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LYAPUNOV DENSITY CRITERIA FOR TIME-VARYING AND
PERIODICALLY TIME-VARYING NONLINEAR SYSTEMS WITH

CONVERSE RESULTS\ast 

IZUMI MASUBUCHI\dagger AND TAKAHIRO KIKUCHI\ddagger 

Abstract. This paper presents criteria for the convergence of trajectories of time-varying nonlin-
ear systems in terms of Lyapunov densities. The results are provided without assuming local stability
and forward completeness of trajectories. As well as general time-varying nonlinear systems, period-
ically time-varying systems are also considered in this paper, where a weaker criterion is proposed
for periodically time-varying systems. Also the existence of Lyapunov densities is proved for general
and periodic time-varying nonlinear systems under the asymptotic stability of the equilibrium.

Key words. nonlinear time-varying systems, periodically time-varying systems, stability, almost
attraction, Lyapunov density
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1. Introduction. Stability analysis is one of the most fundamental and im-
portant issues in analysis of nonlinear systems. The most fruitful and widely used
approach to stability analysis of nonlinear systems is Lyapunov methods. Plenty of
useful results have been provided with various applications to control problems. (See,
e.g., [6].) On the other hand, a different methodology of Lyapunov densities has re-
ceived a considerable amount of attention in the last two decades. For time-invariant
nonlinear systems,

\.x = f(x), x \in \BbbR n,(1.1)

the method of Lyapunov densities [17] guarantees the almost attraction of an equi-
librium x = 0, namely the convergence of trajectories of time-invariant nonlinear
system (1.1) starting from almost all initial states to the origin. The convergence
of trajectories is deduced via a measure on the state space of system (1.1) defined
with a Lyapunov density, where the measure is monotonically increasing along the
trajectories of nonlinear system (1.1).

An advantage of Lyapunov densities is that a convex formulation of nonlinear state
feedback synthesis is available via Lyapunov densities via sum-of-squares programs
[13]. Various results based on Lyapunov densities have been presented for input-to-
output stability [1], positive invariance of trajectories [7], converse results [10, 7, 2],
the convergence to invariant sets [18, 11, 3, 5], finite-time stability [5, 4], and so
forth. Also a stability criterion of stochastic differential equations is provided in [20]
and analysis of coupled systems is shown in [15]. Results on Lyapunov densities for
discrete-time nonlinear systems can be found in [19], where continuous-time systems
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224 IZUMI MASUBUCHI AND TAKAHIRO KIKUCHI

are considered via approximation. Nonlinear systems with a class of vector fields
that can have nondifferentiable points are considered in [9]. Abstract extensions with
Perron--Frobenius transfer operators [16, 14] and monotone measures for abstract
dynamical systems [3] have been studied based on Lyapunov densities. In [21], a
combined application of Lyapunov functions and Lyapunov densities is proposed for
stability analysis of a rotation motion.

In the original work of Rantzer [17], the almost attraction of nonlinear time-
invariant system (1.1) is considered, where a result is provided for instability of non-
linear time-varying systems. In [12], assuming the local stability of the equilibrium,
a condition for the almost attraction of nonlinear time-varying systems is proposed
in terms of Lyapunov densities that depend on both time and state. Systems with
external inputs are considered in [1], where the local stability is also assumed. The
existence of Lyapunov densities considered in [12] is investigated in [2].

In this paper, we focus on nonlinear time-varying systems,

\.x = f(t, x), t \in \BbbR , x \in \BbbR n,(1.2)

and provide criteria on Lyapunov densities under which almost all of the trajectories
of (1.2) converge to equilibrium x = 0, without assuming the local stability. We
also do not assume the forward completeness of trajectories of (1.2) but the proposed
criterion guarantees the existence of almost all trajectories for all t greater than the
initial time. The proposed condition is similar to that of [12] but the integrability
conditions of Lyapunov densities are different. More specifically, our results involve
the integrability of Lyapunov densities on the product space of the state space and the
time axis. Then we prove that, under the existence of a Lyapunov density satisfying
the proposed criterion, the set of initial data for which the corresponding trajectory
does not converge to the equilibrium has zero Lebesgue measure in \BbbR n+1.

Moreover, we consider nonlinear systems (1.2) which are periodic in time, namely
f satisfies, for some constant T > 0,

f(t+ T, x) = f(t, x) \forall (t, x) \in \BbbR \times \BbbR n.

We show that a weaker criterion in terms of Lyapunov densities guarantees the almost
attraction to the origin, where the integrability condition is posed on integrals in \BbbR n.
In these results on time-varying and periodically time-varying nonlinear systems, the
proposed criteria on Lyapunov densities also guarantee the positive invariance of a
subset of the product space of the state space and the time axis. The criteria apply
to global almost attraction if the subset is chosen as the whole product space. Notice
that the conference version of this paper [8] only handles the global attraction of
nonlinear time-varying system (1.2), where periodically time-varying systems are not
considered.

We also prove the existence of Lyapunov densities that satisfy each of the criteria
proposed in this paper under the asymptotic stability of the equilibrium of the sys-
tem. Unlike previous converse results [10, 7, 2], exponential stability or exponential
dichotomy at the equilibrium is not required. The existence of a Lyapunov density is
proved for both general and periodically time-varying systems.

The rest of the paper is organized as follows. In section 2, we provide a criterion
for general time-varying system (1.2) in terms of Lyapunov densities, while section
3 shows a criterion for periodically time-varying systems. Section 4 is devoted for
the existence proof of Lyapunov densities, where we begin with the local existence of
Lyapunov densities and then extend the results to the existence proof for the region
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of attraction and general positively invariant sets. We conclude the paper in section
5.

Notation. Let \BbbR , \BbbZ , \BbbN 0, and \BbbN be the set of all real numbers, integers, non-
negative integers, and natural numbers, respectively, Denote by \BbbR n the set of n-
dimensional real vectors and by 0n the zero-vector of \BbbR n. For set S, Sc, S\circ , Scl,
and \partial S stand for the complement, the interior, the closure, and the boundary of S,
respectively. Let \| \cdot \| and \| \cdot \| s denote the Euclidean norm of \BbbR n and the spectral
norm of matrices, respectively. For a vector x, xi stands for the ith element. For
an n-dimensional real-vector-valued function h(x) = (h1(x), h2(x), . . . , hn(x)) of the
variable of n-dimensional real vector x = (x1, x2, . . . , xn) \in \BbbR n, define [\nabla \cdot h](x) =\sum n

i=1
\partial hi(x)
\partial xi

. If f is an (m + n)-dimensional real-vector-valued function of variable

x = (y, z) = (y1, y2, . . . , ym, z1, z2, . . . , zn) \in \BbbR m+n, we define [\nabla y \cdot f ](x) =
\sum m

i=1
\partial fi(x)
\partial yi

and [\nabla z \cdot f ](x) =
\sum n

i=1
\partial fm+i(x)

\partial zi
. We mean by Ck(D,\BbbR m) the set of k-times continu-

ously differentiable functions from D to \BbbR m, where C(D,\BbbR m) is the set of continuous
functions. Notation of differentials as fx is used to represent \partial f

\partial x . For a square matrix
M , let | M | denote the determinant of M . We say that proposition P (x) with x \in \BbbR n

is true for almost all x \in D \subset \BbbR n if the Lebesgue measure of the subset of x \in D for
which P (x) is false is zero. Let Bn(r;x) be the open ball of \BbbR n with center x \in \BbbR n

and radius r.

2. Lyapunov density criterion for general time-varying systems. Let
n \in \BbbN and consider the following time-varying nonlinear system:

\.x = f(t, x), t \in \BbbR , x \in \BbbR n,(2.1)

where f \in C1(\BbbR \times (\BbbR n \setminus \{ 0n\} ),\BbbR n). We assume that f(t, 0n) = 0n and f is locally
Lipschitz continuous in x at (t, 0n) for all t \in \BbbR , i.e., for each t \in \BbbR , there exists a > 0
and L > 0 such that \| f(\tau , x1) - f(\tau , x2)\| < L\| x1 - x2\| holds for all \tau \in (t - a, t+a) and
for all x1, x2 \in Bn(a; 0). Denote by \varphi (t; t0, x0) the solution to system (2.1) satisfying
initial condition x(t0) = x0. For each (t0, x0), the maximal interval of t in which
\varphi (t; t0, x0) exists is represented as (T - \infty (t0, x0), T+\infty (t0, x0)), where T - \infty (t0, x0) \in 
[ - \infty , t0) and T+\infty (t0, x0) \in (t0,\infty ]. Let \BbbT = \BbbR or \BbbT = \{ t \in \BbbR : t \geq t0\} for a given
t0 \in \BbbR and consider family \{ S(t)\} t\in \BbbT , S(t) \subset \BbbR n. A family \{ S(t)\} t\in \BbbT is said to be
positively invariant of system (2.1) if \varphi (t; t0, x0) \in S(t) for all t \in [t0, T+\infty (t0;x0)) for
all t0 \geq t0 and x0 \in S(t0).

Assumption 2.1. Family \{ S(t)\} t\in \BbbT fulfills the following conditions: (i) There ex-
ists a continuous function b : [t0,\infty )\times \BbbR n \rightarrow \BbbR n such that

S(t) = \{ x \in \BbbR n : b(t, x) > 0\} \forall t \in [t0,\infty )(2.2)

with sup(t,x)\in \BbbR n+1 b(t, x) < \infty . (ii) For each t \in \BbbT , S(t) is a connected open set of \BbbR n

and contains 0n.

Define \widehat S = \{ (t, x) \in \BbbR n+1 : t \in \BbbT , x \in S(t)\} .(2.3)

If \{ S(t)\} t\in \BbbT is a positively invariant family, \widehat S is the set of positively invariant initial

data (t, x). For convenience, define also \partial + \widehat S = \{ (t, x) \in \BbbR n+1 : t > t0, x \in \partial S(t)\} .
Let \widehat E = \BbbR \times \{ 0n\} and \widehat Mr = \{ (t, x) \in \BbbR \times \BbbR n : t \geq  - 1/r, \| x\| \geq r\} , where r > 0. Note

that
\bigcup 

r>0
\widehat Mr = \widehat Ec. Below we state a criterion of Lyapunov densities for general

time-varying systems.
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Theorem 2.2. Let \{ S(t)\} t\in \BbbT be a family of subsets S(t) \subset \BbbR n satisfying Assump-

tion 2.1 and define \widehat S as in (2.3). Suppose that there exists a function \rho \in C1(\widehat S\setminus \widehat E,\BbbR )
that satisfies the following conditions: (i) \rho (t, x) > 0 for all (t, x) \in \widehat S\circ \setminus \widehat E. (ii) For

every (tb, xb) \in \partial + \widehat S, it holds that \rho (t, x) \rightarrow 0 as (t, x) \rightarrow (tb, xb) with (t, x) \in \widehat S.
(iii) It holds that

[\rho t +\nabla x \cdot (f\rho )](t, x) > 0

for almost all (t, x) \in \widehat S \setminus \widehat E. Then, for all (t0, x0) \in \widehat S, \varphi (t; t0, x0) belongs to S(t) for
all t \in [t0, T+\infty (t0, x0)). Next, in addition to (i)--(iii), suppose that (iv) the following
integral is finite for all r > 0:

I(\widehat S, r) = \int \widehat S\cap \widehat Mr

1 + \| f(t, x)\| 
1 + \| x\| 

\rho (t, x)dx dt.(2.4)

Then, for almost all (t0, x0) \in \widehat S, solution \varphi (t; t0, x0) is defined and belongs to S(t)
for all t \in [t0,\infty ) and limt\rightarrow \infty \varphi (t; t0, x0) = 0n.

Proof. (I) First, we prove the positive invariance of \{ S(t)\} t\in \BbbT . Let (t0, x0) \in \widehat S\setminus \widehat E.
From Assumption 2.1, there exists a ta > t0 \in \BbbT such that \varphi (t; t0, x0) \in S(t) for all
t \in [t0, ta]. Let xa = \varphi (ta; t0, x0) and assume that there exists a tb \in (ta, T+\infty (t0, x0))
for which \varphi (t; t0, x0) \in S(t) for all t \in [ta, tb) and xb := \varphi (tb; t0, x0) \in \partial S(tb). Define

\~\rho (t) = \rho (t, \varphi (t; ta, xa))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (t; ta, xa)

\partial xa

\bigm| \bigm| \bigm| \bigm| .
Then conditions (i) and (ii) imply that \~\rho (ta) = \rho (ta, xa) > 0 and limt\rightarrow tb - 0 \~\rho (tb) = 0,
respectively. From condition (iii),

d\~\rho (t)

dt
= [\rho t +\nabla x \cdot (f\rho )](t, \varphi (t; ta, xa))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (t; ta, xa)

\partial xa

\bigm| \bigm| \bigm| \bigm| \geq 0 \forall t \in [ta, tb),

i.e., \~\rho (t) is monotonically increasing for t \in [ta, tb). Hence limt\rightarrow tb - 0 \~\rho (t) can never be
zero, which is a contradiction. Therefore \varphi (t; t0, x0) \in S(t) for all t \in [t0, T+\infty (t0, x0)).

(II) To prove the convergence of trajectories, we utilize an augmented system
defined as follows. Let

a(t, x) =
1 + \| x\| 

1 + \| f(t, x)\| 
,

which is strictly positive on \BbbR n+1, and consider the following system:

ds

d\tau 
= a(s, y),

dy

d\tau 
= a(s, y)f(s, y), \tau \in \BbbR .(2.5)

Let (s(0), y(0)) = (t0, x0) and let t = s(\tau ). This is bijective since dt
d\tau = ds(\tau )

d\tau =
a(s(\tau ), y(\tau )) > 0. Then, setting x(t) = y(\tau ) with t = s(\tau ), we have dx(t)/dt =
f(t, x(t)) and x(t0) = x0 and hence x(t) = \varphi (t; t0, x0). Define

\xi = (s, y), F (\xi ) = (a(\xi ), a(\xi )f(\xi )) = (a(s, y), a(s, y)f(s, y)), \xi 0 = (t0, x0),

with which augmented system (2.5) is represented as

d\xi 

d\tau 
= F (\xi ), \xi (0) = \xi 0,(2.6)
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where F \in C1(\BbbR n+1 \setminus \widehat E,\BbbR n+1). Denote by \Phi (\tau ; \xi 0) the solution \xi (\tau ) of (2.6) for
initial condition \xi (0) = \xi 0. We also write

\Phi (\tau ; \xi 0) = (\Phi s(\tau ; \xi 0), \Phi 
y(\tau ; \xi 0)), \Phi s(\tau ; \xi 0) \in \BbbR , \Phi y(\tau ; \xi 0) \in \BbbR n.

It holds for all \xi = (s, y) \in \BbbR n+1 that

\| F (\xi )\| = a(s, y)
\sqrt{} 
1 + \| f(s, y)\| 2 \leq a(s, y)(1 + \| f(s, y)\| ) = 1 + \| y\| ,

which implies that solution \Phi (\tau ; \xi 0) is defined for all \tau \in \BbbR for all \xi 0 \in \BbbR n+1. In fact,
it holds from the Gronwall--Bellman inequality [6] that\Biggl\{ 

\| \Phi (\tau ; \xi ) - \xi \| \leq (1 + \| \xi \| )(e| \tau |  - 1),

\| \Phi y(\tau ; \xi ) - y\| \leq (1 + \| y\| )(e| \tau |  - 1)
(2.7)

for all \xi = (s, y) \in \BbbR n+1. We also note that \Phi s(\tau ; \xi ) \geq s for all \tau \geq 0.
If \Phi y(\tau ; \xi 0) \rightarrow 0n as \tau \rightarrow \infty for \xi 0 = (t0, y0), we have \varphi (t; t0, x0) \rightarrow 0n as

t \rightarrow T+\infty (t0, x0). Then the Lipschitz continuity of f(t, x) at (t, 0n), t \in \BbbR , guarantees
the uniqueness of the solution corresponding to the initial condition x(t0) = 0n, t0 \in \BbbT .
Hence T+\infty (t0, x0) = \infty and limt\rightarrow \infty \varphi (t; t0, x0) = 0n.

Next, define a nonnegative function R \in C1(\widehat S \setminus \widehat E,\BbbR ) as

R(\xi ) = R(s, y) =
\rho (s, y)

a(s, y)
=

1 + \| f(s, y)\| 
1 + \| y\| 

\rho (s, y).(2.8)

Then conditions (i)--(iv) are stated with R(\xi ) as follows, respectively: (i\prime ) R(\xi ) > 0 for

all \xi \in \widehat S\circ \setminus \widehat E. (ii\prime ) For every \xi b \in \partial + \widehat S, it holds that R(\xi ) \rightarrow 0 as \xi \rightarrow \xi b with \xi \in \widehat S.
(iii\prime ) [\nabla \xi \cdot (FR)](\xi ) > 0 for almost all \xi \in \widehat S \setminus \widehat E. (iv\prime ) Integral I(\widehat S, r) = \int \widehat S\cap \widehat Mr

R(\xi )d\xi 

is finite for all r > 0. We have seen the positive invariance of \widehat S for system (2.6) as

\Phi (\tau ; \xi ) \in \widehat S for all \xi \in \widehat S and \tau \geq 0.
(III) To proceed to the proof of the convergence, we refer to the following lemma,

which is one of the key results in the original work of Rantzer [17].

Lemma 2.3 (Rantzer [17, Theorem 2]). Let (X,\scrA , \mu ) be a measure space and
consider a measurable set P \subset X and a mapping \scrT : X \rightarrow X. Let Z be the set of
x \in P for which \scrT k(x) \in P for infinitely many natural numbers k. Suppose that
\mu (P ) < \infty and that \mu (\scrT  - 1U) \leq \mu (U) holds for all measurable sets U \subset X. Then
\mu (\scrT  - 1Z) = \mu (Z).

Consider a measure space (\widehat S,\scrB (\widehat S), \mu ) with
\mu (U) =

\int 
U

R(\xi )d\xi , U \in \scrB (\widehat S),(2.9)

where \scrB (\widehat S) stands for the Borel family of \widehat S \subset \BbbR n+1. From (iv\prime ), \mu (\widehat S \cap \widehat Mr) is finite.

Let \sigma > 0 and define a mapping \scrT \sigma : \widehat S \rightarrow \widehat S as \scrT \sigma (\xi ) = \Phi (\sigma ; \xi ), \xi \in \widehat S, where the

positive invariance of \widehat S justifies this definition. For U \subset \widehat S, \scrT  - 1
\sigma U = \{ \xi \in \widehat S : \scrT \sigma (\xi ) \in 

U\} satisfies \scrT \sigma (\scrT  - 1
\sigma (U)) \subset U . Therefore, for U \in \scrB (\widehat S),

\mu (U)  - \mu (\scrT  - 1
\sigma (U)) \geq \mu (\scrT \sigma (\scrT  - 1

\sigma (U))) - \mu (\scrT  - 1
\sigma (U))(2.10)

=

\int \sigma 

0

\int 
\Phi (\tau ;\scrT  - 1

\sigma (U))

[\nabla \xi \cdot (FR)](\xi )d\xi d\tau 

=

\int \sigma 

0

\int 
\scrT  - 1
\sigma (U)

[\nabla \xi \cdot (FR)](\Phi (\tau ; \eta ))

\bigm| \bigm| \bigm| \bigm| \partial \Phi (\tau ; \eta )\partial \eta 

\bigm| \bigm| \bigm| \bigm| d\eta d\tau \geq 0,
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where the last inequality holds from \Phi (\tau ; \scrT  - 1
\sigma (U)) \subset \widehat S and condition (iii\prime ). Let Zr,\sigma 

be the set of \xi \in \widehat S\cap \widehat Mr such that \scrT k
\sigma \xi \in \widehat S\cap \widehat Mr for infinitely many natural numbers k.

Then \mu (\scrT  - 1
\sigma Zr,\sigma ) = \mu (Zr,\sigma ) from Lemma 2.3. Therefore, from (2.10) with U = Zr,\sigma ,

we see that \scrT  - 1
\sigma (Zr,\sigma ) is a Lebesgue zero set of \BbbR n+1 for any r > 0 and \sigma > 0 since

[\nabla \xi \cdot (FR)](\xi ) > 0 for almost all \xi \in \widehat S \setminus \widehat E from condition (iii). Define

\widehat Z =

\left(  \bigcup 
p,q\in \BbbN 

\scrT  - 1
1/p(Z1/p, 1/q)

\right)  \cup \widehat E(2.11)

=

\biggl\{ 
\xi \in \widehat S : \exists p, q \in \BbbN \Phi (1/q; \xi ) \in \widehat S \cap \widehat M1/p and\biggl[ 

\forall k \in \BbbN \exists l \geq k, \Phi ((l + 1)/q; \xi ) \in \widehat S \cap \widehat M1/p

\biggr] \biggr\} 
\cup \widehat E,

which is also a Lebesgue zero set. Taking into account that \Phi s(\tau ; \xi ) \geq s \geq  - p for all

\tau \geq 0 and \xi \in \widehat S \cap \widehat M1/p, we see from (2.11) that, for all \xi \in \widehat S \setminus \widehat Z and for all p, q \in \BbbN ,

\| \Phi y(1/q; \xi )\| <
1

p
or

\biggl[ 
\exists Np,q \in \BbbN \forall k \geq Np,q \| \Phi y(k/q; \xi )\| <

1

p

\biggr] 
.(2.12)

Now we are ready to complete the proof of the convergence. Let \xi = (s, y) \in \widehat S \setminus \widehat Z
and \varepsilon \in (0, 1) be arbitrary. Then y \not = 0 and there exist p, q \in \BbbN such that

1

p
< min

\biggl\{ 
\| y\| 
2

,
\varepsilon 

4

\biggr\} 
, e1/q  - 1 < min

\biggl\{ 
\| y\| 

2(1 + \| y\| )
,
\varepsilon 

4

\biggr\} 
(2.13)

and p >  - s. Then \xi \in \widehat M1/p. First, from (2.7) and (2.13),

\| \Phi y(1/q; \xi )\| \geq \| y\|  - \| \Phi y(1/q; \xi ) - y\| 

\geq \| y\|  - (1 + \| y\| )(e1/q  - 1) >
\| y\| 
2

>
1

p
,

which implies that the latter statement of (2.12) holds. Let k \geq Np,q and \tau \in 
[k/q, (k + 1)/q). Then, from (2.7), (2.13), and \varepsilon \in (0, 1),

\| \Phi y(\tau ; \xi )\| \leq \| \Phi y(k/q; \xi )\| + \| \Phi y(\tau ; \xi ) - \Phi y(k/q; \xi )\| 
\leq \| \Phi y(k/q; \xi )\| + (1 + \| \Phi y(k/q; \xi )\| )(e\tau  - k/q  - 1)

<
1

p
+

\biggl( 
1 +

1

p

\biggr) 
(e1/q  - 1) <

\varepsilon 

4
+
\Bigl( 
1 +

\varepsilon 

4

\Bigr) \varepsilon 

4
< \varepsilon .

Since k \geq Np,q and \tau \in [k/q, (k + 1)/q) are arbitrary, we see that, for almost all

\xi \in \widehat S \setminus \widehat E and for any \varepsilon \in (0, 1), \| \Phi y(\tau ; \xi )\| < \varepsilon holds for all \tau \geq \tau \varepsilon := Np,q/q. Hence
lim\tau \rightarrow \infty \Phi y(\tau ; \xi ) = 0n, which is interpreted as limt\rightarrow \infty \varphi (t; t0, x0) = 0n for almost all

(t0, x0) \in \widehat S \setminus \widehat E. This completes the proof.

Corollary 2.4. Let S(t) = \BbbR n for all t \in \BbbT in Theorem 2.2. Then the same
results are drawn if \rho (t, x) \geq 0 for all t \in \BbbT and x \not = 0 and conditions (iii) and (iv)
in Theorem 2.2 hold.

Proof. The positive invariance of \{ S(t)\} t\in \BbbT is trivial. It is easy to see that the
convergence proof of Theorem 2.2 is valid even with nonstrict positivity of \rho (t, x).
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Example 2.5. Consider a system \.x =  - (sin t + 1)x3, whose trajectories converge
to 0 as t \rightarrow \infty for all initial data (t0, x0). For this system,

\rho (t, x) =
1

x6
exp

\biggl( 
1

x2
 - t+ cos t

\biggr) 
is a Lyapunov density satisfying Corollary 2.4 for any t0 \in \BbbR with S(t) = \BbbR , t \in \BbbT ,
where \BbbT = \BbbR . In fact, we can easily verify

[\rho t +\nabla x \cdot (f\rho )](t, x) = (1 + sin t)(1 + 3x2)

x6
exp

\biggl( 
1

x2
 - t+ cos t

\biggr) 
,

I(\widehat S, r) \leq 2 exp

\biggl( 
1

r2
+ 1

\biggr) \biggl( 
1

7r7
+

1

2r4

\biggr) 
e

1
r < \infty \forall r > 0.

Next, let S(t) = ( - c, c), c > 0 for t \in \BbbT = \BbbR , which is positively invariant of
the above system for all t. We have a Lyapunov density that guarantees the positive
invariance of S(t) = ( - c, c) and the convergence of trajectories within this positively
invariant family as

\rho (t, x) =
c2  - x2

x6
exp

\biggl( 
1

x2
 - t+ cos t

\biggr) 
, x \in ( - c, c),

for which

[\rho t +\nabla x \cdot (f\rho )](t, x)

=
(1 + sin t)\{ (c2  - x2)(1 + x2) + 2c2x2\} 

x6
exp

\biggl( 
1

x2
 - t+ cos t

\biggr) 
and (i)--(iv) of Theorem 2.2 are satisfied.

Example 2.6. Consider the following system with unknown function h \in 
C1(\BbbR ,\BbbR ): \biggl[ 

\.x1

\.x2

\biggr] 
=

\biggl[ 
 - 2x1 + x2

1  - x2
2

 - 2h(t)x2 + 2x1x2

\biggr] 
.

This system has been investigated in [17] with h(t) fixed as a constant. Here the vector
field depends on time t. We can verify that Lyapunov density \rho (t, x) = e - \alpha t/(x2

1+x2
2)

2

satisfies the assumptions of Corollary 2.4 provided that h(t) \in [h, h] for all t \in \BbbR ,
where 1/3 < h < h < 3 and \alpha > 0 is chosen to be small enough so that [\rho t + \nabla x \cdot 
(f\rho )](t, x) shown below is positive for almost all (t, x) \in \BbbR \times \BbbR 2:

[\rho t +\nabla x \cdot (f\rho )](t, x) = e - \alpha t\{ (6 - 2h(t) - \alpha )x2
1 + (6h(t) - 2 - \alpha )x2

2\} 
(x2

1 + x2
2)

2
.

Then Corollary 2.4 says that, for almost all initial data (t0, x0) \in \BbbR \times \BbbR 2, the trajectory
\varphi (t; t0, x0) exists and converges to the origin as t \rightarrow \infty , with arbitrary C1 function
h(t) with h(t) \in [h, h].

In [18], a condition of Lyapunov densities is proposed in Theorem 1 therein for
the convergence of trajectories of time-invariant systems to a given invariant set. If
we apply the conditions of Theorem 1 in [18] to the former instance in Example 2.5,

\rho (t, x) has to be integrable on \widehat Ar = \BbbR \times (( - \infty , - r] \cup [r,\infty )) for all r > 0, while

Corollary 2.4 requires the integrability on \widehat Mr = [ - 1/r,\infty )\times (( - \infty , - r] \cup [r,\infty )) for

D
ow

nl
oa

de
d 

07
/1

9/
22

 to
 1

33
.3

0.
52

.2
05

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

230 IZUMI MASUBUCHI AND TAKAHIRO KIKUCHI

all r > 0, which is a proper subset of \widehat Ar. Theorem 2.2 also guarantees the positive
invariance when S(t) \not = \BbbR n for some t \in \BbbT as the latter instance in Example 2.5. The
proof of the positive invariance and inequality (2.10) is a generalization of that of [8]
for time-varying systems.

In [12], a similar criterion is proposed for time-varying systems with an integra-
bility condition of \rho (t, x) in x for each t. However, the integrability condition (iv) in
(t, x) of Theorem 2.2 is crucial, as is seen in the following example.

Example 2.7. Consider a system \.x =  - e - tx [8]. Let \rho (t, x) = 1/x2 and S(t) = \BbbR .
Then \rho (t, x) > 0 and [\rho t +\nabla x \cdot (f\rho )](t, x) = e - t/x2 > 0 for all x \not = 0. However, the
integrability condition (iv) does not hold, while \rho (t, x) is integrable on \{ x \in \BbbR : | x| \geq 
r\} for each r > 0 and t. In fact, \varphi (t; t0, x0) = exp(e - t0  - e - t)x0 for this system and
hence the origin is stable but trajectories do not converge to 0 if x0 \not = 0.

3. Lyapunov density criterion for periodically time-varying systems.
In this section, we consider periodically time-varying systems, namely systems (2.1)
whose vector field satisfies

f(t+ T, x) = f(t, x) \forall (t, x) \in \BbbR \times \BbbR n(3.1)

for some T > 0. Then it holds that

\varphi (\tau + T ; t+ T, x) = \varphi (\tau ; t, x) \forall \tau \geq t \forall (t, x) \in \BbbR \times \BbbR n.

Accordingly we consider positive invariant families \{ S(t)\} t\in \BbbR periodic in t.

Assumption 3.1. Family \{ S(t)\} t\in \BbbR satisfies (2.2) in Assumption 2.1 for \BbbT = \BbbR 
and it holds that S(t+ T ) = S(t) for all t \in \BbbR .

Let \widehat Er = \BbbR \times Bn(r; 0n). Below we provide a criterion of positive invariance and
convergence in terms of Lyapunov densities for periodically time-varying system (2.1).
Define the following sets:\widehat S = \{ (t, x) : t \in \BbbR , x \in S(t)\} , \widehat ST = \{ (t, x) : t \in [0, T ), x \in S(t)\} .(3.2)

Theorem 3.2. Suppose that system (2.1) is periodically time-varying with period

T and family \{ S(t)\} t\in \BbbR satisfies Assumption 3.1. Let function \rho \in C1(\widehat S \setminus \widehat E,\BbbR ) be
periodic as

\rho (t+ T, x) = \rho (t, x) \forall (t, x) \in \widehat S \setminus \widehat E
and satisfy the following conditions: (i) \rho (t, x) > 0 for all (t, x) \in \widehat ST \setminus \widehat E. (ii) For

every (tb, xb) \in \partial + \widehat S, it holds that \rho (t, x) \rightarrow 0 as (t, x) \rightarrow (tb, xb) with (t, x) \in \widehat S.
(iii) [\rho t +\nabla x \cdot (f\rho )](t, x) > 0 for almost all (t, x) \in \widehat ST \setminus \widehat E. Then, for all (t0, x0) \in \widehat S,
\varphi (t; t0, x0) \in S(t) for all t \in [t0, T+\infty (t0, x0)). Moreover, if (iv) for all t \in [0, T ) and
r > 0, \rho (t, x)(1 + \| f(t, x)\| )/(1 + \| x\| ) is integrable on \{ x \in S(t) : \| x\| \geq r\} , then,
for almost all (t0, x0) \in \widehat S, solution \varphi (t; t0, x0) is defined for t \in [t0,\infty ), satisfies
\varphi (t; t0, x0) \in S(t) for all t \in [t0,\infty ), and limt\rightarrow \infty \varphi (t; t0, x0) = 0.

Proof. (I) Conditions (i)--(iii) of Theorem 3.2 imply conditions (i)--(iii) of Theorem
2.2, respectively, for arbitrary t0 \in \BbbR . Hence the positive invariance of \{ S(t)\} t\in \BbbR is
obvious.

(II) Consider augmented system (2.6). Apparently F (s + T, y) = F (s, y) holds
for all (s, y) \in \BbbR \times \BbbR n and solutions \Phi (\tau ; \xi 0) of system (2.6) satisfy

\Phi (\tau ; \xi 0 + (T, 0n)) = \Phi (\tau ; \xi 0) + (T, 0n) \forall \tau \in \BbbR \forall \xi 0 \in \BbbR n+1.(3.3)
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Set R \in C1(\widehat S \setminus \widehat E) as in (2.8). Then R(\xi + (T, 0n)) = R(\xi ) for all \xi \in \widehat S \setminus \widehat E.
Conditions (i\prime )--(iii\prime ) in the proof of Theorem 2.2 are fulfilled for any t0 \in \BbbR from
conditions (i)--(iii) of this theorem, respectively.

To prove the convergence, first, let \widehat XT = [0, T ) \times \BbbR n and \sigma \not = 0 and define a

mapping \scrT \sigma : \widehat XT \rightarrow \widehat XT as

\scrT \sigma (\xi ) = \Pi T\Phi (\sigma ; \xi ),

where \Pi T : \BbbR n+1 \rightarrow \widehat XT is given by

\Pi T (s, y) = (s - kT, y), s \in [kT, (k + 1)T ), k \in \BbbZ .

Let U \subset \widehat XT and define

Uk = \{ (s, y) \in \Phi (\sigma ;U) : s \in [kT, (k + 1)T )\} , k \in \BbbZ .

Then \Phi (\sigma ;U) is decomposed as

\Phi (\sigma ;U) =

\infty \bigcup 
k= - \infty 

Uk, Uk \cap Ul = \emptyset , k \not = l,

where we notice that Uk = \emptyset for all k < 0 if \sigma > 0 and that Uk = \emptyset for all k > 0 if
\sigma < 0. We have

\scrT \sigma (U) = \Pi T\Phi (\sigma ;U) =

\infty \bigcup 
k= - \infty 

\Pi TUk.(3.4)

This is seen as

(s, y) \in \Pi T\Phi (\sigma ;U) \Leftarrow \Rightarrow s \in [0, T ), \exists k \in \BbbZ (s+ kT, y) \in \Phi (\sigma ;U)

\Leftarrow \Rightarrow s \in [0, T ), \exists k \in \BbbZ (s+ kT, y) \in Uk

\Leftarrow \Rightarrow \exists k \in \BbbZ (s, y) \in \Pi TUk.

Moreover, it holds that

\Pi TUk1 \cap \Pi TUk2 = \emptyset , k1 \not = k2.(3.5)

To see this, first notice that Uk can be represented as

Uk = \{ \Phi (\sigma ; \zeta ) : \Phi (\sigma ; \zeta ) - k(T, 0n) \in \widehat XT , \zeta \in U\} .

Let \eta \in Uk. Then there exists a \zeta \in U such that \eta = \Phi (\sigma ; \zeta ) with \eta  - k(T, 0n) \in \widehat XT .
Hence \Pi T \eta = \Phi (\sigma ; \zeta k) - k(T, 0n) = \Phi (\sigma ; \zeta k  - k(T, 0n)). Now assume that there exists

a \xi that belongs to \Pi TUk1 \cap \Pi TUk2 . Then there exist \zeta i = (ui, zi) \in U \subset \widehat XT , i = 1, 2,
such that

\xi = \Phi (\sigma ; \zeta i  - ki(T, 0n)), i = 1, 2,

and hence \zeta 1  - \zeta 2 = (k1  - k2)(T, 0n), i.e.,

u1  - u2 = T (k1  - k2), z1  - z2 = 0.
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This implies that u1 = u2 since u1, u2 \in [0, T ) from \zeta 1, \zeta 2 \in \widehat XT and k1 and k2 are
integers. Hence k1 = k2, which contradicts the assumption k1 \not = k2 and thus (3.5) is
proved.

Consider measure space (\BbbR n+1,\scrB (\BbbR n+1), \mu ), where \mu is an arbitrary measure that

is shift invariant as \mu (U) = \mu (U + (T, 0n)) for U \in \scrB (\BbbR n+1). Suppose that U \subset \widehat XT

is measurable and \mu (U) < \infty . Then

\mu (\Phi (\sigma ;U)) = \mu 

\Biggl( \infty \bigcup 
k= - \infty 

Uk

\Biggr) 
=

\infty \sum 
k= - \infty 

\mu (Uk) =

\infty \sum 
k= - \infty 

\mu (Uk  - k(T, 0n))(3.6)

=

\infty \sum 
k= - \infty 

\mu (\Pi TUk) = \mu 

\Biggl( \infty \bigcup 
k= - \infty 

\Pi TUk

\Biggr) 
= \mu (\Pi T\Phi (\sigma ;U)) = \mu (\scrT \sigma (U)).

(III) Now consider measure space (\widehat ST ,\scrB (\widehat ST ), \mu T ) with

\mu T (U) =

\int 
U

R(\xi )d\xi , U \in \scrB (\widehat ST ).

From condition (iv) and Fubini's theorem, R(\xi ) is integrable on \widehat ST \setminus \widehat Er = \{ (s, y) \in \widehat ST : \| y\| \geq r\} for all r > 0 and hence \mu T (\widehat ST \setminus \widehat Er) < \infty . Let \sigma > 0 and consider

\scrT \sigma = \Pi T\Phi (\sigma ; \cdot ) as a mapping from \widehat ST to \widehat ST , based on the positive invariance of \widehat S
and the definition of \Pi T . Let \widehat Zr,\sigma \subset \widehat ST be the set of \xi \in \widehat ST \setminus \widehat Er \subset \widehat ST such that

\scrT k
\sigma (\xi ) \in \widehat ST \setminus \widehat Er for infinitely many natural numbers k. From Lemma 2.3, it holds

that \mu T (\scrT  - 1
\sigma 
\widehat Zr,\sigma ) = \mu T ( \widehat Zr,\sigma ), where \scrT  - 1

\sigma is defined as \scrT  - 1
\sigma U = \{ \xi \in \widehat ST : \scrT \sigma \xi \in U\} 

for U \subset \widehat ST . Similarly to (2.10), we derive

0 = \mu T ( \widehat Zr,\sigma ) - \mu T (\scrT  - 1
\sigma ( \widehat Zr,\sigma )) \geq \mu T (\scrT \sigma (\scrT  - 1

\sigma ( \widehat Zr,\sigma ))) - \mu T (\scrT  - 1
\sigma ( \widehat Zr,\sigma )).(3.7)

Here we go back to measure space (\BbbR n+1,\scrB (\BbbR n+1), \mu ) with

\mu (U) =

\int 
U\cap \widehat S R(\xi )d\xi , U \in \scrB (\BbbR n+1),

which is shift invariant as \mu (U) = \mu (U + (T, 0n)) and it holds that \mu (U) = \mu T (U)

if U \in \widehat ST . From (3.6), (3.7), and the fact that \scrT  - 1
\sigma ( \widehat Zr,\sigma ) and \scrT \sigma (\scrT  - 1

\sigma ( \widehat Zr,\sigma )) are

included in \widehat ST ,

0 \geq \mu T (\scrT \sigma (\scrT  - 1
\sigma ( \widehat Zr,\sigma ))) - \mu T (\scrT  - 1

\sigma ( \widehat Zr,\sigma ))

\geq \mu (\scrT \sigma (\scrT  - 1
\sigma ( \widehat Zr,\sigma ))) - \mu (\scrT  - 1

\sigma ( \widehat Zr,\sigma ))

= \mu (\Phi (\sigma ; (\scrT  - 1
\sigma ( \widehat Zr,\sigma )))) - \mu (\scrT  - 1

\sigma ( \widehat Zr,\sigma ))

=

\int \sigma 

0

\int 
\scrT  - 1
\sigma (\widehat Zr,\sigma )

[\nabla \xi \cdot (FR)](\Phi (\tau ; \eta ))

\bigm| \bigm| \bigm| \bigm| \partial \Phi (\tau ; \eta )\partial \eta 

\bigm| \bigm| \bigm| \bigm| d\eta d\tau \geq 0,

where we also exploited that \Phi (\sigma ; \scrT  - 1
\sigma ( \widehat Z\sigma ,r)) and \scrT  - 1

\sigma ( \widehat Z\sigma ,r) are included in \widehat S. There-
fore condition (iii) implies that \scrT  - 1

\sigma ( \widehat Zr,\sigma ) is a Lebesgue zero set of \BbbR n+1. Observe
that

\scrT  - 1
\sigma ( \widehat Zr,\sigma ) =

\biggl\{ 
\xi \in \widehat ST : \scrT \sigma (\xi ) \in \widehat ST \setminus \widehat Er and\biggl[ 

\forall k \in \BbbN \exists l \geq k, \scrT l+1
\sigma (\xi ) \in \widehat ST \setminus \widehat Er

\biggr] \biggr\} 
,
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and \scrT \sigma (\xi ) \in \widehat ST \setminus \widehat Er if and only if \| \Phi y(\sigma ; \xi )\| \geq r from the definitions of \widehat ST \setminus \widehat Er and
\scrT \sigma . Hence

\widehat Z :=

\left(  \bigcup 
p,q\in \BbbN 

\scrT  - 1
1/p(

\widehat Z1/p, 1/q)

\right)  \cup \widehat E(3.8)

=

\biggl\{ 
\xi \in \widehat ST : \exists p, q \in \BbbN \| \Phi y(1/q; \xi )\| \geq 1/p and\biggl[ 

\forall k \in \BbbN \exists l \geq k, \| \Phi y((l + 1)/q; \xi )\| \geq 1/p

\biggr] \biggr\} 
\cup \widehat E

holds and \widehat Z is a Lebesgue zero set. From (3.8), we see (2.12) in the proof of Theorem

2.2 for all \xi \in \widehat ST \setminus \widehat Z and for all p, q \in \BbbN . Therefore we can conclude the convergence

\Phi (\tau ; \xi ) \rightarrow 0n as \tau \rightarrow \infty similarly to the proof of Theorem 2.2 for \xi = (s, y) \in \widehat ST with

y \not = 0. Then the convergence of \Phi (\tau ; \xi ) for almost all \xi \in \widehat S \setminus \widehat E is readily seen from
the periodicity of \Phi and the proof is completed.

Example 3.3. Consider the system in Example 2.5, \.x =  - (1 + sin t)x3, again but
here we exploit that this system is periodic with period T = 2\pi . Let S(t) = \BbbR and t0 be
arbitrary. We have a Lyapunov density \rho (t, x) = 1/x4, for which [\rho t+\nabla x \cdot (f\rho )](t, x) =
(1 + sin t)/x2 and \rho (t, x) is integrable on | x| \geq r for any r > 0 and t \in [0, 2\pi ). Hence
conditions (i)--(iv) of Theorem 3.2 are satisfied. Thus, with the periodicity of the
system, we may have a much simpler Lyapunov density satisfying the conditions of
Theorem 3.2 than such \rho as in Example 2.5 that satisfies Theorem 2.2.

4. Converse results. In this section, we prove the existence of Lyapunov den-
sities for general time-varying systems and periodically time-varying systems under
the asymptotic stability of trajectories that we will state in subsection 4.1. For gen-
eral time-varying systems, we show first a local existence of Lyapunov density in
subsection 4.2, with guaranteeing the positive invariance of a certain region with the
convergence of trajectories. Then the region is extended in subsection 4.3 to the re-
gion of attraction in subsection 4.4. Last, subsection 4.5 provides a converse result
for any positively invariant family satisfying Assumption 2.1. Converse results for pe-
riodically time-varying systems are then obtained in subsection 4.6 similarly to those
for general time-varying nonlinear systems.

4.1. Assumption on the convergence. In this subsection, we state the stand-
ing assumption for this section with which we consider the existence of Lyapunov
densities.

Definition 4.1. Let a \in (0,\infty ]. (i) A continuous function \alpha : [0, a) \rightarrow [0,\infty )
is said to be class \scrK if \alpha is strictly monotonically increasing and \alpha (0) = 0. If in
addition a = \infty and \alpha (r) \rightarrow \infty as r \rightarrow \infty , then \alpha is said to be class \scrK \infty . (ii) A
continuous function \beta : [0, a)\times [0,\infty ) \rightarrow [0,\infty ) is said to be class \scrK \scrL if the following
two conditions are satisfied: For each fixed s, mapping \beta (r, s) is class \scrK with respect to
r, and, for each fixed r, mapping \beta (r, s) is monotonically decreasing and \beta (r, s) \rightarrow 0
as s \rightarrow \infty .

Let t0 \in \BbbR and define \widehat X(t, c) = [t,\infty ) \times Bn(c; 0n) for t \in \BbbR and c > 0. Assume
the following for system (2.1).
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Assumption 4.2. (i) f \in C2(\BbbR n+1,\BbbR n). (ii) There exist class \scrK \infty functions \alpha f , \alpha d

such that \| f\| and \| fx\| s are bounded as

\| f(t, x)\| \leq \alpha f (\| x\| ), \| fx(t, x)\| s \leq \alpha d(\| x\| ) \forall (t, x) \in \BbbR \times \BbbR n.(4.1)

(iii) There exists a class \scrK \scrL function \beta defined on [0, c0]\times [0,\infty ) for some c0 > 0 such
that trajectories \varphi (t; t0, x0) are defined for all t \geq t0 and satisfies

\| \varphi (t; t0, x0)\| \leq \beta (\| x0\| , t - t0) \forall t \geq t0 \forall (t0, x0) \in \widehat X(t0, c0)
cl(4.2)

if (t0, x0) \in \widehat X(t0, c0).

Below let c be a number such that \beta (c0, 0) < c. In Theorem 4.16 of Khalil
[6], a local version of these conditions is assumed to provide a converse theorem
that guarantees the local existence of a Lyapunov function for time-varying nonlinear
systems. More specifically, condition (ii) is assumed only for x with \| x\| < c. Below
we refer to this theorem.

Lemma 4.3. There exists a continuously differentiable function v : \widehat X(t0, c0) \rightarrow 
\BbbR that satisfies \alpha 1(\| x\| ) \leq v(t, x) \leq \alpha 2(\| x\| ), [vt + vxf ](t, x) \leq  - \alpha 3(\| x\| ), and

\| vx(t, x)\| \leq \alpha 4(\| x\| ) for all (t, x) \in \widehat X(t0, c0) under Assumption 4.2, where \alpha i,
i = 1, 2, 3, 4 are class \scrK functions defined on [0, c0].

Proof. The proof can be seen in [6].

We utilize this theorem in order to guarantee the existence of a certain positively
invariant family for time-varying systems. Then we prove in the next subsection
the local existence of a Lyapunov density. This result is further extended to show
Lyapunov densities for general positively invariant sets.

4.2. Local existence of a Lyapunov density. Consider Lyapunov function v
in Lemma 4.3. Define a positively invariant family \{ S(t)\} t\geq t0

as

S(t) = \{ x \in \BbbR n : v(t, x) < \alpha 1(c0)\} , t \in [t0,\infty ),(4.3)

via Lyapunov function v(t, x) in Lemma 4.3. Let \widehat S = \{ (t, x) \in \BbbR \times \BbbR n : t \in 
[t0,\infty ), v(t, x) < \alpha 1(c0)\} . It is easy to see that

Bn(c0; 0) \subset S(t) \subset Bn(c0; 0), t \in [t0,\infty ),(4.4)

or equivalently \widehat X(t0, c0) \subset \widehat S \subset \widehat X(t0, c0), where c0 = \alpha  - 1
2 (\alpha 1(c0)).

Lemma 4.4. Under Assumption 4.2, there exists a \rho \in C1(\widehat S \setminus \widehat E,\BbbR ) that satisfies
the conditions (i)--(iv) of Theorem 2.2 with family \{ S(t)\} t\geq t0

defined in (4.3).

Proof. Let t1 > t0 and let \nu : \BbbR \rightarrow \BbbR be a monotonically increasing C\infty function
satisfying \nu (t) = 0, t \leq t0, and \nu (t) = 1, t \geq t1. Define

\lambda (t, x) =

\biggl\{ 
(\alpha 1(c0) - v(t, x))2\nu (t)e - t, (t, x) \in \widehat S,
0 otherwise.

(4.5)

It is easy to check that \lambda \in C1(\BbbR n+1,\BbbR ), \lambda (t, x) > 0 for (t, x) \in \widehat S\circ and

0 \leq \lambda (t, x) \leq \alpha e - t \forall (t, x) \in \BbbR n+1, \alpha := \alpha 1(c0)
2.(4.6)
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Define \rho (t, x) for (t, x) \in \BbbR n+1 \setminus \widehat E as

\rho (t, x) =

\int t

T - \infty (t,x)

\lambda (\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau .(4.7)

Since \widehat S is positively invariant and \lambda (t, x) = 0 for (t, x) \not \in \widehat S\circ , we have \rho (t, x) = 0 if

(t, x) \not \in \widehat S\circ . Let (t, x) \in \widehat S\circ \setminus \widehat E. It is easy to see that there exist a neighborhood \widehat N of

(t, x) included in \widehat S\circ and a positive number Td such that

(t\prime , x\prime ) \in \widehat N =\Rightarrow \varphi (t\prime  - Td; t
\prime , x\prime ) \in (\widehat Sc)\circ ,

by which we have

\rho (t\prime , x\prime ) =

\int t

t - Td

\lambda (\tau , \varphi (\tau ; t\prime , x\prime ))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t\prime , x\prime )

\partial x\prime 

\bigm| \bigm| \bigm| \bigm| d\tau \forall (t\prime , x\prime ) \in \widehat N.

This implies that \rho is continuously differentiable in \widehat N and hence also is in \widehat S \setminus \widehat E. We
can obtain

[\rho t +\nabla x \cdot (f\rho )](t, x) = \lambda (t, x) \forall (t, x) \in \BbbR n+1 \setminus \widehat E.

By what we have seen so far, conditions (i)--(iii) of Theorem 2.2 are confirmed. In
order to prove integrability condition (iv), we derive an upper bound of \rho (t, x). Let

\zeta (u) = max\{ s \geq 0 : \beta (c0, s) \geq u\} , u \in (0, c).

Since \beta (c0, s) is continuous and monotonically decreasing in s \geq 0 and lims\rightarrow \infty \beta (c0, s)

= 0, \zeta (u) is well-defined and monotonically decreasing. Next, let (t, x) \in \widehat S \setminus \widehat Er and
define

te = inf\{ \tau < t : (\tau , \varphi (\tau ; t, x)) \in \widehat S\} , xe = \varphi (te; t, x).(4.8)

Apparently te \geq t0, xe \in \widehat Scl, and \| xe\| \leq c0 from (4.4). Assumption 4.2 and the
continuity of \beta on [0, c0]\times [0,\infty ) imply that \| x\| \leq \beta (\| xe\| , t - te). Moreover, (t, x) \in \widehat S \setminus \widehat Er means \| x\| \geq r and hence r \leq \beta (c0, t - te). Therefore

t - te \leq \zeta (r)(4.9)

holds from the definition of \zeta .
Now consider \rho (t, x) in (4.7). Since \widehat S is positively invariant, the interval of

integration (T - \infty (t, x), t] in (4.7) can be replaced with [te, t] and the length of this
interval satisfies t  - te \leq \zeta (r) < \infty . Moreover, from (ii) of Assumption 4.2, it holds
for \tau \leq t that \bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| \leq eL0(t - \tau ), L0 := \alpha d(c0).(4.10)

From (4.6) and (4.10),

\rho (t, x) =

\int t

te

\lambda (\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau (4.11)

\leq 
\int t

t - \zeta (r)

\alpha e - \tau eL0(t - \tau )d\tau = p0e
 - t \forall (t, x) \in \widehat S \setminus \widehat Er,
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where p0 := \alpha (e(1+L0)\zeta (r)  - 1)/(1 + L0). We also have

1 + \| f(t, x)\| 
1 + \| x\| 

\leq H0, H0 := 1 + \alpha f (c0),

for (t, x) \in \widehat S \setminus \widehat E. Using these inequalities, we obtain

I(\widehat S, r) = \int \widehat S\setminus \widehat Er

1 + \| f(t, x)\| 
1 + \| x\| 

\rho (t, x)dxdt

\leq 
\int \infty 

t0

\int 
r\leq \| x\| \leq c0

H0p0e
 - tdxdt \leq V (c0)H0p0e

 - t0 =: q0,

where V (c0) stands for the Lebesgue measure of balls in \BbbR n with radius c0. Thus all
the conditions of Theorem 2.2 are satisfied with family \{ S(t)\} t\geq t0

of (4.3).

4.3. Lyapunov density defined on a sequence of positively invariant
families. In this subsection, we extend the positively invariant family considered in
the previous subsection along the trajectories to the negative direction of time, which
will lead to the result of the next section that proves the existence of a Lyapunov
density on the region of attraction. Define a sequence of sets \widehat Sk via the augmented
system of section 2 as

\widehat Sk = \{ \xi = (t, x) : \Phi (k; \xi ) \in \widehat S\} = \Phi ( - k; \widehat S), k \in \BbbN 0.(4.12)

Clearly each \widehat Sk is positively invariant and \widehat S = \widehat S0 \subset \widehat S1 \subset \cdot \cdot \cdot \subset \widehat Sk \subset \cdot \cdot \cdot . Since\widehat S \subset \widehat X(t0, c0), it holds for k \in \BbbN 0 that

\| \Phi ( - k; \xi ) - \xi \| \leq (1 + \| \xi \| )(ek  - 1) \leq (1 + c0)(e
k  - 1) =: hk \forall \xi \in \widehat S(4.13)

from (2.7). Hence

\widehat Sk \subset \widehat X(tk, ck), k \in \BbbN 0,(4.14)

holds for tk := t0  - (1 + c0)(e
k  - 1) and ck := c0 + (1 + c0)(e

k  - 1).

We extend Lemma 4.4 to sequence \widehat Sk, k \in \BbbN 0.

Lemma 4.5. Under Assumption 4.2, there exists a \rho k \in \BbbR n+1 \setminus \widehat E that satisfies

the conditions (i)--(iv) of Theorem 2.2 with \widehat Sk defined in (4.12) for each k \in \BbbN 0.

Proof. Using \lambda in (4.5), define \lambda k, k \in \BbbN 0 as

\lambda k(t, x) = \lambda (\Phi (k; (t, x))),(4.15)

for which \lambda k \in C1(\BbbR n+1,\BbbR ), \lambda k(t, x) > 0 in \widehat S\circ 
k , and \lambda k(t, x) = 0 in \widehat Sc

k. From (4.6),

\lambda k(t, x) = \lambda (\Phi (k; (t, x))) \leq \alpha e - \Phi s(k;\xi ) \leq \alpha e - t

for \xi = (t, x) \in \BbbR n+1, where the latter inequality holds since \Phi s(k; \xi ) \geq t. Now define

\rho k(t, x) =

\int t

T - \infty (t,x)

\lambda k(\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau , k \in \BbbN 0.(4.16)
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As in the proof of Lemma 4.4, we can show \rho k \in C1(\BbbR n+1 \setminus \widehat E,\BbbR ), \rho k(t, x) > 0 for

(t, x) \in \widehat S\circ 
k \setminus \widehat E, \rho k(t, x) = 0 for (t, x) \in \widehat Sc

k \setminus \widehat E, and the identity

[(\rho k)t +\nabla x \cdot (f\rho k)](t, x) = \lambda k(t, x)

for all (t, x) \in \BbbR n+1 \setminus \widehat E. Thus we have seen conditions (i)--(iii).

Let us derive an upper bound of \rho k on \widehat Sk \setminus \widehat Er for k \in \BbbN 0 and r > 0. First, let

(t, x) \in (\widehat Sk \setminus \widehat Er)\setminus \widehat S. From the definition of \widehat Sk, we have \Phi ( - k; (t, x)) \not \in \widehat Sk. Therefore

\tau that satisfies \tau \leq t and \varphi (\tau ; t, x) \in \widehat Sk \setminus \widehat Er belongs to interval [\Phi s( - k; (t, x)), t],

whose length is less than hk from inequality (4.13). Next, suppose that (t, x) \in \widehat S \setminus \widehat Er

and define te and xe as in (4.8). Then the interval of \tau for which \varphi (\tau ; t, x) \in \widehat Sk \setminus \widehat Er is
included in the union of [\Phi s( - k; (te, xe)), te] and [te, t]. The length of each interval is
bounded by hk and \zeta (r), respectively, where the latter is obtained as in the previous
subsection.

From (4.14), it holds for k \in \BbbN 0 that \| fx(\tau , \varphi (\tau ; t, x))\| s \leq \alpha d(ck) =: Lk as far as

\varphi (\tau ; t, x) \in \widehat Sk. Therefore | \varphi x(\tau ; t, x)| \leq eLk(t - \tau ) if \tau \leq t and \varphi (\tau ; t, x) \in \widehat Sk. From
these observations, we obtain

\rho k(t, x) \leq 
\int t

T - \infty (t,x)

\lambda k(\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau (4.17)

\leq 
\int t

t - (hk+\zeta (r))

\alpha e - \tau eLk(t - \tau )d\tau = pke
 - t, k \in \BbbN 0,

where pk = \alpha (e(1+Lk)(hk+\zeta (r))  - 1)/(1 + Lk).
Recall (ii) of Assumption 4.2, by which 1 + \| f(t, x)\| \leq 1 + \alpha f (ck) =: Hk for

(t, x) \in \widehat Sk \setminus \widehat Er. Using (4.17), we derive an upper bound of the integral of \rho k(t, x)(1+

\| f(t, x)\| )/(1 + \| x\| ) on \widehat Sk \setminus \widehat Er as

I(\widehat Sk, r) =

\int 
\widehat Sk\setminus \widehat Er

1 + \| f(t, x)\| 
1 + \| x\| 

\rho k(t, x)dxdt \leq 
\int 
\widehat Sk\setminus \widehat Er

Hkpke
 - tdxdt

\leq V (ck)PkHke
tk =: qk, k \in \BbbN 0,

which completes the proof.

4.4. Lyapunov density on the region of attraction. Denote by \widehat RA the set
of initial data (t, x) for which \varphi (\tau ; t, x) is defined for all \tau \geq t and \varphi (\tau ; t, x) \rightarrow 0 as
\tau \rightarrow \infty , which set we call the region of attraction of system (2.1).

Lemma 4.6. Under Assumption 4.2, there exists a \rho \in \BbbR n+1 \setminus \widehat E that satisfies the

conditions (i)--(iv) of Theorem 2.2 for \widehat S = \widehat RA.

Proof. We have seen in (4.4) that \widehat X(t0, c0) \subset \widehat S holds for some c0 > 0. Therefore,

if (t, x) \in \widehat RA, there exists a time t1 \geq t0 for which \varphi (t1; t, x) \in \widehat S. This means that

(t, x) \in \widehat RA belongs to \widehat Sk for some integer k. Thus \{ \widehat Sk\} , which is monotonically

increasing, satisfies \widehat RA =
\bigcup \infty 

k=1
\widehat Sk. Moreover, the sequence of compact sets

\widehat Jk =

\biggl\{ 
(t, x) \in \BbbR \times \BbbR n : t0  - k \leq t \leq t0 + k,

1

k
\leq \| x\| \leq k

\biggr\} 
, k \in \BbbN ,

is monotonically increasing and satisfies
\bigcup \infty 

k=1
\widehat Jk = \BbbR n+1 \setminus \widehat E. Therefore

\widehat RA \setminus \widehat E =

\infty \bigcup 
k=1

(\widehat Sk \cap \widehat Jk).
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Next, define for k \in \BbbN the following numbers:

d1k = max
(t,x)\in \widehat Jk

\rho k(t, x), d2k = max
(t,x)\in \widehat Jk

\bigm| \bigm| \bigm| \bigm| \partial \rho k(t, x)\partial t

\bigm| \bigm| \bigm| \bigm| , d3k = max
(t,x)\in \widehat Jk

\bigm\| \bigm\| \bigm\| \bigm\| \partial \rho k(t, x)\partial x

\bigm\| \bigm\| \bigm\| \bigm\| ,
where the functions that appear in the right-hand sides are continuous on compact
sets \widehat Jk. Let positive numbers Ck be

Ck = 2 - k[max\{ d1k, d2k, d3k, d2k + d3k\alpha f (k) + d1k\alpha d(k), qk\} ] - 1, k \in \BbbN ,(4.18)

and define

\rho (t, x) =

\infty \sum 
k=1

Ck\rho k(t, x).(4.19)

Below we verify the convergence of this series. Let \widehat K \subset \BbbR n+1 \setminus \widehat E be an arbitrary

compact set. Then, there exists an integer m for which \widehat K \subset \widehat Jk holds for all k \geq m+1.
Hence, if p > m,

p\sum 
k=1

Ck\rho k(t, x) =

m\sum 
k=1

Ck\rho k(t, x) +

p\sum 
k=m+1

Ck\rho k(t, x)

\leq 
m\sum 

k=1

Ck max
(t,x)\in \widehat K \rho k(t, x) + 2 - m

for (t, x) \in \widehat K. Similarly,

p\sum 
k=1

Ck

\bigm| \bigm| \bigm| \bigm| \partial \rho k(t, x)\partial t

\bigm| \bigm| \bigm| \bigm| \leq m\sum 
k=1

Ck max
(t,x)\in \widehat K

\bigm| \bigm| \bigm| \bigm| \partial \rho k(t, x)\partial t

\bigm| \bigm| \bigm| \bigm| + 2 - m,

p\sum 
k=1

Ck

\bigm\| \bigm\| \bigm\| \bigm\| \partial \rho k(t, x)\partial x

\bigm\| \bigm\| \bigm\| \bigm\| \leq 
m\sum 

k=1

Ck max
(t,x)\in \widehat K

\bigm\| \bigm\| \bigm\| \bigm\| \partial \rho k(t, x)\partial x

\bigm\| \bigm\| \bigm\| \bigm\| + 2 - m.

The right-hand sides of these inequalities are constants that depend only on set \widehat K.

Therefore series \rho (t, x) converges uniformly on \widehat K. Moreover, \partial \rho k(t,x)
\partial t and \partial \rho k(t,x)

\partial x are

also series that uniformly converge on \widehat K and hence \rho is continuously differentiable on\widehat K. Consider the following series:

\infty \sum 
k=1

Ck

\biggl( 
\partial \rho k(t, x)

\partial t
+ [\nabla x \cdot (f\rho k)](t, x)

\biggr) 
=

\infty \sum 
k=1

Ck\lambda k(t, x).

Since, for k \geq m+ 1, the left-hand side is bounded as\bigm| \bigm| \bigm| \bigm| \partial \rho k(t, x)\partial t
+ [\nabla x \cdot (f\rho k)](t, x)

\bigm| \bigm| \bigm| \bigm| \leq \bigm| \bigm| \bigm| \bigm| \partial \rho k(t, x)\partial t

\bigm| \bigm| \bigm| \bigm| + \bigm\| \bigm\| \bigm\| \bigm\| \partial \rho k(t, x)\partial x

\bigm\| \bigm\| \bigm\| \bigm\| \| f(t, x)\| + \rho k(t, x)\| fx(t, x)\| s

\leq d2k + d3k\alpha f (k) + d1k\alpha d(k)

on \widehat K, we see that \lambda (t, x) =
\sum \infty 

k=1 Ck\lambda k(t, x) uniformly converges on \widehat K and hence

\lambda is continuous. The above convergence results are valid for any compact sets \widehat K \subset 
\BbbR n+1 \setminus \widehat E and therefore

\partial \rho (t, x)

\partial t
+ [\nabla x \cdot (f\rho )](t, x) = \lambda (t, x) \forall (t, x) \in \BbbR n+1 \setminus \widehat E.
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Let (t, x) \in \widehat RA\setminus \widehat E. Then there exists an integerm for which (t, x) \in \widehat Sk, k \geq m+1.

Since \rho k(t, x) and \lambda k(t, x) are strictly positive on \widehat Sk \setminus \widehat E, it holds that \rho (t, x) > 0 and

\lambda (t, x) > 0. Obviously \rho (t, x) = \lambda (t, x) = 0 for (t, x) \not \in \widehat RA. Thus conditions (i)
and (iii) are verified, while it is easy to see (ii). Condition (iv), the integrability on

RA \setminus \widehat Er, is obtained from (4.18) as\int 
\widehat RA\setminus \widehat Er

1 + \| f(t, x)\| 
1 + \| x\| 

\rho (t, x)dxdt =

\infty \sum 
k=1

Ck

\int 
\widehat Sk\setminus \widehat Er

1 + \| f(t, x)\| 
1 + \| x\| 

\rho k(t, x)dxdt

\leq 
\infty \sum 
k=1

Ckqk < \infty ,

which completes the proof.

4.5. Lyapunov density for general positively invariant family. Lemma
4.6 is easily generalized to guarantee the existence of Lyapunov densities for a general
positively invariant family satisfying Assumption 2.1. Let \{ U(t)\} t\geq t0

be a positively
invariant family that satisfies Assumption 2.1, given as U(t) = \{ x \in \BbbR n : u(t, x) > 0\} 
for all t \in [t0,\infty ), where u is a continuous function on [t0,\infty ) \times \BbbR n for some t0 \in \BbbR 
with u := sup(t,x)\in \BbbR n+1 u(t, x) < \infty . Let \widehat U = \{ (t, x) \in \BbbR n+1 : t \geq \BbbR , x \in U(t)\} \subset \widehat RA.
The results of subsections 4.2, 4.3, and 4.4 are generalized as follows.

Theorem 4.7. Consider time-varying system (2.1). Suppose that Assumption
4.2 is satisfied and a positively invariant family \{ U(t)\} t\in \BbbR is given as above. Then

there exists a \rho \in \BbbR n+1 \setminus \widehat E that satisfies the conditions (i)--(iv) of Theorem 2.2 for\widehat S = \widehat U .

Proof. The proof follows from Lemmas 4.4, 4.5, and 4.6 with modifying \lambda k as

\lambda k(t, x) =

\biggl\{ 
\lambda (\Phi (k; (t, x)))u(t, x)2/u2, (t, x) \in \widehat U,
0 otherwise

(4.20)

in (4.15).

4.6. Converse result for periodically time-varying systems. Here we con-
sider family \{ S(t)\} t\in \BbbR , which is periodic and defined for all t \in \BbbR , and let \widehat S be as
in (3.2). In the proof of Theorem 4.16 of [6], which we refer to as Lemma 4.3 in this
paper, a Lyapunov function is defined as

v(t, x) =

\int \infty 

t

g(\| \varphi (\tau ; t, x)\| )d\tau ,

where g \in C1([0,\infty ),\BbbR ) is a function constructed via Massera's lemma. Since \varphi (\tau ; t+
T, x) = \varphi (\tau  - T ; t, x) holds for periodically time-varying systems, it holds that v(t+
T, x) = v(t, x). Hence v is extended to a function defined for all t \in \BbbR periodic in t
with period T . Then define \lambda (t, x) as

\lambda (t, x) =

\Biggl\{ 
(\alpha 1(c0) - v(t, x))2, (t, x) \in \widehat S,
0, (t, x) \in \widehat Sc,

(4.21)

which satisfies 0 \leq \lambda (t, x) \leq \alpha = \alpha 1(c0)
2. Next, if (t, x) \in \widehat S \setminus \widehat E, there exists a

\tau < t such that \varphi (\tau ; t, x) \not \in S(\tau )cl. To see this, assume that (t, x) \in \widehat S \setminus \widehat E and
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\varphi (\tau ; t, x) \in S(\tau )cl for all \tau < t. Then \| \varphi (\tau ; t, x)\| \leq c0 and hence

\| x\| \leq \beta (\| \varphi (\tau ; t, x)\| , t - \tau ) \leq \beta (c0, t - \tau ) \rightarrow 0 (\tau \rightarrow  - \infty )

holds from the definition of class \scrK \scrL functions. Thus \| x\| = 0, which contradicts

(t, x) \in \widehat S \setminus \widehat E. Therefore we can define te \in (T - \infty (t, x), t) and xe as in (4.8).
Define \lambda k as in (4.15) with \lambda in (4.21). Then \lambda k \in C1(\BbbR n+1,\BbbR ) and \lambda k(t, x) \leq \alpha .

Setting \rho k by (4.16), we can easily derive conditions (i) and (ii) of Theorem 3.2 and
the periodicity of \rho k. Instead of (4.17), we have

\rho k(t, x) \leq 
\int t

T - \infty (t,x)

\lambda k(\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau 
\leq 
\int t

t - (hk+\zeta (r))

\alpha eLk(t - \tau )d\tau = \~pk

with \~pk = \alpha /Lk(e
Lk(hk+\zeta (r))  - 1). Note that an upper bound of the length of the

interval of the above integration is obtained as hk + \zeta (r) similarly to that of (4.17).

Thus \rho k is defined on \BbbR n+1 \setminus \widehat E. We can also prove that \rho k \in C1(\BbbR n+1 \setminus \widehat E,\BbbR ) and
condition (iii) holds. Since \rho k(t, x) is bounded on \{ x \in \BbbR n : \| x\| \geq r\} for each t and
r > 0, integrability condition (iv) is obvious. Let

\~qk := sup
t\in [0,T )

\int 
x\in S(t),\| x\| \geq r

\lambda (\tau , \varphi (\tau ; t, x))

\bigm| \bigm| \bigm| \bigm| \partial \varphi (\tau ; t, x)\partial x

\bigm| \bigm| \bigm| \bigm| d\tau (< \infty ).

Lyapunov densities for the region of attraction is derived via (4.19) with \rho k(t, x)
obtained above, where coefficients Ck are defined as in (4.18) with replacing qk with
\~qk. We can also construct Lyapunov densities for a positive invariant family \{ U(t)\} t\in \BbbR 
that is periodic in t with period T , setting \lambda k as in (4.20). The proof is similar to
those of previous subsections. We summarize the results in the following theorem.

Theorem 4.8. Consider time-varying system (2.1) that is periodic as in (3.1)
with period T . Suppose that Assumption 4.2 is satisfied and a positively invariant fam-
ily \{ U(t)\} t\in \BbbR is given as U(t) = \{ x \in \BbbR n : u(t, x) > 0\} for all t \in [t0,\infty ), where u is a
continuous function on [t0,\infty )\times \BbbR n for some t0 \in \BbbR with u := sup(t,x)\in \BbbR n+1 u(t, x) <

\infty and u(t) = u(t+ T ) for all t \in \BbbR . Then there exists a \rho \in \BbbR n+1 \setminus \widehat E that satisfies

the conditions (i)--(iv) of Theorem 3.2 for \widehat S = \widehat U .

5. Conclusion. In this paper, first we showed a convergence criterion in Theo-
rem 2.2 on trajectories of general time-varying nonlinear systems in terms of Lyapunov
densities. We do not need the assumptions of local stability and forward complete-
ness of trajectories. Then we showed a criterion in Theorem 3.2 for periodically
time-varying systems, where the integrability condition (iv) is weakened by exploit-
ing the periodicity of the vector field. We also proved the existence of Lyapunov
densities for general and periodically time-varying systems in Theorems 4.7 and 4.8,
respectively, under the asymptotic stability.

Future work can include applications of Lyapunov densities for time-varying and
periodically systems to state feedback synthesis. The inequalities proposed in this
paper can be applied to state feedback of control system \.x = f(t, x) + g(t, x)u with
input u = u(t, x) similarly to the time-invariant case [13] through the linearization
technique. An important open issue is the proof of the existence of Lyapunov densities
without assuming even asymptotic stability.
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