
Cahier du GERAD G-2019-71

BiLQ: AN ITERATIVE METHOD FOR NONSYMMETRIC LINEAR
SYSTEMS WITH A QUASI-MINIMUM ERROR PROPERTY

ALEXIS MONTOISON
∗

AND DOMINIQUE ORBAN
†

Abstract. We introduce an iterative method named BiLQ for solving general square linear
systems Ax = b based on the Lanczos biorthogonalization process defined by least-norm subproblems,
and that is a natural companion to BiCG and Qmr. Whereas the BiCG (Fletcher, 1976), Cgs
(Sonneveld, 1989) and BiCGStab (van der Vorst, 1992) iterates may not exist when the tridiagonal
projection of A is singular, BiLQ is reliable on compatible systems even if A is ill-conditioned or rank
deficient. As in the symmetric case, the BiCG residual is often smaller than the BiLQ residual and,
when the BiCG iterate exists, an inexpensive transfer from the BiLQ iterate is possible. Although the
Euclidean norm of the BiLQ error is usually not monotonic, it is monotonic in a different norm that
depends on the Lanczos vectors. We establish a similar property for the Qmr (Freund and Nachtigal,
1991) residual. BiLQ combines with Qmr to take advantage of two initial vectors and solve a system
and an adjoint system simultaneously at a cost similar to that of applying either method. We derive
an analogous combination of Usymlq and Usymqr based on the orthogonal tridiagonalization process
(Saunders, Simon, and Yip, 1988). The resulting combinations, named BiLQR and TriLQR, may be
used to estimate integral functionals involving the solution of a primal and an adjoint system. We
compare BiLQR and TriLQR with Minres-qlp on a related augmented system, which performs a
comparable amount of work and requires comparable storage. In our experiments, BiLQR terminates
earlier than TriLQR and Minres-qlp in terms of residual and error of the primal and adjoint systems.

Key words. iterative methods, Lanczos biorthogonalization process, quasi-minimal error method,
least-norm subproblems, adjoint systems, integral functional, tridiagonalization process, multiprecision

AMS subject classifications. 15A06, 65F10, 65F25, 65F50, 93E24 90C06

1. Introduction. We consider the square consistent linear system

(1.1) Ax = b,

where A ∈ Rn×n can be nonsymmetric, is either large and sparse, or is only available as
a linear operator, i.e., via operator-vector products. We assume that A is nonsingular.
Systems such as (1.1) arise in the discretization of partial differential equations (PDEs)
in numerous applications, including compressible turbulent fluid flow (Chisholm and
Zingg, 2009), and in circuit simulation (Davis and Natarajan, 2012). We consider
Krylov subspace methods and are interested in generating iterates with guarantees as
to the decrease of the error xk−x? in a certain norm, where x? is the solution of (1.1).

The foundation of Krylov methods is a basis-generation process upon which three
methods may be developped: one computing the minimum-norm solution of an under-
determined system, one solving a square system and imposing a Galerkin condition,
and one solving an over-determined system in the least-squares sense. These methods
may be implemented with the help of a LQ, LU or QR factorization of a related
operator, respectively.

In this paper, we develop an iterative method named BiLQ of the first type based
on the Lanczos (1950) biorthogonalization process. Together with BiCG (Fletcher,
1976) and Qmr (Freund and Nachtigal, 1991), BiLQ completes the family of methods

∗
GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal,

QC, Canada. E-mail: alexis.montoison@polymtl.ca. Research partially supported by a merit
scholarship of the Arbour foundation.
†
GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal,

QC, Canada. E-mail: dominique.orban@gerad.ca. Research partially supported by an NSERC
Discovery Grant.

1 Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

ar
X

iv
:1

91
0.

02
59

8v
1

 [
m

at
h.

N
A

]
 7

 O
ct

 2
01

9

mailto:alexis.montoison@polymtl.ca
mailto:dominique.orban@gerad.ca

2 [toc]

based on the biorthogonalization process. We begin by stating the defining properties
of BiLQ, describing its implementation in detail, and illustrating its behavior on
numerical examples side by side with BiCG and Qmr.

In a second stage, we exploit the fact that the biorthogonalization process requires
two initial vectors to develop a combination of BiLQ and Qmr that solves (1.1)
together with a dual system

(1.2) AT t = c

simultaneously at a cost comparable to that of applying BiLQ or Qmr only to solve
one of those systems. The resulting combination is named BiLQR and is employed to
illustrate the computation of superconvergent estimates of integral functionals arising
in certain PDE problems.

We note that a similar approach may be developed for the Saunders et al. (1988)
orthogonal tridiagonalization process, which also requires two initial vectors, by
combining Usymlq and Usymqr. The resulting combination is named TriLQR.

Finally, we compare BiLQR and TriLQR with Minres-qlp on a related aug-
mented system to solve both (1.1) and (1.2) simultaneously. In our experiments,
BiLQR terminates earlier than TriLQR and Minres-qlp in terms of residual and
error of the primal and adjoint systems.

Our Julia (Bezanson, Edelman, Karpinski, and Shah, 2017) implementation of
BiLQ, Qmr, Usymlq, Usymqr, BiLQR, TriLQR, and Minres-qlp are available
from github.com/JuliaSmoothOptimizers/Krylov.jl. Thanks to multiple dispatch,
a language feature allowing automatic compilation of variants of each method corre-
sponding to inputs expressed in various floating-point systems, our implementations
run in any floating-point precision supported.

Related Research. Paige and Saunders (1975) develop one of the best-known
minimum error methods, Symmlq, based on the symmetric Lanczos process. Symmlq
inspires Estrin, Orban, and Saunders (2019a,b) to develop Lslq and Lnlq for rectan-
gular problems based on the Golub and Kahan (1965) process. Lslq and Lnlq are
equivalent to Symmlq applied to the normal equations and normal equations of the
second kind, respectively.

Saunders et al. (1988) define Usymlq for square consistent systems based on the
orthogonal tridiagonalization process. Usymlq is based on a subproblem similar to that
of Symmlq, and coincides with Symmlq in the symmetric case. Its companion method,
Usymqr, is similar in spirit to Minres. Buttari, Orban, Ruiz, and Titley-Peloquin
(2019) combine both into a method named Usymlqr designed to solve symmetric
saddle-point systems with general right-hand side, and inspire the developement of
BiLQR and TriLQR in the present paper.

Weiss (1994) decribes two types of error-minimizing Krylov methods for square

A; one based on a process applied to ATA, and one to AT . Our approach is to
apply the biorthogonalization process directly to A. We defer a numerical stability
analysis to future work, but note that Paige, Panayotov, and Zemke (2014) study
the augmented stability of the biorthogonalization process. In this sense, we make
the implicit assumption that computations are carried out in exact arithmetic. This
assumption prompted us to develop our implementations so that they can be applied
in any supported floating-point arithmetic.

The simultaneous solution of a system and an adjoint system has attracted
attention in the past. Notably, Lu and Darmofal (2003) devise a variant of Qmr to
solve both systems at once at a cost approximately equal to that of Qmr applied

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

https://github.com/JuliaSmoothOptimizers/Krylov.jl

[toc] 3

to one of the systems but with an increase in storage requirements. Golub, Stoll,
and Wathen (2008) follow a similar approach and use a variant of Usymqr to solve
both (1.1) and (1.2). An advantage of Usymqr is to produce monotonic residuals in
the Euclidean norm for both systems. We illustrate in Table 3.1 that our methods are
cheaper and have smaller storage requirements than those of Lu and Darmofal (2003)
and Golub et al. (2008) though residuals are not monotonic in the Euclidean norm.

Notation. Matrices and vectors are denoted by capital and lowercase Latin
letters, respectively, and scalars by Greek letters. An exception is made for Givens
cosines and sines (c, s) that compose reflections. For a vector v, ‖v‖ denotes the
Euclidean norm of v, and for symmetric and positive-definite N , the N -norm of v is
‖v‖2N = vTNv. For a matrix M , ‖M‖F denotes the Frobenius norm of M . The vector
ei is the i-th column of an identity matrix of size dictated by the context. Vectors and
scalars decorated by a bar will be updated at the next iteration. For j = 2, . . . , k, we
use the compact representation

Qj−1,j =

[j−1 j

cj sj
sj −cj

]
:=

Ij−2

cj sj
sj −cj

Ik−j

 ,
for orthogonal reflections, where s2

j + c2j = 1, where border indices indicate row and
column numbers, and where Ik represents the k×k identity operator. We abuse the

notation z̄k = (zk−1, ζ̄k) to represent the column vector
[
zTk−1 ζ̄k

]T
.

2. Derivation of BiLQ.

2.1. The Lanczos Biorthogonalization Process. The Lanczos biorthogonal-
ization process generates sequences of vectors {vk} and {uk} such that vTi uj = δij
in exact arithmetic for as long as the process does not break down. The process is
summarized as Algorithm 2.1.

Algorithm 2.1 Lanczos Biorthogonalization Process

Require: A, b, c
1: v0 = 0, u0 = 0
2: β1v1 = b, γ1u1 = c (β1, γ1) so that vT1 u1 = 1
3: for k = 1, 2, . . . do
4: q = Avk − γkvk−1, αk = uTk q

5: p = ATuk − βkuk−1

6: βk+1vk+1 = q − αkvk (βk+1, γk+1) so that vTk+1uk+1 = 1
7: γk+1uk+1 = p− αkuk
8: end for

We denote Vk =
[
v1 . . . vk

]
and Uk =

[
u1 . . . uk

]
. Without loss of gener-

ality, we choose the scaling factors βk and γk so that vTk uk = 1 for all k ≥ 1, i.e.,
V Tk Uk = Ik. After k iterations, the situation may be summarized as

AVk = VkTk + βk+1vk+1e
T
k = Vk+1Tk+1,k(2.1a)

ATUk = UkT
T
k + γk+1uk+1e

T
k = Uk+1T

T
k,k+1,(2.1b)

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

4 [toc]

where

Tk =

α1 γ2

β2 α2

. . .

. . .
. . . γk
βk αk

 , Tk,k+1 =
[
Tk γk+1ek

]
, Tk+1,k =

[
Tk

βk+1e
T
k

]
.

The columns of Vk and Uk form a basis for Kk := Span{b, Ab, · · · , Ak−1b} and

Lk := Span{c, AT c, · · · , (AT)k−1c}, respectively. Though Vk cannot be expected to be

orthogonal to Uk in inexact arithmetic, and therefore UTk AVk = Tk cannot be expected
to hold, (2.1) usually holds to within machine precision.

2.2. Definition of BiLQ. By definition, BiLQ generates an approximation xL

k

to a solution of (1.1) of the form xL

k = Vky
L

k, where yL

k ∈ Rk solves

(2.2) minimize
y

‖y‖ subject to Tk−1,ky = β1e1.

By contrast, BiCG (Fletcher, 1976) generates xC

k = Vky
C

k where yC

k ∈ Rk solves

(2.3) Tky = β1e1,

and Qmr (Freund and Nachtigal, 1991) generates xQ

k = Vky
Q

k where yQ

k ∈ Rk solves

(2.4) minimize
y

‖Tk+1,ky − β1e1‖.

When A is symmetric and b = c, Algorithm 2.1 coincides with the symmetric
Lanczos process and the three above methods are equivalent to Symmlq (Paige and
Saunders, 1975), Cg (Hestenes and Stiefel, 1952), and Minres (Paige and Saunders,
1975), respectively.

2.3. An LQ factorization. We determine yL

k solution to (2.2) via the LQ
factorization of Tk−1,k, which we obtain from the LQ factorization

Tk = L̄kQk, where(2.5a)

Lk =

δ1
λ1 δ2
ε1 λ2 δ3

. . .
. . .

. . .

εk−3 λk−2 δk−1

εk−2 λk−1 δ̄k

=

[
Lk−1 0

εk−2e
T
k−2 + λk−1e

T
k−1 δ̄k

]
,(2.5b)

and QTk = Q1,2Q2,3 · · ·Qk−1,k is orthogonal and defined as a product of Givens
reflections. Indeed, the above yields the LQ factorization

(2.6) Tk−1,k =
[
Lk−1 0

]
Qk.

If we initialize δ̄1 := α1, λ̄1 := β2, c1 = −1, and s1 = 0, individual factorization
steps may be represented as an application of Qk−2,k−1 to TkQ

T
k−2:

k−2 k−1 k

k−2 δ̄k−2 γk−1

k−1 λ̄k−2 αk−1 γk
k βk αk

k−2 k−1 k

ck−1 sk−1

sk−1 −ck−1

1

 =

k−2 k−1 k

δk−2 0
λk−2 δ̄k−1 γk
εk−2 λ̄k−1 αk

,
Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 5

followed by an application of Qk−1,k to the result:

k−2 k−1 k

k−2 δk−2

k−1 λk−2 δ̄k−1 γk
k εk−2 λ̄k−1 αk

k−2 k−1 k

1
ck sk
sk −ck

 =

k−2 k−1 k

δk−2

λk−2 δk−1

εk−2 λk−1 δ̄k

.
The reflection Qk−1,k is designed to zero out γk on the superdiagonal of Tk and affects
three rows and two colums. It is defined by

(2.7) δk−1 =

√
δ̄2
k−1 + γ2

k, ck = δ̄k−1/δk−1, sk = γk/δk−1,

and yields the recursion

εk−2 = sk−1βk, k ≥ 3,(2.8a)

λ̄k−1 = −ck−1βk, k ≥ 3,(2.8b)

λk−1 = ckλ̄k−1 + skαk, k ≥ 2,(2.8c)

δ̄k = skλ̄k−1 − ckαk, k ≥ 2.(2.8d)

2.4. Definition and update of the BiLQ and BiCG iterates. In order
to compute yL

k solution of (2.2) using (2.6), we solve
[
Lk−1 0

]
Qky

L

k = β1e1. If
zk−1 := (ζ1, . . . , ζk−1) is defined so that Lk−1zk−1 = β1e1, then the minimum-norm

solution of (2.2) is yL

k = QTk

[
zk−1

0

]
, and ‖yL

k‖ = ‖zk−1‖.
We may compute yC

k in (2.3) simultaneously as a cheap update of yL

k. Indeed, (2.3)
and (2.5) yield LkQky

C

k = β1e1. Let z̄k := (zk−1, ζ̄k) be defined so Lkz̄k = β1e1. Then,

yC

k = QTk z̄k. If δ̄k = 0, yC

k and the BiCG iterate xC

k are undefined. The components of
z̄k are computed from

ηk =

β1, k = 1,

−λ1ζ1, k = 2,

−εk−2ζk−2 − λk−1ζk−1, k ≥ 3,

(2.9a)

ζk−1 = ηk−1/δk−1, k ≥ 2,(2.9b)

ζ̄k = ηk/δ̄k, if δ̄k 6= 0.(2.9c)

By definition, xL

k = Vky
L

k and xC

k = Vky
C

k . To avoid storing Vk, we let

(2.10) Dk := VkQ
T
k =

[
d1, d2, · · · , dk−1, d̄k

]
, d̄1 = v1,

defined by the recursion

(2.11)
dk−1 = ckd̄k−1 + skvk

d̄k = skd̄k−1 − ckvk.
Finally,

xL

k = Vky
L

k = Dk

[
zk−1

0

]
= Dk−1zk−1 = xL

k−1 + ζk−1dk−1(2.12a)

xC

k = Vky
C

k = Dkz̄k = Dk−1zk−1 + ζ̄kd̄k = xL

k + ζ̄kd̄k.(2.12b)

We see from (2.12b) that it is possible to transfer from xL

k to xC

k cheaply provided
ζ̄k 6= 0. Such transfer was described by Paige and Saunders (1975) as an inexpensive
update from the Symmlq to the Cg point in the symmetric case.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

6 [toc]

2.5. Residuals estimates. The identity (2.1a) allows us to write the residual
associated to xk = Vkyk as

rk = b−Axk = β1v1 −AVkyk = β1v1 − Vk+1Tk+1,kyk.

Thus, (2.2) yields the residual at the BiLQ iterate:

rL

k = Vk−1(β1e1 − Tk−1,ky
L

k)− (βkek−1 + αkek)T yL

k vk − βk+1e
T
k y

L

k vk+1

= −(βkek−1 + αkek)T yL

k vk − βk+1e
T
k y

L

k vk+1,(2.13)

and (2.3) yields the residual at the BiCG iterate:

rC

k = Vk(β1e1 − TkyC

k)− βk+1vk+1e
T
k y

C

k = −βk+1e
T
k y

C

kvk+1.

Because QTk = Q1,2Q2,3 · · ·Qk−1,k, we have

eTk−1Q
T
k = eTk−1Qk−2,k−1Qk−1,k = sk−1e

T
k−2 − ck−1cke

T
k−1 − ck−1ske

T
k ,

eTkQ
T
k = eTkQk−1,k = ske

T
k−1 − ckeTk ,

so that

eTk−1y
L

k = eTk−1Q
T
k

[
zk−1

0

]
= sk−1ζk−2 − ck−1ckζk−1,

eTk y
L

k = eTkQ
T
k

[
zk−1

0

]
= skζk−1,

eTk y
C

k = eTkQ
T
k z̄k = skζk−1 − ck ζ̄k.

Therefore, if we define µk = βk(sk−1ζk−2− ck−1ckζk−1) +αkskζk−1, ωk = βk+1skζk−1

and ρk = βk+1(skζk−1 − ck ζ̄k), we obtain

‖rL

k‖ =

√
µ2
k‖vk‖2 + ω2

k‖vk+1‖2 + 2µkωkv
T
k vk+1,

and
‖rC

k‖ = |ρk| ‖vk+1‖.
We summarize the complete procedure as Algorithm 2.2. For simplicity, we do

not include a lookahead procedure, although a robust implementation should in order
to avoid serious breakdowns (Parlett, Taylor, and Liu, 1985). Table 2.1 summarizes
the cost per iteration of BiLQ, BiCG and Qmr. Each method requires one operator-
vector product with A and one with AT per iteration. We assume that in-place “gemv”
updates of the form y ← Av + γy and y ← ATu+ βy are available. Otherwise, each
method requires two additional n-vectors to store Av and ATu. In the table, “dots”
refers to dot products of n-vectors, “scal” refers to scaling an n-vector by a scalar, and
“axpy” refers to adding a multiple of one n-vector to another one.

Table 2.1
Storage and cost per iteration of methods based on Algorithm 2.1.

n-vectors dots scal axpy

BiLQ 6 2 3 7
BiCG 6 2 3 6
Qmr 7 2 4 7

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 7

Algorithm 2.2 BiLQ

Require: A, b, c
1: β1v1 = b, γ1u1 = c (β1, γ1) so that vT1 u1 = 1

2: α1 = uT1 Av1 begin biorthogonalization
3: β2v2 = Av1 − α1v1

4: γ2u2 = ATu1 − α1u1

5: c1 = −1, s1 = 0, δ̄1 = α1 begin LQ factorization
6: η1 = β1, d̄1 = v1, xL

1 = 0
7: for k = 2, 3, . . . do
8: q = Avk − γkvk−1, αk = uTk q continue biorthogonalization

9: p = ATuk − βkuk−1

10: βk+1vk+1 = q − αkvk (βk+1, γk+1) so that vTk+1uk+1 = 1
11: γk+1uk+1 = p− αkuk
12: δk−1 = (δ̄2

k−1 + γ2
k)

1
2 compute Qk−1,k

13: ck = δ̄k−1/δk−1

14: sk = γk/δk−1

15: εk−2 = sk−1βk continue LQ factorization
16: λk−1 = −ck−1ckβk + skαk
17: δ̄k = −ck−1skβk − ckαk
18: ζk−1 = ηk−1/δk−1 update zk−1

19: ηk = −εk−2ζk−2 − λk−1ζk−1

20: µk = βk(sk−1ζk−2 − ck−1ckζk−1) + αkskζk−1

21: ωk = βk+1skζk−1

22: ‖rL

k‖ = (µ2
k‖vk‖2 + ω2

k‖vk+1‖2 + 2µkωkv
T
k vk+1)

1
2 compute ‖rL

k‖
23: if δ̄k 6= 0 then
24: ζ̄k = ηk/δ̄k optional: update z̄k
25: ρk = βk+1(skζk−1 − ck ζ̄k)
26: ‖rC

k‖ = |ρk| ‖vk+1‖ optional: compute ‖rC

k‖
27: end if
28: dk−1 = ckd̄k−1 + skvk update Dk

29: d̄k = skd̄k−1 − ckvk
30: xL

k = xL

k−1 + ζk−1dk−1 BiLQ point
31: end for
32: if δ̄k 6= 0 then
33: xC

k = xL

k + ζ̄kd̄k optional: BiCG point
34: end if

2.6. Properties. By construction, assuming Algorithm 2.1 does not break down,
there exists an iteration p ≤ n such that xL

p+1 = xC

p = x?, the exact solution of (1.1).
In particular, there exists y? such that x? = Vpy?.

The definition (2.2) of yL

k ensures that ‖yL

k‖ is monotonically increasing while

‖yL

k − y?‖ is monotonically decreasing. Because V Tk Uk = Ik at each iteration, the
iteration-dependent norm

(2.15) ‖xL

k‖UkU
T
k

= ‖yL

k‖
Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

8 [toc]

is monotonically increasing. Because we may write

(2.16) xL

k = Vky
L

k = Vp

[
yL

k

0

]
,

‖xL

k‖UpU
T
p

= ‖xL

k‖UkU
T
k

is also monotonically increasing, and the error norm

(2.17) ‖xL

k − x?‖UpU
T
p

is monotonically decreasing. Note that (2.15) is readily computable as ‖zk−1‖, and
can be updated as

‖xL

k+1‖2Uk+1U
T
k+1

= ‖xL

k‖2UkU
T
k

+ ζ2
k .

A lower bound on the error (2.17) can be obtained as ‖zk−d − zk−1‖ for a user-defined
delay of d iterations. Such a lower bound may be used to define a simple, though not
robust, error-based stopping criterion (Estrin et al., 2019b).

The following result establishes properties of xL

k that are analogous to those of the
Symmlq iterate in the symmetric case.

Proposition 1. Let x? be as above. The kth BiLQ iterate xL

k solves

(2.18) minimize
x

‖x‖
UkU

T
k

subject to x ∈ Range(Vk), b−Ax ⊥ Range(Uk−1),

and

(2.19) minimize
x

‖x− x?‖UpU
T
p

subject to x ∈ Range(VpV
T
p A

TUk−1).

Proof. The first set of constraints of (2.18) imposes that there exist y ∈ Rk such
that x = Vky. By biorthogonality, the objective value at such an x can be written
‖Vky‖UkU

T
k

= ‖y‖. Biorthogonality again and (2.13) show that yk defined in (2.2) is

primal feasible for (2.18). Dual feasibility of (2.18) requires that there exist a vector

q such that y = V Tk A
TUk−1q. By (2.1b) and biorthogonality one more time, this

amounts to y = TTk−1,kq, which is the same as dual feasibility for (2.2). Thus, Vky
L

k is,
optimal for (2.18).

To establish primal feasibility of xL

k for (2.19), note first that (2.1b) yields

ATUk−1 = UkT
T
k−1,k. Let V̄p−k denote the last p − k columns of Vp. Biorthogo-

nality yields

V Tp Uk =

[
V Tk
V̄ Tp−k

]
Uk =

[
Ik
0

]
, and VpV

T
p Uk = Vk.

As in the first part of the proof, yL

k = TTk−1,kq for some q ∈ Rk−1, and therefore,

xL

k = VpV
T
p A

TUk−1q. Dual feasibility imposes that

0 = UTk−1AVpV
T
p UpU

T
p (xL

k − x?)

= UTk−1AVpU
T
p Vp

([
yL

k

0

]
− y?

)
= UTk−1A(xL

k − x?)
= −UTk−1r

L

k,

where we used biorthogonality, and (2.16), and is satisfied because of (2.13).

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 9

Note that (2.18) continues to hold if the objective is measured in the UpU
T
p -norm.

Although this norm is no longer iteration dependent, it is unknown until the end of
the biorthogonalization process.

In the symmetric case, where Vk = Uk is orthogonal and Tk = TTk , the Symmlq
iterate solves the problem

(2.20) minimize
x

‖x− x?‖ subject to x ∈ Range(AVk−1),

which coincides with (2.19).

2.7. Numerical experiments. Non-homogeneous linear PDEs with variable
coefficients of the form

(2.21)

n∑
i=1

p∑
j=1

ai,j(x)
∂ju(x)

∂xji
= b(x)

are frequent when physical phenomena are modeled in polar, cylindrical or spherical
coordinates. The discretization of (2.21) often leads to a nonsymmetric square system.
Such is the case with Poisson’s equation ∆u = f used, for instance, to describe the
gravitational or electrostatic field caused by a given mass density or charge distribution.
The 2D Poisson equation in polar coordinates with Dirichlet boundary conditions is

1

r

∂

∂r

(
r
∂u(r, θ)

∂r

)
+

1

r2

∂2u(r, θ)

∂θ2 = f(r, θ), (r, θ) ∈ (0, R)× [0, 2π)(2.22a)

u(R, θ) = g(θ), θ ∈ [0, 2π),(2.22b)

where R > 0, the source term f and the boundary condition g are given. We discretize
(2.22) using centered differences using 50 discretization points for r and 50 for θ,
with g(θ) = 0, f(r, θ) = −3 cos(θ) and R = 1 so that (2.22) models the response
of an attached circular elastic membrane to a force. The resulting matrix has size
2, 500 with 12, 400 nonzeros, and is block tridiagonal with extra diagonal blocks in the
northeast and southwest corners. Each block on the main diagonal is tridiagonal but
not symmetric. Each off-diagonal block is diagonal. More details on the discretization
used are given by Lai (2001). The exact solution is represented in Figure 2.1.

We compare BiLQ with our implementation of Qmr without lookahead. We also
simulate BiCG by way of the transition from xL

k to xC

k in Algorithm 2.2. Figure 2.2
reports the residual and error history of BiLQ, BiCG and Qmr on (2.22). To compute
‖rk‖ and ‖ek‖, residuals b−Axk and errors xk − x? are explicitly calculated at each
iteration. We compute a reference solution with Julia’s backslash command. We run
each method with an absolute tolerance εa = 10−10 and a relative tolerance εr = 10−7

such that algorithms stop when ‖rk‖ ≤ εa + ‖b‖εr.
We also compare BiLQ with BiCG and Qmr on matrices SHERMAN5 and

RAEFSKY1, with their respective right-hand side, from the UFL collection of Davis
and Hu (2011).1 System SHERMAN5 has size 3, 312 with 20, 793 nonzeros and
RAEFSKY1 has size 3, 242 with 293, 409 nonzeros. A Jacobi preconditioner is used
for both systems.

Figure 2.2, Figure 2.3 and Figure 2.4 all show that in BiLQ, neither the residual
nor the error are monotonic in general. They also appear more erratic than those of
Qmr. As in the symmetric case, both generally lag compared to those of BiCG and

1
Now the SuiteSparse Matrix Collection sparse.tamu.edu.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

https://sparse.tamu.edu

10 [toc]

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−0.8
−0.6

−0.4
−0.2

0
0.2

0.4
0.6

0.8

−0.2

−0.1

0

0.1

0.2

0.3

r cos(θ)

r sin(θ)

u
(r
,θ
)

Fig. 2.1. Solution u(r, θ) = r(1 − r) cos(θ) of (2.22) with g(θ) = 0, f(r, θ) = −3 cos(θ) and R = 1.

0 100 200 300 400

10−7.5

10−5.0

10−2.5

100.0

102.5

k

‖r
k
‖

BiLQ
BiCG
Qmr

0 100 200 300 400

10−8

10−6

10−4

10−2

100

k

‖e
k
‖

BiLQ
BiCG
Qmr

Fig. 2.2. Convergence curves of BiLQ, BiCG and Qmr iterates on (2.22). The figures show
the residual (left) and error (right) history for each method.

Qmr, but are not far behind. We experimented with other systems and observed the
same qualitative behavior. As showed in section 2.6, although BiLQ is a minimum-
error-type method, this error is minimized over a different space than that where
xL

k and xC

k reside—see Proposition 1. This situation is analogous to that between
Symmlq and Cg in the symmetric case (Estrin, Orban, and Saunders, 2019c). Thus,
the possibility of transferring to the BiCG point, when it exists, is attractive. Because
the BiCG residual is easily computable, transferring based on the residual norm is
readily implemented. The determination of upper bounds on the error suitable as
stopping criteria remains the subject of active research (Estrin et al., 2019a,b,c).

2.8. Discussion. Like Qmr, the BiLQ iterate is well defined at each step even
if Tk is singular, whereas xC

k is undefined when δ̄k = 0. A simple example is

A =

[
0 −1
1 1

]
, b = c =

[
1
0

]
.

According to Algorithm 2.1, β1 = γ1 = 1, v1 = u1 = b = c. Then α1 = uT1 Av1 = 0,
T1 =

[
α1

]
is singular, and T1y1 = β1 is inconsistent. BiCG and its variants Cgs

(Sonneveld, 1989) and BiCGStab (van der Vorst, 1992) all fail. However, T2 is

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 11

0 50 100 150 200

10−4

10−2

100

102

104

106

k

‖r
k
‖

BiLQ
BiCG
Qmr

0 50 100 150 200

10−5.0

10−2.5

100.0

102.5

105.0

k

‖e
k
‖

BiLQ
BiCG
Qmr

Fig. 2.3. Convergence curves of BiLQ, BiCG and Qmr iterates for the SHERMAN5 system.
The figures show the residual (left) and error (right) history for each method.

0 50 100 150 200 250

10−10

10−8

10−6

10−4

10−2

k

‖r
k
‖

BiLQ
BiCG
Qmr

0 50 100 150 200 250
10−10.0

10−7.5

10−5.0

10−2.5

100.0

k

‖e
k
‖

BiLQ
BiCG
Qmr

Fig. 2.4. Convergence curves of BiLQ, BiCG and Qmr iterates for the RAEFSKY1 system.
The figures show the residual (left) and error (right) history for each method.

not singular and the BiCG point exists, although we cannot compute it without
lookahead. In finite precision arithmetic, such exact breakdown are rather rare. But
near-breakdowns (δ̄k ≈ 0) may happen and lead to numerical instabilities in ensuing
iterations. An additional drawback of BiCG is that the LU decomposition of Tk might
not exist without pivoting even if Tk is nonsingular whereas the LQ factorization of
Tk−1,k is always well defined.

3. Adjoint systems. Motivated by fuild dynamics applications, Pierce and Giles
(2000) describe a method for doubling the order of accuracy of estimates of integral
functionals involving the solution of a PDE. Consider a well-posed linear PDE Lu = f
on a domain Ω subject to homogeneous boundary conditions, where L is a differential
operator of the form (2.21) and f ∈ L2(Ω). Suppose we wish to evaluate the functional
J(u) := 〈u, g〉, where g ∈ L2(Ω) and 〈·, ·〉 represents an integral inner product on
L2(Ω). The problem may be stated equivalently as evaluating the functional 〈v, f〉
where v solves the adjoint PDE L∗v = g because 〈v, f〉 = 〈v, Lu〉 = 〈L∗v, u〉 = 〈g, u〉.

Let the discretization of L yield the linear system AuD = fD with D a set of points
that define a grid on Ω. For certain types of PDEs and certain discretization schemes,
AT is an appropriate discretization of L∗. Pierce and Giles (2000) provide examples
with linear operators such as Poisson’s equation discretized by finite differences in 1D
and by finite elements in 2D, but their discretizations are symmetric. Their method

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

12 [toc]

also applies to cases where A 6= AT but in such cases, the discretization of the primal
and dual equations commonly differ. Therefore, there is a need for methods that solve
an unsymmetric primal system and its adjoint simultaneously. Lu and Darmofal (2003)
and Golub et al. (2008) were also interested in this problem for scattering amplitude
evaluation. Lu and Darmofal (2003) devise a modification of Qmr in which the two
initial vectors are b and c and a quasi residual is minimized for both the primal and
adjoint systems via an updated QR factorization. Golub et al. (2008) apply Usymqr
(Saunders et al., 1988) to both the primal and the adjoint system2 simultaneously by
updating two QR factorizations. The advantage of their approach is that it produces
monotonic residuals for both systems.

Assume we use a method to compute uD and to solve AT vD = gD such that
‖u−uD‖ ∈ O(hp) and ‖v− vD‖ ∈ O(hp), where h describes the grid coarseness. From
uD and vD we compute approximations uh ≈ u and vh ≈ v over Ω by way of an
interpolation of higher order than the discretization. Define fh := Luh and gh := L∗vh.
Instead of J(u) ≈ 〈uh, g〉, an approximation of order p, we may obtain one of order
2p via the identity

(3.1) 〈g, u〉 = 〈g, uh〉 − 〈vh, fh − f〉+ 〈gh − g, uh − u〉.

The first two terms constitute our new approximation while the remaining error term
can be expressed as 〈gh − g, L−1(fh − f)〉 = O(h2p).

From this point, we consider, in addition to (1.1), the adjoint system

(3.2) AT t = c.

Solving simultaneously primal and dual systems can also be formulated as solving the
symmetric and indefinite system

(3.3)

[
0 A

AT 0

] [
t
x

]
=

[
b
c

]
.

Minres or Minres-qlp (Choi, Paige, and Saunders, 2011) are prime candidates
for (3.3) and will serve as a basis for comparison.

In the context of Algorithm 2.1, we can take advantage of the two initial vectors
b and c to combine BiLQ and Qmr and solve both the primal and adjoint systems
simultaneously at no other extra cost than that of updating solution and residual
estimates. We call the resulting method BiLQR. Contrary to the approach of Lu and
Darmofal (2003), no extra factorization updates are necessary. Instead of approximating
uD and vD by minimizing two quasi residuals, BiLQR minimizes one quasi residual
and computes the second approximation via a minimum-norm subproblem.

A similar method based on the orthogonal tridiagonalization process of Saunders
et al. (1988) can be derived by combining Usymlq and Usymqr, which we call
TriLQR, and which is to the approach of Golub et al. (2008) as BiLQR is to that of
Lu and Darmofal (2003). TriLQR remains well defined for rectangular A.

3.1. Description of BiLQR. BiLQR updates an approximate solution tQk−1 =

Uk−1f
Q

k−1 of AT t = c by solving the Qmr least-squares subproblem

(3.4) minimize
f

‖TTk−1,kf − γ1e1‖ ⇐⇒ minimize
f

∥∥∥∥[LTk−1

0

]
f −Qkγ1e1

∥∥∥∥
2
Although they call Usymqr the “generalized Lsqr”.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 13

because the QR factorization of TTk−1,k is readily available. Define h̄k = Qkγ1e1 =
(hk−1, ψ̄k) = (ψ1, · · · , ψk−1, ψ̄k). The components of h̄k are updated according to

ψ̄1 = γ1,(3.5a)

ψk = ck+1ψ̄k, k ≥ 1,(3.5b)

ψ̄k+1 = sk+1ψ̄k, k ≥ 1.(3.5c)

The solution of (3.4) is fQ

k−1 = L−Tk−1hk−1 and the least-squares residual norm is |ψ̄k|.
To avoid storing Uk, we define Wk = UkL

−T
k , which can be updated as

w1 = u1/δ1,(3.6a)

w2 = (u2 − λ1w1)/δ2,(3.6b)

wk = (uk − λk−1wk−1 − εk−2wk−2)/δk, k ≥ 3.(3.6c)

At the next iteration, tQk can be recursively updated according to

tQk = Ukf
Q

k = UkL
−T
k hk = Wkhk = Wk−1hk−1 + ψkwk = tQk−1 + ψkwk.

The Qmr residual is

rQ

k = c−AT tQk = Uk+1(γ1e1 − TTk,k+1f
Q

k) = ψ̄k+1Uk+1Q
T
k+1e

T
k+1,

so that
‖rQ

k ‖ ≤ ‖Uk+1‖F ‖ψ̄k+1Q
T
k+1e

T
k+1‖ ≤ ‖ψ̄k+1‖

√
τk+1,

where τk+1 =
∑k+1
i=1 ‖ui‖

2 = τk + ‖uk+1‖2. If the uk are normalized, then τk = k.
Algorithm 3.2 states the complete procedure.

The following result states a minimization property of the Qmr residual in an
iteration-dependent norm.

Proposition 2. The (k − 1)th Qmr iterate tQk−1 solves

(3.7) minimize
t

‖c−AT t‖
VkV

T
k

subject to t ∈ Range(Uk−1).

In addition, ‖rQ

k ‖VkV
T
k

is monotonically decreasing.

Proof. The set of constraints of (3.7) imposes that there exist f ∈ Rk−1 such
that t = Uk−1f . By biorthogonality, the objective value at such an t can be written

‖c − ATUk−1f‖VkV
T
k

= ‖c − UkTTk−1,kf‖VkV
T
k

= ‖γ1e1 − TTk−1,kf‖. We recover the

subproblem (3.4).
For the second part, ‖rQ

k ‖Vk+1V
T
k+1

= |ψ̄k+1| = |sk+1||ψ̄k| = |sk+1|‖rQ

k−1‖VkV
T
k

.

Note that Proposition 2 continues to hold if rQ

k is measured in the VpV
T
p -norm.

3.2. Description of TriLQR. The Saunders et al. (1988) tridiagonalization

process generates sequences of vectors {vk} and {uk} such that vTi vj = δij and

uTi uj = δij in exact arithmetic for as long as the process does not break down. The
process is summarized as Algorithm 3.1.

At the end of the k-th iteration, we have

AUk = VkTk + βk+1vk+1e
T
k = Vk+1Tk+1,k(3.8a)

ATVk = UkT
T
k + γk+1uk+1e

T
k = Uk+1T

T
k,k+1,(3.8b)

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

14 [toc]

Algorithm 3.1 Tridiagonalization Process

Require: A, b, c
1: v0 = 0, u0 = 0
2: β1v1 = b, γ1u1 = c (β1, γ1) > 0 so that ‖v1‖ = ‖u1‖ = 1
3: for k = 1, 2, . . . do
4: q = Auk − γkvk−1, αk = vTk q

5: p = AT vk − βkuk−1

6: βk+1vk+1 = q − αkvk βk+1 > 0 so that ‖vk+1‖ = 1
7: γk+1uk+1 = p− αkuk γk+1 > 0 so that ‖uk+1‖ = 1
8: end for

to be compared with (2.1).
Saunders et al. (1988) develop two methods based on Algorithm 3.1. Usymlq

generates an approximation to a solution of (1.1) of the form xLQ

k = Uky
LQ

k , where

yLQ

k ∈ Rk solves

(3.9) minimize
y

‖y‖ subject to Tk−1,ky = β1e1.

With (3.8) and (3.9), we have the following analogue of Proposition 1 and (2.20).

Proposition 3. Let x? be the exact solution of (1.1). The kth Usymlq
iterate xLQ

k solves

(3.10) minimize
x

‖x‖ subject to x ∈ Range(Uk), b−Ax ⊥ Range(Uk−1),

and

(3.11) minimize
x

‖x− x?‖ subject to x ∈ Range(ATVk−1).

Proof. The proof is nearly identical to that of Proposition 1 and relies on the fact
that rLQ

k := b−AxLQ

k is a combination of uk and uk+1 (Buttari et al., 2019, §3.2.2).

The second method, Usymqr, generates an approximation tQR

k = Vkf
QR

k where

fQR

k ∈ Rk solves

(3.12) minimize
f

‖TTk,k+1f − γ1e1‖.

The following property applies to tQR

k due to our assumption that (1.1) is consistent.

Proposition 4 (Buttari et al., 2019, Theorem 1). Assume b ∈ Range(A).
Then Usymqr finds the minimum-norm solution of

minimize
t

‖AT t− c‖.
Of course, A nonsingular implies that the solution to (3.2) is unique but Proposi-

tion 4 applies more generally to rectangular and/or rank-deficient A.

When A = AT and b = c, Algorithm 3.1 coincides with the symmetric Lanczos
process, and Usymlq and Usymqr are equivalent to Symmlq and Minres (Paige
and Saunders, 1975), respectively. Besides the orthogonalization process, differences
between those methods and BiLQ and Qmr are the definition of D̄k and Wk, and
the fact that uk and vk are swapped. If stopping criteria are based on residual norms,

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 15

expressions derived for methods based on Algorithm 2.1 apply to methods based on
Algorithm 3.1, but their expressions can simplified because Vk and Uk are orthogonal.
Usymqr and Usymlq can be combined into TriLQR to solve both the primal and
ajoint system simultaneously. We summarize the complete procedure as Algorithm 3.3
and highlight lines with differences between the two algorithms.

Algorithm 3.2 BiLQR

Require: A, b, c
1: β1v1 = b, γ1u1 = c
2: α1 = uT1 Av1

3: β2v2 = Av1 − α1v1

4: γ2u2 = ATu1 − α1u1

5: c1 = −1, s1 = 0, δ̄1 = α1

6: η1 = β1, d̄1 = v1 , ψ̄1 = γ1

7: xL

1 = 0, tQ0 = 0
8: for k = 2, 3, . . . do

9: q = Avk − γkvk−1, αk = uTk q

10: p = ATuk − βkuk−1

11: βk+1vk+1 = q − αkvk
12: γk+1uk+1 = p− αkuk
13: δk−1 = (δ̄2

k−1 + γ2
k)

1
2

14: ck = δ̄k−1/δk−1

15: sk = γk/δk−1

16: εk−2 = sk−1βk
17: λk−1 = −ck−1ckβk + skαk
18: δ̄k = −ck−1skβk − ckαk
19: ζk−1 = ηk−1/δk−1

20: ηk = −εk−2ζk−2 − λk−1ζk−1

21: dk−1 = ckd̄k−1 + skvk

22: d̄k = skd̄k−1 − ckvk
23: ψk−1 = ckψ̄k−1

24: ψ̄k = skψ̄k−1

25: wk−1 =
uk−1−λk−2wk−2−εk−3wk−3

δk−1

26: xL

k = xL

k−1 + ζk−1dk−1

27: tQk−1 = tQk−2 + ψk−1wk−1

28: end for
29: if δ̄k 6= 0 then
30: ζ̄k = ηk/δ̄k
31: xC

k = xL

k + ζ̄kd̄k
32: end if

Algorithm 3.3 TriLQR

Require: A, b, c
β1v1 = b, γ1u1 = c
α1 = uT1 Av1

β2v2 = Au1 − α1v1

γ2u2 = AT v1 − α1u1

c1 = −1, s1 = 0, δ̄1 = α1

η̄1 = β1, d̄1 = u1 , ψ̄1 = γ1

xLQ

1 = 0, tQR

0 = 0
for k = 2, 3, . . . do

q = Auk − γkvk−1, αk = vTk q

p = AT vk − βkuk−1

βk+1vk+1 = q − αkvk
γk+1uk+1 = p− αkuk
δk−1 = (δ̄2

k−1 + γ2
k)

1
2

ck = δ̄k−1/δk−1

sk = γk/δk−1

εk−2 = sk−1βk
λk−1 = −ck−1ckβk + skαk
δ̄k = −ck−1skβk − ckαk
ζk−1 = ηk−1/δk−1

ηk = −εk−2ζk−2 − λk−1ζk−1

dk−1 = ckd̄k−1 + skuk

d̄k = skd̄k−1 − ckuk
ψk−1 = ckψ̄k−1

ψ̄k = skψ̄k−1

wk−1 =
vk−1−λk−2wk−2−εk−3wk−3

δk−1

xLQ

k = xLQ

k−1 + ζk−1dk−1

tQR

k−1 = tQR

k−2 + ψk−1wk−1

end for
if δ̄k 6= 0 then

ζ̄k = ηk/δ̄k
xCG

k = xLQ

k + ζ̄kd̄k
end if

BiLQR and TriLQR both need nine n-vectors: uk, uk−1, vk, vk−1, wk, wk−1,
d̄k, xk and tk−1 whereas Minres-qlp applied to (3.3) can be implemented with five
(2n)-vectors. Two more n-vectors are needed when in-place “gemv” updates are not
explicitly available. Table 3.1 summarizes the cost of BiLQR, TriLQR, Minres-qlp

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

16 [toc]

and variants from Lu and Darmofal (2003) and Golub et al. (2008), developed for
adjoint systems. An advantage of Minres-qlp and TriLQR is that adjoint systems
can be solved even if bT c = 0, which is not possible with BiLQR. In addition, serious
breakdowns qT p = 0 with p 6= 0 and q 6= 0 are not a problem with TriLQR. TriLQR
is similar in spirit to the recent method Usymlqr of Buttari et al. (2019) for solving
symmetric saddle-point systems, but is slightly cheaper.

Table 3.1
Storage and cost per iteration of methods for solving (1.1) and (3.2) simultaneously.

n-vectors dots scal axpy

BiLQR 9 2 5 10
TriLQR 9 2 5 10
Minres-qlp 10 4 8 14
Lu and Darmofal (2003) 10 2 6 10
Golub et al. (2008) 10 2 6 10

3.3. Applications. For the purpose of a simple illustration, we consider a one-
dimensional ODE and a two-dimensional PDE. Consider first the linear ODE with
constant coefficients

χ1u
′′(x) + χ2u

′(x) + χ3u(x) = f(x) x ∈ Ω(3.13a)

u(x) = 0 x ∈ ∂Ω,(3.13b)

where Ω = [0, 1], and say we are interested in the value of the linear functional

(3.14) J(u) =

∫
Ω

u(x)g(x) dΩ,

where u solves (3.13) and g ∈ L2(Ω). The adjoint equation can be derived from (3.13)
using integration by parts:

χ1v
′′(x)− χ2v

′(x) + χ3v(x) = g(x) x ∈ Ω(3.15a)

v(x) = 0 x ∈ ∂Ω.(3.15b)

Note that the only difference between the primal and adjoint equations resides in the
sign of odd-degree derivatives. The discussion in section 3 ensures that

(3.16) G(v) :=

∫
Ω

f(x)v(x) dΩ = J(u).

Consider the uniform discretization xi = ih, i = 0, . . . , N+1, where h = 1/(N+1).
We use centered finite differences of order 2, i.e.,

u′(xi) =
ui+1 − ui−1

2h
+O(h2), u′′(xi) =

ui−1 − 2ui + ui+1

h2 +O(h2).

We obtain u(xi) for xi ∈ D := {xi | i ∈ 1, . . . , N} from the tridiagonal linear system
−2χ1 + χ3h

2 χ1 + χ2h

χ1 − χ2h −2χ1 + χ3h
2 . . .

. . .
. . . χ1 + χ2h

χ1 − χ2h −2χ1 + χ3h
2

u(x1)

...

...
u(xN)

 = h2

f(x1)

...

...
f(xN)

 .
Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 17

More compactly, we write AuD = fD. Similarly, we compute v(xi) for xi ∈ D from

AT vD = gD. Next, we compute an approximation of u and v over Ω by cubic spline
interpolation, and the resulting functions are denoted uh and vh. We impose that Luh =
f and L∗vh = g on ∂Ω. We subsequently obtain fh(x) := χ1u

′′
h(x)+χ2u

′
h(x)+χ3uh(x).

The end points conditions of the cubic splines impose that fh coincide with f on ∂Ω.
Finally, we compute the improved estimate (3.1) using a three-point Gauss quadrature
to approximate each∫ xi+1

xi

g(x)uh(x) dx−
∫ xi+1

xi

vh(x)(fh(x)− f(x)) dx

on each subinterval to ensure that the numerical quadrature errors are smaller than
the discretization error.

We choose n = 50, χ1 = χ2 = χ3 = 1, g(x) = ex and f(x) such that the exact
solution of (3.13) is u?(x) = sin(πx). The resulting linear system has dimension 50
with 148 nonzeros. Those parameters ensure that J? = 〈g, u?〉 = (π(e+ 1))/(π2 + 1).
Figures 3.1 and 3.2 report the evolution of the residual and error on (1.1) and (3.2)
for (3.13) and (3.15), respectively. BiLQR terminates in 51 iterations, TriLQR in 87
iterations and Minres-qlp in 198 iterations. The left plot of Figure 3.3 illustrates
the error in the evaluation of J(u) as a function of h using the naive J(u) ≈ J(uh)
and improved (3.1) approximations.

0 50 100 150 200

10−9

10−6

10−3

100

103

k

‖r
k
‖

BiLQR
TriLQR

Minres-qlp

0 50 100 150 200

10−12

10−10

10−8

10−6

10−4

10−2

100

k

‖e
k
‖

BiLQR
TriLQR

Minres-qlp

Fig. 3.1. Residuals and errors norms of BiLQR, TriLQR and Minres-qlp iterates for on (3.13).

0 50 100 150 200

10−10.0

10−7.5

10−5.0

10−2.5

100.0

k

‖r
k
‖

BiLQR
TriLQR

Minres-qlp

0 50 100 150 200

10−12

10−10

10−8

10−6

10−4

10−2

100

k

‖e
k
‖

BiLQR
TriLQR

Minres-qlp

Fig. 3.2. Residuals and errors norms of BiLQR, TriLQR and Minres-qlp iterates on (3.15).

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

18 [toc]

10−3.0 10−2.5 10−2.0 10−1.5 10−1.0
10−12.5

10−10.0

10−7.5

10−5.0

10−2.5

h

|J
−

J
?
|

〈g, uh〉
〈g, uh〉 − 〈vh, fh − f〉

10−2.0 10−1.8 10−1.6 10−1.4 10−1.2

10−8

10−7

10−6

10−5

10−4

10−3

h

〈g, uh〉
〈g, uh〉 − 〈vh, fh − f〉

Fig. 3.3. Functional evaluation errors for (3.13)–(3.15) (left) and (3.17)–(3.18) (right).

The steady-state convection-diffusion equation with constant coefficients

κ1∆u(x) + κ2∇ · u(x) = f(x) x ∈ Ω(3.17a)

u(x) = 0 x ∈ ∂Ω,(3.17b)

where f ∈ L2(Ω), describes the flow of heat, particles, or other physical quantities in
situations where there is both diffusion and convection or advection. Assume as before
that we are interested in the linear functional (3.14). The adjoint equation of (3.17),
again obtained via integration by parts, reads

κ1∆v(x)− κ2∇ · v(x) = g(x) x ∈ Ω(3.18a)

v(x) = 0 x ∈ ∂Ω,(3.18b)

and duality ensures (3.16).
In the case of heat transfer, u(x) represents temperature and f(x) sources or sinks.

For example, with g(x) = 1/ vol(Ω), J(u) represents the average temperature in Ω.
We choose Ω = [0, 1]× [0, 1] and descretize (3.17) on a uniform N ×N grid with

the finite difference method such that the step along both coordinates is h = 1/(N +1).
With centered second-order differences for first and second derivatives, the discretized
operator has the structure

A =

T DU

DL T
. . .

. . .
. . . DU

DL T

 , T =

−4κ1 κ1 + 1

2
κ2h

κ1 − 1
2
κ2h −4κ1

. . .

. . .
. . . κ1 + 1

2
κ2h

κ1 − 1
2
κ2h −4κ1

 ,

DU = diag(κ1 + 1
2κ2h), DL = diag(κ1 − 1

2κ2h), where the right-hand sides b and

c include the h2 term. Solutions uD and vD contain an approximation of u and
v at grid points stored column by column. The discretization of (3.18) with the

same scheme yields AT . We compare BiLQR, TriLQR and Minres-qlp on (3.17)
and (3.18) with κ1 = 5, κ2 = 20, N = 50, g(x, y) = ex+y and f(x, y) such that the
exact solution of (3.17) is u?(x, y) = sin(πx) sin(πy). The resulting linear system has
dimension 2, 500 with 12, 300 nonzeros. We use an absolute tolerance εa = 10−10 and
a relative tolerance εr = 10−7, and terminate when both ‖rk‖ ≤ εa + ‖b‖εr for (1.1)
and ‖rk‖ ≤ εa + ‖c‖εr for (3.2) hold.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

[toc] 19

Figures 3.4 and 3.5 report the evolution of the residual and error on (1.1) and (3.2)
for (3.17) and (3.18), respectively. In this numerical illustration, residuals and errors

are computed explicitly at each iteration as b − Ax, c − AT t, x − x?, and t − t? in
order to discount errors in the approximation formulae for those expressions. In this
example, BiLQR terminates in about four times fewer iterations than TriLQR and
six times fewer iterations than Minres-qlp. Only the Usymlq error and the Usymqr
residual are monotonic. Although the Minres-qlp residual on (3.3) is monotonic,
individual residuals on (1.1) and (3.2) are not.

0 500 1000 1500 2000 2500

10−2.5

100.0

102.5

105.0

k

‖r
k
‖

BiLQR
TriLQR

Minres-qlp

0 500 1000 1500 2000 2500

10−7.5

10−5.0

10−2.5

100.0

102.5

k

‖e
k
‖

BiLQR
TriLQR

Minres-qlp

Fig. 3.4. Residuals and errors norms of BiLQR, TriLQR and Minres-qlp iterates for on (3.17).

0 500 1000 1500 2000 2500

10−7.5

10−5.0

10−2.5

100.0

102.5

k

‖r
k
‖

BiLQR
TriLQR

Minres-qlp

0 500 1000 1500 2000 2500

10−10.0

10−7.5

10−5.0

10−2.5

100.0

k

‖e
k
‖

BiLQR
TriLQR

Minres-qlp

Fig. 3.5. Residuals and errors norms of BiLQR, TriLQR and Minres-qlp iterates on (3.18).

We use bicubic spline interpolation and 3×3 points Gauss quadrature to computate
estimates of J(u) with and without correction term. With the u? given above,
J? := J(u?) = (π(e + 1))2/(π2 + 1)2. The right plot of Figure 3.3 illustrates the
error in the evaluation of J(u) as a function of h using the naive J(u) ≈ J(uh) and
improved (3.1) approximations.

4. Discussion. BiLQ completes the family of Krylov methods based on the
Lanczos biorthogonalization process, and is a natural companion to BiCG and Qmr.
It is a quasi-minimum error method, and in general, neither the error not the residual
norm are monotonic.

Contrary to the Arnoldi (1951) and the Golub and Kahan (1965) processes, the
Lanczos biorthogonalization and orthogonal trigonalization processes require two initial

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

20 [toc]

vectors. This distinguishing feature makes them readily suited to the simultaneous
solution of primal and adjoint systems. A prime application is the superconvergent
estimation of integral functionals in the context of discretized ODEs and PDEs. In our
experiments, we observed that BiLQR outperforms both TriLQR and Minres-qlp
applied to an augmented system in terms of error and residual norms.

Our Julia implementation of BiLQ, Qmr, BiLQR, TriLQR and Minres-qlp are
available from github.com/JuliaSmoothOptimizers/Krylov.jl and can be applied
in any floating-point arithmetic supported by the language. In our experiments with
adjoint systems, we run both the primal and ajoint solvers until both residuals are
small. A slightly more sophisticated implementation would interrupt the first solver
that converges and only apply the other until it too converges. That is the strategy
applied by Buttari et al. (2019).

Minres applied to (3.3) does not produce monotonic residuals in the individual
primal and adjoint systems. In our experiments, we explicitly computed those residuals
but Herzog and Soodhalter (2017) devised a modification of Minres that allows to
monitor block residuals that could be of use in the context of estimating integral
functionals.

Although the BiLQ error is not monotonic in the Euclidean norm, it is in the
UpU

T
p -norm, which is not iteration dependent, but is unknown until the end of the

biorthogonalization process. The same property holds for the Qmr residual. Exploiting
such properties to obtain useful bounds on the BiLQ and BiCG error in Euclidean
norm that could help devise useful stopping criteria is the subject of ongoing research.

References.
W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue

problem. Q. Appl. Math., 9:17–29, 1951. DOI: 10.1090/qam/42792.
J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical

computing. SIAM Rev., 59(1):65–98, 2017. DOI: 10.1137/141000671.
A. Buttari, D. Orban, D. Ruiz, and D. Titley-Peloquin. USYMLQR: A tridiagonalization

method for symmetric saddle-point systems. SIAM J. Sci. Comput., 2019. To appear.
T. T. Chisholm and D. W. Zingg. A Jacobian-free Newton-Krylov algorithm for

compressible turbulent fluid flows. J. Comput. Phys., 228:3490–3507, 2009. DOI:
10.1016/j.jcp.2009.02.004.

S. T. Choi, C. C. Paige, and M. A. Saunders. MINRES-QLP: A Krylov subspace method for
indefinite or singular symmetric systems. SIAM J. Sci. Comput., 33(4):1810–1836, 2011.

T. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math.
Software, 38(1):1–25, 2011. DOI: 10.1145/2049662.2049663.

T. A. Davis and E. P. Natarajan. Sparse matrix methods for circuit simulation problems.
In Scientific computing in electrical engineering SCEE 2010. Selected papers based on
the presentations at the 8th conference, Toulouse, France, September 2010, pages 3–14.
Springer, Berlin, 2012.

R. Estrin, D. Orban, and M. A. Saunders. LSLQ: An iterative method for least-squares with
an error minimization property. SIAM J. Matrix Anal. Appl., 40(1):254–275, 2019a. DOI:
10.1137/17M1113552.

R. Estrin, D. Orban, and M. A. Saunders. LNLQ: An iterative method for least-norm problems
with an error minimization property. SIAM J. Matrix Anal. Appl., 40(3):1102–1124, 2019b.
DOI: 10.1137/18M1194948.

R. Estrin, D. Orban, and M. A. Saunders. Euclidean-norm error bounds for SYMMLQ and
CG. SIAM J. Matrix Anal. Appl., 40(1):235–253, 2019c. DOI: 10.1137/16M1094816.

R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical analysis, pages
73–89. Springer, 1976. DOI: 10.1007/BFb0080116.

R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-Hermitian
linear systems. Numer. Math., 60(1):315–339, 1991. DOI: 10.1007/BF01385726.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

https://github.com/JuliaSmoothOptimizers/Krylov.jl
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1016/j.jcp.2009.02.004
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1137/17M1113552
http://dx.doi.org/10.1137/18M1194948
http://dx.doi.org/10.1137/16M1094816
http://dx.doi.org/10.1007/BFb0080116
http://dx.doi.org/10.1007/BF01385726

[toc] 21

G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
SIAM J. Numer. Anal., 2(2):205–224, 1965. DOI: 10.1137/0702016.

G. H. Golub, M. Stoll, and A. Wathen. Approximation of the scattering amplitude and linear
systems. ETNA, 31(2008):178–203, 2008.

R. Herzog and K. Soodhalter. A modified implementation of MINRES to monitor residual
subvector norms for block systems. SIAM J. Sci. Comput., 39(6):A2645–A2663, 2017. DOI:
10.1137/16M1093021.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.
Res. Natl. Bur. Stand., 49(6):409–436, 1952. DOI: 10.6028/jres.049.044.

M. Lai. A note on finite difference discretizations for Poisson equation on a disk. Numer.
Meth. Part. D. E., 17(3):199–203, 2001. DOI: 10.1002/num.1.

C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. J. Res. Natl. Bur. Stand., 45:225–280, 1950. DOI:
10.6028/jres.045.026.

J. Lu and D. Darmofal. A quasi-minimal residual method for simultaneous primal-dual
solutions and superconvergent functional estimates. SIAM J. Sci. Comput., 24(5):1693–
1709, 2003. DOI: 10.1137/S1064827501390625.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12(4):617–629, 1975. DOI: 10.1137/0712047.

C. C. Paige, I. Panayotov, and J.-P. M. Zemke. An augmented analysis of the perturbed
two-sided Lanczos tridiagonalization process. Linear Algebra and its Applications, 447:
119–132, 2014. DOI: 10.1016/j.laa.2013.05.009.

B. N. Parlett, D. R. Taylor, and Z. A. Liu. A look-ahead Lanczos algorithm for unsymmetric
matrices. Math. Comp., 44:105–124, 1985.

N. A. Pierce and M. B. Giles. Adjoint recovery of superconvergent functionals from PDE
approximations. SIAM Rev., 42(2):247–264, 2000. DOI: 10.2307/2653107.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods
for unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927–940, 1988. DOI:
10.1137/0725052.

P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J.
Sci. and Statist. Comput., 10(1):36–52, 1989. DOI: 10.1137/0910004.

H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. SIAM J. Sci. and Statist. Comput., 13(2):
631–644, 1992. DOI: 10.1137/0913035.

R. Weiss. Error-minimizing Krylov subspace methods. SIAM J. Sci. Comput., 15:511–527,
1994. DOI: 10.1137/0915034.

Commit 497000d by Alexis Montoison on 2019-10-03 11:42:35 -0400

http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1137/16M1093021
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.1002/num.1
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.1137/S1064827501390625
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1016/j.laa.2013.05.009
http://dx.doi.org/10.2307/2653107
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1137/0910004
http://dx.doi.org/10.1137/0913035
http://dx.doi.org/10.1137/0915034

	1 Introduction
	2 Derivation of BiLQ
	2.1 The Lanczos Biorthogonalization Process
	2.2 Definition of BiLQ
	2.3 An LQ factorization
	2.4 Definition and update of the BiLQ and BiCG iterates
	2.5 Residuals estimates
	2.6 Properties
	2.7 Numerical experiments
	2.8 Discussion

	3 Adjoint systems
	3.1 Description of BiLQR
	3.2 Description of TriLQR
	3.3 Applications

	4 Discussion

