). Let (X, X) be a pair where X is a simplicial complex
which is pure and k-dimensional, k ≥ −1 (that is, X 6= ∅), and X ⊆ V (X). We inductively
define star decomposability of the pair (X, X). We also say that X is star decomposable if there
is X ⊆ V (X) for which the pair (X, X) is star decomposable.

For k = −1, the pair ({∅}, ∅) is star decomposable.
If k ≥ 0, then (X, X) is star decomposable, if there is a set W 6= ∅ inducing a star partition

and a total order ≺ on W with the following properties.

Order condition: X = W�w′ for some w′ ∈W .

Link condition: For any vertex w ∈ W except for the last vertex in the order ≺, there is a
nonempty set U = U(w) ⊆ V (lk(w,X)) such that st(U, lk(w,X)) = O(w,W�w) and the
pair (lk(w,X), U) is star decomposable.

Last vertex condition: For the last vertex ŵ ∈ W in the order ≺, the link lk(ŵ,X) is star
decomposable.

If the order ≺ on W satisfies the three conditions above, we say that ≺ induces a star decom-
position of (X, X).

See Figure 6 for an example.

6The symbol O in the notation stands for the ‘overlap’ of lk(x,X) and st(W ′,X).
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Remarks 4.

(i) Observe that the order condition implies X 6= ∅ if k ≥ 0.

(ii) In the definition above, we remark that if X is k-dimensional and pure, for k ≥ 0, then
for any w ∈ V (X), the link lk(w,X) is (k − 1)-dimensional and pure. Therefore, in the
last two conditions, we indeed refer to star decomposability of a pure complex of smaller
dimension.

In addition, for any W ′ ⊆ V (X), W ′ 6= ∅, st(W ′,X) is k-dimensional and pure. In
particular, when replacing X with lk(w,X), we get that O(w,W�w) = st(U, lk(w,X)) is
(k − 1)-dimensional and pure.

(iii) If k = 0, then every pair (X, X) is star decomposable if and only if X 6= ∅. Indeed, the
only if part follows from (i). For the ‘if’ part, we observe that we can set W = V (X) and
we can use any order ≺ on W such that X = W�w′ for some w′. Both the link condition
and the last vertex condition refer to star decomposability of ({∅}, ∅), which we assume.

(iv) If k = 1, then it is not difficult to show that X is star decomposable if and only if X is a
connected bipartite graph. Note that requiring that X is connected is a must as we want
to get that star decomposability implies vertex decomposability. Here is the place where
the possibly slightly mysterious property ‘X 6= ∅ if k ≥ 0’ comes into the play. Indeed, this
property and the link condition achieve that the overlap O(w,W≺w) is nonempty, thus X
must be a connected graph.

4 Star decomposability implies vertex decomposability.

In this section, we want to describe how star decomposability implies vertex decomposability.
We start with a simple (folklore) lemma verifying that some order is a shedding order (with
respect to our convention that we extend the shedding order also to the vertices of the last
simplex). Given a simplicial complex X, a total (or partial) order ≺ on V (X), and v ∈ V (X),
by X�v we denote the subcomplex of X induced by vertices that are greater than v. Similarly
X�v is induced by v and the vertices that are greater than v.

Lemma 5. Let X be a pure k-dimensional simplicial complex, k ≥ 0. Let ≺ be a total order
on V (X). Then ≺ is a shedding order if and only if for every vertex v except for the last k + 1
vertices, the link lk(v,X�v) is vertex decomposable and (k − 1)-dimensional, and X�v is pure
k-dimensional.

Proof. The ‘only if’ part of the statement follows immediately from the definition of vertex
decomposability and the shedding order, thus we focus on the ‘if’ part.

If X has k + 1 vertices, then X is a k-simplex and we are done. Otherwise, we proceed by
induction on the number of vertices of K.

Let v1 be the first vertex in the order ≺. Then we need to check that lk(v1,X�v1) is vertex
decomposable and (k−1)-dimensional, which is part of the assumptions. We also need to check
that X− v1 = X�v1 is vertex decomposable and k-dimensional. Again, k-dimensional is part of
the assumptions, thus, it remains to check that X − v1 is vertex decomposable. However, this
follows from the induction applied to X�v1 and ≺ restricted to V (X) \ {v1}.

Now, let X be a star decomposable simplicial complex, let W be a subset of V (X) which
induces a star partition of X and let ≺ be a total order which induces a star decomposition

9



w1
w2

w3

w4

X

P (w1) = ∅

P (w2)

P (w3) P (w4)

P (w1) ≺′ w1 ≺′ P (w2) ≺′ w2 ≺′ P (w3) ≺′ w3 ≺′ P (w4) ≺′ w4

Figure 7: The set P (w) and the auxiliary order ≺′ for the star decomposition in Figure 6.

of X. We will define a suitable partial order ≺′ on V (X) extending ≺ such that the desired
shedding order in the vertex decomposition of X will follow ≺′.

For arbitrary v ∈ V (X), let p(v) be the last vertex in the ≺ order among the vertices w ∈W
such that v ∈ st(w,X). In particular p(w) = w for any w ∈ W . If we want to emphasize ≺,
we write p(v,≺) (which will be used in a single but important case of the proof of Theorem 7).
Now, we define ≺′ in the following way. We set v ≺′ v′ if p(v) ≺ p(v′) for v, v′ ∈ V (X). In
addition, we set v ≺′ w if p(v) = w and v 6= w. Finally, if p(v) = p(v′) and v, v′ 6∈ W , then v
and v′ are incomparable in ≺′. We say that ≺′ is derived from ≺. An example of this order
is given in Figure 7 where P (w) = {v ∈ V (X) : v 6= w, p(v) = w} for w ∈ W ; the elements in
P (w) are incomparable.

We will often need that st(W�w,X) is an induced subcomplex of X for w ∈W \ {ŵ}:

Lemma 6. Let X be a star decomposable complex, let W be a subset of V (X) which induces a
star partition of X and let ≺ be a total order on W which induces a star decomposition of X.
Let ≺′ be the partial order on V (X) derived from ≺ and let w ∈ W be different from the last
vertex ŵ. Then st(W�w,X) is the induced subcomplex X�′w of X.

Proof. If dim X = −1, then the statement is void. If dim X = 0, the assertion easily follows
from Remark 4(iii). Thus, we may assume dim X ≥ 1, which we will implicitly when referring
to the link condition.

Recall that st(W�w,X) =
⋃
w+∈W�w

st(w+,X). It is easy to check the inclusion X�′w ⊇⋃
w+∈W�w

st(w+,X) because st(w+,X) ⊆ X�′w for every w+ � w. (Note that if v is a neighbor
of w+ in X, then p(v) � w+ � w. Thus, v belongs to V (X�′w).) Therefore, it remains to show
X�′w ⊆

⋃
w+∈W�w

st(w+,X�′w).
Let σ ∈ X�′w. For contradiction, let us assume that σ 6∈ st(w+,X) for all w+ � w. (In

particular, σ 6= ∅.) Let w− � w be the largest vertex in W (according to the total order ≺) such
that σ ∈ st(w−,X). Such w− must exist because W induces a star partition of X. In addition,
because σ ∈ X�′w and w− � w, we get that w− 6∈ σ. Thus, σ ∈ lk(w−,X).

Now, we use that X is star decomposable. Namely, we use the link condition for w−. There
is U ⊆ V (lk(w,X)) such that st(U, lk(w−,X)) = O(w−,W�w−) and the pair (lk(w−,X), U) is
star decomposable. By the order condition for this pair, there is a set Z 6= ∅ inducing a star
partition of lk(w−,X) and a total order C on Z such that U = ZDz′ for some z′ ∈ Z. Because
σ ∈ lk(w−,X) and Z induces a star partition of lk(w−,X) some vertex v of σ has to belong to
Z. If v ∈ U , then σ ∈ st(U, lk(w−,X)) = O(w−,W�w−) which contradicts the fact that w− is
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the largest vertex such that σ ∈ st(w−,X). If v ∈ Z \ U , then p(v) = w− which contradicts
σ ∈ X�′w.

Now, we are ready to state and prove that star decomposability implies vertex decompos-
ability. As the reader may expect, the order ≺′ appears in the statement to allow a well working
induction.

Theorem 7. Let X be a star decomposable simplicial complex; let W be a subset of V (X) which
induces a star partition of X; and let ≺ be a total order which induces a star decomposition of
X. Let ≺′ be the partial order on V (X) derived from ≺. Then X is vertex decomposable in a
shedding order extending ≺′.

Proof. We prove the statement by induction on k, the dimension of X. If k = −1, the complex
{∅} is vertex decomposable according to the definition of vertex decomposability (it is regarded
as a −1-simplex). Although it could be covered by the second induction step, we can observe
that the case k = 0 is also easy as any order of removing vertices from a 0-complex is a shedding
order.

Now, let us prove the theorem for some k ≥ 1 assuming that it is valid for lower values.
We first describe a total order ≺′′ on V (X) extending ≺′. Then we verify that ≺′′ is a

shedding order. Recall that for w ∈W , P (w) is the set of vertices v ∈ V (X) such that p(v) = w
but v 6= w; see Figure 7. To describe ≺′′ it remains to describe ≺′′ on each P (w) separately.
We distinguish whether w is the last vertex in ≺.

If w = ŵ is the last vertex, then P (ŵ) = V (lk(ŵ,X)). By the last vertex condition (for star
decomposability) lk(ŵ,X) is star decomposable, therefore vertex decomposable by induction as
well. We set ≺′′ on P (ŵ) as an arbitrary shedding order of lk(ŵ,X).

If w is not the last vertex, then P (w) = V (lk(w,X))\V (O(w,W�w)). By the link condition,
the pair (lk(w,X), U) is star decomposable where U ⊆ V (lk(w,X)) satisfies st(U, lk(w,X)) =
O(w,W�w).

Claim 7.1. Let w ∈ W be different from the last vertex ŵ. Then the link lk(w,X) is vertex
decomposable in some shedding order C′′ that starts on P (w) = V (lk(w,X)) \ V (O(w,W�w))
and then continues on V (O(w,W�w)).

Proof. Consider a set Z ⊆ V (lk(w,X)) inducing a star partition of lk(w,X) and a total order
C on Z witnessing that the pair (lk(w,X), U) is star decomposable. In particular, U = ZDz′ for
some z′ ∈ Z by the order condition. Let C′ be the partial order on V (lk(w,X)) derived from C.
By induction, lk(w,X) is vertex decomposable in a shedding order C′′ extending C′.

In addition, by the link condition (on star decomposable X) we get

O(w,W�w) = st(U, lk(w,X)) = st(ZDz′ , lk(w,X)).

The vertices of st(ZDz′ , lk(w,X)) are exactly the vertices of lk(w,X) with p(v,C) ∈ ZDz′ .
Therefore all vertices in V (lk(w,X)) \ V (O(w,W�w)) precede the vertices in V (O(w,W�w)) =
V (st(ZDz′ , lk(w,X))) in the order C′, a fortiori, in the order C′′, as we need.

Now, we set ≺′′ on P (w) as the shedding order C′′ on lk(w,X) from Claim 7.1, restricted
to P (w); see Figure 8.

It remains to check that ≺′′ is the required shedding order which we do via Lemma 5.
Namely, given a vertex v ∈ V (X) which is not one of the last k + 1 vertices, we need to
check that lk(v,X�′′v) is vertex decomposable and (k − 1)-dimensional and that X�′′v is pure
k-dimensional. We distinguish whether v ∈W .

11



w1
w2

w3

w4

lk(w2,X)
X

u1

u2
a1

a2
b1

b2

b3

b4

a1 C a2 C u1 C u2

a1 C′ b1 C′ a2 C′ b2 C′ u1 C′ {b3, b4}C′ u2

w1 ≺′′ a1 ≺′′ b1 ≺′′ a2 ≺′′ w2 ≺′′ · · ·

P (w2)

Figure 8: Setting up the order ≺′′ on P (w2). The order C on Z = {a1, a2, u1, u2} induces a
star decomposition of (lk(w2,X), U) where U = {u1, u2}. Then C′ is the corresponding partial
order on V (lk(w2,X)) (similarly as ≺′ corresponds to ≺). Finally, we take a shedding order C′′

on lk(w2,X) extending C′ (by induction) and restrict it to P (w2) obtaining ≺′′.

Case 1, v ∈W : We observe that v is not the last vertex ŵ of ≺ as ŵ is also the last vertex
of ≺′′. This allows to describe lk(v,X�′′v) as an overlap.

Claim 7.2. lk(v,X�′′v) = O(v,W�v).

Proof. According to the definition of the overlap, we have O(v,W�v) = lk(v,X) ∩ st(W�v,X).
First, let us assume that σ ∈ lk(v,X) ∩ st(W�v,X). Each vertex v′ of st(W�v,X) satisfies

p(v′) � v which implies v′ �′′ v. Therefore, each vertex of σ∪{v} belongs to V (X�′′v). Because
σ simultaneously belongs to lk(v,X), we get that it belongs to lk(v,X�′′v).

Now, for the second inclusion, let us assume that σ ∈ lk(v,X�′′v). Immediately, σ ∈ lk(v,X).
Because σ ∈ X�′v = X�′′v, Lemma 6 gives σ ∈ st(W�v,X).

By Claim 7.2, lk(v,X�′′v) = O(v,W�v) which is (k − 1)-dimensional by Remark 4(ii). In
addition, lk(v,X�′′v) is vertex decomposable, as we checked that lk(v,X) is vertex decomposable
in some shedding order starting with P (v) = V (lk(v,X)) \ V (O(v,W�v)) and continuing with
V (O(v,W�v)); see Claim 7.1. Also X�′′v = X�′v = st(W�v,X) by Lemma 6. Therefore X�′′v
is pure k-dimensional by Remark 4(ii). This finishes Case 1.

Case 2, v 6∈ W : Let w := p(v) ∈ W . Note that, in particular, w �′ v. We first check that
lk(v,X�′′v) is vertex decomposable and (k−1)-dimensional. This will follow from the following
two claims.

Claim 7.3. The link lk(v,X�′′v) is the join of w and lk({v, w},X�′′v).

Proof. The link lk({v, w},X�′′v) consists of simplices σ ∈ X�′′v satisfying v, w 6∈ σ, and σ ∪
{v, w} ∈ X�′′v. Therefore, the join of w and lk({v, w},X�′′v), considered as a subcomplex of
X�′′v, consists of simplices σ ∈ X�′′v satisfying

v 6∈ σ, and σ ∪ {v, w} ∈ X�′′v. (2)

On the other hand, lk(v,X�′′v) consists of simplices σ ∈ X�′′v satisfying

v 6∈ σ, and σ ∪ {v} ∈ X�′′v. (3)
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w1
w2

w3

w4

X

b1

st(W�w2
,X)

st(w2,X)�′′a1

a2

a1

Figure 9: The complex X�′′a1 as the union of st(W�w2 ,X) and st(w2,X)�′′a1 . Here we use the
order �′′ from Figure 8.

A simplex σ ∈ X�′′v satisfying (2) immediately satisfies (3) as well. Thus, it remains to
consider a simplex σ ∈ X�′′v satisfying (3); and to show that it satisfies (2).

First, we want to deduce that σ ∪ {v} belongs to st(w′,X) for some w′ � w. If w is the
first vertex of W in the order ≺, then this claim follows from the fact that W induces a star
partition of X. If w is not the first vertex of W , let w− be the vertex that immediately precedes
w in the order ≺. Note that σ ∈ X�′w− . By Lemma 6, σ ∪ {v} belongs to st(w′,X) for some
w′ � w−, that is, w′ � w as required.

Now, because p(v) = w, the only option is that w′ = w. Therefore, σ ∪ {v} ∈ st(w,X); that
is, σ ∪ {v, w} ∈ X. Because all vertices of σ ∪ {v, w} belong to X�′′v, σ satisfies (2).

Claim 7.4. The link lk({v, w},X�′′v) is vertex decomposable and (k − 2)-dimensional.

Proof. We will deduce the claim from the ‘only if’ part of Lemma 5 used with the pure (k− 1)-
dimensional complex lk(w,X) and the shedding order C′′, coming from Claim 7.1. Let us
recall that ≺′′ is defined so that it coincides with C′′ on lk(w,X) restricted to P (w). Because
v ∈ P (w), we in particular get that lk(w,X)�′′v = lk(w,X)D′′v.

In order to apply Lemma 5, we also check that v is not among the last k vertices of the
aforementioned shedding C′′ of lk(w,X). If w = ŵ, we get this because we assume that v is not
among the last k + 1 vertices in the ≺′′ order on V (X) (the last one is ŵ, and the vertices of
P (ŵ) immediately precede). If w 6= ŵ we get this because the overlap O(w,W�w) is (k − 1)-
dimensional (see Remark 4(ii)), and the vertices of this overlap belong to V (lk(w,X)) while
they do not belong to P (w).

Now, using Lemma 5 as explained above, we get that lk(v, lk(w,X)�′′v) = lk(v, lk(w,X)D′′v)
is vertex decomposable and (k − 2)-dimensional. Finally, lk(v, lk(w,X)�′′v) = lk({v, w},X�′′v)
because X�′′v is an induced subcomplex of X.

It follows immediately from Claims 7.3 and 7.4 that lk(v,X�′′v) is (k − 1)-dimensional. In
addition, because the join of two vertex decomposable complexes is vertex decomposable [PB80,
Proposition 2.4], we also get that lk(v,X�′′v) is vertex decomposable.

Finally, we need to check that X�′′v is pure k-dimensional. We need one more claim; see
also Figure 9.

Claim 7.5. If w 6= ŵ, then X�′′v = st(W�w,X) ∪ st(w,X)�′′v. If, w = ŵ, then X�′′v =
st(w,X)�′′v.
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Proof. If w 6= ŵ, then st(W�w,X) = X�′w = X�′′w by Lemma 6. Therefore it is sufficient to
show that every σ ∈ X�′′v which contains a vertex v′ with v′ � w belongs to st(w,X)�′′v. This
will resolve both cases, w = ŵ and w 6= ŵ, simultaneously. The ideas in the reminder of the
proof are very similar to the ideas in the proof of Claim 7.3.

First, we check that σ ∈ st(w′,X) for some w′ � w. If w is the first vertex of W , then this
follows from the fact that W induces a star decomposition of X. If w is not the first vertex of W ,
let w− be the vertex of W that immediately precedes w. By Lemma 6, st(W�w− ,X) = X�′′w− .
Because σ ∈ X�′′w− , this implies that there is w′ � w− with σ ∈ st(w′,X).

On the other hand, σ cannot belong to st(w′′,X) with w′′ � w as σ contains v′ with
v′ � w. Therefore, w′ = w. Given that st(w,X)�′′v = X�′′v ∩ st(w,X), we deduce that
σ ∈ st(w,X)�′′v.

The union of two pure k-dimensional complexes is a pure k-dimensional complex. Therefore,
due to Claim 7.5, it remains to check that st(W�w,X) and st(w,X)�′′v are pure k-dimensional
(the former case applies only if w 6= ŵ).

Checking that st(W�w,X) is pure k-dimensional is easy; see Remark 4(ii).
For checking that st(w,X)�′′v is pure k-dimensional, we need that lk(w,X)�′′v is pure

(k−1)-dimensional. Because v ∈ P (w), lk(w,X)�′′v = lk(w,X)D′′v where C′′ is the shedding of
lk(w,X) as introduced below Claim 7.1. This means that lk(w,X)�′′v is an intermediate step
in the shedding D′′ of lk(w,X). If we realize that v is not among the last k vertices of the order
C′′ on lk(w,X), then we can deduce that lk(w,X)�′′v is pure and (k − 1)-dimensional.

If w 6= ŵ, then lk(w,X)�′′v still contains the overlap O(w,W�w) which is (k−1)-dimensional
by Remark 4(ii). If w = ŵ, then we assume that v is not among the last k + 1 vertices of ≺′′
while ≺′′ and C′′ coincide on P (ŵ) and the vertices of P (ŵ) immediately precede ŵ in ≺′′. This
finishes Case 2 and thereby the proof of the theorem.

5 Star decomposability in vertices

Star decomposability of a barycentric subdivision. In our approach, we will need to
consider the star decomposability of the barycentric subdivision sd(X) of a complex X. In fact,
we will consider only a special type of star decomposition of sd(X) using only stars of vertices
of X, that is, the faces of X which are actually vertices of X. For a well working induction, we
will need that this property is kept also in the link condition and the last vertex condition of
Definition 3. For stating this precisely, first, we need a more explicit description of lk(ϑ, sd(X))
if ϑ is a face (possibly a vertex) of X.

Lemma 8. Let ϑ be a face of a simplicial complex X, then

lk(ϑ, sd X) ∼= sd ∂ϑ ∗ sd lk(ϑ,X).

In particular, if x is a vertex of X, then

lk(x, sd X) ∼= sd lk(x,X).

Proof. We will construct a simplicial isomorphism

Ψ: V (lk(ϑ, sd X))→ V (sd ∂ϑ ∗ sd lk(ϑ,X)).

First, we observe that

V (sd ∂ϑ ∗ sd lk(ϑ,X)) = V (sd ∂ϑ) t V (sd lk(ϑ,X)) = ∂ϑ t lk(ϑ,X).
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X

x

w1

w2 w3

x

w1

x

w1

sd X sd X

(lk(x, sdX),O(x,W )) ∼= (sd lk(x,X), st({w1, w2}, sd lk(x,X)))

w2 w3 w2 w3

Figure 10: Isomorphism from Lemma 9 with W = {w1, w2, w3}. The left hand side of the
formula in Lemma 9 is depicted in the middle picture and the right hand side is in the right
picture. Note that W ∩ V (lk(x,X)) = {w1, w2} as w3 does not belong to lk(x,X).

Next, we realize that the vertices of lk(ϑ, sd X) are all the faces λ 6= ∅, ϑ of X such that
{λ, ϑ} forms a simplex of sd X, that is, either ∅ 6= λ ( ϑ or ϑ ( λ. Thus, we can define Ψ in
the following way

Ψ(λ) =

{
λ ∈ ∂ϑ if ∅ 6= λ ( ϑ,

λ \ ϑ ∈ lk(ϑ,X) if ϑ ( λ.

From the description above, it immediately follows that Ψ is a bijection. It is also routine
to check that Ψ is a simplicial isomorphism. Indeed, a simplex of lk(ϑ, sd X) is a collection
{α1, . . . , αk, β1, . . . , β`} satisfying

∅ 6= α1 ( · · · ( αk ( ϑ ( β1 ( · · · ( β`.

Such a simplex maps to a simplex {α1, . . . , αk, β1 \ ϑ, . . . , β` \ ϑ} of sd ∂ϑ ∗ sd lk(ϑ,X) and the
inverse map works analogously (note that βi \ ϑ is disjoint from ϑ whereas αi are subsets of
ϑ).

Now, we extend the isomorphism above to certain pairs; for the statement, recall that
O(x,W ) is defined via formula (1).

Lemma 9. Let x be a vertex and W a subset of vertices of the simplicial complex X such that
x 6∈W . Then

(lk(x, sd X),OsdX(x,W )) ∼= (sd lk(x,X), st(W ∩ V (lk(x,X)), sd lk(x,X))) .

Though the formula in Lemma 9 may seem complicated at first sight, it has a nice geometric
interpretation. All objects are subcomplexes of sd X and the isomorphism in the formula pushes
the pair on the left hand side farther away from x; see Figure 10.

Proof. From Lemma 8 we have a simplicial isomorphism Ψ from lk(x, sd X) to sd lk(x,X).
Therefore, it remains to show that Ψ maps OsdX(x,w) := lk(x, sd X)∩lk(w, sd X) to st(w, sd lk(x,X))
for w ∈ W ∩ V (lk(x,X)), where we use the explicit Ψ from the proof of Lemma 8, and that
OsdX(x,w) = ∅ for w ∈W \ V (lk(x,X)). (Note that OsdX(x,W ) =

⋃
w∈W OsdX(x,w).)
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The faces of OsdX(x,w) are collections {β1, . . . , β`} of faces of X satisfying

{x,w} ⊆ β1 ( · · · ( β`.

Let us emphasize that the first inclusion need not be strict. Therefore, OsdX(x,w) is non-empty
if and only if {x,w} ∈ X, that is, if and only if w ∈W ∩ V (lk(x,X)) as required. In sequel, we
assume that w ∈W ∩ V (lk(x,X)).

The collections {β1, . . . , β`} are mapped under Ψ to {β1 \ {x}, . . . , β` \ {x}} satisfying the
same condition due to the description of Ψ in the proof of Lemma 8. Setting γj = βj \ {x} we
get

{w} ⊆ γ1 ( · · · ( γ`

for γj not containing x but such that γj ∪ {x} is a face of X, which is exactly a description of
st(w, sd(lk(x,X))).

Now, we can define star decomposibility in vertices:

Definition 10 (Star decomposability in vertices). Let X be a pure, k-dimensional simplicial
complex, k ≥ −1 and let X ⊆ V (X). We inductively define star decomposability in vertices of
the pair (sd X, X). We also say that sd X is star decomposable in vertices if the pair (sd X, V (X))
is star decomposable in vertices.

If k = −1, then (sd{∅}, ∅) = ({∅}, ∅) is star decomposable in vertices. (This is the same as
star decomposability in this case.)

If k ≥ 0, then (sd X, X) is star decomposable in vertices, if there is a total order ≺ on the
set V (X), inducing a star partition of sd X, with the following properties.7

Order condition: X = V (X)�w′ for some w′ ∈ V (X).

Link condition: For any vertex w ∈ V (X) except for the last vertex in the order ≺, the pair
(sd lk(w,X), V (lk(w,X))�w) is star decomposable in vertices.

Last vertex condition: For the last vertex x̂ ∈ V (X) in the order ≺, the link sd lk(x̂,X) is
star decomposable in vertices.

If the order ≺ on W satisfies the three conditions above, we say that ≺ induces a star decom-
position of (sd X, X) in vertices.

Lemma 9 implies the following proposition.

Proposition 11. Let us assume that the pair (sd X, X) is star decomposable in vertices, then
it is star decomposable.

Proof. We check that the order condition, the link condition and the last vertex condition in
Definition 3 imply the corresponding conditions in Definition 10. The rest of the proof is a
straightforward induction given that in dimensions −1 and 0 the notions coincide.

The order condition in Definitions 3 and 10 is actually identical.
For checking the link condition in Definition 3, for a given w ∈ V (X) we need to find a

set U ⊆ V (lk(w, sd X)) such that (i) st(U, lk(w, sd X)) = OsdX(w, V (X)�w) and (ii) the pair
(lk(w, sd X), U) is star decomposable in vertices (therefore star decomposable by induction).
By Lemma 9 we have an isomorphism Ψ mapping the pair

(lk(w, sd X),OsdX(w, V (X)�w))

7Note that V (X) induces a star partition of sdX for an arbitrary complex X.
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to the pair
(sd lk(w,X), st(V (lk(w,X))�w, sd lk(w,X))) ,

using that V (X)�w ∩ V (lk(w,X)) = V (lk(w,X))�w. We set U := Ψ−1(V (lk(w,X))�w), then
(i) follows immediately from the isomorphism above. On the other hand, (lk(w, sd X), U) is
isomorphic to (sd lk(w,X), V (lk(w,X))�w) by applying Ψ. Therefore, (ii) indeed follows from
the link condition of Definition 10.

Finally the last vertex condition of Definition 10 implies the same condition of Definition 3
via Lemma 8 (and the induction).

Merging orders inducing a star decomposition in vertices. Given simplicial complexes
X and Y such that sd(X) and sd(Y) are star decomposable in vertices, we want to provide
an order on V (X) t V (Y) which induces a star decomposition in vertices of sd(X ∗ Y). For
the proof of our main result we need some flexibility how to merge the orders on V (X) and
V (Y). First we provide a recipe that works in general but does not give all we need. This is
the contents of forthcoming Proposition 12. Then we also provide a more specific recipe which
gives more under additional assumptions on Y (see Proposition 14).

Proposition 12. Let X and Y be pure simplicial complexes such that sd(X) and sd(Y) are
star decomposable in vertices. Let ≺ be an arbitrary total order on V (X)tV (Y) satisfying that

(i) the restriction of ≺ to V (X) induces a star decomposition in vertices of sd(X),

(ii) the restriction of ≺ to V (Y) induces a star decomposition in vertices of sd(Y),

(iii) if both X and Y are nonempty, then the last two elements in ≺ are the last element of
V (X) and the last element of V (Y) (in arbitrary order).

Then sd(X ∗Y) is star decomposable in vertices in the order ≺ on V (X ∗Y) = V (X) t V (Y).

Corollary 13. Let X and Y be simplicial complexes and X ⊆ V (X), Y ⊆ V (Y). Assume
that the pairs (sd X, X) and (sd Y, Y ) are star decomposable in vertices. Then the pair (sd(X ∗
Y), X t Y ) is star decomposable in vertices as well. In addition, if |Y | = 1, then the pair
(sd(X ∗Y), Y ) is star decomposable in vertices.

Proof of Corollary 13. First, let us assume that X = ∅. Because (sd X, X) is star decompos-
able, we deduce that X = {∅}. Consequently, (sd(X ∗Y), X t Y ) = (sd Y, Y ), which is star
decomposable in vertices. Similarly, we resolve the case Y = ∅.

Now we can assume X,Y 6= ∅. Let ≺X be a total order on V (X) inducing a star decomposi-
tion of (sd X, X) in vertices and let ≺Y be a total order on V (Y) inducing a star decomposition
of (sd Y, Y ) in vertices. Let x̂ be the last vertex of V (X) in ≺X and ŷ be the last vertex of
V (Y) in ≺Y. Necessarily, x̂ ∈ X and ŷ ∈ Y as X,Y 6= ∅.

We define a total order ≺ on V (X)tV (Y) so that we consider the vertices of V (X)tV (Y)
in the order [V (X) \X,V (Y) \ Y,X \ {x̂}, Y \ {ŷ}, x̂, ŷ], where the individual sets V (X) \X,
V (Y)\Y , X\{x̂}, and Y \{ŷ} are sorted according to ≺X and ≺Y respectively. Then ≺ satisfies
the assumptions of Proposition 12. Therefore, sd(X∗Y) is star decomposable in vertices in the
order ≺.

Given that st(X t Y, sd(X ∗ Y)) = st((V (X) t V (Y))�z, sd(X ∗ Y)) where z is the first
vertex of X ∪ Y in ≺, we deduce that ≺ gives also a star decomposition of (sd(X ∗Y), X t Y )
in vertices.

Finally, if |Y | = 1, then Y = {ŷ}. Thus st(Y, sd(X ∗Y)) = st((V (X)tV (Y))�ŷ, sd(X ∗Y))
which means that ≺ gives a star decomposition of (sd(X ∗Y), Y ) in vertices as well.
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Proof of Proposition 12. First, similarly as in the previous proof, the statement is trivial if
X = {∅} or Y = {∅} as a join with {∅} yields the same complex. Therefore, we can assume
X,Y 6= {∅}. In particular, the item (iii) of the statement is non-void.

Now, we prove the proposition by induction on dim(X ∗ Y). The start of the induction,
when dim(X ∗Y) ≤ 0, is covered by the observation above.

We are given the order ≺ on V (X ∗Y); therefore it remains to check the order condition,
the link condition and the last vertex condition.

As we check star decomposability of sd(X ∗Y), that is, the pair (sd(X ∗Y), V (X)tV (Y)),
the order condition is trivial. (It is sufficient to take the first vertex of V (X)tV (Y) for checking
the order condition.)

For checking the link condition, we consider arbitrary x ∈ V (X) t V (Y) distinct from the
last vertex. Without loss of generality, we can assume x ∈ V (X) as the argument is symmetric
for a vertex from V (Y). We need to check star decomposability of the pair

(sd(lk(x,X ∗Y)), V (lk(x,X ∗Y))�x).

Given that x ∈ V (X), this equals

(sd(lk(x,X) ∗Y), (V (lk(x,X)) t V (Y))�x). (4)

From the assumption on star decomposability of sd Y in the order ≺, we deduce that the
pair

(sd(Y), V (Y)�x) (5)

is star decomposable in vertices as long as V (Y)�x is nonempty. However, V (Y)�x is indeed
nonempty as x is not the last vertex of V (X)tV (Y) in ≺ whereas there is a vertex from V (Y)
among the last two vertices.

From the assumption on star decomposability of X in the order≺, checking the link condition
gives that the pair

(sd lk(x,X), V (lk(x,X))�x) (6)

is star decomposable in vertices if x is not the last vertex of V (X). Therefore, if x is not the
last vertex of V (X), we will use the induction. From Corollary 13 for pairs (6) and (5) we
deduce that the pair in (4) is indeed star decomposable in vertices as required. (Note that this
is a correct use of the induction as we deduced Corollary 13 from Proposition 12 in the same
dimension.)

It remains to consider the case when x is a last vertex of V (X). In this case, x is the second
to last vertex of V (X) t V (Y). Let ŷ be the last vertex of V (Y), that is, the last vertex of
V (X) t V (Y) as well. Then the pair (4) simplifies to

(sd(lk(x,X) ∗Y), {ŷ}).

Now, we can use Corollary 13 again with pairs (sd lk(x,X), V (lk(x,X))) and (sd(Y), {ŷ}), using
the ‘in addition’ part.

Finally, it remains to check the last vertex condition. Let us therefore assume that x̂ is the
last vertex of V (X) t V (Y). Again, we can without loss of generality assume that x̂ ∈ V (X).
We need to check star decomposability in vertices of sd lk(x̂,X ∗ Y) = sd(lk(x̂,X) ∗ Y). By
the last vertex condition on sd(X) we get that sd lk(x̂,X) is star decomposable in vertices.
Therefore, by the induction applied to sd(lk(x̂,X)) and sd Y, we get that sd(lk(x̂,X) ∗Y) is
star decomposable in vertices as required.
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Now, we state a more specialized version of Proposition 12 with an additional condition on
homology. Let us recall that given a simplicial complex Y and Y ⊆ V (sd Y), the star st(Y, sd Y)
is defined as

⋃
v∈Y st(v, sd Y). Following our convention of neglecting a difference between

v ∈ V (Y) and {v} ∈ V (sd Y), we also set st(Y, sd Y) :=
⋃
v∈Y st(v, sd Y) for Y ⊆ V (Y).

Proposition 14. Let X and Y be pure simplicial complexes, dim X,dim Y ≥ 0, and Y be a
nonempty subset of V (Y). Assume that sd X and (sd Y, Y ) are star decomposable in vertices
and st(Y, sd Y) has trivial reduced homology groups. Let ≺ be an arbitrarily total order on
V (X) t V (Y) satisfying:

(i) The restriction of ≺ to V (X) induces a star decomposition in vertices of sd(X);

(ii) The restriction of ≺ to V (Y) induces a star decomposition in vertices of sd(Y, Y ); and

(iii) Y = (V (X) t V (Y))�x̂ where x̂ is the last vertex of V (X) in ≺.

Then sd(X∗Y, Y ) is star decomposable in vertices in the order ≺ on V (X∗Y) = V (X)tV (Y).

For the proof, we need a following auxiliary lemma which will be useful in the induction.

Lemma 15. Let Y be a pure simplicial complex and Y ⊆ V (Y). Assume that the pair (sd Y, Y )
is star-decomposable in vertices in some total order ≺ on V (Y) and that st(Y, sd Y) has trivial
reduced homology groups. Then st(V (lk(y,Y))�y, sd(lk(y,Y))) has trivial reduced homology
groups as well for all y ∈ Y except for the last vertex in Y .

Proof. Let y ∈ Y be different from the last vertex in the order ≺. First, we show that st(Y�y,Y)
has trivial reduced homology groups.

Since the pair (sd Y, Y ) is star decomposable in vertices, Theorem 7 implies that sd Y is
vertex decomposable. In addition, we get that sd Y is vertex decomposable in a shedding order
�′′ extending �′ where is derived from �. (We recall that the definition of the derived order is
given above the statement of Lemma 6.) In particular, st(Y, sd Y) and later st(Y�y, sd Y) are
intermediate steps in the sequence of complexes obtained by gradually removing vertices of Y
in the given shedding order �′′.

We also get that st(Y, sd Y) and st(Y�y, sd Y) are shellable by [PB80] (see Theorem 2.8
and the note below Definition 2.1 in [PB80]). Therefore, each of them is homotopy equivalent
to a wedge of d-spheres where d = dim Y; see [Koz08, Theorem 12.3]. Since st(Y, sd Y) has
trivial homology groups, this must be a trivial wedge. However, following the shedding order
from st(Y, sd Y) to st(Y�y, sd Y), we cannot introduce homology in dimension d when gradually
removing vertices. Therefore, st(Y�y, sd Y) has to be homotopy equivalent to a trivial wedge
as well showing that st(Y�y, sd Y) has trivial reduced homology groups.

Note that st(Y�y, sd Y) has trivial reduced homology groups as well by analogous reasoning.
Now, by Lemma 9,

st(V (lk(y,Y))�y, sd(lk(y,Y))) ∼= OsdY(y, V (Y)�y).

We use a Mayer-Vietoris sequence for st(Y�y, sd Y) covered by st(y, sd(Y)) and st(Y�y, sd Y).
Then st(y, sd(Y))∩ st(Y�y, sd Y) = OsdY(y, Y�y) = OsdY(y, V (Y)�y) and we get the following
long exact sequence

· · · −→ H̃n+1(st(Y�y, sd Y)) −→ H̃n(OsdY(y, V (Y)�y)) −→
−→ H̃n(st(y, sd Y))⊕ H̃n(st(Y�y, sd Y)) −→ H̃n(st(Y�y, sd Y)) −→ · · ·

All st(Y�y, sd Y), st(y, sd Y) and st(Y�y, sd Y) have trivial reduced homology groups. Therefore,
H̃n(OsdY(y, V (Y)�y)) ∼= H̃n(st(V (lk(y,Y))�y, sd(lk(y,Y))) is trivial for all n ∈ Z.
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Proof of Proposition 14. Similarly, as in the proof of Proposition 12, we proceed by induction
on dim(X ∗Y).

First, we observe that the case dim Y = 0 is covered by Proposition 12. Indeed, the only
issue is to verify (iii) of Proposition 12. If dim Y = 0, then Y must contain a single vertex ŷ
(due to the condition on homology of st(Y, sd(Y))). Consequently, (iii) (of this proposition)
implies that the last two vertices of ≺ are x̂ and ŷ which verifies (iii) of Proposition 12.

Now, let us assume dim X ≥ 0 and dim Y ≥ 1. The order condition is satisfied since Y is
non-empty and it is equal to (V (X) t V (Y))�x̂ by (iii).

For checking the link condition, we consider arbitrary z ∈ V (X) t V (Y) distinct from the
last vertex. We need to check star decomposability of the pair

(sd(lk(z,X ∗Y)), V (lk(z,X ∗Y))�z). (7)

If z ∈ V (X)\{x̂}tV (Y)\Y , then the analysis is the same as in the proof of Proposition 12.
If z = x̂, the pair (7) becomes

(sd(lk(x̂,X) ∗Y), Y ).

If dim X = 0, then we further get (sd Y, Y ) which is star decomposable in vertices by the
assumptions. If dim X ≥ 1, then dim lk(x̂,X) ≥ 0 and we can use the induction (note that
sd lk(x̂,X) is star decomposable in vertices by the last vertex condition for decomposition of
sd X).

Finally, by assuming z ∈ Y \ {ŷ}, where ŷ is the last vertex of ≺, we get the pair

(sd(X ∗ lk(z,Y)), V (lk(z,Y)�z). (8)

By Lemma 15 st(V (lk(z,Y)�z, sd(lk(z,Y))) has trivial reduced homology groups. Therefore, (8)
is star-decomposable in vertices by the induction hypothesis. (Here we use that dim lk(z,Y) ≥ 0
and that (sd lk(z,Y), V (lk(z,Y)�z)) is star decomposable in vertices by the link condition for
the decomposition of (sd Y, Y ).)

Finally, we check the last vertex condition. We need star decomposability in vertices of
sd lk(ŷ,X∗Y). Note that lk(ŷ,X∗Y) = X∗ lk(ŷ,Y) as both sides contain simplices of the form
ξ ∪ η, where ξ ∈ X, η ∪ {ŷ} ∈ Y, and ŷ 6∈ η. Thus, we need star decomposability in vertices
of sd(X ∗ lk(ŷ,Y)). This is star decomposable in vertices by Proposition 12. (Here, we again
use that dim lk(ŷ,Y) ≥ 0 and also that sd lk(ŷ,Y) is star decomposable in vertices by the last
vertex condition in the decomposition of sd Y.)

6 Proof of the main result

In this section, we prove Theorem 2 which also finishes the proof of Theorem 1.
We first need two auxiliary observations that we will use in the proof.

Observation 16. The boundary of a simplex ∂σ satisfies the (HRC) condition.

Proof. We prove the observation by induction on dimσ, starting with dimσ = 0, in which case
∂σ = ∅. If dimσ > 0, let σ′ ( σ. We need to check that lk(σ′, ∂σ) satisfies the (RC) condition.
This link is again a boundary of a simplex. If σ′ 6= ∅, we get a simplex of small dimension,
therefore, we can use the induction. If σ = ∅, then lk(σ′, ∂σ) = ∂σ which is collapsible after
removing an arbitrary facet (it is a cone then).
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Observation 17. Let K be a collapsible complex and w be an arbitrary vertex of K. Then K
collapses to w.

Proof. First, we use the well known fact that the collapses of K can be rearranged so that they
are ordered by non-increasing dimension [Whi39, Section 3]. In particular, this means that K
collapses to a graph G with V (G) = V (K). This graph must be a tree as K is collapsible, and
we can further rearrange the collapses of G so that w is the last vertex.

Now we prove Theorem 2 by induction on the dimension of K. We know that K satisfies the
(RC) condition. Therefore, there are facets φ1, . . . , φt of K such that K′ := K− {φ1, . . . , φt} is
collapsible. We further consider a sequence (K1, . . . ,Ks) of elementary collapses of K′ where
K′ = K1, Ks is a vertex (denoted by z), and Ki+1 arises from Ki by removing faces σi and τi
where σi ⊂ τi and dimσi = dim τi − 1, and τi is the unique maximal face containing σi. Then
we consider the following total order ≺ on nonempty faces of K, that is, vertices of sd K:

φ1 ≺ · · · ≺ φt ≺ σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ · · · ≺ σs−1 ≺ τs−1 ≺ {z}.

Our aim is to show that ≺ induces a star decomposition in vertices of sd2 K. This we will also
use in the induction; that is, for complexes L of lower dimension satisfying the (HRC) condition,
we assume that a sequence of removals of facets and collapses induces a star decomposition in
vertices of sd2 L as above. The proof is easy if dim K = 0 (here no collapses are used), thus we
may assume that dim K > 0 and proceed with the second induction step.

There is essentially nothing to check for the order condition as we provide a total order on
vertices of sd K. Thus the only issue is to check the link condition and the last vertex condition.

In order to access the vertices of sd K more easily in the given order, we also give them
alternate names ω1, . . . , ωk so that

(φ1, . . . , φt, σ1, τ1, . . . , σs−1, τs−1, {z}) = (ω1, . . . , ωk)

where k = t+ 2s− 1. That is, φ1 = ω1, σ1 = ωt+1, etc.

Checking the last vertex condition. Because it is easier, we check the last vertex condition
first. We need to check that sd lk(ωk, sd K) is star decomposable in vertices. Because ωk is a
vertex of K, this complex is isomorphic to sd2 lk(ωk,K) by Lemma 8. Therefore, this complex
is star decomposable in vertices by induction because lk(ωk,K) satisfies the (HRC) condition
as this condition is hereditary for links.

Checking the link condition: For checking the link condition, we need to check that the pair
(sd lk(ωi, sd K), V (lk(ωi, sd K))�ωi) is star decomposable in vertices for i ∈ {1, . . . , k − 1}. For
checking this condition we again need to ‘simplify’ this pair so that we remove the subdivision
from the link. The tool for this is again Lemma 8. For the first entry it gives

sd lk(ωi, sd K) ∼= sd(sd ∂ωi ∗ sd lk(ωi,K)).

We use the specific isomorphism Ψ from the proof of Lemma 8 and our next task is to describe
V (lk(ωi, sd K))�ωi) after applying this isomorphism.

First, we briefly describe the set V (lk(ωi, sd K))�ωi . The vertices of lk(ωi, sd K) are the
nonempty faces η of K such that either η ( ωi or ωi ( η. Therefore, the set V (lk(ωi, sd K))�ωi

consists of faces η as above, which in addition satisfy η � ωi. The isomorphism Ψ from the
proof of Lemma 8 maps η again to η if η ( ωi and it maps η to η \ ωi if ωi ( η. Hence

Ψ(V (lk(ωi, sd K))�ωi) = V (sd ∂ωi)�ωi t {η \ ωi : η ) ωi, η � ωi},
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K

φi

φi

sd2K

lk(φi, sd
2K)

sd lk(φi, sdK) ∼= sd2∂φi

∼ =

Figure 11: Isomorphisms for verifying the link condition in case 1. We consider the case of the
removal of the facet φi. If we were checking star decomposability only, we would be interested
in star decomposability of lk(φi, sd

2 K). For star decomposability in vertices, this translates
to checking the link condition for sd lk(φi, sd K) which is further isomorphic to sd2 ∂φi (in this
case, the last isomorphism is even equality).

which we denote by W . Thus, we need to check the star decomposability in vertices of the pair

(sd(sd ∂ωi ∗ sd lk(ωi,K)),W ). (9)

We distinguish several cases according to the type of ωi.

1. ωi = φi, that is, i ≤ t:
In this case, φi is a facet. Therefore, lk(φi,K) = ∅. Also η � φi for all proper subfaces
η. Therefore, the pair (9) simplifies to (sd(sd ∂φi), V (sd ∂φi)); see Figure 11. That is, we
only need that sd(sd ∂φi) is star decomposable in vertices which follows by the induction
and Observation 16.

2. ωi = σj for some j, that is, i > t and t− i is odd:

We need to describe W , for which we need to describe the faces η such that η ( σj
or σj ( η such that η � σj . As σj induces an elementary collapse in a sequence of
collapses of K′, we get τj � σj but η ≺ σj for any η ) σj different from τj . On the other
hand all proper subfaces of σj are removed only later on in collapsing of K′. Altogether
W = V (sd ∂σj) t {τj \ σj}. See Figure 12 for an example of the pair (9) in this case.

Now, we aim to use Corollary 13 with

(X, X) = (sd ∂σj , V (sd ∂σj))

and
(Y, Y ) = (sd lk(σj ,K), {τj \ σj}).
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K

sd2K

σ1

τ1
σ2 τ2

σ2

σ1

τ1 τ2

a

b

a

b

lk(σ2, sd
2K)

sd lk(σ2, sdK) ∼= sd(sd∂σ2 ∗ sd lk(σ2,K))

∼ =

a ∈ W

b ∈ W

cd

c = τ2 \ σ2 ∈ Wd = τ1 \ σ2 /∈ W

σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ · · ·

Figure 12: Isomorphisms for verifying the link condition in case 2. Here we consider the case
σj = σ2 coming from the collapses on the top left picture. The vertex decomposability of
(sd lk(σ2, sd K), V (lk(σ2, sd K))�σ2) = (sd lk(σ2, sd K), {a, b, τ2}) in the middle picture trans-
lates to vertex decomposability of the pair (sd(sd ∂σ2 ∗ sd lk(σ2,K)),W ) in the top right picture
where W = {a, b, τ2 \ σ2}, which coincides with V (sd ∂σj) t {τj \ σj} as required.

The pair (sd X, X) is star decomposable in vertices by Observation 16 and the induction.
For checking star decomposability in vertices of (sd Y, Y ), we know that lk(σj ,K) satisfies
the (HRC) condition. In particular, lk(σj ,K) is collapsible after removing some number
of facets, and the subsequent collapses can be rearranged so that the vertex τj \ σj is the
last vertex in the sequence of collapses. (If dim lk(σj ,K) = 0, then we instead rearrange
the removals of the facets so that τj \ σj is the last.) Now, by induction, this sequence of
removals of facets and collapses induces a star decomposition in vertices of sd sd lk(σj ,K)
such that {τj \ σj} is the last vertex in this decomposition. This exactly means that
(sd Y, Y ) is star decomposable in vertices.

Altogether, Corollary 13 implies that the pair (sd(X ∗Y), X tY ) is star decomposable in
vertices which is exactly the required pair (9).

3. ωi = τj for some j, that is, i > t and t− i is even:

We again first determine W . For each η ) τj , we get η ≺ τj as τj is a maximal face during
the elementary collapse. On the other hand, for η ( τj we get η � τj unless η = σj as all
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K

sd2K

σ1

τ1

σ2

τ2

τ3

σ1

τ1 τ2

b

σ3 = a

b

lk(τ3, sd
2K)

sd lk(τ3, sdK) ∼= sd(sd∂τ3 ∗ sd lk(τ3,K))

∼ =

a = σ3 6∈ W

b ∈ W

cd

c = τ2 \ τ3 6∈ Wd = τ1 \ τ3 /∈ W

σ3 = a

τ3

σ2

σ1 ≺ τ1 ≺ σ2 ≺ τ2 ≺ σ3 ≺ τ3 ≺ · · ·

Figure 13: Isomorphisms for verifying the link condition in case 3. Here we consider the case
τj = τ3 coming from the collapses on the top left picture. The vertex decomposability of
(sd lk(τ3, sd K), V (lk(τ3, sd K))�τ3) = (sd lk(τ3, sd K), {b}) in the middle picture translates to
vertex decomposability of the pair (sd(sd ∂τ3 ∗ sd lk(τ3,K)),W ) in the top right picture where
W = {b}, which coincides with V (sd ∂τj) \ {σj} as required.

subfaces of τj have to be present at the moment of removing of σj , and τj immediately
succeeds. Altogether, W = (V (∂τj) \ {σj}) t ∅. See Figure 13 for an example of the
pair (9) in this case.

We aim to use Proposition 14 with X = sd lk(τj ,K), Y = sd ∂τj and Y = V (sd ∂τj)\{σj}.
We get that X is star decomposable in vertices by induction as lk(τj ,K) satisfies the
(HRC) condition. We also need that (sd Y, Y ) is star decomposable in vertices. For
this we use Observation 16 and the induction while choosing σj to be the first face
removed from V (sd ∂τj). Then Y = V (sd ∂τj)�′{σj} where �′ is the corresponding or-
der on V (sd ∂τj). Altogether, for application of Proposition 14 we choose the order �′
on V (sd lk(τj ,K)) t V (sd ∂τj) so that it starts with σj , it continues on V (sd lk(τj ,K)
in order of a star decomposition in vertices of sd X and finally it continues on Y =
V (sd ∂τj) \ {σj} in the already prescribed order �′. Then we get the required conclusion
that (sd(X ∗Y), Y ), which is the pair (9), is star decomposable in vertices. This finishes
the proof of Theorem 2.
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