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CONSTRAINT-PRECONDITIONED KRYLOV SOLVERS FOR
REGULARIZED SADDLE-POINT SYSTEMS

DANIELA DI SERAFINO˚ AND DOMINIQUE ORBAN:

Abstract. We consider the iterative solution of regularized saddle-point systems. When the
leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould,
Schilders, and Wathen (2006) describe how to apply the conjugate gradient (CG) method coupled with
a constraint preconditioner, a choice that has proved to be effective in optimization applications. We
investigate the design of constraint-preconditioned variants of other Krylov methods for regularized
systems by focusing on the underlying basis-generation process. We build upon principles laid out
by Gould, Orban, and Rees (2014) to provide general guidelines that allow us to specialize any
Krylov method to regularized saddle-point systems. In particular, we obtain constraint-preconditioned
variants of Lanczos and Arnoldi-based methods, including the Lanczos version of CG, MINRES,
SYMMLQ, GMRES(`) and DQGMRES. We also provide MATLAB implementations in hopes that
they are useful as a basis for the development of more sophisticated software. Finally, we illustrate the
numerical behavior of constraint-preconditioned Krylov solvers using symmetric and nonsymmetric
systems arising from constrained optimization.

Key words. Regularized saddle-point systems, constraint preconditioners, Lanczos and Arnoldi
procedures, Krylov solvers.
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1. Introduction. We consider the iterative solution of the regularized saddle-
point system

(1)
„

A BT

B ´C

 „

x
y



“

„

b
0



,

where A P Rnˆn may be nonsymmetric, C P Rmˆm is nonzero and symmetric, and
B P Rmˆn. We denote K the matrix of (1). There is no loss of generality in assuming
that the last m entries of the right-hand side of (1) are zero, as discussed later.

A constraint preconditioner for (1) has the form

(2) P “

„

G BT

B ´C



,

where G is an approximation to A such that (2) is nonsingular. When A is symmetric
and has appropriate additional properties, a constraint preconditioner allows the
application of CG even though K and P are indefinite (Dollar et al., 2006).

We are interested in the design of constraint-preconditioned versions of additional
Krylov methods for (1), including methods that can be used when A is nonsymmetric.
We extend the work of Gould et al. (2014) on projected and constraint-preconditioned
Krylov methods for saddle-point systems with C “ 0 by exploiting a suitable reformu-
lation of (1) suggested by Dollar et al. (2006). We develop constraint-preconditioned
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variants of the Lanczos and Arnoldi basis-generation processes, and use them to
derive variants of Krylov solvers based on those processes. More generally, we provide
guidelines that can be also exploited to obtain constraint-preconditioned versions of
other Krylov methods not considered in this paper. Finally, we distribute MATLAB
implementations of the constraint-preconditioned methods discussed here as templates
for the development of more sophisticated numerical software.

Systems of type (1) arise in interior-point methods for constrained optimization
in the presence of inequality constraints or when regularization is used (Benzi, Golub,
and Liesen, 2005; D’Apuzzo, De Simone, and di Serafino, 2010; Friedlander and Orban,
2012). They also appear in Lagrangian approaches for variational problems with
equality constraints when the constraints are relaxed or a penalty term is applied
(Pestana and Wathen, 2015). In the above cases, A is usually symmetric, but may also
be nonsymmetric—see Section 7, and often has additional properties, e.g., it accounts
for local convexity of the optimization problem. Regularized saddle-point systems with
nonsymmetric A arise also from the stabilized finite-element discretization of Oseen
problems obtained by linearization, through Picard’s method, of the steady-state
Navier-Stokes equations governing the flow of a Newtonian incompressible viscous
fluid (Benzi et al., 2005).

Constraint preconditioners have widely demonstrated their effectiveness on saddle-
point systems, especially when the leading block is symmetric and enjoys additional
properties, such as being positive definite; much work has been carried out to develop,
analyze and approximate constraint preconditioners in this case, see, e.g., (Benzi et al.,
2005; D’Apuzzo et al., 2010; Gould et al., 2014; De Simone, di Serafino, and Morini,
2018) and the references therein.

The rest of this paper is organized as follows. Section 2 provides preliminary
results used in the sequel. In Section 3, we describe the constraint-preconditioned
Lanczos process and, in Section 4, we present variants of Krylov solvers based on it.
In Section 5, we describe the constraint-preconditioned Arnoldi process and associated
Krylov methods. In Section 6, we discuss implementation issues and provide details
on the MATLAB codes. In Section 7, we illustrate the numerical behavior of some
constraint-preconditioned solvers on regularized saddle-point systems, with symmetric
and nonsymmetric matrices, from constrained optimization. We conclude in Section 8.

Notation. Uppercase Latin letters (A, B, . . .), lowercase Latin letters (a, b, . . .),
and lowercase Greek letters (α, β, . . .) denote matrices, vectors and scalars, respectively.
The Euclidean norm is denoted } ¨ }. If S “ ST is a positive definite matrix, the
S-norm is defined as }u}2S “ uTS u. All vectors are column vectors. For any vector
v, diagpvq is the diagonal matrix with diagonal entries equal to the entries of v. For
brevity, we use the MATLAB-like notation rv ; ws to represent the vector rvT wT

s
T .

2. Preliminaries. We assume throughout that K is nonsingular, which implies

(3) NullpAq XNullpBq “ t0u and NullpBT
q XNullpCq “ t0u.

In general the converse is not true. A counterexample consists in taking

A “

»

–

1 ´1 0
0 0 0
1 0 1

fi

fl , B “

„

1 0 0
0 0 1



, C “

„

1 0
0 1



.

Benzi et al. (2005) and D’Apuzzo et al. (2010) give additional conditions that guarantee
nonsingularity of K. Note however that we do not require B to have full rank or C to
be positive (semi-)definite.
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In order to develop constraint-preconditioned Krylov methods for (1), we specialize
the basis-generation processes underlying those methods. We focus on the Lanczos
(1950) and Arnoldi (1951) processes, which compute orthonormal bases of Krylov
spaces associated with symmetric and general matrices, respectively. For reference, the
preconditioned Lanczos process is stated as Algorithm 4 in Appendix A. The standard
Lanczos process follows by setting the preconditioner to the identity. It is straighforward
to apply our arguments to the Lanczos (1950) biorthogonalization process and its
transpose-free variants (Brezinski and Redivo-Zaglia, 1998; Chan, de Pillis, and van der
Vorst, 1998). We implicitly assume that A “ AT when considering the Lanczos process.

Following Dollar et al. (2006), we reformulate (1) as follows. Assume that
rankpCq “ p and C has been decomposed as1

(4) C “ EFET,

where F P Rpˆp is symmetric and nonsingular and E P Rmˆp. Then, by using the
auxiliary variable

(5) w “ ´FET y,

equation (1) may be written

(6)

»

–

A BT

F´1 ET

B E

fi

fl

»

–

x
w
y

fi

fl “

»

–

b
0
0

fi

fl ,

which has a standard symmetric saddle-point form

(7)
„

M NT

N

 „

g
y



“

„

b0
0



, M “

„

A

F´1



, N “
“

B E
‰

, g “

„

x
w



, b0 “

„

b
0



.

The principles laid out by Gould et al. (2014) may now be applied to (6).
Note that (6) is nonsingular if and only if (1) is nonsingular, and therefore N

must have full rank. Because g P NullpNq, there exists pd P Rn`p´m such that

(8) g “

„

x
w



“ Z pd “

„

Z1

Z2



pd,

where the columns of Z form a basis of NullpNq. The restriction of (6) to NullpNq is

(9) xM px “ pb,

where

xM “ ZTMZ “ ZT
1 AZ1 ` Z

T
2 F

´1Z2,(10a)
„

x
w



“

„

Z1

Z2



px, pb “
“

ZT
1 ZT

2

‰

„

b
0



“ ZT
1 b.(10b)

In a Krylov method for (9), it is appropriate to use a preconditioner of the form

(11) pP “ ZT
1 GZ1 ` Z

T
2 F

´1Z2.

1Note that (4) will be only used for the purpose of deriving computational processes and need
not be computed in practice.
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If G is suitable, the preconditioned method can be reformulated entirely in terms of
full space quantities (Gould, Hribar, and Nocedal, 2001; Dollar et al., 2006; Gould
et al., 2014). Following (Gould et al., 2014, Assumption 2.2), we require the following
assumption.

Assumption 2.1. The matrix
„

G

F´1



is symmetric and positive definite on NullpNq.

A consequence of Assumption 2.1 is that (11) is symmetric and positive definite.
We enforce Assumption 2.1 throughout this paper to guarantee that Krylov

methods for (9) give rise to corresponding full-space methods for (1). However, at
least in principle, Assumption 2.1 is not always necessary, e.g., in Krylov methods
based on the Arnoldi process.

The application of the preconditioner pP , i.e., qu “ pP´1
pu, can be written as

(12)
„

ūx
ūw



“ PG

„

ux
uw



, PG “ Z pP´1ZT ,

„

ūx
ūw



“ Z qu, ZT

„

ux
uw



“ pu.

Furthermore,

PG

„

G

F´1



is an oblique projector into NullpNq. Let pL be the lower triangular Cholesky factor of
pP and let

(13) pK “ K
´

pL´1
xM pL´T , pL´1

ppb´ xM px0q
¯

be the Krylov space generated by the preconditioned reduced operator pL´1
xM pL´T

and initial vector pL´1
ppb ´ xM px0q, where pb is given in (10) and x0 “ Z1px0, with Z1

defined in (8).
The computation of (12) can be obtained by solving

(14)

»

–

G BT

F´1 ET

B E

fi

fl

»

–

ūx
ūw
z̄

fi

fl “

»

–

ux
uw
0

fi

fl ,

see, e.g., Gould et al. (2001), so that PG could be expressed as

PG “

„

I 0 0
0 I 0



»

–

G BT

F´1 ET

B E

fi

fl

´1»

–

I 0
0 I
0 0

fi

fl .

We now apply Principles 2.1 and 2.2 of Gould et al. (2014) to the standard Lanczos
basis-generation process for pK, and obtain the projected Lanczos process outlined in
Algorithm 1.

In Algorithm 1, the notation }u}rP s represents a measure of the deviation of
u “ rux ; uws from NullpNq (Gould et al., 2014, Section 3). More precisely

(15) }u}2rP s :“ uTx ūx ` u
T
wūw,
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Algorithm 1 Projected Lanczos Process
1: choose rx0 ; w0s such that Bx0 ` Ew0 “ 0 initial guess
2: v0,x “ 0, v0,w “ ´w0 initial Lanczos vector
3: u0,x “ b´Ax0, u0,w “ ´F

´1w0 u0 “ b0 ´Mg0
4: rū1,x ; ū1,w ; z̄1s Ð solution of (14) with right-hand side ru0,x ; u0,w ; 0s
5: v1,x “ ū1,x, v1,w “ ū1,w v1 “ PG u0

6: β1 “ pv
T
1,xu0,x ` v

T
1,wu0,wq

1
2 β1 “ pv

T
1 u0q

1
2

7: if β1 ‰ 0 then
8: v1,x “ v1,x{β1, v1,w “ v1,w{β1 }v1}rP s “ 1
9: end if

10: k “ 1
11: while βk ‰ 0 do
12: uk,x “ Avk,x, uk,w “ F´1vk,w uk “Mvk
13: αk “ vTk,xuk,x ` v

T
k,wuk,w αk “ vTk uk

14: rūk`1,x ; ūk`1,w ; z̄k`1s Ð solution of (14) with right-hand side ruk,x ; uk,w ; 0s
15: vk`1,x “ ūk`1,x ´ αkvk,x ´ βkvk´1,x vk`1 “ ūk`1 ´ αkvk ´ βkvk´1

16: vk`1,w “ ūk`1,w ´ αkvk,w ´ βkvk´1,w

17: βk`1 “ pv
T
k`1,xuk,x ` v

T
k`1,wuk,wq

1
2 βk`1 “ pv

T
k`1ukq

1
2

18: if βk`1 ‰ 0 then
19: vk`1,x “ vk`1,x{βk`1, vk`1,w “ vk`1,w{βk`1 }vk`1}rP s “ 1
20: end if
21: k “ k ` 1
22: end while

where ū “ rūx ; ūws is defined by (14). Note that }u}rP s is actually a seminorm and
vanishes if and only if rux ; uws is orthogonal to NullpNq.

Conceptually, the Lanczos process corresponding to Algorithm 1 can be summarized
as
»

–

A BT

F´1 ET

B E

fi

fl

»

–

Vk,x
Vk,w
Z̄k

fi

fl “

»

–

G BT

F´1 ET

B E

fi

fl

¨

˝

»

–

Vk,x
Vk,w
Z̄k

fi

flTk ` βk`1

»

–

vk`1,x

vk`1,w

z̄k`1

fi

fl eTk

˛

‚,

where

Vk,x “
“

v1,x . . . vk,x
‰

, Vk,w “
“

v1,w . . . vk,w
‰

, Z̄k “
“

z̄1 . . . z̄k
‰

,

and Tk is the usual Lanczos tridiagonal matrix. Provided that rx0 ; w0s P NullpNq,
(Gould et al., 2014, Theorem 2.2) guarantees that Algorithm 1 is well defined and
equivalent to Algorithm 4 in Appendix A applied to (9)–(10) with preconditioner (11).
In Algorithm 1 and subsequent algorithms, we use the symbol “Ð” to assign to the
vector on the left of the arrow the result of the external procedure on the right of the
arrow.

In the next sections we show how the projected basis-generation procedures can
be further reformulated by referring to the original system (1), thus avoiding the use
of E and F and the factorization (4).
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3. Constraint-Preconditioned Lanczos Process. If we define p̄k “ ūk,x for
all k ě 1, and

(16) tk “ EFuk,w, k “ 0, 1, . . .

then (14) at line 14 of Algorithm 1 can be written as

(17)
„

G BT

B ´C

 „

p̄k`1

z̄k`1



“

„

uk,x
´tk



.

Assumption 2.1 occurs when the sum of the number of negative eigenvalues of the
matrix of (17) and C is m (Dollar et al., 2006, Theorem 2.1), which may be verified if
an inertia-revealing symmetric indefinite factorization is used to solve (17), such as
that of Duff (2004).

Unfortunately, (17) still appears to depend on F via (16). We now reformulate
Algorithm 1 in terms of full-space quantities. Define the initial guess

(18) w0 “ ´FE
T q0,

where q0 P R
m is arbitrary (e.g., q0 “ 0). Line 3 of Algorithm 1 and (16) yield

u0,x “ r0 “ b´Ax0, u0,w “ ET q0, t0 “ Cq0.

From here on, let us denote pk “ vk,x. At lines 4-5 of Algorithm 1, we compute p1 “ p̄1
and z̄1 from (14), which yields, in particular, ū1,w “ FET

pq0 ´ z̄1q. If we define

s1 “ q0 ´ z̄1, q1 “ s1,

lines 5-6 of Algorithm 1 take the form

p1 “ p̄1(19a)

v1,w “ FET q1,(19b)

β1 “ pp
T
1 u0,x ` q

T
1 Cq1q

1
2 “ ppT1 u0,x ` q

T
1 t0q

1
2 .(19c)

We then normalize by dividing p1 and q1 by β1. Lines 12–13 of Algorithm 1 and (16)
give

u1,w “ ET q1,(20a)
t1 “ Cq1,(20b)

α1 “ pT1 u1,x ` q
T
1 t1 “ pT1 Ap1 ` q

T
1 Cq1.(20c)

We now compute p2 and v2,w from lines 15–16 of Algorithm 1 with k “ 1, i.e., we
compute p̄2 and z̄2 from (17), and note that ū2,w “ FET

pq1 ´ z̄2q. Thus, by setting

s2 “ q1 ´ z̄2, q2 “ s2 ´ α1q1 ´ β1q0,

we obtain from lines 2 and 15–16 of Algorithm 1 together with (19b), (20a) and (20b):

p2 “ p̄2 ´ α1p1 ´ β1p0

v2,w “ FET s2 ´ α1FE
T q1 ´ β1FE

T q0 “ FET q2

β2 “ pp
T
2 Ap1 ` q

T
2 Cq1q

1
2 “ ppT2 u1,x ` q

T
2 t1q

1
2 .
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Then, according to line 19, p2 must be divided by β2, and we do the same with q2.
An induction argument shows that for all k ě 1

uk,w “ ET qk,

tk “ Cqk,

αk “ pTk uk,x ` q
T
k tk “ pTkApk ` q

T
k Cqk,

where qk has been normalized by βk. Furthermore, letting

sk`1 “ qk ´ z̄k`1, qk`1 “ sk`1 ´ αkqk ´ βkqk´1,

we obtain

pk`1 “ p̄k`1 ´ αkpk ´ βkpk´1

vk`1,w “ FET qk`1,

βk`1 “ pp
T
k`1Apk ` q

T
k`1Cqkq

1
2 “ ppTk`1uk,x ` q

T
k`1tkq

1
2 .

We divide pk`1 and qk`1 by βk`1 to obtain the vectors to be used at the next iteration.
Thus, if we rename uk,x as uk, we obtain Algorithm 2.

Algorithm 2 Constraint-Preconditioned Lanczos Process
1: choose rx0 ; q0s such that Bx0 ´ Cq0 “ 0 initial guess
2: p0 “ 0 initial Lanczos vector
3: u0 “ b´Ax0, t0 “ Cq0
4: rp̄1 ; z̄1s Ð solution of (17) with right-hand side ru0 ; ´t0s
5: p1 “ p̄1
6: s1 “ q0 ´ z̄1, q1 “ s1

7: β1 “ pp
T
1 u0 ` q

T
1 t0q

1
2

8: if β1 ‰ 0 then
9: p1 “ p1{β1, q1 “ q1{β1

10: end if
11: k “ 1
12: while βk ‰ 0 do
13: uk “ Apk, tk “ Cqk
14: αk “ pTk uk ` q

T
k tk “ pTkApk ` q

T
k Cqk

15: rp̄k`1 ; z̄k`1s Ð solution of (17) with right-hand side ruk ; ´tks
16: pk`1 “ p̄k`1 ´ αkpk ´ βkpk´1

17: sk`1 “ qk ´ z̄k`1, qk`1 “ sk`1 ´ αkqk ´ βkqk´1

18: βk`1 “ pp
T
k`1uk ` q

T
k`1tkq

1
2 “ ppTk`1Apk ` q

T
k`1Cqkq

1
2

19: if βk`1 ‰ 0 then
20: pk`1 “ pk`1{βk`1, qk`1 “ qk`1{βk`1

21: end if
22: k “ k ` 1
23: end while

The above transformations can be condensed in the following principle, which
summarizes the conversion a of projected process into a constraint-preconditioned
process.
Cahier du GERAD G-2020-72 Commit c415bb1 by Dominique Orban on 2021-01-05 11:39:25 -0500
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Principle 1.
1. Basis vectors vk`1,x are unchanged;
2. Basis vectors vk`1,w have the form FET qk`1, where qk`1 is defined by

sk`1 “ qk ´ z̄k`1,

q1 “ s1,

qk`1 “ sk`1 ´ αkqk ´ βkqk´1, pk ě 1q,

and where z̄k`1 results from the solution of (17);
3. Inner products of the form vTi,wuj,w become qTi Cqj “ qTi tj.

Theorem 1 summarizes the equivalence between the two formulations.

Theorem 1. Let E and F be as defined in (4) and G chosen to satisfy
Assumption 2.1. Let q0 P R

m be arbitrary. Then, Algorithm 1 with starting
guesses x0 P R

n and w0 “ ´FET q0, such that Bx0 ` Ew0, is equivalent to
Algorithm 2 with starting guesses x0 and q0. In particular, for all k, the vectors
vk,x and vk,w, and the scalars αk and βk in Algorithm 1 are equal to the vectors
pk and FET qk, and to the scalars αk and βk in Algorithm 2, respectively.

Note that Algorithm 2 does not contain references to E and F . The variable sk
is used only to improve readability. Assumption 2.1 guarantees that Algorithm 2 is
well posed because it is equivalent to Algorithm 1, which, in turn, is equivalent to
the standard Lanczos process for building an orthonormal basis of (13). The main
advantages of Algorithm 2 are that it works directly with the formulation (1) and it
only requires storage for three vectors of size n`m (rpk ; qks, ruk ; tks, and rp̄k ; z̄ks),
as opposed to the same number of vectors of size n` p`m for Algorithm 1.

We call Algorithm 2 the Constraint-Preconditioned Lanczos (CP-Lanczos) process
because of its similarity to a Lanczos process for building an orthonormal basis of a
Krylov space associated with the preconditioned operator P´1M , even though the
latter appears nonsymmetric.

4. Constraint-Preconditioned Lanczos-Based Krylov Solvers. We may
exploit Theorem 1 and use Algorithm 2 to derive a constraint-preconditioned version
of any Krylov method based on the Lanczos process. To this aim, we must understand
how the update of the k-th iterate rxk ; wks in a Krylov method based on Algorithm 1
translates into the update of the k-th iterate rxk ; yks in the version of that Krylov
method based on Algorithm 2. In the following, the former and the latter version
of the Krylov method are referred to as projected-Krylov (P-Krylov) and constraint-
preconditioned-Krylov (CP-Krylov), respectively.

Because the initial guess g0 “ rx0 ; w0s of P-Krylov applied to (6) must lie in
NullpNq, CP-Krylov must be initialized with rx0 ; y0s such that

(21) Bx0 ´ Cy0 “ 0.

Our first result states a property of Algorithm 2 that follows from a specific q0.

Lemma 1. Let Algorithm 2 be initialized with x0 P R
n and q0 P NullpCq.

Then, for all k ě 0,

(22) Bpk ` Cqk “ 0.

Proof. We proceed by induction. For k “ 0, (22) holds because p0 “ 0 and
q0 P NullpCq. For k “ 1, p1 “ p̄1, q1 “ q0 ´ z̄1 “ ´z̄1, and (17) and our assumption
Commit c415bb1 by Dominique Orban on 2021-01-05 11:39:25 -0500 Cahier du GERAD G-2020-72
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that q0 P NullpCq yield

Bp1 ` Cq1 “ Bp̄1 ´ Cz̄1 “ ´t0 “ ´Cq0 “ 0.

Assume (22) holds for any index j ď k. Lines 16–17 of Algorithm 2, (16), (17), and
our induction assumption imply that

Bpk`1 ` Cqk`1 “ Bp̄k`1 ` Cpqk ´ z̄k`1q ´ αkpBpk ` Cqkq ´ βkpBpk´1 ` Cqk´1q

“ Bp̄k`1 ` Cpqk ´ z̄k`1q

“ Bp̄k`1 ´ Cz̄k`1 ` tk “ 0,

which establishes (22).

An interesting property of the CP-Lanczos process is that it is equivalent to
formally applying the standard Lanczos process to system (1) with preconditioner (2),
where by “formal application”, we mean that the Lanczos process is applied blindly
as if P were positive definite. Such formal application is stated as Algorithm 5 in
Appendix A. The equivalence with Algorithm 2 is stated in the next result, which
parallels (Gould et al., 2014, Theorem 2.2).

Theorem 2. Let Algorithm 2 be initialized with x0 P R
n such that Bx0 “ 0,

q0 “ 0 P Rm, and Algorithm 5 be initialized with the same x0 and y0 P R
m such

that (21) is satisfied. Then, for all k ě 0, vk,x “ pk and vk,y “ ´qk, where
rvk,x ; vk,ys is the k-th Lanczos vector generated in Algorithm 5, and pk and qk
are the k-th Lanczos vectors generated in Algorithm 2. In addition, the scalars αk

and βk computed at each iteration are the same in both algorithms.

Proof. We proceed by induction. The result holds for k “ 0 because rv0,x ; v0,ys “
r0 ; 0s “ rp0 ; ´q0s. With q0 “ 0, Algorithm 2 initializes u0 “ b ´ Ax0 and t0 “ 0.
Because (21) is satisfied, Algorithm 5 initializes r0,x “ u0 ´B

T y0 and r0,y “ 0. Thus,
rv1,x ; v1,ys solves (17) with right-hand side ru0 ´ BT y0 ; 0s. By (Gould et al., 2014,
Theorem 2.1, item 2), rv1,x ; v1,ys equivalently solves (17) with right-hand side ru0 ; 0s,
and therefore, rv1,x ; v1,ys at line 4 of Algorithm 5 is equal to rp̄1 ; z̄1s. Lines 5–6 of
Algorithm 2 subsequently set p1 “ p̄1 “ v1,x and q1 “ s1 “ q0 ´ z̄1 “ ´v1,y.

With q0 “ 0, line 7 of Algorithm 2 computes β1 “ pp
T
1 u0q

1
2 . We take the inner

product of the second row of (17) with z̄1 “ ´q1 and note that t0 “ 0, and obtain
z̄T1 Bp1 “ z̄T1 Cz̄1 “ qT1 Cq1. Similarly, we take the inner product of the first row of (17)
with p1 and substitute z̄T1 Bp1 to obtain pT1 u0 “ pT1Gp1 ` qT1 Cq1, so that β1 is the
same as that computed at line 5 of Algorithm 5. We have established that the result
also holds for k “ 1.

At a general iteration k, Algorithm 2 sets uk “ Apk, tk “ Cqk and computes
αk “ pTk uk ` qTk tk “ pTkApk ` qTk Cqk. By Lemma 1, qTk Bpk ` qTk Cqk “ 0, so that
αk “ pTkApk ´ 2qTk Bpk ´ qTk Cqk. Under the recurrence assumption that vk,x “ pk
and vk,y “ ´qk, this expression of αk is the same as that computed at line 12 of
Algorithm 5.

At line 15 of Algorithm 2, we compute rp̄k`1 ; z̄k`1s from (17), or, equivalently, as
the solution to

„

G BT

B ´C

 „

p̄k`1

z̄k`1 ´ qk



“

„

Apk
0



.

In view of Lemma 1, our recurrence assumption, and (Gould et al., 2014, Theorem 2.1,
item 2), line 13 of Algorithm 5 computes rvk`1,x ; vk`1,ys as the solution to the
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same system as above. Therefore, at that point in each algorithm vk`1,x “ p̄k`1 and
vk`1,y “ z̄k`1´qk “ ´sk`1. The vector updates at lines 16–17 of Algorithm 2 together
with those at line 14 of Algorithm 5 show that vk`1,x “ pk`1 and vk`1,y “ ´qk`1. Our
recurrence assumption and Lemma 1 yieldBvk,x´Cvk,y “ 0 andBvk`1,x´Cvk`1,y “ 0.
Finally, Algorithm 5 sets

β2
k`1 “ vTk`1,xuk,x ` v

T
k`1,yuk,y

“ vTk`1,xAvk,x ` pBvk`1,x ´ Cvk`1,yq
T vk,y ` v

T
k`1,yBvk,x

“ vTk`1,xAvk,x ` v
T
k`1,yCvk,x,

which is the same value computed in Algorithm 2.

Theorem 2 shows that Algorithm 2 may be summarized as
„

A BT

B ´C

 „

Pk

´Qk



“

„

G BT

B ´C

ˆ„

Pk

´Qk



Tk ` βk`1

„

pk`1

´qk`1



eTk ,

˙

provided that Bx0 “ 0 and q0 “ 0, where Tk is the same as in Algorithm 1, and

Pk “
“

p1 . . . pk
‰

, Qk “
“

q1 . . . qk
‰

.

A consequence of Theorem 2 is that any CP-Krylov method is formally equivalent
to the corresponding standard Krylov method applied to system (1) with precondi-
tioner (2).

Corollary 1. Let Algorithm 2 be initialized with x0 P R
n such that Bx0 “ 0,

q0 “ 0 P Rm, and Algorithm 5 be initialized with the same x0 and y0 P R
m such

that (21) is satisfied. The k-th approximate solution of (1) computed by any
Lanczos-based CP-Krylov method coincides with the k-th approximate solution
obtained by formally applying the standard version of the same method to (1) with
preconditioner (2).
Although Corollary 1 states that standard Lanczos-based methods can be safely

applied to (1) with preconditioner (2) and an appropriate starting point, Algorithm 2
reduces the computational effort by never requiring products with B or BT . Only
products with A and C are necessary. On the other hand, thanks to Theorem 2,
specialized implementations of the standard Lanczos-based methods can be developed
by exploiting the equalities Bpk ` Cqk “ 0 and Bxk ´ Cyk “ 0, thus saving matrix-
vector products. The computation involving sk`1 can be carried out, for example, as
the update qk´1 “ qk ´ z̄k`1 ´ βkqk´1 followed by qk`1 “ qk´1 ´ αkqk, or sk`1 can
overwrite z̄k`1. Finally, once (2) has been factorized, storing B is no longer necessary,
and this can be used to free memory if needed.

A consequence of Theorem 2 is a formal equivalence between the iterates generated
by Lanczos-based methods applied by way of Algorithm 2 and Algorithm 5. This
equivalence requires a re-interpretation of the optimality conditions associated with
the Krylov method.

Consider, e.g., MINRES (Paige and Saunders, 1975). The residual associated with
iterate rxk ; wk ; yks generated by P-MINRES, with wk “ ´FE

T yk, is

rP,k “

»

–

rP,k,x

rP,k,w

rP,k,y

fi

fl “

»

–

b
0
0

fi

fl´

»

–

A BT

F´1 ET

B E

fi

fl

»

–

xk
wk

yk

fi

fl “

»

–

b´Axk ´B
T yk

0
0

fi

fl ,
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where we used the fact that Bxk ` Ewk “ 0 for all k. This residual corresponds to
the residual at iterate rxk ; yks generated by CP-MINRES:

rCP,k “

„

b
0



´

„

A BT

B ´C

 „

xk
yk



“

„

b´Axk ´B
T yk

0



,

where we exploited the fact that Bxk ´ Cyk “ 0 for all k, which comes from Bxk `
Ewk “ 0 and wk “ ´FE

T yk.
We may apply the arguments of Gould et al. (2014, Section 3) to conclude that

P-MINRES, and hence CP-MINRES, minimizes the deviation of rrP,k,x ; 0s from the
range space of N , i.e., as in (15),

(23) }rP,k}
2
rP s “ pb´Axk ´B

T ykq
Thk,

where
»

–

G BT

F´1 ET

B E

fi

fl

»

–

hk
fk
lk

fi

fl “

»

–

b´Axk ´B
T yk

0
0

fi

fl .

Because hk P NullpBq, we also have

(24) }rP,k}
2
rP s “ pb´Axkq

Thk.

Equivalently, hk may be computed from
„

G BT

B ´C

 „

hk
lk



“

„

b´Axk
0



.

Because of its residual norm minimization property, CP-MINRES is appropriate
to solve saddle-point systems in a linesearch inexact-Newton context, where we seek
to reduce the residual of the Newton-like equations (1) in an appropriate space.

The same reasoning applies to the constraint-preconditioned version of any Lanczos-
based Krylov method. For example, Paige and Saunders (1975) derive the conjugate
gradient method of Hestenes and Stiefel (1952) directly from the Lanczos process. The
nullspace variant of the constraint-preconditioned version, Lanczos CP-CG, generates
iterates pxk so as to minimize the energy norm of the error, i.e.,

}pek}
2
xM
“ peTk xMpek,

where pek “ pxk ´ px˚, and px˚ is the exact solution of (9). The definitions (10) yield

}pek}
2
xM
“ ppxk ´ px˚q

TZTMZppxk ´ px˚q

“ pxk ´ x˚q
TApxk ´ x˚q ` pwk ´ w˚q

TF´1
pwk ´ w

˚
q

“ pxk ´ x˚q
TApxk ´ x˚q ` pyk ´ y˚q

TCpyk ´ y˚q,

where we used again the relationship wk “ ´FE
T yk between iterates of P-CG and

CP-CG. For Lanczos CP-CG to be applicable, xM must be positive definite, which
occurs when the sum of the number of negative eigenvalues of K and C is m (Dollar
et al., 2006, Theorem 2.1).

We can derive a “traditional” CP-CG implementation by applying the usual
transformations to the Lanczos CP-CG. The result coincides with the implementation
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of Dollar et al. (2006), although the latter authors assume that B has full row rank for
specific purposes. It is also equivalent to that of Cafieri, D’Apuzzo, De Simone, and
di Serafino (2007a) for (1) with positive definite C. The above suggests that CP-CG
is appropriate to solve saddle-point systems in constrained optimization where (1) is
used to minimize a quadratic model of a penalty function and sufficient decrease of
this quadratic model is sought, such as in trust-region methods.

Our last example considers SYMMLQ (Paige and Saunders, 1975), which does
not require xM to be positive definite but, like CG, requires (1) to be consistent. Its
constraint-preconditioned version, CP-SYMMLQ, computes rxk ; yks so as to minimize
the error in a norm defined by the preconditioner, i.e.,

peTk pP´1
pek “ ppxk ´ px˚q

T
pZTPZq´1

ppxk ´ px˚q

“ ppxk ´ px˚q
TZTZpZTPZq´1ZTZppxk ´ px˚q

“

„

xk ´ x˚
wk ´ w˚

T

PG

„

xk ´ x˚
wk ´ w˚



.

where we used similar identifications as above and assumed, without loss of generality,
that Z has orthonormal columns. In other words, if we define

(25)

»

–

G BT

F´1 ET

B E

fi

fl

»

–

ex
ew
ē

fi

fl “

»

–

xk ´ x˚
wk ´ w˚

0

fi

fl ,

then
peTk pP´1

pek “ pxk ´ x˚q
T ex ` pwk ´ w˚q

T ew “ eTxGex ` ewF
´1ew.

By (5) and (25), there exists a vector ey such that ew “ ´FE
T ey, and thus eTwF

´1ew “

eTy Cey. The second block row of (25) premultiplied by E yields EF pwk ´w˚q ´Cē “
´Cey, so that (25) can be written as

„

G BT

B ´C

 „

ex
ey



“

„

xk ´ x˚
0



.

Finally, CP-SYMMLQ minimizes

peTk pP´1
pek “ eTxGex ` e

T
y Cey.

5. Constraint-Preconditioned Arnoldi Process and Associated Krylov
Solvers. A constraint-preconditioned version of the Arnoldi process can be derived
by reasoning as in Section 3, obtaining Algorithm 3. The equivalence between the
projected version (Algorithm 6 in Appendix A) and the constraint-preconditioned
version is stated in Theorem 3, which is akin to Theorem 1.

Theorem 3. Let E and F be as defined in (4) and G chosen to satisfy
Assumption 2.1. Let q0 P R

m be arbitrary. Then, Algorithm 6 in Appendix A
with starting guesses x0 P R

m and w0 “ ´FE
T q0, such that Bx0 ` Ew0 “ 0,

is equivalent to Algorithm 3 with starting guesses x0 and q0. In particular, for
all k, the vectors vk,x and vk,w and the scalars hi,k in Algorithm 6 are equal to
the vectors pk and FET qk, and to the scalars hi,k in Algorithm 3, respectively.
As in the case of the Lanczos process, the CP-Arnoldi process is equivalent to apply-

ing the corresponding standard Arnoldi process to system (1) with preconditioner (2)
(see Algorithm 7 in Appendix A), as stated in the next theorem.
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Algorithm 3 Constraint-Preconditioned Arnoldi Process
1: choose rx0 ; q0s such that Bx0 ´ Cq0 “ 0 initial guess
2: p0 “ 0 initial Arnoldi vector
3: u0 “ b´Ax0, t0 “ Cq0
4: rp̄1 ; z̄1s Ð solution of (17) with right-hand side ru0 ; ´t0s
5: p1 “ p̄1
6: q1 “ q0 ´ z̄1

7: h1,0 “ pp
T
1 u0 ` q

T
1 t0q

1
2

8: if h1,0 ‰ 0 then
9: p1 “ p1{h1,0, q1 “ q1{h1,0

10: end if
11: k “ 1
12: while hk,k´1 ‰ 0 do
13: uk “ Apk, tk “ Cqk
14: rp̄k`1 ; z̄k`1s Ð solution of (17) with right-hand side ruk ; ´tks
15: pk`1 “ p̄k`1

16: qk`1 “ qk ´ z̄k`1

17: for i “ 1, . . . , k do
18: hi,k “ pTi uk ` q

T
i tk “ pTi Apk ` q

T
i Cqk

19: pk`1 “ pk`1 ´ hi,kpi
20: qk`1 “ qk`1 ´ hi,kqi
21: end for
22: hk`1,k “ pp

T
k`1uk ` q

T
k`1tkq

1
2 “ ppTk`1Apk ` q

T
k`1Cqkq

1
2

23: if hk`1,k ‰ 0 then
24: pk`1 “ pk`1{hk`1,k, qk`1 “ qk`1{hk`1,k

25: end if
26: k “ k ` 1
27: end while

Theorem 4. Let Algorithm 3 be initialized with x0 P R
n such that Bx0 “ 0,

q0 “ 0 P Rm, and Algorithm 7 be initialized with the same x0 and y0 P R
m such

that (21) is satisfied. Then, for all k ě 0, vk,x “ pk and vk,y “ ´qk, where
rvk,x ; vk,ys is the k-th Arnoldi vector generated in Algorithm 7, and pk and qk
are the k-th Arnoldi vectors generated in Algorithm 3. In addition, the scalars
hi,k computed at each iteration are the same in both algorithms.
Theorem 4 allows us to develop a constraint-preconditioned variant of any Krylov

method based on the Arnoldi process, using a starting guess satisfying (21). Such
variants are equivalent to their standard counterparts preconditioned with (2), but are
computationally cheaper, as in the case of Lanczos-based methods. Furthermore, CP-
Krylov versions of optimal Arnoldi-based Krylov methods preserve the minimization
properties of these methods in the sense explained in Section 4. For example, the
constraint-preconditioned version of GMRES (Saad and Schultz, 1986) minimizes the
norm of the deviation of the residual from RangepNq similarly to MINRES. Below, we
denote GMRES(`) the variant of GMRES that is restarted every ` iterations.

Obtaining constraint-preconditioned versions of GMRES(`) and DQGMRES is
straighforward, by restarting and truncating the CP-Arnoldi basis generation process,
respectively, as in the standard case (Saad, 2003). Note that DQGMRES with
memory 2, i.e., with orthogonalization of each Arnoldi vector against the two previous
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vectors only, is equivalent to CP-MINRES in exact arithmetic when A is symmetric.
In finite precision arithmetic, DQGMRES with a larger memory may dampen the loss
of orthogonality among the Lanczos vectors and act as a local reorthogonalization
procedure, although we did not observe significant differences in Section 7.

Dollar (2007, Theorems 4.1 and 4.3) establishes that if C is positive semi-definite
of rank p, P´1K has an eigenvalue at 1 of multiplicity 2m´ p, while the remaining
n´m` p eigenvalues are defined by a generalized eigenvalue problem. A remark after
(Dollar, 2007, Theorem 4.1) states that Assumption 2.1 ensures that all eigenvalues are
real. In addition, the dimension of the Krylov space is at most minpn´m`p`2, n`mq.
Inspection reveals that Dollar’s proofs of those results do not use the fact that A is
symmetric; the results hold for general A. Loghin (2017) establishes similar results on
the eigenvalues of non-regularized saddle-point matrices for general A and general G.
Clustering eigenvalues accelerates convergence of nonsymmetric Krylov solvers in
many practical cases, although the convergence behavior of such solvers is not fully
characterized by the eigenvalues (Greenbaum, Pták, and Strakoš, 1996).

6. Implementation Issues. We implemented the constraint-preconditioned
variants of the Lanczos-CG, MINRES, SYMMLQ, GMRES(`) and DQGMRES methods
for (1) in a MATLAB library named cpkrylov. For completeness, we also included in
the library an implementation of the CP-CG method in the form given by Dollar et al.
(2006). We think that cpkrylov can be useful as a basis for the development of more
sophisticated numerical software.

All solvers are accessed via a common interface exposed by the main driver
reg_cpkrylov(), which performs pre-processing operations, calls the requested solver,
performs post-processing operations, and returns solutions and statistics to the user.
cpkrylov is freely available from github.com/optimizers/cpkrylov.

Because A is never required as an explicit matrix, we allow the user to supply it as
an abstract linear operator as implemented in the Spot linear operator toolbox2. Spot
allows us to use the familiar matrix notation with operators for which a representation
as an explicit matrix is unavailable or inefficient. This affords the user flexibility in
defining A while keeping the implementation of the various Krylov methods as readable
as if A were a matrix.

Gould et al. (2001, 2014) observe that the numerical stability of projected Krylov
solvers depends on keeping rxk ; wks in NullpNq. While the iterates lie in the nullspace
in exact arithmetic, rxk ; wks may have a non-negligible component in RangepNT

q

because of roundoff error. In turn, the stability of CP-Krylov solvers depends on how
accurately rxk ; yks satisfies

Bxk ´ Cyk “ 0.

Gould et al. (2001) suggest to increase the accuracy by applying iterative refinement
after solving (17) with a direct method. In cpkrylov, the constraint preconditioner
P is implemented as a Spot operator P such that writing z = P*r, where z = [z1 ;
z2] and r = [r1 ; r2], corresponds to solving

(26)
„

G BT

B ´C

 „

z1
z2



“

„

r1
r2



,

and automatically performing iterative refinement if requested by the user or if the
residual norm of (26) exceeds a given tolerance.

2www.cs.ubc.ca/labs/scl/spot
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An alternative approach to minimizing the size of the component of rxk ;wks in
RangepNT

q suggested by Gould et al. (2001) is to perform iterative semi-refinement.
The latter consists in noting that the solution of (14) is not affected (in exact arithmetic)
if we add a vector lying in RangepNT

q to rux ; uws in the right-hand side. Such a
vector is available cheaply in the form of rBT z̄ ; ET z̄s where z̄ is the trailing segment
of the solution of the most recent projection step (14), and z̄ “ 0 at the first projection
step. The net result is that instead of (17), we solve

(27)
„

G BT

B ´C

 „

p̄k`1

z̄k`1



“

„

uk,x ´B
T z̄k

´ptk ´ Cz̄kq



, z̄0 :“ 0.

By default, the matrix of (26) is factorized by way of MATLAB’s ldl(). Spot
allows us to separate the implementation of the preconditioner from that of other
phases of solvers, so that future extensions to the former (e.g., the case where applying
P results from a different factorization) will not require changes to the latter. Our
implementation of P is transparent to the user, who must only pass the matrices G,
B and C to reg_cpkrylov().

All CP-Krylov solvers stop when

(28) }rP,k}rP s ď εa ` }rP,0}rP s εr,

where }rP,k}rP s is defined in (23) (or, equivalently, in (24)), and εa and εr are tolerances
given by the user (default values are also set in our implementations). Note that, for
all the CP-Krylov solvers except CP-DQGMRES, }rP,k}rP s is obtained as a byproduct
of other computations performed in algorithm. CP-DQGMRES computes an estimate
of the residual norm only. A computationally cheap overestimate of the residual norm
could be used in the stopping criterion, but this may unnecessarily increase the number
of iterations (Saad and Wu, 1996, Section 3.1). A maximum number of iterations can
be also specified for all solvers.

So far, we have considered the case where the last m entries of the right-hand side
of (1) are zero. When the right-hand side has the general form rb1 ; b2s with b2 ‰ 0,
we can compute ∆x and ∆y such that

(29) B∆x´ C∆y “ b2,

by applying P to r0 ; b2s, and subsequently solve (1) with b “ b1´A∆x´BT ∆y. The
solution of the original system is rx`∆x ; y `∆ys. These pre- and post-processing
steps are implemented in reg_cpkrylov().

7. Numerical Experiments. We report results obtained by applying some
solvers from the cpkrylov library to regularized saddle-point systems arising in the
application of the primal-dual interior point solver PDCO to convex quadratic pro-
gramming problems (see web.stanford.edu/group/SOL/software/pdco/). PDCO
solves linearly constrained optimization problems with a smooth convex objective
function in the form

(30)

minimize
xPR

n
, rPR

m
fpxq ` 1

2}D1x}
2
` 1

2}r}
2

subject to Bx`D2r “ c

l ď x ď u,

where f : Rn
Ñ R is smooth and convex, B P R

mˆn, and D1 and D2 are positive-
definite diagonal matrices that provide primal and dual regularization. In particular,
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D2 determines whether Bx “ c should be satisfied accurately or in the least-squares
sense.

At each iteration of PDCO, a Newton step is applied to suitably perturbed
KKT conditions associated with (30). The Newton step requires the solution of a
linear system, which can be cast into the form (1) by a combination of permutation
operations and/or inexpensive block eliminations. Possibly the most common saddle-
point formulation is

K2 “

„

A BT

B ´C



“

„

H `D2
1 `X

´1
1 Z1 `X

´1
2 Z2 BT

B ´D2
2



where H is the Hessian of the objective function at the current approximation of
the optimal solution, X1 “ diagpx1q, X2 “ diagpx2q, Z1 “ diagpz1q, Z2 “ diagpz2q,
x1 “ x ´ l ą 0, x2 “ u ´ x ą 0, and z1 ą 0 and z2 ą 0 are the corresponding dual
variable estimates. In our experiments, H is constant because f is quadratic. More
details are available from web.stanford.edu/group/SOL/software/pdco/pdco.pdf.

Recently, unreduced KKT systems have attracted the interest of researchers
because of their better spectral properties, especially as the interior point iterates
approach the solution of the optimization problem (Greif, Moulding, and Orban, 2014;
Morini, Simoncini, and Tani, 2016). Other symmetric and unsymmetric saddle-point
formulations are obtained with simple operations. In particular, within PDCO we
used the unreduced symmetric saddle-point formulation

K3.5 “

„

A BT

B ´C



“

»

—

–

H `D2
1 BT Z

1
2

B ´D2
2 0

Z
1
2 0 ´X

fi

ffi

fl

,

whereX “ diagprx1 ; x2sq and Z “ diagprz1 ; z2sq. We also considered the unsymmetric
saddle-point formulation

K3p “

„

A BT

B ´C



“

»

–

H `D2
1 I BT

´Z X 0

B 0 ´D2
2

fi

fl ,

which has the same structure as the saddle-point matrix in equation (2.5a) of (Greif
et al., 2014) up to a permutation.

For all the saddle-point formulations, the constraint preconditioner P in (2) was
defined by choosing G equal to the diagonal of the leading block A. This is a common
choice in interior point methods—see, e.g., (D’Apuzzo et al., 2010). In our experiments,
iterative refinement never needed to be performed.

The CP-Krylov solvers were stopped using an adaptive criterion that relates the
accuracy in the solution of the KKT linear system to the duality measure at the
current interior point iteration, as suggested by Cafieri, D’Apuzzo, De Simone, and
di Serafino (2007b). Thus, criterion (28) was applied by setting εr “ 0 and

εa “ max
!

min
!

10´2µ, 10´2
)

, 10´6
)

,

where µ is the the barrier parameter in PDCO.
We run PDCO on the CUTEst (Gould, Orban, and Toint, 2015) problems reported

in Table 1. We use the models translated3 into the AMPL modeling language (Fourer,

3github.com/mpf/Optimization-Test-Problems
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Problem K2 size K3.5 pK3pq size
cvxqp1_s 200 400
cvxqp1_m 2000 4000
cvxqp1_l 20000 40000
cvxqp2_s 150 350
cvxqp2_m 1500 3500
cvxqp2_l 15000 35000
cvxqp3_s 250 450
cvxqp3_m 2500 4500
cvxqp3_l 25000 45000
gouldqp3 1397 2795
gouldqp2 1397 2795
mosarqp1 3900 7100
mosarqp2 3900 3600
stcqp1 8201 16395
stcqp2 8201 16395

Table 1
CUTEst problems used in the experiments.

Gay, and Kernighan, 2002). Our version of PDCO has been modified to take an
optimization problem in the form of an instance of the nlpmodel class as argument,
which is defined in the model Matlab package.4 The amplmodel subclass of nlpmodel
reads an AMPL nl file by way of the AmplMEXInterface package5 and conforms to
the model interface expected by our version of PDCO. The rest of PDCO is identical
to the original version. For the problem received by PDCO to have the form (30), it
is necessary to introduce slack variables. In our implementation, linear inequalities
` ď Ax ď u are transformed to Ax ´ s “ 0 and ` ď s ď u. The transformation is
performed by the slackmodel class, which receives an arbitrary instance of nlpmodel,
including arbitrary instances of amplmodel, and adds slack variables as just described.
The options passed to PDCO, including scaling parameters, are the same as those
described by Orban (2015).

The problems are chosen so that H is non-diagonal; otherwise, for K2 and K3.5

the constraint preconditioner would be equal to the saddle-point matrix. The table
also shows the sizes of K2 and K3.5 (or K3p).

We ran PDCO with the saddle-point matrices K2 and K3.5, using CP-CG,
CP-MINRES, CP-DQGMRES(`) and CP-GMRES(`) as Krylov solvers. By CP-
DQGMRES(`) we denote CP-DQGMRES with memory parameter `, i.e., the number
of Arnoldi vectors to be stored in the truncated CP-Arnoldi process. We set ` “ 2; in
this case CP-DQGMRES is equivalent to CP-MINRES in exact arithmetic. We also
ran PDCO with K3p using CP-DQGMRES(`) and CP-GMRES(`) with various values
of `. The goal of the experiments is to illustrate the behavior of CP-Krylov solvers
inside an interior-point method.

PDCO was run on a 2.5 GHz Intel Core i7 processor with 16 GB of RAM,
4 MB of L3 cache and the macOS 10.13.6 operating system, using MATLAB R2018b.
Execution times were measured in seconds, by using the MATLAB function timeit,
which removes some of the noise inherent to time measurements by calling a specified
function multiple times and returning the median of the measurements.

Tables 2 to 5 summarize the results obtained with K2 and K3.5 using CP-CG
and CP-MINRES. For each problem, “outer it” is the number of outer interior-point
iterations, “inner it” is the cumulative number of inner Krylov iterations, “PDCO time”
is the total run time reported by PDCO, and “prec time” and “solve time” are the

4github.com/optimizers/model
5github.com/optimizers/AmplMexInterface
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name outer it inner it PDCO time prec time solve time
cvxqp1_s 17 80 1.025e´01 4.137e´02 4.276e´02
cvxqp1_m 19 103 2.233e´01 7.196e´02 1.190e´01
cvxqp1_l 20 138 1.367e`00 4.195e´01 6.623e´01
cvxqp2_s 17 80 6.875e´02 3.357e´02 2.102e´02
cvxqp2_m 19 118 1.775e´01 4.506e´02 1.032e´01
cvxqp2_l 20 140 9.295e´01 1.468e´01 5.485e´01
cvxqp3_s 20 72 8.294e´02 4.222e´02 2.336e´02
cvxqp3_m 19 99 2.731e´01 1.098e´01 1.309e´01
cvxqp3_l 20 137 1.236e`00 5.764e´01 3.727e´01
gouldqp3 10 20 5.697e´02 2.671e´02 1.619e´02
gouldqp2 11 26 7.421e´02 3.219e´02 2.546e´02
mosarqp1 17 54 2.962e´01 9.205e´02 1.595e´01
mosarqp2 16 73 2.344e´01 8.506e´02 1.212e´01
stcqp1 15 124 4.959e`00 3.559e`00 1.219e`00
stcqp2 16 199 7.196e´01 1.006e´01 5.132e´01

Table 2
Results for K2 with solver CP-CG. Times are in seconds.

name outer it inner it PDCO time prec time solve time
cvxqp1_s 17 80 1.134e´01 4.936e´02 3.212e´02
cvxqp1_m 19 103 2.231e´01 7.145e´02 1.182e´01
cvxqp1_l 20 137 1.312e`00 4.185e´01 6.098e´01
cvxqp2_s 17 80 6.928e´02 3.350e´02 2.168e´02
cvxqp2_m 19 118 1.870e´01 4.766e´02 1.073e´01
cvxqp2_l 20 140 9.056e´01 1.506e´01 5.127e´01
cvxqp3_s 20 72 8.724e´02 4.401e´02 2.511e´02
cvxqp3_m 19 99 2.869e´01 1.164e´01 1.356e´01
cvxqp3_l 20 136 1.236e`00 5.739e´01 3.767e´01
gouldqp3 10 20 5.260e´02 2.453e´02 1.531e´02
gouldqp2 11 26 6.434e´02 2.757e´02 2.210e´02
mosarqp1 17 54 3.383e´01 9.735e´02 1.671e´01
mosarqp2 16 73 2.340e´01 8.128e´02 1.246e´01
stcqp1 15 124 5.115e`00 3.624e`00 1.307e`00
stcqp2 16 196 7.310e´01 1.017e´01 5.215e´01

Table 3
Results for K2 with solver CP-MINRES. Times are in seconds.

cumulative times to assemble and factorize the constraint preconditioner and to solve
the linear systems, respectively. We see that CP-MINRES performs a slightly smaller
number of iterations than CP-CG on some problems, which may be beneficial if very
large systems are solved. CP-MINRES is adequate in the context of a linesearch inexact
Newton method such as PDCO because it reduces the residual norm monotonically
by design. Fong and Saunders (2012) observe that MINRES possesses other desirable
properties that are generally attributed to CG.

We also observe that the number of CP-Krylov iterations with K3.5 is always
smaller than with K2, which may be due to the smaller condition number of K3.5

(Greif et al., 2014; Morini et al., 2016). On cvxqp3_s, K3.5 also results in a smaller
number of PDCO iterations. On gouldqp2, K3.5 results in fewer inner iterations
than outer iterations because the initial guess satisfies the stopping condition of the
first five subproblems, resulting in zero inner iterations for those outer iterations.
This behavior does not occur with K2, which produces different multiplier estimates.
We used the MATLAB function condest to estimate the condition numbers of K2

and K3.5 encountered during the PDCO iterations for each problem. On the cvxqp
problems, the largest value of condest(K3.5) is between three and four orders of
magnitude smaller than the largest value of condest(K2). The factor is between
five and seven orders of magnitude on the gouldqp problems, one to two orders on
the mosarqp problems, and two to three orders on the stcqp problems. While such
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name outer it inner it PDCO time prec time solve time
cvxqp1_s 17 66 1.162e´01 4.206e´02 3.165e´02
cvxqp1_m 19 86 3.685e´01 9.864e´02 2.275e´01
cvxqp1_l 20 120 3.761e`00 1.159e`00 2.220e`00
cvxqp2_s 17 64 7.814e´02 4.010e´02 2.098e´02
cvxqp2_m 19 101 2.769e´01 6.854e´02 1.712e´01
cvxqp2_l 20 123 2.483e`00 4.038e´01 1.753e`00
cvxqp3_s 18 50 8.543e´02 4.123e´02 2.774e´02
cvxqp3_m 19 81 4.584e´01 1.793e´01 2.384e´01
cvxqp3_l 20 119 4.253e`00 1.726e`00 2.163e`00
gouldqp3 10 12 5.470e´01 4.725e´01 5.119e´02
gouldqp2 9 5 8.842e´02 4.019e´02 3.323e´02
mosarqp1 17 39 5.908e´01 2.126e´01 3.048e´01
mosarqp2 16 60 3.951e´01 1.590e´01 2.025e´01
stcqp1 15 110 5.622e`00 3.541e`00 1.883e`00
stcqp2 16 183 1.841e`00 1.721e´01 1.527e`00

Table 4
Results for K3.5 with solver CP-CG. Times are in seconds.

measurements do not tell the whole story and it would be more accurate to measure
the condition number of (10), they tend to confirm that the condition number of K3.5

is provably bounded if strict complementarity is satisfied. On our test set, the PDCO
time reported for formulation K2 is almost always slightly smaller than that for K3.5.

name outer it inner it PDCO time prec time solve time
cvxqp1_s 17 65 9.533e´02 4.257e´02 3.340e´02
cvxqp1_m 19 86 3.882e´01 1.030e´01 2.462e´01
cvxqp1_l 20 119 3.362e`00 9.801e´01 2.039e`00
cvxqp2_s 17 64 6.759e´02 3.480e´02 1.855e´02
cvxqp2_m 19 101 2.633e´01 6.210e´02 1.668e´01
cvxqp2_l 20 123 2.466e`00 3.748e´01 1.776e`00
cvxqp3_s 18 50 8.394e´02 4.090e´02 2.741e´02
cvxqp3_m 19 81 4.505e´01 1.737e´01 2.369e´01
cvxqp3_l 20 118 4.272e`00 1.758e`00 2.142e`00
gouldqp3 10 12 5.600e´01 4.870e´01 5.158e´02
gouldqp2 9 5 8.700e´02 4.047e´02 3.243e´02
mosarqp1 17 39 6.036e´01 2.265e´01 3.166e´01
mosarqp2 16 60 4.167e´01 1.646e´01 2.168e´01
stcqp1 15 109 5.648e`00 3.556e`00 1.895e`00
stcqp2 16 180 1.827e`00 1.730e´01 1.510e`00

Table 5
Results for K3.5 with solver CP-MINRES. Times are in seconds.

We do not show the details for CP-DQGMRES(2) and CP-GMRES(2), because
they do not add much to the discussion. We summarize the results as follows: CP-
DQGMRES(2) results in the same number of PDCO and CP-Krylov iterations as
CP-MINRES, as expected, and the corresponding times are comparable with those of
MINRES. CP-GMRES(2) results in an increase in the number of CP-Krylov iterations
as compared with MINRES. Whereas CP-DQGMRES with ` ą 2 may be viewed as
CP-MINRES with a form of partial reorthogonalization, setting ` “ 4 did not yield
any improvement on the symmetric formulations.

The results with CP-DQGMRES(`) and CP-GMRES(`) on K3p are not favorable.
In general, the unsymmetric CP-Krylov solvers on K3p are much less efficient than the
symmetric ones on K2 and K3.5. For example, with ` “ 500 the number of CPKrylov
iterations is much larger than in the symmetric case and there are some problems where
CP-DQGMRES(`) and CP-GMRES(`) cannot always satisfy the stopping criterion.
In these cases, they halt because a maximum number of CP-Krylov iterations equal
to 2n is achieved, thus preventing PDCO from computing the optimal solution by
its maximum number of iterations, which is set as mintmaxt30, nu, 50u. Among the
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possible reasons, we mention the non-normality of K3p and the choice of the p1, 1q
block G of the preconditioner. A similar behavior has been observed by using the
MATLAB function gmres with the constraint preconditioner. A more efficient choice
of G and a better formulation than K3p are the subject of further investigation.

We ran all our tests a second time with iterative semi-refinement (27) activated,
but did not observe any difference in the number of inner or outer iterations.

8. Discussion. We extended the approach of Gould et al. (2014) to saddle-point
systems with regularization and provided principles from which to derive constrained-
preconditioned iterative methods. The resulting methods are conceptually equivalent
to standard iterative methods applied to a reduced system in a way that preserves their
properties, including quantities that increase or decrease monotonically at each itera-
tion. Specifically, we discussed constraint-preconditioned versions of the CG-Lanczos,
MINRES, SYMMLQ, GMRES(`) and DQGMRES(`) methods, and showed that they
preserve the properties of the corresponding standard methods in a suitable reduced
Krylov space. We illustrated our approach on methods based on the Lanczos and
Arnoldi processes, but it applies equally to other processes, including those of Golub and
Kahan (1965), Saunders, Simon, and Yip (1988), and the unsymmetric Lanczos (1952)
bi-orthogonalization process. We implemented our constraint-preconditioned methods
in a MATLAB library named cpkrylov that provides a basis for the development of
more sophisticated numerical software.

An open question related to constraint preconditioners concerns the best way
to reduce their computational cost. Inexact constraint preconditioners have been
developed and analyzed, based on approximations of the Schur complement of the
leading block of the constraint preconditioner or on other approximations (Lukšan and
Vlček, 1998; Perugia and Simoncini, 2000; Durazzi and Ruggiero, 2003; Bergamaschi,
Gondzio, Venturin, and Zilli, 2007; Sesana and Simoncini, 2013). Preconditioner
updating techniques, producing inexact and exact constraint preconditioners, have been
also proposed in order to reduce the cost of solving sequences of saddle-point systems
(Bellavia, De Simone, di Serafino, and Morini, 2015, 2016; Fisher, Gratton, Gürol,
Trémolet, and Vasseur, 2016; Bergamaschi, De Simone, di Serafino, and Martínez, 2018).
It must be noted, however, that the inexact constraint preconditioners considered
so far generally do not produce preconditioned vectors lying in the nullspace of the
matrix N defined in (7), which is a key issue to obtain CP-preconditioned methods
for (1) equivalent to suitably preconditioned Krylov methods for (9). On the other
hand, inexact preconditioners have proven effective in reducing the computational time
for the solution of large-scale saddle-point systems. A further possibility for lowering
the cost of constraint preconditioners is to apply them inexactly using an iterative
method. Of course, preserving the property of obtaining preconditioned vectors lying
in the nullspace of N is a major issue. To the best of our knowledge, this approach
has not been yet addressed in the literature.

Finally, it is worth investigating the choice of the p1, 1q block of the constraint
preconditioner when solving non-normal saddle-point systems.

Acknowledgments. We thank two anonymous reviewers for constructive com-
ments that helped us greatly improve the numerical experiments section.

References.
W. E. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue

problem. Q. Appl. Math., 9:17–29, 1951.
S. Bellavia, V. De Simone, D. di Serafino, and B. Morini. Updating constraint preconditioners

Commit c415bb1 by Dominique Orban on 2021-01-05 11:39:25 -0500 Cahier du GERAD G-2020-72

http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1090/qam/42792
http://dx.doi.org/10.1137/130947155
http://dx.doi.org/10.1137/130947155


[toc] 21

for KKT systems in quadratic programming via low-rank corrections. SIAM J. Optim., 25
(3):1787–1808, 2015.

S. Bellavia, V. De Simone, D. di Serafino, and B. Morini. On the update of constraint
preconditioners for regularized KKT systems. Comput. Optim. Appl., 65(2):339–360, 2016.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta
Numer., 14:1–137, 2005.

L. Bergamaschi, J. Gondzio, M. Venturin, and G. Zilli. Inexact constraint preconditioners for
linear systems arising in interior point methods. Comput. Optim. Appl., 36(2–3):137–147,
2007.

L. Bergamaschi, V. De Simone, D. di Serafino, and A. Martínez. BFGS-like updates of
constraint preconditioners for sequences of KKT linear systems in quadratic programming.
Numer. Linear Algebra Appl., 25(5):e2144, 2018.

C. Brezinski and M. Redivo-Zaglia. Transpose-free Lanczos-type algorithms for nonsymmetric
linear systems. Numer. Algor., 17(1–2):67–103, 1998.

S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino. On the iterative solution of KKT
systems in potential reduction software for large-scale quadratic problems. Comput. Optim.
Appl., 38(1):27–45, 2007a.

S. Cafieri, M. D’Apuzzo, V. De Simone, and D. di Serafino. Stopping criteria for inner
iterations in inexact potential reduction methods: a computational study. Comput. Optim.
Appl., 36(2–3):165–193, 2007b.

T. F. Chan, L. de Pillis, and H. van der Vorst. Transpose-free formulations of Lanczos-type
methods for nonsymmetric linear systems. Numer. Algor., 17(1–2):51–66, 1998.

M. D’Apuzzo, V. De Simone, and D. di Serafino. On mutual impact of numerical linear
algebra and large-scale optimization with focus on interior point methods. Comput. Optim.
Appl., 45(2):283–310, 2010.

V. De Simone, D. di Serafino, and B. Morini. On preconditioner updates for sequences of
saddle-point linear systems. Communications in Applied and Industrial Mathematics, 9(1):
35–41, 2018.

H. S. Dollar. Constraint-style preconditioners for regularized saddle point problems. SIAM J.
Matrix Anal. Appl., 29(2):672–684, 2007.

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders, and A. J. Wathen. Implicit-factorization
preconditioning and iterative solvers for regularized saddle-point systems. SIAM J. Matrix
Anal. Appl., 28(1):170–189, 2006.

I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems.
ACM Trans. Math. Software, 30(2):118–144, 2004.

C. Durazzi and V. Ruggiero. Indefinitely preconditioned conjugate gradient method for large
sparse equality and inequality constrained quadratic problems. Numer. Linear Algebra
Appl., 10(8):673–688, 2003.

M. Fisher, S. Gratton, S. Gürol, Y. Trémolet, and X. Vasseur. Low rank updates in
preconditioning the saddle point systems arising from data assimilation problems. Optim.
Method Softw., 33(1):45–69, 2016.

D. C.-L. Fong and M. A. Saunders. CG versus MINRES: An empirical comparison. SQU
Journal for Science, 17(1):44–62, 2012.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical
Programming. Brooks/Cole, Pacific Grove, second edition, 2002. https://ampl.com/
resources/the-ampl-book.

M. P. Friedlander and D. Orban. A primal-dual regularized interior-point method for convex
quadratic problems. Math. Program. Comp., 4(1):71–107, 2012.

G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.
SIAM J. Numer. Anal., 2(2):205–224, 1965.

N. Gould, D. Orban, and Ph. Toint. CUTEst: a constrained and unconstrained testing
environment with safe threads for mathematical optimization. Comput. Optim. Appl., 60
(3):545–557, 2015.

N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality constrained

Cahier du GERAD G-2020-72 Commit c415bb1 by Dominique Orban on 2021-01-05 11:39:25 -0500

http://dx.doi.org/10.1137/130947155
http://dx.doi.org/10.1137/130947155
http://dx.doi.org/10.1007/s10589-016-9830-4
http://dx.doi.org/10.1007/s10589-016-9830-4
http://dx.doi.org/10.1017/S0962492904000212
http://dx.doi.org/10.1007/s10589-006-9001-0
http://dx.doi.org/10.1007/s10589-006-9001-0
http://dx.doi.org/10.1002/nla.2144
http://dx.doi.org/10.1002/nla.2144
http://dx.doi.org/10.1023/A:1012085428800
http://dx.doi.org/10.1023/A:1012085428800
http://dx.doi.org/10.1007/s10589-007-9035-y
http://dx.doi.org/10.1007/s10589-007-9035-y
http://dx.doi.org/10.1007/s10589-006-9007-7
http://dx.doi.org/10.1007/s10589-006-9007-7
http://dx.doi.org/10.1023/A:1011637511962
http://dx.doi.org/10.1023/A:1011637511962
http://dx.doi.org/10.1007/s10589-008-9226-1
http://dx.doi.org/10.1007/s10589-008-9226-1
http://dx.doi.org/10.1515/caim-2018-0003
http://dx.doi.org/10.1515/caim-2018-0003
http://dx.doi.org/10.1137/050626168
http://dx.doi.org/10.1137/05063427X
http://dx.doi.org/10.1137/05063427X
http://dx.doi.org/10.1145/992200.992202
http://dx.doi.org/10.1002/nla.308
http://dx.doi.org/10.1002/nla.308
http://dx.doi.org/10.1080/10556788.2016.1264398
http://dx.doi.org/10.1080/10556788.2016.1264398
https://ampl.com/resources/the-ampl-book
https://ampl.com/resources/the-ampl-book
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1007/s12532-012-0035-2
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1007/s1058
http://dx.doi.org/10.1007/s1058
http://dx.doi.org/10.1137/S1064827598345667
http://dx.doi.org/10.1137/S1064827598345667


22 [toc]

quadratic problems arising in optimization. SIAM J. Sci. Comput., 23(4):1375–1394, 2001.
N. I. M. Gould, D. Orban, and T. Rees. Projected Krylov methods for saddle-point systems.

SIAM J. Matrix Anal. Appl., 35(4):1329–1343, 2014.
A. Greenbaum, V. Pták, and Z. Strakoš. Any nonincreasing convergence curve is possible for

GMRES. SIAM J. Matrix Anal. Appl., 17(3):465–469, 1996.
C. Greif, E. Moulding, and D. Orban. Bounds on eigenvalues of matrices arising from

interior-point methods. SIAM J. Optim., 24(1):49–83, 2014.
M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. J.

Res. Natl. Bur. Stand., 49(6):409–436, 1952.
C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential

and integral operators. J. Res. Natl. Bur. Stand., 45:225–280, 1950.
C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Natl.

Bur. Stand., 49(1):33–53, 1952.
D. Loghin. A note on constraint preconditioning. SIAM J. Matrix Anal. Appl., 38(4):

1486–1495, 2017.
L. Lukšan and J. Vlček. Indefinitely preconditioned inexact Newton method for large sparse

equality constrained nonlinear programming problems. Numer. Linear Algebra Appl., 5:
219–247, 1998.

B. Morini, V. Simoncini, and M. Tani. Spectral estimates for unreduced symmetric KKT
systems arising from interior point methods. Numer. Linear Algebra Appl., 23:776–800,
2016.

D. Orban. Limited-memory LDLT factorization of symmetric quasi-definite matrices with
application to constrained optimization. Numer. Algor., 70(1):9–41, 2015.

C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.
SIAM J. Numer. Anal., 12(4):617–629, 1975.

I. Perugia and V. Simoncini. Block-diagonal and indefinite symmetric preconditioners for
mixed finite element formulations. Numer. Linear Algebra Appl., 7(7–8):585–616, 2000.

J. Pestana and A. J. Wathen. Natural preconditioning and iterative methods for saddle point
systems. SIAM Review, 57(1):51–71, 2015.

Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, second edition, 2003.

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. and Statist. Comput., 7(3):856–869, 1986.

Y. Saad and K. Wu. DQGMRES: a direct quasi-minimal residual algorithm based on
incomplete orthogonalization. Numer. Linear Algebra Appl., 3(4):329–343, 1996.

M. A. Saunders, H. D. Simon, and E. L. Yip. Two conjugate-gradient-type methods for
unsymmetric linear equations. SIAM J. Numer. Anal., 25(4):927–940, 1988.

D. Sesana and V. Simoncini. Spectral analysis of inexact constraint preconditioning for
symmetric saddle point matrices. Linear Algebra Appl., 438(6):2683–2700, 2013.

Commit c415bb1 by Dominique Orban on 2021-01-05 11:39:25 -0500 Cahier du GERAD G-2020-72

http://dx.doi.org/10.1137/S1064827598345667
http://dx.doi.org/10.1137/S1064827598345667
http://dx.doi.org/10.1137/130916394
http://dx.doi.org/10.1137/S0895479894275030
http://dx.doi.org/10.1137/S0895479894275030
http://dx.doi.org/10.1137/120890600
http://dx.doi.org/10.1137/120890600
http://dx.doi.org/10.6028/jres.049.044
http://dx.doi.org/10.6028/jres.049.006
http://dx.doi.org/10.1137/16M1072036
http://dx.doi.org/10.1002/(SICI)1099-1506(199805/06)5:3<219::AID-NLA134>3.0.CO;2-7
http://dx.doi.org/10.1002/(SICI)1099-1506(199805/06)5:3<219::AID-NLA134>3.0.CO;2-7
http://dx.doi.org/10.1002/nla.2054
http://dx.doi.org/10.1002/nla.2054
http://dx.doi.org/10.1007/s11075-014-9933-x
http://dx.doi.org/10.1007/s11075-014-9933-x
http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8<585::AID-NLA214>3.0.CO;2-F
http://dx.doi.org/10.1002/1099-1506(200010/12)7:7/8<585::AID-NLA214>3.0.CO;2-F
http://dx.doi.org/10.1137/130934921
http://dx.doi.org/10.1137/130934921
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10/fwxn2n
http://dx.doi.org/10/fwxn2n
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1137/0725052
http://dx.doi.org/10.1016/j.laa.2012.11.022
http://dx.doi.org/10.1016/j.laa.2012.11.022


[toc] 23

Appendix A. Standard Lanczos and Arnoldi Processes. For reference we
state the preconditioned Lanczos process and the full-space Lanczos process for (1)
with preconditioner (2). We also state the projected and full-space Arnoldi processes.

Algorithm 4 Lanczos Process for Ax “ b with Preconditioner J “ JT
ą 0

1: choose x0
2: v0 “ 0
3: r0 “ b´Ax0
4: solve Jv1 “ r0

5: β1 “ pv
T
1 r0q

1
2

6: if β1 ‰ 0 then
7: v1 “ v1{β1 }v1}J “ 1
8: end if
9: k “ 1

10: while βk ‰ 0 do
11: uk “ Avk
12: αk “ uTk vk
13: solve Jvk`1 “ uk
14: vk`1 “ vk`1 ´ αkvk ´ βkvk´1

15: βk`1 “ pv
T
k`1ukq

1
2

16: if βk`1 ‰ 0 then
17: vk`1 “ vk`1{βk }vk`1}J “ 1
18: end if
19: k “ k ` 1
20: end while
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Algorithm 5 Full-Space Lanczos Process for (1) with Preconditioner (2)
1: choose rx0 ; y0s such that Bx0 ´ Cy0 “ 0
2: initialize

„

v0,x
v0,y



“

„

0
0



3: set Bx0 ´ Cy0 “ 0 ñ r0,y “ 0

„

r0,x
r0,y



“

„

b
0



´

„

A BT

B ´C

 „

x0
y0



“

„

b´Ax0 ´B
T y0

0



4: obtain v1 as the solution of
„

G BT

B ´C

 „

v1,x
v1,y



“

„

r0,x
r0,y



5: β1 “ pv
T
1 r0q

1
2 “ pvT1,xr0,xq

1
2

6: if β1 ‰ 0 then
7: v1 “ v1{β1
8: end if
9: k “ 1

10: while βk ‰ 0 do
11: compute

„

uk,x
uk,y



“

„

A BT

B ´C

 „

vk,x
vk,y



12: αk “ uTk vk “ vTk,xAvk,x ` 2vTk,xB
T vk,y ´ v

T
k,yCvk,y

13: obtain vk`1 as the solution of
„

G BT

B ´C

 „

vk`1,x

vk`1,y



“

„

uk,x
uk,y



14: vk`1 “ vk`1 ´ αkvk ´ βkvk´1

15: βk`1 “ pv
T
k`1ukq

1
2 “ pvTk`1,xuk,x ` v

T
k`1,yuk,yq

1
2

16: if βk`1 ‰ 0 then
17: vk`1 “ vk`1{βk`1

18: end if
19: k “ k ` 1
20: end while
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Algorithm 6 Projected Arnoldi Process
1: choose rx0 ; w0s such that Bx0 ` Ew0 “ 0
2: v0,x “ 0, v0,w “ ´w0

3: u0,x “ b´Ax0, u0,w “ ´F
´1w0

4: rū1,x ; ū1,w ; z̄1s Ð solution of (14) with right-hand side ru0,x ; u0,w ; 0s
5: v1,x “ ū1,x, v1,w “ ū1,w v1 “ PG u0

6: h1,0 “ pv
T
1,xu0,x ` v

T
1,wu0,wq

1
2

7: if h1,0 ‰ 0 then
8: v1,x “ v1,x{h1,0, v1,w “ v1,w{h1,0
9: end if

10: k “ 1
11: while hk,k´1 ‰ 0 do
12: uk,x “ Avk,x, uk,w “ F´1vk,w
13: rūk`1,x ; ūk`1,w ; z̄k`1s Ð solution of (14) with right-hand side ruk,x ; uk,w ; 0s

14: vk`1,x “ ūk`1,x, vk`1,w “ ūk`1,w vk`1 “ PG uk
15: for i “ 1, . . . , k do
16: hi,k “ vTi,xuk,x ` v

T
i,wuk,w

17: vk`1,x “ vk`1,x ´ hi,kvi,x, vk`1,w “ vk`1,w ´ hi,kvi,w
18: end for
19: hk`1,k “ pv

T
k`1,xuk,x ` v

T
k`1,wuk,wq

1
2

20: if hk`1,k ‰ 0 then
21: vk`1,x “ vk`1,x{hk`1,k, vk`1,w “ vk`1,w{hk`1,k

22: end if
23: k “ k ` 1
24: end while
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Algorithm 7 Full-Space Arnoldi Process for (1) with Preconditioner (2)
1: choose rx0 ; y0s such that Bx0 ´ Cy0 “ 0
2: initialize

„

v0,x
v0,y



“

„

0
0



3: set Bx0 ´ Cy0 “ 0 ñ r0,y “ 0

„

r0,x
r0,y



“

„

b
0



´

„

A BT

B ´C

 „

x0
y0



“

„

b´Ax0 ´B
T y0

0



4: obtain v1 as the solution of
„

G BT

B ´C

 „

v1,x
v1,y



“

„

r0,x
r0,y



5: h1,0 “ pv
T
1 r0q

1
2 “ pvT1,xr0,xq

1
2

6: if h1,0 ‰ 0 then
7: v1 “ v1{β1
8: end if
9: k “ 1

10: while hk,k´1 ‰ 0 do
11: compute

„

uk,x
uk,y



“

„

A BT

B ´C

 „

vk,x
vk,y



12: obtain vk`1 as the solution of
„

G BT

B ´C

 „

vk`1,x

vk`1,y



“

„

uk,x
uk,y



13: for i “ 1, . . . , k do
14: hi,k “ vTi uk “ vTi,xAvk,x ` 2vTi,xB

T vk,y ´ v
T
i,yCvk,y

15: vk`1 “ vk`1 ´ hi,kvi
16: end for
17: hk`1,k “ pv

T
k`1ukq

1
2 “ pvTk`1,xuk,x ` v

T
k`1,yuk,yq

1
2

18: if hk`1,k ‰ 0 then
19: vk`1 “ vk`1{hk`1,k

20: end if
21: k “ k ` 1
22: end while
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