arXiv:1910.04278v1 [cs.DS] 9 Oct 2019

Minimum Cuts in Surface Graphs*

Erin W. Chambers' Jeff Erickson* Kyle Fox® Amir Nayyeri'

October 11, 2019

Abstract

We describe algorithms to efficiently compute minimum (s, t)-cuts and global minimum cuts
of undirected surface-embedded graphs. Given an edge-weighted undirected graph G with n ver-
tices embedded on an orientable surface of genus g, our algorithms can solve either problem in
g%®nloglogn or 2°®nlogn time, whichever is better. When g is a constant, our g°®nloglogn
time algorithms match the best running times known for computing minimum cuts in planar graphs.

Our algorithms for minimum cuts rely on reductions to the problem of finding a minimum-
weight subgraph in a given Z,-homology class, and we give efficient algorithms for this latter
problem as well. If G is embedded on a surface with b boundary components, these algorithms run
in (g + b)°€*PMnloglogn and 2°E P nlogn time. We also prove that finding a minimum-weight
subgraph homologous to a single input cycle is NP-hard, showing it is likely impossible to improve
upon the exponential dependencies on g for this latter problem.

1 Introduction

Planar graphs have been a natural focus of study for algorithms research for decades, both because
they accurately model many real-world networks, and because they often admit simpler and/or more
efficient algorithms for many problems than general graphs. Most planar-graph algorithms either apply
immediately or have been quickly generalized to larger families of graphs, such as graphs of higher
genus, graphs with forbidden minors, or graphs with small separators. Examples include minimum
spanning trees [89,100]; single-source and multiple-source shortest paths [17,45,51,71,82,83,87,109];
graph and subgraph isomorphism [39, 40, 62,73,91]; and approximation algorithms for the traveling
salesman problem, Steiner trees, and other NP-hard problems [6, 8,9, 13,34,40,60].

The classical minimum cut problem and its dual, the maximum flow problem, are stark exceptions to
this general pattern. Flows and cuts were introduced in the 1950s as tools for studying transportation

*Portions of this work were presented in preliminary form, by different subsets of the authors, at the 25th Annual Symposium
on Computational Geometry [24], the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms [48], and the 24th Annual
ACM-SIAM Symposium on Discrete Algorithms [46].

"Department of Computer Science, Saint Louis University; erin.chambers@slu.edu. Supported in part by NSF grants CCF-
1054779, 11S-1319573, and CCF-1614562. Portions of this work were done while this author was a student at the University of
Illinois at Urbana-Champaign.

*Department of Computer Science, University of Illinois, Urbana-Champaign; jeffe@illinois.edu. Supported in part by NSF
grants CCF-0915519, CCF-1408763, and DMS-0528086.

$Department of Computer Science, University of Texas at Dallas; kyle.fox@utdallas.edu. Supported in part by the Department
of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and
Reinvestment Act of 2009, administered by ORISE-ORAU under contract no. DE-AC05-060R23100. Portions of this work were
done while this author was a student at the University of Illinois at Urbana-Champaign.

“School of Electrical Engineering and Computer Science, Oregon State University, nayyeria@eecs.oregonstate.edu. Supported
in part by NSF grants CCF-1065106, CCF-0915519, and DMS-0528086. Portions of this work were done while this author was
a student at the University of Illinois at Urbana-Champaign.


erin.chambers@slu.edu
jeffe@illinois.edu
kyle.fox@utdallas.edu
nayyeria@eecs.oregonstate.edu

2 Minimum cuts in surface graphs

networks, which are naturally modeled as planar graphs [66]. Ford and Fulkerson’s seminal paper [53]
includes an algorithm to compute maximum flows in planar networks where the source and target lie
on the same face. A long series of results eventually led to planar minimum-cut algorithms that run in
near-linear time, first for undirected graphs [56,68,76,101] and later for directed graphs [71,77,94].

In contrast, prior to our work, almost nothing was known about computing minimum cuts in even
mild generalizations of planar graphs; in particular, except for the work reported in this paper, we are
unaware of any algorithm to compute minimum-cuts in non-planar graphs that does not require first
computing a maximum flow.

This paper describes the first algorithms to compute minimum cuts in surface-embedded graphs of
fixed genus in near-linear time. Specifically, we describe two algorithms to compute minimum (s, t)-cuts
in undirected surface graphs, the first in g°®nloglogn time, and the second in 2°(®)nlogn time. We also
extend our algorithms to find global minimum cuts in undirected surface graphs in the same asymptotic
time bounds. For all our algorithms, the input consists of an n-vertex graph with arbitrary real edge
weights, embedded on an orientable surface of genus g.

Our algorithms are based on a natural generalization of the duality between cuts and cycles in planar
graphs, first proposed by Whitney [112] and first exploited to compute minimum cuts in planar graphs
by Itai and Shiloach [75]. By definition, a set C of edges defines an (s, t)-cut in a graph G if and only if
their complement G \ C is a disconnected graph, with s and ¢ in different components. If G is embedded
on a surface, then the corresponding edges C* in the dual graph G* separate the faces of G* into two
disconnected subcomplexes, one containing the dual face s* and the other containing the dual face t*.

We formalize this characterization in terms of homology, a standard equivalence relation from
algebraic topology; specifically, we use cellular homology with coefficients in Z,. Briefly, two subgraphs
of a surface graph are homologous, or in the same homology class, if and only if their symmetric difference
is the boundary of a subset of faces. In light of this characterization, finding minimum (s, t)-cuts in
surface graphs becomes a special case of finding the minimum-weight subgraph of a surface graph in a
given homology class. Indeed, both of our algorithms for computing minimum (s, t)-cuts solve this more
general problem, which is sometimes called homology localization [29,30].

Unlike in planar graphs, where every minimal cut is dual to a simple cycle [112], the dual of a
minimum cut in a surface graph may consist of several disjoint cycles. More generally, the minimum-
weight subgraph in any homology class may be disconnected, even when the homology class is specified
by a simple cycle; see Figure 4. Dealing with disconnected “cycles” is a significant complication in our
algorithms.

Before describing our results in further detail, we first review several related results; technical terms
are more precisely defined in Section 2.

1.1 Past results
Minimum cuts in planar graphs

For any two vertices s and t in a graph G, an (s, t)-cut is a subset of the edges of G that intersects
every path from s to t. A minimum (s, t)-cut is an (s, t )-cut with the smallest number of edges, or with
minimum total weight if the edges of G are weighted.

Itai and Shiloach [75] observed that the minimum (s, t)-cut in a planar graph G is dual to the
minimum-cost cycle that separates faces s* and t* in the dual graph G*. They also observed that this
separating cycle intersects any shortest path from a vertex of s* to a vertex of t* exactly once. Thus, one
can compute the minimum (s, t)-cut by slicing the dual graph G* along a shortest path 7 from s* to t*;
duplicating every vertex and edge of 7; and then computing, for each vertex u of 7, the shortest path
between the two copies of u in the resulting planar graph. Applying Dijkstra’s shortest-path algorithm at



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 3

each vertex of 7 immediately yields a running time of O(n?logn).

Reif [101] improved the running time of this algorithm to O(nlog? n) using a divide-and-conquer
strategy. Reif’s algorithm was extended by Hassin and Johnson to compute the actual maximum flow in
O(nlogn) additional time, using a carefully structured dual shortest-path computation [68]. The running
time was improved to O(nlogn) by Frederickson [56], and more recently to O(nloglogn) by Italiano
et al. [76], by using a balanced separator decomposition to speed up the shortest-path computations.

Janiga and Koubek [77] attempted to adapt Reif’s O(nlog? n)-time algorithm to directed planar
graphs; however, their algorithm has a subtle error [ 78] which may lead to an incorrect result when the
minimum (¢, s)-cut is smaller than the minimum (s, t)-cut.

Henzinger et al. [71] generalized Frederickson’s technique to obtain an O(n)-time planar shortest-
path algorithm; using this algorithm in place of Dijkstra’s algorithm improves the running times of both
Reif’s and Janiga and Koubek’s algorithms to O(nlogn). The same improvement can also be obtained
using more recent multiple-source shortest path algorithms by Klein [82]; Cabello, Chambers, and
Erickson [17]; and Erickson, Fox, and Lkhamsuren [45].

Minimum (s, t)-cuts in directed planar graphs can also be computed in O(nlogn) time using the
planar maximum-flow algorithms of Weihe [111] (after filtering out useless edges [50]) and Borradaile
and Klein [4,10,11].

A cut (without specified s and t) is a subset of edges of G that separate G into two non-empty sets
of vertices. A global minimum cut is a cut of minimum size, or minimum total weight if the edges of G
are weighted. Equivalently, a global minimum cut is an (s, t)-minimum cut of smallest total weight,
minimized over all pairs of vertices s and t. Chalermsook, Fakcharoenphol, and Nanongkai [21] gave
the first algorithm for computing global minimum cuts that relies on planarity; their algorithm runs
in O(nlog®n) time. Their algorithm was improved by Lacki and Sankowski [85] who achieved an
O(nloglogn) running time. Mozes et al. recently achieved the same O(nloglogn) running time for
global minimum cuts in directed planar graphs [95], using techniques reported in a preliminary version
of the current paper [48], specifically, the Z,-homology covers described in Section 5.

Generalizations of planar graphs

Surprisingly little is known about the complexity of computing maximum flows or minimum cuts in
generalizations of planar graphs. In particular, we know of no previous algorithm to compute minimum
cuts in non-planar graphs that does not first compute a maximum flow.

By combining a technique of Miller and Naor [92] with the planar directed flow algorithm of
Borradaile and Klein [4,10,11,42], one can compute maximum (single-commodity) flows in a planar
graph with k sources and sinks in O(k?nlogn) time. Very recently, Borradaile et al. [12] described an
algorithm to compute maximum flows in planar graphs with an arbitrary number of sources and sinks
in O(nlog®n) time. An algorithm of Hochstein and Weihe [72] computes maximum flows in planar
graphs with k additional edges in O(k®nlogn) time, using a clever simulation of Goldberg and Tarjan’s
push-relabel algorithm [59]. Borradaile et al. [12] extend Hochstein and Weihe’s framework to compute
maximum flows in planar graphs with k apices in O(k®nlog®n) time.

Chambers and Eppstein [23] describe an algorithm to compute maximum flows in O(nlogn) time if
the input graph forbids a fixed minor that can be drawn in the plane with one crossing. Another related
result is the algorithm of Hagerup et al. [64] to compute maximum flows in graphs of constant treewidth
in O(n) time.

Imai and Iwano [74] describe a max-flow algorithm that applies to graphs of positive genus, but
not to arbitrary sparse graphs. Their algorithm computes minimum-cost flows in graphs with small
balanced separators, using a combination of nested dissection [87,99], interior-point methods [110], and
fast matrix multiplication. Their algorithm can be adapted to compute maximum flows (and therefore



4 Minimum cuts in surface graphs

minimum cuts) in any graph of constant genus in time O(n'->*>log C), where C is the sum of integer
edge weights. However, this algorithm is slower than more recent and more general algorithms [38, 58].

Chambers, Erickson, and Nayyeri [25] describe maximum flow algorithms that are tailored specifically
for graphs of constant genus. Given a graph embedded on a surface of genus g, their algorithms compute
a maximum flow in O(g®nlog? nlog? C) time where C is the sum of integer edge weights and in g°®)n>/2
arithmetic operations when edge weights are arbitrary positive real numbers. Their key insight is that it
suffices to optimize the homology class (with coefficients in R) of the flow, rather than directly optimizing
the flow itself.

Euler’s formula implies that a simple n-vertex graph embedded on a surface of genus O(n) has at
most O(n) edges. The fastest known combinatorial maximum-flow algorithm for sparse graphs, due to
Orlin [98], runs in O(n?/logn) time. The fastest algorithm known for sparse graphs with small integer
capacities, due to Goldberg and Rao [58] and Lee and Sidford [86], run in time O(n®/? polylog(n, U)),
where U is an upper bound on the integer edge weights. Madry [88] describes a faster algorithm for
unit capacity graphs that runs in O(n'%7 polylogn) time when the graph is sparse.

The fastest algorithm known to compute global minimum cuts in arbitrary weighted undirected
graphs is a Monte Carlo randomized algorithm of Karger [79], which runs in O(mlog®n) time but
fails with small probability. A more recent deterministic algorithm of Henzinger, Rao, and Wang [70],
based on breakthrough techniques of Kawarabayashi and Thorup [80, 81], computes global minimum
cuts in unweighted graphs in O(mlog®nlog®logn) time. The fastest deterministic algorithms known
for global minimum cuts in arbitrary weighted graphs run in O(nm + n?logn) time for undirected
graphs [55,97,107] and in O(mnlog(n?/m)) time for directed graphs [65].

For further background on maximum flows, minimum cuts, and related problems, we refer the reader
to monographs by Ahuja et al. [2] and Schrijver [104].

Optimal homology representatives

Homology is a topological notion of equivalence with nice algebraic properties. Two subgraphs of a
surface graph G are homologous, or in the same homology class, if their difference is the sum of face
boundaries, where summation is defined over some coefficient ring. Our minimum-cut algorithms all
reduce to the problem of finding a subgraph of minimum weight in a given homology class (over the
ring Z,). Several authors have considered variants of this problem, which is often called homology
localization.

Most interesting variants of homology localization are NP-hard. Chambers et al. [22] prove that
finding the shortest splitting cycle is NP-hard; a cycle is splitting if it is non-self-crossing, non-contractible,
and null-homologous. A simple modification of their reduction (from Hamiltonian cycle in planar grid
graphs) implies that finding the shortest simple cycle in a given homology class is NP-hard. Chen and
Freedman [28, 29] proved a similar hardness result for general simplicial complexes; however, the
complexes output by their reduction are never manifolds. Recently, Grochaw and Tucker-Foltz [61]
proved that homology localization in surface graphs, over a sufficiently large finite coefficient ring, is
equivalent to Unique Games; in particular, there is no PTAS for any finite coefficient ring unless the
Unique Games Conjecture is false.

On the other hand, for homology with real or integer coefficients, homology localization in surface
graphs is equivalent (via duality) to a minimum-cost flow problem and hence can be solved in polynomial
time. Chambers et al. [25] describe an algorithm to find optimal circulations in a given homology class
in near-linear time, given a graph with integer coefficients on a surface of fixed genus. Sullivan [108]
and Dey et al. [35] prove similar results for higher-dimensional orientable manifolds.



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 5

1.2 New results and organization

In Section 3, we describe two techniques to preprocess a graph on a surface with boundary, so that the
homology class of any subgraph can be computed quickly. These are both straightforward generalizations
of standard methods for measuring homology in surfaces without boundary based on tree-cotree decom-
positions [22,41,49]. In particular, we describe how to construct a system of arcs—a collection of O(g + b)
boundary-to-boundary paths that cut the surface into a disk—in O((g + b)n) time. This generalization is
essential for our algorithms, as our dual homology characterization of minimum (s, t)-cuts removes the
dual faces s* and t*, leaving a surface with two boundary components.

In Section 4, we present our first algorithm to compute minimum-weight subgraphs in a given
homology class. Our algorithm first computes a greedy system of arcs; each arc in this system consists of
two shortest paths. Using an exchange argument, we prove that the minimum-weight subgraph in any
homology class crosses each arc in the greedy system at most O(g + b) times. Our algorithm enumerates
all possible sequences of crossings consistent with this upper bound, and finds the shortest subgraph
consistent with each crossing sequence, by reducing to a planar minimum cut problem. The resulting
algorithm runs in (g + b)°©€*?nloglogn time.

We describe our second algorithm to compute minimum-weight homologous subgraphs in Section 5.
Instead of considering the sequence of crossings with a greedy system of arcs, we instead count the number
of crossings with each arc in an arbitrary system of arcs. The resulting vector of crossing numbers
for an even subgraph characterizes the homology class of that subgraph. Our algorithm computes the
shortest cycle in every homology class, by constructing and searching a certain covering space of the
surface that we call the Z,-homology cover, using an extension [45] of the multiple-source shortest path
algorithm of Cabello et al. [17]. We then assemble the minimum-weight even subgraph in any desired
homology class from these Z,-minimal cycles using dynamic programming. The resulting algorithm runs
in 2°@€*Pnlogn time.

In Section 6, we prove that finding a minimum-weight even subgraph in a given homology class in
NP-Hard. Unlike Chen and Freedman [30], this reduction is done on a 2-manifold, and unlike Chambers
et al. [22], the target subgraph does not need to be a simple cycle. This reduction implies that the
exponential dependence on g in our algorithms is unavoidable.

Finally, in Section 7, we describe our algorithms for computing global minimum cuts. Both algorithms
ultimately reduce computing a global minimum cut to 2°(8) instances of computing minimum (s, t)-cuts;
thus, our algorithms have the same asymptotic running times as the minimum (s, t)-cut algorithms from
Sections 4 and 5.

We note with some amusement that our algorithms solve a problem with a well-known polynomial-
time solution by reducing it to an exponential number (in g) of instances of an NP-hard (but fixed-
parameter tractable) problem! The authors of this paper are divided on whether to conjecture that
minimum cuts in surface graphs can be computed in time O(g°n polylogn) for some small constant c, or
that the problem is “fixed-parameter quadratic” with respect to genus, just as diameter and radius are
fixed-parameter quadratic with respect to treewidth [1]. Fomin et al. [52] raise similar questions about
the fixed-parameter efficiency of flows and cuts with respect to treewidth.

2 Notation and Terminology

We begin by recalling several useful definitions related to surface-embedded graphs. For further back-
ground, we refer the reader to Gross and Tucker [63] or Mohar and Thomassen [93] for topological
graph theory, and to Hatcher [69] or Stillwell [ 106] for surface topology and homology.



6 Minimum cuts in surface graphs

2.1 Surfaces and curves

A surface (more formally, a 2-manifold with boundary) is a compact Hausdorff space in which every
point has an open neighborhood homeomorphic to either the plane R? or a closed halfplane {(x, y) €
R? | x > 0}. The points with halfplane neighborhoods make up the boundary of the surface; every
component of the boundary is homeomorphic to a circle. A surface is non-orientable if it contains a
subset homeomorphic to the Mobius band, and orientable otherwise. In this paper, we consider only
compact, connected, and orientable surfaces.

A path in a surface X is a continuous function p: [0,1] — X. A loop is a path whose endpoints p(0)
and p(1) coincide; we refer to this common endpoint as the basepoint of the loop. An arc is a path
internally disjoint from the boundary of > whose endpoints lie on the boundary of X. A cycle is a
continuous function y: S — X; the only difference between a cycle and a loop is that a loop has a
distinguished basepoint. We say a loop £ and a cycle y are equivalent if, for some real number &, we
have £(t) = y(t + &) for all t € [0,1]. We collectively refer to paths, loops, arcs, and cycles as curves.
in . A simple curve p is separating if >\ p is disconnected.

The reversal rev(p) of a path p is defined by setting rev(p)(t) = p(1 —t). The concatenation p - q
of two paths p and g with p(1) = q(0) is the path created by setting (p - q)(t) = p(2t) forall t <1/2
and (p-q)(t)=q(2t—1) forall t > 1/2.

The genus of a surface X is the maximum number of disjoint simple cycles in > whose complement is
connected. Up to homeomorphism, there is exactly one orientable surface and one non-orientable surface
with any genus g > 0 and any number of boundary cycles b > 0. Orientable surfaces with b boundary
components are differentiated by their Euler characteristic y =2 —2g — b (for non-orientable surfaces,
¥ =2—g—Db).

2.2 Graph embeddings

An embedding of an undirected graph G = (V, E) on a surface X maps vertices to distinct points and
edges to simple, interior-disjoint paths. The faces of the embedding are maximal connected subsets of %
that are disjoint from the image of the graph. We may denote an edge uv € E as f|g if it is incident to
faces f and g. An embedding is cellular if each of its faces is homeomorphic to the plane; in particular, in
any cellular embedding, each component of the boundary of X must be covered by a cycle of edges in G.
Euler’s formula implies that any cellularly embedded graph with n vertices, m edges, and f faces lies on
a surface with Euler characteristic y =n—m+ f, which implies that m = O(n+ g) and f = O0(n+ g) if
the graph is simple. We consider only such cellular embeddings of genus g = O(n'~#), so that the overall
complexity of the embedding is O(n).

Any cellular embedding on an orientable surface can be encoded combinatorially by a rotation
system, which records the counterclockwise order of edges incident to each vertex. We also refer to the
complex of vertices, edges, and faces induced by a cellular embedding as a combinatorial surface. Every
combinatorial surface with boundary can be obtained from a combinatorial surface without boundary by
deleting the interiors of one or more faces.

We redundantly use the term arc to refer to a walk in the graph whose endpoints are boundary
vertices. Likewise, we use the term cycle to refer to a closed walk in the graph. Note that arcs and cycles
may traverse the same vertex or edge more than once.

An arc or cycle in a combinatorial surface is weakly simple if it can be continuously and infinitesimally
perturbed on the underlying 2-manifold X into a simple path or cycle; we note that algorithms to detect
if a cycle is weakly simple has been studied extensively of late [3,26]. Similarly, an arc or cycle a and
another arc or cycle 3 are non-crossing if some arbitrarily small perturbations of a and 3 are disjoint;



Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 7

otherwise, we say that a crosses f3.

An even subgraph is a subgraph of G in which every node has even degree, or equivalently, the
symmetric difference of cycles. A cycle decomposition of an even subgraph H is a set of edge-disjoint,
non-crossing, weakly simple cycles whose union is H.

Lemma 2.1. Every even subgraph of an embedded graph has a cycle decomposition.

Proof: Let H be an even subgraph of G. We can decompose H into cycles by specifying, at each vertex v,
which pairs of incident edges of H are consecutive. Any pairing that does not create a crossing at v is
sufficient. For example, if e1,e,,...,e,4 are the edges of H incident to v, indexed in clockwise order
around v, we could pair edges e,;_; and e,; for each i. O

We emphasize that each cycle in a cycle decomposition may visit vertices multiple times; indeed,
some even subgraphs cannot be decomposed into strictly simple cycles.

Slicing a combinatorial surface along a cycle or arc modifies both the surface and the embedded
graph. For any combinatorial surface S = (X, G) and any simple cycle or arc y in G, we define a new
combinatorial surface S \\ ¥ by taking the topological closure of 3\y as the new underlying surface; the
new embedded graph contains two copies of each vertex and edge of v, each bordering a new boundary.
We define the projection of a curve in S \\ y as the natural mapping of points (or vertices and edges) to S.

2.3 Duality

Any undirected graph G embedded on a surface X without boundary has a dual graph G*, which has a
vertex f* for each face f of G, and an edge e* for each edge e in G joining the vertices dual to the faces
of G that e separates. The dual graph G* has a natural cellular embedding in %, whose faces corresponds
to the vertices of G. See Figure 1.

Figure 1. Graph duality. One edge uv and its dual (uv)* = f*g* are emphasized.

Any undirected graph G embedded on a surface X~ with boundary has a dual graph G*, defined as
follows.! The dual graph G* has a vertex f* for each face f of G, including the boundary cycles, and an
edge e* for each edge e in G (including boundary edges) joining the vertices dual to the faces that e
separates. For each boundary cycle 6 of G, we refer to the corresponding vertex 6* of G* as a dual
boundary vertex. The dual graph G* has a natural cellular embedding in the surface X* obtained from X
by gluing a disk to each boundary cycle; each face of this embedding corresponds to a vertex of G. See
Figure 2. (Duality can be extended to directed graphs [25], but our results do not require this extension.)

For any subgraph F = (U, D) of G = (V, E), we write G \ F to denote the edge-complement (V, E \ D).
Also, when the graph G is fixed, we abuse notation by writing F* to denote the subgraph of G* corre-
sponding to a subgraph F of G; each edge in F* is the dual of a unique edge in F. In particular, we
have the identity (G \ F)* = G* \ F*. Further, we may sometimes use D to refer to an edge set or the
subgraph F = (V, D), but it should be clear which we mean from context.

1Our definition differs slightly from the one proposed by Erickson and Colin de Verdiére [32].



8 Minimum cuts in surface graphs

Figure 2. A cellularly embedded graph G (solid lines) on a pair of pants (the surface of genus 0 with 3 boundaries), and its dual
graph G* (dashed lines). Dual boundary vertices are indicated by squares.

2.4 Homotopy and homology

Two paths p and g in ¥ are homotopic if one can be continuously deformed into the other with-
out changing their endpoints. More formally, a homotopy between p and g is a continuous map
h:[0,1] x[0,1] — X such that h(0,-) = p, h(1,-) =g, h(:,0) = p(0) = q(0), and h(-,1) = p(1) = q(1).
Homotopy defines an equivalence relation over the set of paths with any fixed pair of endpoints.

Similarly, two cycles a and 8 in X are freely homotopic if one can be continuously deformed into
the other. More formally, a free homotopy between a and f8 is a continuous map h: [0,1] x S' — ¥ such
that h(0,-) = a and h(1,-) = 3. Free homotopy defines an equivalence relation over the set of cycles
in X. We omit the word “free” when it is clear from context.

A cycle is contractible if it is homotopic to a constant map. Given a weight function on the edges
of G, we say a path or cycle is tight if it has minimum total weight (counting edges with multiplicity) for
its homotopy class.

Homology is a coarser equivalence relation than homotopy, with nicer algebraic properties. Like
several earlier papers [28,29, 36,37, 44,54], we will consider only one-dimensional cellular homology
with coefficients in the finite field Z,; this restriction allows us to radically simplify our definitions. Fix a
cellular embedding of an undirected graph G on a surface with genus g and b boundaries. A boundary
subgraph is the boundary of the union of a subset of faces of G; for example, every separating cycle
is a boundary subgraph. Two even subgraphs are homologous, or in the same homology class, if their
symmetric difference is a boundary subgraph. Boundary subgraphs are also called null-homologous.
Any two homotopic cycles are homologous, but homologous cycles are not necessarily homotopic; see
Figure 3. Moreover, the homology class of a cycle can contain even subgraphs that are not cycles; see
Figure 4. Homology classes define a vector space zP , called the first homology group, where f8 = 2g if
the surface has no boundary and 8 = 2g + b — 1 otherwise. The rank f of the first homology group is
called the first Betti number of the surface.

«

- -

Figure 3. Homologous pairs of cycles that are not homotopic. (Lighter portions of the curves are on the back side of the surface.)



Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 9

Figure 4. Each cycle is homologous to the union of the other two.

2.5 Duality between cuts and even subgraphs

A crucial component of our minimum (s, t)-cut algorithms is an equivalence between (s, t)-cuts and
even subgraphs of the dual graph contained in a particular homology class. This equivalence was first
observed in planar graphs by Whitney [112] and was later used to compute minimum cuts in planar
graphs by Itai and Shiloach [75]. We formalize the same equivalence on surface graphs in the following
lemma:

Lemma 2.2. Let G be an edge-weighted graph embedded on a surface Y. without boundary; and let s
and t be vertices of G. If X is an (s, t)-cut in G, then X* is an even subgraph of G* homologous with the
boundary of s* in the surface %\ (s* U t*). In particular, if X is a minimum-weight (s, t)-cut in G, then X*
is the minimum-weight even subgraph of G* homologous with the boundary of s* in &\ (s* U t*).

Proof: Let ds* denote the boundary of s*, and let &’ denote the surface &\ (s* U t*).

Let X be an arbitrary (s, t)-cut in G. This cut partitions the vertices of G into two disjoint subsets S
and T, respectively containing vertices s and t. Thus, the dual subgraph X* partitions the faces of G*
into two disjoint subsets, S* and T*, respectively containing faces s* and t*. In particular, X* is the
boundary of the union of the faces in S*, which implies that X* is null-homologous in 3. The subgraph
X* @ Js* is the boundary of the union of $* \ {s*}, which is a subset of the faces of ¥’. Thus, X* ® ds* is
null-homologous in ¥’. We conclude that X* and Js* are homologous in X'.

Conversely, let X* be an arbitrary even subgraph of G* homologous to ds* in ©’. The subgraph
X* @ Js* is null-homologous in ¥’. This immediately implies that X* is null-homologous in ¥; moreover,
faces s* and t* are on opposite sides of X*. Any path from s to t in the original graph G must traverse at
least one edge of X. We conclude that X is an (s, t)-cut. O

3 Characterizing Homology

Throughout the paper, we fix an undirected graph G = (V, E), a non-negative weight function w: E — R,
and a cellular embedding of G on a surface % of genus g with b boundary cycles. Except where explicitly
indicated otherwise, we assume without loss of generality that the underlying surface X has non-empty
boundary; otherwise, we can remove an arbitrary face of G from X without affecting its homology at all.
Let 64,...,0; denote the boundary cycles of X, and let 3 = 2g + b — 1 denote the the first Betti number
of X.

In this section, we describe two standard methods for preprocessing a combinatorial surface with
boundary in O(fin) time, so that the Z,-homology class of any even subgraph H can be computed in
O(3) time per edge. These are both straightforward generalizations of standard methods for measuring
homology in surfaces without boundary based on tree-cotree decompositions [22,41,49]. We give these
full details here completeness, and because as far as we are aware, no detailed description appears
elsewhere in the literature for the first method. We note that a preliminary version of the current
work [48] was the first detailed description of the second method; see also Chambers et al. [5] for an



10 Minimum cuts in surface graphs

alternative description of the second method. All results in this section extend without modification to
nonorientable surfaces.

Both methods characterize the homology class of any even subgraph H using a vector of 3 bits. The
vectors are computed using a one of two natural generalizations of tree-cotree decompositions [41]
to surfaces with boundary. In the first method, the vector is based on the crossings between a cycle
decomposition of H and a set of # primal arcs. By carefully selecting these arcs, we can bound the
number of times any Z,-minimal even subgraph can cross any of these arcs; this bound is necessary for
the algorithm given in Section 4. In the second method, the vector is based on the crossings between H
and a set of 3 dual arcs. The second method is somewhat easier to describe and implement than the
first, so we use the second method in the algorithm given in Section 5.

3.1 Crossing parity vectors via forest-cotree decompositions

The first method begins by computing a set A of 8 arcs, each of which is the concatenation of two shortest
paths (possibly meeting in the interior of an edge), such that the surface X \ A is a topological disk.
Following previous papers [22,31,32], we construct a greedy system of arcs, using a variant of Erickson
and Whittlesey’s algorithm to construct optimal systems of loops [49]. Our algorithm uses a natural
generalization of tree-cotree decompositions [41] to surfaces with boundary.

A forest-cotree decomposition of G is any partition (G, F, L, C) of the edges of G into four edge-
disjoint subgraphs with the following properties:

0G is the set of all boundary edges of G.

F is a spanning forest of G, that is, an acyclic subgraph of G that contains every vertex.

Each component of F contains a single boundary vertex.

C* is a spanning tree of G* \ (3 G)*, that is, a subtree of G* that contains every vertex except the
dual boundary vertices 6;.

e Finally, L is the set of leftover edges E \ (6G U F U C*)

Euler’s formula implies that there are exactly 8 leftover edges in L; arbitrarily label these edges
e1,ey,...,ep. For each edge e; € L, the subgraph F U {e;} contains a single nontrivial arc a;, which is
either a simple path between distinct boundary cycles, or a nontrivial loop from a boundary cycle back
to itself; in the second case, a; may traverse some edges of F twice. Slicing along the arcs ay, ..., ag
transforms X into a topological disk. See Figure 5.

Figure 5. Left: A forest-cotree decomposition of the graph in Figure 2; thick doubled lines indicate edges in L. Right: The resulting
system of arcs. Compare with Figure 6.



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 11

For any cycle y and any index i, let x;(y) denote the number of times y crosses the arc a;. The
crossing vector x(y) of y is the vector (x;(y), ..., xg(y)). The crossing vector of a set of cycles is the
sum of the crossing vectors of its elements.

Extending the notion of crossing vectors to even subgraphs is rather subtle, because we cannot
consistently define when a path crosses an even subgraph H. Instead, we consider crossings between
a path and the cycles in an arbitrary cycle decomposition of the even subgraph H. Different cycle
decompositions may yield different numbers of crossings, so even subgraphs do not have well-defined
crossing vectors; however, the parity of the crossing number is independent of the cycle decomposition.
The crossing parity vector of any even subgraph H is the bit vector X(H) = (X;,...,Xg), where X; =1
if the arc a; crosses (any cycle decomposition of) H an odd number of times, and i; = 0 otherwise.

Lemma 3.1. Two even subgraphs are Z,-homologous if and only if their crossing parity vectors (with
respect to the same system of arcs) are equal.

Proof: Every boundary subgraph is the symmetric difference of facial cycles. Any non-contractible loop
or arc crosses any facial cycle an even number of times; thus, the crossing parity vector of any facial cycle
is the zero vector. Every pair of even subgraphs H and H' satisfies the identity x(H ® H") = x(H) ® x(H’).
Thus, the crossing parity vector of any boundary subgraph is the zero vector. O

Lemma 3.2. We can compute the crossing parity vector of any even subgraph, with respect to any fixed
system of arcs, in O(f3) time per edge of the subgraph.

Proof: We can compute a cycle decomposition y1,...,y, of H in O(1) time per edge, by following the
proof of Lemma 2.1. We can compute the number of crossings between any cycle y; and any arc g; in
time proportional to the number of edges in ;. O

We can easily construct an arbitrary forest-cotree decomposition, and thus an arbitrary system
of arcs, in O(n) time using whatever-first search, but our algorithms require a decomposition with a
particular forest F and a particular dual spanning tree C*. Let G/3 G denote the graph obtained from
G by contracting the entire subgraph d G—both vertices and edges—to a single vertex x. Using the
algorithm of Henzinger et al. [71], we compute the single-source shortest-path tree T in G/J G rooted
at x in O(n) time.? Let F be the subgraph of G corresponding to T. Each component of F is a tree of
shortest paths from a boundary vertex to a subset of the non-boundary vertices of G.

Now for each edge e that is not in the forest F or the boundary subgraph 9 G, let £(e) denote the
length of the unique arc in the subgraph F U {e}. We can easily compute £(e) for each non-forest edge e
in O(n) time. Finally, let C* denote the maximum spanning tree of G* \ (F U 8 G)* with respect to the arc

lengths £(e).
Finally, for each edge e; € L, let o; and 7; denote the unique directed paths in F from the boundary
of G to the endpoints of ¢;, and let S := {07y,...,0p,71,...,Tg}. By construction of F, every element

of S is a (possibly empty) shortest directed path. Moreover, because a; = 0; - ¢; - rev(t;) for each index i,
every non-null-homologous cycle in G must intersect at least one path in S. We can easily compute each
path in S in O(n) time. The final greedy system of arcs is the set A:= {a;,a,,...,ag}.

Exchange arguments by Erickson and Whittlesey [49] and Colin de Verdiére [31] both imply that
every arc in the greedy system is tight, and moreover that the greedy system of arcs has minimum total
length among all systems of arcs.>

2This running time requires that g = O(n'¢) for some constant ¢ > 0. However, we can safely assume g = o(logn), since
otherwise our minimum-cut algorithms are slower than textbook algorithms for arbitrary graphs.

3Specifically, Colin de Verdiére’s argument implies that the greedy system of arcs is a minimum-length basis in G for the first
relative homology group H, (%, 9%) [31, Section 3]. Thus, each arc in the greedy system is as short as possible in its relative
homology class.



12 Minimum cuts in surface graphs

3.2 Homology signatures via tree-coforest decompositions

Our second method associates a vector of 8 bits with each edge e, called the signature of e; the homology
class of any even subgraph is characterized by the bit-wise exclusive-or of the signatures of its edges.

Again, our construction is based on one of two natural generalizations of tree-cotree decomposi-
tions [41] to surfaces with boundary; the other generalization is used for computing crossing parity
vectors as described above. We define a tree-coforest decomposition of G to be any partition (T, L, F)
of the edges of G into three edge-disjoint subgraphs with the following properties:

e T is a spanning tree of G.
e F*is a spanning forest of G*, that is, an acyclic subgraph that contains every vertex.
e Each component of F* contains a single dual boundary vertex 6;.

e Finally, L is the set of leftover edges E \ (T UF).

Euler’s formula implies that there are exactly 8 edges in L; arbitrarily index these edges ey, ...,eg. For
each edge e; € L, adding the corresponding dual edge e to F* creates a new dual path a;, which is
either a simple path between distinct boundary vertices, or a nontrivial loop from a boundary vertex
back to itself; in the second case, a; may traverse some edges of F* twice. We can treat each path a; as a
simple arc in the abstract surface X; slicing along these 3 arcs transforms X into a topological disk. See
Figure 6. We call the set {a;, ay,...,ag} a system of dual arcs.

N,

Figure 6. Left: A tree-coforest decomposition of the graph in Figure 2; doubled lines indicate edges in L. Right: The resulting
system of dual arcs. Compare with Figure 5.

Finally, for each edge e in G, we define its signature [e] to be the 3-bit vector whose ith bit is equal
to 1 if and only if e crosses a; (that is, if a; traverses the dual edge e*) an odd number of times. The
signature [H ] of an even subgraph H is the bitwise exclusive-or of the signatures of its edges. Similarly,
the signature [y] of a cycle y is the bitwise exclusive-or of the signatures of the edges that y traverses an
odd number of times.

Let h ® h’ denote the bitwise exclusive-or of two homology signatures h and h’, or equivalently, their
sum as elements of the homology group (Z,)P. The identities[H&H'] =[H]®[H’] and [y-y'] = [y]1®[y’]
follow directly from the definitions.

Lemma 3.3. We can preprocess G in O(f3n) time, so that the signature [y] of any cycle can be computed
in O(f) time per edge.

Proof: A tree-coforest decomposition can be computed in O(n) time as follows. First construct a graph G’
by identifying all the dual boundary vertices in G* to a single vertex. Compute a spanning tree of G’
by whatever-first search; the edges of this spanning tree define an appropriate dual spanning forest F*.



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 13

Construct the subgraph G \ F and compute a spanning tree T via whatever-first search. Finally, let
L =G\ (T UF). With the decomposition in hand, it is straightforward to compute each path a; in O(n)
time, and then compute each edge signature in O(3) time. O

Lemma 3.4. An even subgraph H of G is null-homologous in ¥ if and only if[H] = 0.

Proof: Let H be a boundary subgraph of G. Then by definition, H is the boundary of the union of a
subset Y of faces of G. The boundary of any face f is contractible in ¥ and therefore has signature 0. It
follows immediately that [H] = [Py 0f 1= Drey[df]1=0.

Conversely, suppose H crosses each arc a; an even number of times, so [H] = 0. Let x and y be two
intersection points between H and some arc a;, and let a;[x, y] be the subpath of a; between those two
points. Replacing tiny segments of H through x and y with two copies of a;[x, y] does not change the
homology class of H, but does reduce the number of intersection points between H and ;. It follows by
induction that H is homologous to another even graph H’ that does not intersect any path a; at all. This
even graph lies entirely within the disk = \ | J; a;, and is therefore null-homologous. O

The following corollaries are now immediate.
Corollary 3.5. Two even subgraphs H and H' of G are Z,-homologous in % if and only if [H] = [H'].

Corollary 3.6. Two cycles y and vy’ in G are Z,-homologous in % if and only if [y]=[y’].

4 Crossing Bounds and Triangulations

In this section, we describe an algorithm to compute the minimum-weight even subgraph homologous
with any specified even subgraph H in (g+b)°® P nloglogn time. In fact, our algorithm can be modified
easily to compute a minimum-weight representative in every homology class in the same asymptotic
running time; there are exactly 226+t2~1 such classes. Lemma 2.2 implies our algorithm can be used to
find a minimum (s, t)-cut in G* in the same amount of time.

Our algorithm closely resembles the algorithm of Chambers et al. [22] for computing a shortest
splitting cycle; in fact, our algorithm is somewhat simpler. Our algorithm is based on the key observation
(Lemma 4.1) that the shortest even subgraph in any homology class crosses any shortest path at most
O(g + b) times. The first stage of our algorithm cuts the underlying combinatorial surface into a
topological disk by a greedy system of arcs, as described in Section 3.1. Next, we enumerate all possible
ways for an even subgraph to intersect each of the greedy arcs at most O(g + b) times; we quickly discard
any crossing pattern that does not correspond to an even subgraph in the desired homology class. Each
crossing pattern is realized by several (free) homotopy classes of sets of non-crossing cycles; we show
how to enumerate these homotopy classes in Section 4.2. Then within each homotopy class, we find a
minimum-length set of non-crossing cycles with each crossing pattern, essentially by reducing to a planar
instance of the minimum-cut problem. The union of those cycles is an even subgraph in the desired
homology class; we return the lightest such subgraph as our output.

4.1 Crossing bound

Our main technical lemma for this section establishes an upper bound on the number of crossings between
members of a greedy system of arcs and some minimum-weight even subgraph in any homology class.
Crossing-number arguments were first used by Cabello and Mohar [20] to develop the first subquadratic
algorithms for shortest non-contractible and non-separating cycles in undirected surface embedded



14 Minimum cuts in surface graphs

graphs; their arguments are the foundation of all later improvements of their algorithm [15,17,84]. Our
proof is quite similar to the argument of Chambers et al. [22] that the shortest splitting cycle crosses any
shortest path O(g + b) times. However, our new proof is simpler, because the structure we seek is a true
subgraph, which need not be connected, rather than a single (weakly) simple closed walk.

As mentioned in Section 3.1, we cannot consistently define when a shortest path crosses an even
subgraph. Instead, we consider the total number of crossings between a shortest path and the cycles in
an arbitrary cycle decomposition.

Lemma 4.1. Let G be an edge-weighted graph embedded on a surface with genus g and b boundary
components. Let A= {al, as, .-, aﬁ} be a greedy system of arcs. Let H be a subgraph of G. There is a
7Z,-minimal even subgraph H' homologous to H such that for any cycle decomposition y1,vs,...,7, of
H’, the total number of crossings between any arc a; and the cycles y1,7s,...,Y, Is at most 12g +4b —5.

Our proof begins by conceptually modifying the edge weights in G in a manner reminiscent to the
way many earlier papers [7, 14, 17,43,47,95] enforce edge weight genericity, and in particular, the
uniqueness shortest paths between any two vertices of a graph. This assumption can be enforced with
high probability by adding random infinitesimal weights to each edge [96]. Cabello et al. [17] describe an
efficient implementation of lexicographic perturbation [27,33, 67] that increases the worst-case running
times of algorithms by a factor of O(logn). More recently, Erickson et al. [45] described a deterministic
perturbation scheme for directed graphs based on integer homology that increases worst-case running
times by a factor of O(g). Unfortunately, this latter scheme cannot be used as a black box in algorithms
such as ours that rely on edges being undirected.

Proof: For the sake of argument, we slightly modify the edge weights of G so that Z,-minimal even
subgraphs under the new weights are also Z,-minimal under the original edge weights but the crossing
bound is guaranteed to hold. Recall, every arc in A consists of two shortest paths from a forest F of
shortest paths. Our modification simply adds identical infinitesimal weights € to every edge outside of
F. We claim that for any shortest path o contributing to F, for any pair of vertices u and v in o, that
o (u, v) is the unique shortest path from u to v. Indeed, any path from u to v that uses an edge outside F
must weigh at least € more than o(u, v), and F is a forest so there are no other paths from u to v using
only edges of F.

Let H’ be is an arbitrary Z,-minimal even subgraph homologous to H under the new edge weights.
Let ¥1,72,--.,Y, be an arbitrary cycle decomposition of H’. We now argue that for any shortest path
o = o(u,v) contributing to F, the total number of crossings between o and the cycles y{,¥3,-..,7, is at
most 6g +2b — 3. The lemma immediately follows from the construction of A. Without loss of generality,
we can assume that o crosses each cycle v; at least once. For each i, let x; denote the number of times
o and y; cross, and let x = x; + x5+ -+ + x,.. We need to prove that x < 6g +2b—3.

Consider the graph G/o obtained from G by contracting the path ¢ to a single vertex uv. This graph
inherits a cellular embedding on X from the cellular embedding of G. Each cycle v; is contracted to the
union of x; weakly simple non-crossing loops in G/o with basepoint uv. Altogether, we obtain x loops,
which we denote £4,£,,...,{,. We claim that these x loops lie in distinct nontrivial homotopy classes.

Suppose some loop ¢; is contractible. This loop is the contraction of a path 7; in G whose endpoints u;
and v; lie in o. The cycle 6 = &; - o(v;,u;) is also contractible. Thus, the even subgraph H @ 6 is
homologous with H. Moreover, the previously discussed uniqueness of shortest paths implies that the
weight of H® 6 = HU o(v;,u;) \ 7; is smaller than the weight of H. But this contradicts our assumption
that H has minimum weight in its homology class.

Now suppose some pair of loops £; and £; are homotopic; by definition, the cycle ¢; Z is contractible.
These two loops are contractions of paths 7r; and 7; in G with endpoints in 0. Let u; and v; denote



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 15

the endpoints of 7;, and let u; and v; denote the endpoints of ;. The cycle ;- o(v;,v;) - 7 - o (u;,u;)
in G is also contractible. Let 6 denote the set of edges of G that appear in this cycle exactly once. If
the sub-paths o(v;, v;) and o (u;,u;) are edge-disjoint, then § is a contractible cycle; otherwise, ¢ is the
union of two non-crossing homotopic cycles. In either case, 6 is a boundary subgraph, so the symmetric
difference H @ 6 is homologous with H. Moreover, H @ 6 has smaller weight than H, and we obtain
another contradiction.

We conclude that the loops £1,¢,, ..., ¢, lie in distinct nontrivial homotopy classes. Thus, these loops
define an embedding of a single-vertex graph with x edges onto X, where every face of the embedding is
bounded by at least three edges. Euler’s formula now implies that x < 6g +2b—3 [22, Lemma 2.1]. O

We emphasize that different cycle decompositions of the same even subgraph H’ may lead to different
numbers of crossings. Our crossing bound applies to every cycle decomposition of H’.

4.2 Triangulations and crossing sequences

We can now describe our algorithm. First, recall that we have a combinatorial surface ¥ along with an
associated greedy system of arcs on that surface; if ¥ had no boundary, we can delete a face without loss
of generality and proceed, as described in Section 3. We will cut the combinatorial surface > along our
greedy system of arcs into a 2f3-gon, or abstract polygonal schema. This construction cuts along each
path in the greedy system; we then have two copies of each path, and replace each copy with a single
edge. Thus, each path in our greedy system of arcs will correspond to two edges in the polygon.

We next dualize the abstract polygonal schema by replacing each edge with a vertex, and connecting
vertices which correspond to adjacent edges in the primal schema. Any collection of non-crossing,
non-self-crossing cycles corresponds to a weighted triangulation [22], where we draw an edge between
two vertices of the dual abstract polygonal schema if and only if some cycle consecutively crosses the
corresponding pair of paths in the greedy system of loops. Each edge is weighted by the number of times
such a crossing occurs in our collection. Conversely, a weighted triangulation corresponds to a collection
of non-crossing, non-self-crossing cycles as long as corresponding vertices are incident to edges of equal
total weight. See Figure 7 for an illustration of this correspondence. Lemma 4.1 implies that we only
need to consider weights between 0 and O(g + b). Thus, there are (g + b)°&*?) different weighted
triangulations for each valid crossing vector.

P;
Py P2

P3 P;

Py P2
[2%]

Figure 7. Two disjoint simple cycles on a surface of genus 2, and the corresponding weighted triangulation.

For each valid weighted triangulation, we can compute a corresponding collection of abstract cycles
in O((g + b)?) time by brute force. In the same time, we can also compute the sequence of crossings of
each abstract cycle with the paths from our greedy system of arcs. An algorithm of Kutz [84] computes
the shortest cycle in G with a given crossing sequence of length x in O(xnlogn) time; this proceeds by
slicing X along the greedy system of arcs, and then gluing together x copies of the resulting planar surface
into an annulus and calling Frederickson’s planar minimum-cut algorithm [56]. Italiano et al. [76] point



16 Minimum cuts in surface graphs

out that their recent O(nloglogn)-time improvement in computing minimum (s, t)-cuts in planar graphs
can be used instead of Frederickson’s algorithm. Thus, for each weighted triangulation, we obtain the
shortest corresponding set of cycles in O((g + b)?nloglogn) time.

Theorem 4.2. Let G be an undirected graph with positively weighted edges embedded on a surface
with genus g and b boundary components, and let H be an even subgraph of G. We can compute the
minimum-weight even subgraph homologous with H in (g + b)°®*Pnloglogn time.

Corollary 4.3. Let G be an edge-weighted undirected graph embedded on a surface with genus g and b
boundary components, and lets and t be vertices of G. We can compute the minimum-weight (s, t)-cut
in G in g°®nloglogn time.

5 The Z,-Homology Cover

At a very high level, our algorithms in Section 4 find the minimum-weight subgraph in a given homology
class by enumerating possible homotopy classes of the cycles in a cycle decomposition, and then finding
the shortest cycle in each possible homotopy class by searching a finite portion of the universal cover of
the surface 2. In this section, we describe a more direct algorithm, which finds the shortest cycle in each
homology class, by constructing and searching a space which we call the Z,-homology cover. Specifically,
given a homology signature h € (Z,)P, our algorithm computes the shortest cycle with signature h
in f°Pnlogn time, using a generalization of Klein’s multiple-source shortest path algorithm [82] for
planar graphs to higher-genus embedded graphs [17,45]. In fact, because there are only 2 homology
classes, we can compute the shortest cycle in every homology class in the same running time. We then
assemble the minimum-weight even subgraph in any given homology class from these Z,-minimal cycles
using dynamic programming.

In the preliminary version of this section [48], we described an algorithm to compute the shortest
non-separating cycle in a directed surface graph in g°®nlogn time, improving (for fixed g) an earlier
algorithm of Cabello et al. [18] that runs in O(g'/?n*/?logn) time. Using similar techniques but with
different covering spaces, Erickson [44] and Fox [54] described even faster algorithms that find shortest
non-separating cycles in O(g?nlogn) time and shortest non-contractible cycles in O(g3nlogn) time. In
light of these improvements, we omit discussion of our non-separating cycle algorithm from this paper.

5.1 Definition and construction

We begin by computing homology signatures for the edges of G in O(f3n) time, as described in Section 3.2.
After computing homology signatures for each edge, the Z,-homology cover of a combinatorial surface
can be defined using a standard voltage construction [63, Chapter 4], as follows.

We first define the covering graph G. For simplicity, we regard every edge uv of G as a pair of
oppositely oriented darts u—v and v—u. The vertices of G are all ordered pairs (v, h) where v is a vertex
of G and h is an element of (Z,)?. The darts of G are the ordered pairs (u—v,h) := (u,h)~(v,h & [uv])
for all edges u—v of G and all homology classes h € (Z,)P, and the reversal of any dart (u—v, h) is the
dart (v—u,h & [uv]).

Now let 7: G — G denote the covering map 7(v,h) = v; this map projects any cycle in G to a cycle
in G. To define a cellular embedding of G, we declare a cycle in G to be a face if and only if its projection
is a face of G. The combinatorial surface defined by this embedding is the Z,-homology cover .

Our construction can be interpreted more topologically as follows. Let ay, ..., ag denote the system
of dual arcs used to define the homology signatures [e]. The surface D := X\ (a; U---Uag) is a
topological disk. Each arc a; appears on the boundary of D as two segments a;r and a; . For each



Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 17

Figure 8. Constructing the Z,-homology cover of a pair of pants (a genus zero surface with three boundaries).

signature h € (Z,)P, we create a disjoint copy (D, h) of D; for each index i, let (a;’, h) and (a; , h) denote
the copies of a;’ and a; in the disk (D, h). For each index i, let b; denote the 3-bit vector whose ith
bit is equal 1 and whose other 8 — 1 bits are all equal to 0. The Z,-homology cover X is constructed
by gluing the 2# copies of D together by identifying boundary paths (a;r, h) and (a; ,h @ b;), for every
index i and homology class h. See Figure 8 for an example.

Lemma 5.1. The combinatorial surface ¥ has n = 2Pn vertices, genus g = 0(2PB), and b = 0(2Pb)
boundaries, and it can be constructed in O(2Pn) time.

Proof: Let m and f denote the number of edges and faces of X, respectively. Recall that the Euler
characteristic of ©is y =n—m+ f =2—2g—b = 1— f. The combinatorial surface % has exactly
7= 2Pn vertices, 2P m edges, and 2 f faces, so its Euler characteristic is 77 = 2°(1 — ).

If b > 1, then each boundary cycle §; has a non-zero homology signature; at least one arc a;
has exactly one endpoint on §;. Thus, ¥ has exactly b = 2f~1b boundary cycles, each of which is a
double-cover (in fact, the Z,-homology cover) of some boundary cycle §;. It follows that 3 has genus
g=1—(7+b)/2=2P"2(4g+b—4)+1. (Somewhat surprisingly, & may have positive genus even
when ¥ does not!) On the other hand, when b = 1, the boundary cycle &, is null-homologous, so 3 has
b = 2P b boundary cycles, and thus ¥ has genus g =1—(y +b)/2=2P(g—1) + 1.

After computing the homology signatures for 3 in O(fn) time, following Lemma 3.3, it is straightfor-
ward to construct ¥ in O(7) = 0(2°n) time. O

Each edge in G inherits the weight of its projection in G. Now consider an arbitrary path p in G, with
(possibly equal) endpoints u and v. A straightforward induction argument implies that for any homology
class h € (Z,)P, the path p is the projection of a unique path from (u, k) to (v,h @ [p]), which we denote
(p, h). Moreover, this lifted path has the same length as its projection. The following lemmas are now
immediate.

Lemma 5.2. Every lift of a shortest path in G is a shortest path in G.

Lemma 5.3. A loop { in G with basepoint v is Z,-minimal if and only if, for every homology class
h € (Z,)P, the lifted path (£,h) is a shortest path in G from (v,h) to (v,h & [£]).

5.2 Computing Z,-minimal cycles

The results in the previous section immediately suggest an algorithm to compute the shortest cycle in
a given Z,-homology class h in time 2°(®n?: construct the Z,-homology cover, and then compute the
shortest path from (v, 0) to (v, h), for every vertex v in the original graph. In this section, we describe a
more complex algorithm that runs in time 2°®)nlogn. Recall that any path o from u to v in G is the
projection of a unique path (o,0) from (u,0) to (v,[o]) in G.



18 Minimum cuts in surface graphs

Lemma 5.4. Let y be a Z,-minimal cycle in G, and let o be any shortest path in G that intersects y.
There is a Z,-minimal cycle y" homologous to y, which is the projection of a shortest path (y’,h) in G
that starts with a subpath of (o, 0) but does not otherwise intersect (o, 0).

Proof: Let v be the vertex of o Ny closest to the starting vertex of o, and let (v, h) be the corresponding
vertex of the lifted path (o, 0). Think of y as a loop based at v. Lemma 5.3 implies that the lifted path
(y,h) is a shortest path from (v,h) to (v,h & [y]).

Now let (w, h’) be the last vertex along (y,h) that is also a vertex of (c,0). Let (y/,h) be the path
obtained from (y, h) by replacing the subpath from from (v, h) to (w, h’) with the corresponding subpath
of (o,0). By construction, (y’, h) starts with a subpath of (o, 0) but does not otherwise intersect (o, 0).
Because both (y,h) and (o, 0) are shortest paths in %, the new path (y’,h) has the same length as
(v, h). Thus, the projected cycle y’ has the same length and homology class as y, which implies that y’ is
Zy-minimal. O

We emphasize that the modified cycle ¥’ may intersect o arbitrarily many times; however, all such
intersections lift to intersections between (y’, h) and lifts of o other than (o, 0).

Our algorithm uses a generalization of Klein’s multiple-source shortest path algorithm [82] to
higher-genus embedded graphs:

Lemma 5.5 (Erickson et al. [45]). Let G be a graph with non-negative edge weights, cellularly em-
bedded on a surface % of genus g with b > 0 boundaries, and let f be an arbitrary face of G. We can
preprocess G in O(g?nlogn) time and O(gnlogn) space so that the length of the shortest path from any
vertex incident to f to any other vertex can be retrieved in O(logn) time.

The above result is based on a procedure of Chambers et al. [17] which requires only O(gnlogn)
preprocessing time but relies on the shortest path between any pair of vertices being unique. We can
enforce uniqueness of shortest paths and achieve the O(gnlogn) preprocessing time with high probability
by adding random infinitesimal weights to each edge [96]. Because our minimum-weight (s, t)-cut
algorithm is otherwise deterministic, we will use the deterministic O(g?nlogn) preprocessing time
procedure referenced in Lemma 5.5 throughout the rest of this section.

Theorem 5.6. Let G be a graph with non-negative edge weights, cellularly embedded on a surface ¥ with
first Betti number f3, and let y be a cycle in G with k edges. A shortest cycle in % that is Z,-homologous
with y can be computed in O(Bk + 8° B3 nlogn) time.

Proof: We begin by computing homology signatures for the edges of G in O(f8n) time, as described in
Section 3.2. In O(fk) time, we then compute the homology signature [y]. If [y] = 0, we return the
empty walk and halt.

Next, we construct the Z,-homology cover G in O(2°nlogn) time, as described in Section 5.1, as
well as the set S of directed shortest paths described in Section 3.1. Any cycle homologous with y must
intersect at least one member of S as y is not null-homologous. We look for the shortest path in G of the
canonical form described in Lemma 5.4, by considering each shortest path o € S in turn as follows.

Let us write (o, 0) = (vg,0)—(vq,hy)— - - - = (v, h,). We construct the combinatorial surface X \\ (o, 0)
by splitting the path (o, 0) into two parallel paths from (v,,0) to (v;,h,), which we denote (¢,0)* and
(0,0)". Foreach index 1 <i < t—1, let (v;,h;)" and (v;, h;)” denote the copies of vertex (v;,h;) on the
paths (¢,0)" and (0,0)7, respectively. The paths (0,0)* and (o,0)~ bound a new common face f, o)
in2\\ (o,0).

Lemma 5.4 implies that if any Z,-minimal cycle homologous to y intersects o, then some Z,-minimal
cycle homologous to y is the projection of a shortest path in % \\ (o, 0) from some vertex (v;, h;)* to



Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 19

the corresponding vertex (v;,h; ® [y]). To compute these shortest paths, we implicitly compute the
shortest path in X2 \\ (0, 0) from every vertex on the boundary of f{,, o) to every vertex of ©.\\ (0, 0), using
Lemma 5.5. The resulting algorithm runs in O(g*nlogn) = 0(8# B3 nlogn) time, by Lemma 5.1. O

By running this algorithm 2P times, we can compute the shortest cycle in ¥ in every Z,-homology
class, in 0(16° 83 nlogn) time.

We note that this result holds in directed graphs as well, as the construction of the Z,-homology
cover ignores weights and the multiple source shortest path algorithm works on directed graphs.

5.3 Minimum cuts from the homology cover

We now apply our algorithm for computing Z,-minimal cycles to the problem of computing Z,-minimal
even subgraphs in undirected surface embedded graphs. Theorem 5.6 immediately implies that we can
compute a minimum-weight cycle in every Z,-homology class in O(16 8% nlogn) time. However, the
minimum weight even subgraph in a given homology class may not be (the carrier of) a Z,-minimal cycle.
In particular, if a Z,-minimal cycle y traverses any edge more than once, then every minimum-weight
even subgraph with signature [y] must be disconnected.

However, any connected Z,-minimal even subgraph is the carrier of a Z,-minimal cycle, and the
components of any Z,-minimal even subgraph are themselves Z,-minimal even subgraphs. Thus, we can
assemble a Z,-minimal even subgraph in any homology class from a subset of the Z,-minimal cycles we
have already computed. The following lemma puts an upper bound on the number of cycles we need.

Lemma 5.7. Every Z,-minimal even subgraph of G has at most g + b — 1 components.

Proof: Letyy,...,Y44p be disjoint simple cycles on an abstract surface % of genus g with b boundaries,
and consider the surface ¥’ =\ (y; U Uy,g4p). The definition of genus implies that %’ cannot be
connected; indeed, ¥’ must have at least b + 1 components. So the pigeonhole principle implies that
some component % of ¥ does not contain any of the boundary cycles of 3. The boundary of ¥” is
therefore null-homologous.

Now let H be an even subgraph of G with more than g+ b —1 components. Each component has a
cycle decomposition, so H must have a cycle decomposition with more than g + b —1 elements. Thus,
the argument in the first paragraph implies that some subgraph of H must be null-homologous. We
conclude that H is not Z,-minimal. O

Theorem 5.8. Let G be an undirected graph with non-negative edge weights, cellularly embedded on a
surface *. with first Betti number 3. A minimum-weight even subgraph of G in each Z,-homology class
can be computed in O(16P B2 nlogn) time.

Proof: Our algorithm computes a minimum-weight cycle y;, in every Z,-homology class h in 0(16F 3 nlogn)
time, via Theorem 5.6, and then assembles these Z,-minimal cycles into Z,-minimal even subgraphs
using dynamic programming.

For each homology class h € (Z,)P and each integer 1 < k < g+ b— 1, let C(h, k) denote the
minimum total weight of any set of at most k cycles in G whose homology classes sum to h. Lemma 5.7
implies that the minimum weight of any even subgraph in homology class h is exactly C(h, g+ b—1).
This function obeys the following straightforward recurrence:

C(h,k) =min{C(hy,k—1)+ C(hy, 1) | hy @ hy =h}.

This recurrence has two base cases: C(0, k) = 0 for any integer k, and for any homology class h, the value
C(h, 1) is just the length of y;. A standard dynamic programming algorithm computes C(h,g + b —1)



20 Minimum cuts in surface graphs

for all 2° homology classes h in O(4? 8) time. We can then assemble the actual minimum-weight even
subgraphs in each homology class in O(fin) time. The total time for this phase of the algorithm is
0(4P B + 2P Bn), which is dominated by the time to compute all the Z,-minimal cycles. O

Corollary 5.9. Let G be an edge-weighted undirected graph embedded on a surface with genus g and b
boundary components, and let s and t be vertices of G. We can compute the minimum-weight (s, t)-cut
in G in 0(2564 g3nlogn) time.

As discussed above, we can instead randomly perturb edge weights and use the faster multiple-source
shortest paths algorithm of Chambers et al. [17] to find a minimum-weight (s, t)-cut with high probability
in 0(64¢ g3nlogn) time.

6 NP-Hardness

In this section, we show that finding the minimum-cost even subgraph in a given homology class is
NP-hard, even when the underlying surface has no boundary. Our proof closely follows a reduction of
McCormick et al. [90] from MIN2SAT to a special case of MAXCUT.

Theorem 6.1. Computing the minimum-weight even subgraph in a given homology class on a surface
without boundary is equivalent to computing a minimum-weight cut in an embedded edge-weighted
graph G whose negative-weight edges are dual to an even subgraph in G*.

Proof: Fix a graph G embedded on a surface ¥ without boundary, together with a weight function
c¢: E — R. For any even subgraph H of G, let c(H) = Y, c(e), and let MINHOM(H, c) denote the even
subgraph of minimum weight in the homology class of H.

Consider the residual weight function cj; : E — R defined by setting cy(e) = c(e) for each edge e & H,
and cy(e) = —c(e) for each edge e € H. For any subgraph H' of G, we have c¢(H) = cy(H ® H') + c(H),
which immediately implies that MINHOM(H, ¢) = H & MINHOM(J, ¢y ).

Every boundary subgraph of G is dual to a cut in the dual graph G*. Thus, we have reduced our
problem to computing the minimum cut in G* with respect to the weight function c. Since the empty
set is a valid cut with zero cost, the cost of the minimum cut is never positive. In particular, H is the
minimum-cost even subgraph in its homology class if and only if the cut in G* with minimum residual
cost is empty.

In fact, our reduction is reversible. Suppose we want to find the minimum cut in an embedded graph
G = (V,E) with respect to the cost function c: E — R, where every face of G is incident to an even
number of edges with negative cost. Let H = {e € E | c(e) < 0} be the subgraph of negative-cost edges,
and let X denote the (possibly empty) set of edges in the minimum cut of G. Consider the absolute cost
function |c|: E* — R defined as |c|(e*) = |c(e)|. Then (H & X)* is the even subgraph of G* of minimum
absolute cost that is homologous to H*. O

We now prove that this special case of the minimum cut problem is NP-hard, by reduction from
MINCUT in graphs with negative edges. This problem includes MAXCUT as a special case (when every
edge has negative cost), but many other special cases are also NP-hard [90]. The output of our reduction
is a simple triangulation; the reduction can be simplified if graphs with loops and parallel edges are
allowed.

Suppose we are given an arbitrary graph G = (V, E) with n vertices and an arbitrary cost function
c: E — R. We begin by computing a cellular embedding of G on some orientable surface, by imposing
an arbitrary cyclic order on the edges incident to each vertex. (We can compute the maximum-genus



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 21

orientable cellular embedding in polynomial time [57].) Alternately, we can add zero-length edges to
make the graph complete and then use classical results of Ringel, Youngs, and others [102, 103] to
compute a minimum-genus orientable embedding of K, in polynomial time. Once we have an embedding,
we add vertices and zero-cost edges to obtain a triangulation.

Let C be the sum of the absolute values of the edge costs: C := Y. |c(e)|. A cocycle of embedded
graph G is a subset of edges forming a cycle in the dual G*. We locally modify both the surface and
the embedding to transform each negative-weight edge into a cocycle, as follows. We transform the
edges one at a time; after each iteration, the embedding is a simple triangulation. (Our reduction can be
simplified if a simple graph is not required.) For each edge uv with c(uv) < 0, remove uv to create a
quadrilateral face. Triangulate this face as shown in Figure 9; we call the new faces uu,u, and vv,v,
endpoint triangles. Assign cost C to the edges of the endpoint triangles and cost zero to the other new
edges. Glue a new handle to the endpoint triangles, and triangulate the handle with a cycle of six edges,
each with cost c(uv)/6. These six edges form a cocycle of cost c(uv), which we call an edge cocycle, in
the new embedding. Each iteration adds 5 vertices and 21 edges to the graph and increases the genus of
the underlying surface by 1.

Figure 9. Adding a handle to transform a negative edge into a negative cocycle. Thick (blue) edges have cost C; dashed edges
have cost zero.

Let G’ denote the transformed graph and ¢’: E(G’) — R its associated cost function. The minimum
cut in G’ cannot contain any edge of an endpoint triangle. Thus, for each edge cocycle, either all six
edges cross the cut, or none of them cross the cut. It follows that the minimum cut in G’ corresponds to a
cut with equal cost in the original graph G. Conversely, any cut in G can be transformed into a cut in G’
of equal cost. Thus, computing the minimum cut in G’ is equivalent to computing the minimum cut in G.

Theorem 6.2. Given an even subgraph H of an edge-weighted graph G embedded on a surface without
boundary, computing the minimum-weight even subgraph homologous to H is strongly NP-hard.

Our reduction can be modified further to impose other desirable properties on the output instances,
for example, that the graph is unweighted, every vertex has degree 3, or the input subgraph H is a simple
cycle.

Finally, we emphasize that the NP-hardness of this problem relies crucially on the fact that we
are using homology with coefficients taken from the finite field Z,. The corresponding problem for
homology with real or integer coefficients is a minimum-cost circulation problem, and thus can be solved
in polynomial time. Chambers, Erickson, and Nayyeri [25] show that this circulation problem can be
solved in near-linear time for graphs of constant genus and polynomially bounded integer edge capacities
using very different techniques.



22 Minimum cuts in surface graphs

7 Global Minimum Cut

Finally, we describe our algorithm to compute global minimum cuts in surface-embedded graphs, where
no source and target vertices are specified in advance. Unlike previous sections, we begin our exposition
assuming that the underlying surface of the input graph does not have boundary, because filling in any
boundaries with disks does not change the minimum cut. We also assume without loss of generality that
no edge of the input graph has the same face on both sides; we can enforce this assumption by adding
zero-weight edges if necessary.

As in previous sections, it is convenient to work in the dual graph. We cannot apply Lemma 2.2
directly, but the following lemma similarly characterizes global minimum cuts in surface graphs in terms
of homology in the dual graph. Suppose we have a graph embedded in a surface with a single boundary
component. A separating subgraph is any non-empty boundary subgraph, or equivalently, the boundary
of the union of a non-empty set of faces.

Lemma 7.1. Let G be an undirected edge-weighted graph embedded on a surface ¥ without boundary;
and let s be an arbtirary vertex of G. If X is a global minimum cut in G, then X* is a minimum-weight
separating subgraph of G* in X3\ s*.

Proof: Let X be an arbitrary cut in G. The cut partitions the vertices of G into two disjoint subsets S
and T with s € S. Therefore, the dual subgraph X* partitions the faces of G* into two disjoint subsets S*
and T* with s* € S*. Further, X* is the boundary of the union of faces in T*, implying that X* is a
boundary subgraph of ¥ and therefore separating.

Conversely, let X* be any separating subgraph of G*. Subgraph X* is the boundary of a nonempty
subset of the faces T* of G*. Let t* be a face in T*. Any path from s to t in the primal graph G must
traverse at least one edge of X. We conclude that X is a cut (in particular, an (s, t)-cut). O

In light of this lemma, the remainder of this section describes an algorithm to find a minimum-weight
separating subgraph in a given surface-embedded graph G with non-negative edge weights. Graph G is
embedded in a surface ¥ with exactly one boundary component s*.

Let X be a minimum-weight separating subgraph. Surface > \ X has exactly one component not
incident to s*; otherwise, the boundary of any one of these components is a smaller separating subgraph.
Abusing terminology slightly, call the separating subgraph X contractible if this component of 3\ X is a
disk, and non-contractible otherwise. If X is contractible, then X is actually a shortest (weakly) simple
contractible cycle of G in the surface ; otherwise, X can be decomposed into one or more simple cycles,
each of which is non-contractible. See Figure 10.

Figure 10. Two types of minimum-weight separating subgraphs: a simple contractible cycle and otherwise.

Thus, in principle, we can find a minimum-weight separating subgraph by first computing a shortest
contractible cycle, then computing a minimum-weight separating collection of non-contractible cycles,
and finally returning the lighter of these two subgraphs. Unfortunately, we do not know how to solve
either of these subproblems in our stated time bounds, so our algorithm takes a more subtle approach.



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 23

In Section 7.1, we describe an algorithm that computes a minimum-weight separating subgraph if any
minimum-weight separating subgraph is contractible. Similarly, in Section 7.2, we describe an algorithm
that computes a minimum-weight separating subgraph if any minimum-weight separating subgraph is
non-contractible. In both cases, if no minimum-weight separating subgraph satisfies the corresponding
condition, the algorithm still returns a boundary subgraph, but this subgraph could be empty or have
large weight. By running both subroutines and returning the best result, we are guaranteed to find a
minimum-weight separating subgraph in G, no matter which category it falls into.

7.1 Contractible

First we consider the case where some minimum-weight separating subgraph X is contractible. We
begin by borrowing a result of Cabello [16, Lemma 4.1]. Recall that an arc or cycle is tight if it has
minimum-weight among all arcs or cycles in its homotopy class.

Lemma 7.2 (Cabello [16]). Let a be a tight arc or tight cycle on G. There exists a shortest simple
contractible cycle that does not cross a.

Cabello [16] uses this observation to compute a shortest simple contractible cycle in a surface
embedded graph; unfortunately, his algorithm runs in O(n?logn) time. Cabello et al. [19] use the same
observations to find a shortest contractible closed walk that encloses a non-empty set of faces in O(nlogn)
time (with no dependence on g). However, the resulting closed walk W might traverse some edges of G
more than once. The set of edges that W traverses an odd number of times does constitute a boundary
subgraph; unfortunately, this subgraph could be disconnected or even empty.

Our algorithm closely follows the algorithm of Cabello et al. [19], but with modifications to ensure
that the resulting walk traverses at least one edge an odd number of times.

We use the slicing operation (\\) along tight cycles and arcs in G. The following lemma implies it is
safe for our algorithm to find minimum-weight separating subgraphs in sliced copies of X.

Lemma 7.3. Let a be an arbitrary simple cycle or arc in G. Let ¥’ =% \\ a and let G’ = G \\ a. Any
null-homologous closed walk y’ in G’ projects to a null-homologous closed walk in G.

Proof: Let ¥’ be a null-homologous closed walk in G’ and let y be its projection in G. Let H’ be the even
subgraph of G’ containing exactly the edges that appear an odd number of times in y’. Let H be the
even subgraph of G containing exactly the edges that appear an odd number of times in y. Subgraph H’
bounds a subset of faces F’ in G’. Let F be natural mapping of F’ into G. We will argue that H is the
boundary of F, proving the lemma.

Consider any edge e of G. Suppose e is not in a. In this case, G’ contains one copy e’ of e, and
all faces incident to ¢’ map to faces incident to e. Edge e’ being incident to exactly one face of F’ is
equivalent to e’ € H’, which in turn is equivalent to ¥’ using ¢’ an odd number of times, y using e an odd
number of times, and finally H containing e.

Now suppose e is in a. Graph G’ contains two copies of e denoted e; and e, each incident to one
face f; and f,, respectively (note that f; and f, may be equal). If neither or both of f; and f, are in
F’, then H’ includes neither or both of e; and e,. In turn, y’ goes through the two copies of e an even
number of times total, meaning y uses e an even number of times and e ¢ H. If one, but not both, of f;
and f, are in F’, then H’ includes exactly one of e; or e,. In turn, y’ goes through the two copies of e an
odd number of times total, meaning y uses e an odd number of times and e € H.

In all cases, an edge e is in H if and only if exactly one incident face to e isin F. O

Finally, we can present our algorithm for finding a minimum-weight separating subgraph that happens
to be contractible.



24 Minimum cuts in surface graphs

Lemma 7.4. There exists an O(nloglogn)-time algorithm that computes a minimum-weight separating
subgraph if any such subgraph is a simple contractible cycle. If not, the algorithm either returns some
separating subgraph (that may not be minimum weight) or nothing.

Proof: The algorithm computes a system A of tight arcs anchored on s* in O(n) time as described in
Section 3.1. Let G’ denote the planar graph G \\ A; this graph has O(n) vertices.

Pick an arbitrary edge e on one of the tight arcs a, and let e; and e, be distinct copies of e in G’. Let
v, and y, be the shortest simple cycles in the subgraphs G’\e; and G’\e,, respectively. Our algorithm
computes both y; and y, in O(nloglogn) time using the algorithm of fLacki and Sankowski [85]. Note
that graphs G’\e; and G’\e, may not contain any cycles. In this case, G’ contains no simple cycles.
Lemma 7.2 implies G does not contains any simple contractible cycles to begin with and our algorithm
returns nothing. For the rest of this section, we assume y; and v, are well defined.

Figure 11. At least one copy of e is forbidden in the planarized graph.

Let y be the shorter of the cycles y; and y,. By multiple instantiations of Lemma 7.3, cycle y projects
to a null-homologous closed walk v’ in the original graph G, which may or may not be simple. Our
algorithm returns the symmetric difference over all edges in y’. The only cycle in G’ that is not a
separating subgraph in G is the boundary of G’. Because y avoids at least one edge of the boundary, the
carrier of v/ must be non-empty. If our algorithm returns anything, it must return a separating subgraph.

Now, suppose some minimum weight separating subgraph of G is a simple contractible cycle.
Lemma 7.2 implies that some shortest simple contractible cycle o in G does not cross A. (We em-
phasize that our algorithm does not necessarily compute ¢.) This cycle o appears as a simple cycle in
G’ that avoids at least one of the edges e; or e,. Thus, o cannot be shorter than y, and our algorithm
returns a minimum-weight separating subgraph. O

7.2 Non-contractible

Now suppose some minimum-weight separating subgraph X is non-contractible. At a high level, our
algorithm for this case computes a set F of faces, such that some minimum-weight separating subgraph
of G separates s* from at least one face in F. (Equivalently, F* is a set of vertices of G*, such that the
global minimum cut in G* is an (s, t)-cut for some t € F*.) Then for each face in F, we compute a
minimum-weight subgraph separating s* from that face using one of our earlier algorithms.

Throughout this section, we assume without loss of generality that every edge of G lies on the
boundary of two distinct faces of G. We can enforce this assumption if necessary by adding O(n)
infinite-weight edges to G.

The following lemma can be seen as the main technical take-away from this section. After its
appearance in a preliminary version of our work [46], it was generalized by Borradaile et al. [7] for their
construction of a minimum (s, t)-cut oracle for surface embedded graphs.

Lemma 7.5. Let X be a minimum-weight separating subgraph. Let y be a closed walk in G that lies
in the closure of the component of 3 \ X not incident to s*, and let H be a shortest even subgraph



Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 25

homologous to y. There is a minimum weight separating subgraph X’ (possibly X ) such that H lies in
the closure of the component of ¥\ X’ not incident to s*.

Proof: If y is null-homologous, then H is empty and the lemma is trivial, so assume otherwise. If H lies
in the closure of the component of X \ X not incident to s*, then we are done, so assume otherwise. See
Figure 12.

Figure 12. The setting of Lemma 7.5. A Z,-minimal even subgraph H is separated from face f by a minimum weight separating
subgraph X’.

Recall, subgraph X bounds the union of one non-empty component of faces not incident to s*. Call
the faces in this component far and the rest near. Similarly, the even subgraph H @ vy is null-homologous
and therefore bounds a subset of faces of G. Call the faces in this subset white and the rest black. (If
H = v, then every face of G is black.)

Let X’ be the boundary of the union of the far faces and white faces in G. There is at least one far
face, so subgraph X’ is separating. Every edge of H is incident to a white face, so H lies in the closure of
the component of 3 \ X’ not incident to s*.

It remains to argue that X’ is a minimum-weight separating subgraph of G.

For any subgraph A of G, let w(A) denote the sum of the weights of the edges of A. Because both X’
and X are null-homologous, the even subgraph H' = H & X’ & X is homologous to H, and therefore to 7.
We immediately have w(H’) > w(H), because H is Z,-minimal.

We now prove that w(X’)+w(H’) < w(H)+w(X) by bounding the contribution of each edge e € E(G)
to both sides of the inequality. Both X’ and H’ are subgraphs of X UH; moreover, X' ® H' = X @ H. There
are three cases to consider.

e If e ¢ X UH, then e contributes O to both sides of the inequality.
e Ifec X ®H, then e € X’ ® H’. In this case, e contributes w(e) to both sides of the inequality.

e If e € X N H, then e contributes exactly 2w(e) to the right side of the inequality. Trivially, e
contributes at most 2w(e) to the left side.

We conclude that X’ is also a minimum-weight separating subgraph. O

Lemma 7.6. There is a g°®nloglogn-time algorithm that computes a minimum-weight separating
subgraph of G if any minimum-weight separating subgraph of G is non-contractible. If every minimum-
weight separating subgraph of G is contractible, the algorithm returns a separating subgraph that may
not have minimum weight.

Proof: In a preprocessing phase, we construct a homology basis from a tree-cotree decomposition in
O(gn) time [41]. Then we enumerate all 226 — 1 non-trivial homology classes by considering subsets of
cycles in this homology basis. For each non-trivial homology class h, we perform the following steps:



26 Minimum cuts in surface graphs

e Compute a minimum-weight subgraph Hj, in homology class h, in g% nloglogn time, as described
by Theorem 4.2.

e Fix an arbitrary edge e of H,. By assumption, e lies on the boundary of two distinct faces f; and fz.
In particular, at least one of these faces is not s*.

e If f; #s*, compute a minimum-weight subgraph X;, of G that separates s* and f;, in g°®nloglogn
time, using the minimum (s, t)-cut algorithm of Section 4. Otherwise, X}, is undefined.

o If fp # 5, compute a minimum-weight subgraph X, of G that separates s* and f, in g%@nloglogn
time, again using the minimum (s, t)-cut algorithm of Section 4. Otherwise, X }'I is undefined.

Altogether we compute between 228 — 1 and 22¢*! — 2 separating subgraphs of G (some of which may
coincide); the output of our algorithm is the smallest of these separating subgraphs. The overall running
time of our algorithm is 2°®) . g%®)nloglogn = g°®nloglogn.

It remains to prove that our algorithm is correct. Let X be any minimum-weight subgraph of G such
that the component of ¥ \ X not incident to s* is not a disk. Let ¥’ be the closure of the component
of ¥\ X that does not contain s*. Because X’ is not a disk, it contains a cycle y that is not separating
in ¥, and therefore not separating in ¥. Let h be the homology class of y in %, and let H,, be any
minimum-weight even subgraph of G that is homologous with y in X. Lemma 7.5 implies, without loss
of generality, that Hj, lies entirely in ', Thus, every edge of H;, is on the boundary of at least one face f’
in 3’; it follow that X is a minimum-weight even subgraph separating s* and f’. We conclude that when
our algorithm considers homology class h, either X; or X }’l is a minimum-weight separating subgraph of
G. O

Modifying the previous algorithm to use results of Section 5, instead of the corresponding results in
Section 4, immediately gives us the following:

Lemma 7.7. There is a 2°(®nlogn-time algorithm that computes a minimum-weight separating sub-
graph of G if any minimum-weight separating subgraph of G is non-contractible. If every minimum-weight
separating subgraph of G is contractible, the algorithm returns a separating subgraph that may not have
minimum weight.

7.3 Summing up

Finally, to compute the minimum-weight separating subgraph in G, we run both algorithms described in
Lemmas 7.4 and 7.6. If either algorithm returns nothing, the other algorithm returns a minimum-weight
separating subgraph of G; otherwise, both algorithms return non-empty separating subgraphs of G, and
the smaller of those two subgraphs is a minimum-weight separating subgraph of G. We conclude:

Theorem 7.8. Let G be an edge-weighted undirected graph embedded on a surface with genus g with
one boundary component. We can compute a minimum-weight separating subgraph in G in either
¢%@nloglogn time or 2°®nlogn time.

Corollary 7.9. Let G be an edge-weighted undirected graph embedded on a surface with genus g. We
can compute a global minimum cut in G in either g°®nloglogn time or 2°®nlogn time.

Acknowledgments The authors would like to thank Chandra Chekuri and Aparna Sundar for helpful
discussions on some of the preliminary work included here. We would also like to thank the anonymous
reviewers of our earlier extended abstracts [24, 46, 48] for many helpful comments and suggestions.



Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 27

References

[1] A. ABBOUD, V. V. WILLIAMS, AND J. R. WANG, Approximation and fixed parameter subquadratic
algorithms for radius and diameter in sparse graphs, in Proc. 27th Ann. ACM-SIAM Symp. Discrete
Algorithms, 2016, pp. 377-391, https://doi.org/10.1137/1.9781611974331.ch28.

[2] R. K. AHUJA, T. L. MAGNANTI, AND J. ORLIN, Network Flows: Theory, Algorithms, and Applications,
Prentice Hall, 1993.

[3] H. A. AKITAYA, G. ALOUPIS, J. ERICKSON, AND C. D. TOTH, Recogniging weakly simple polygons,
Discrete & Computational Geometry, 58 (2017), pp. 785-821.

[4] G. BORRADAILE, Exploiting Planarity for Network Flow and Connectivity Problems, PhD thesis, Brown
University, May 2008, http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf.

[5] G. BORRADAILE, E. W. CHAMBERS, K. FOX, AND A. NAYYERI, Minimum cycle and homology bases of
surface-embedded graphs, JoCG, 8 (2017), pp. 58-79, https://doi.org/10.20382 /jocg.v8i2a4.

[6] G. BORRADAILE, E. D. DEMAINE, AND S. TAZARI, Polynomial-time approximation schemes for
subset-connectivity problems in bounded-genus graphs, Algorithmica, 68 (2014), pp. 287-311,
https://doi.org/10.1007/s00453-012-9662-2.

[7] G. BORRADAILE, D. EPPSTEIN, A. NAYYERI, AND C. WULFF-NILSEN, All-pairs minimum cuts in
near-linear time for surface-embedded graphs, in Proc. 32nd Int. Symp. Comput. Geom., vol. 51
of Leibniz International Proceedings in Informatics, 2016, pp. 22:1-22:16, https://doi.org/10.
4230/LIPIcs.SoCG.2016.22.

[8] G. BORRADAILE, C. KENYON-MATHIEU, AND P N. KLEIN, A polynomial-time approximation scheme
for Steiner tree in planar graphs, in Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 2007,
pp. 1285-1294.

[9] G. BORRADAILE, C. KENYON-MATHIEU, AND P. N. KLEIN, Steiner tree in planar graphs: An O(nlogn)
approximation scheme with singly-exponential dependence on epsilon, in Proc. 10th Workshop on
Algorithms and Data Structures, 2007, pp. 275-286.

[10] G. BORRADAILE AND P KLEIN, An O(nlogn)-time algorithm for maximum st-flow in a directed
planar graph, in Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, 2006, pp. 524-533.

[11] G. BORRADAILE AND P. KLEIN, An O(nlogn) algorithm for maximum st-flow in a directed planar
graph, J. ACM, 56 (2009), pp. 9:1-30.

[12] G. BORRADAILE, P N. KLEIN, S. MOZES, Y. NUSSBAUM, AND C. WULFF-NILSEN, Multiple-source
multiple-sink maximum flow in directed planar graphs in near-linear time, SIAM J. Comput., 46
(2017), pp. 1280-1303, https://doi.org/10.1137/15M1042929.

[13] G. BORRADAILE, H. LE, AND C. WULFF-NILSEN, Minor-free graphs have light spanners, in Proc. 58th
IEEE Symp. Found. Comput. Sci., 2017, pp. 767-778, https://doi.org/10.1109/FOCS.2017.76.

[14] G. BORRADAILE, P SANKOWSKI, AND C. WULFE-NILSEN, Min st-cut oracle for planar graphs with
near-linear preprocessing time, ACM Trans. Algorithms, 11 (2015), pp. 16:1-16:29, https://doi.
org/10.1145/2684068.


https://doi.org/10.1137/1.9781611974331.ch28
http://www.cs.brown.edu/research/pubs/theses/phd/2008/glencora.pdf
https://doi.org/10.20382/jocg.v8i2a4
https://doi.org/10.1007/s00453-012-9662-2
https://doi.org/10.4230/LIPIcs.SoCG.2016.22
https://doi.org/10.4230/LIPIcs.SoCG.2016.22
https://doi.org/10.1137/15M1042929
https://doi.org/10.1109/FOCS.2017.76
https://doi.org/10.1145/2684068
https://doi.org/10.1145/2684068

28 Minimum cuts in surface graphs

[15] S. CABELLO, Many distances in planar graphs, in Proc. 17th Ann. ACM-SIAM Symp. Discrete
Algorithms, 2006, pp. 1213-1220.

[16] S. CABELLO, Finding shortest contractible and shortest separating cycles in embedded graphs, ACM
Trans. Algorithms, 6 (2010), pp. 24:1-24:18, https://doi.org/10.1145/1721837.1721840.

[17] S. CABELLO, E. W. CHAMBERS, AND J. ERICKSON, Multiple-source shortest paths in embedded graphs,
SIAM J. Comput., 42 (2013), pp. 1542-1571.

[18] S. CABELLO, E. COLIN DE VERDIERE, AND E LAZARUS, Finding shortest non-trivial cycles in directed
graphs on surfaces, in Proc. 26th Ann. Symp. Comput. Geom., 2010, pp. 156-165, https://doi.
org/10.1145/1810959.1810988.

[19] S. CABELLO, M. DEVOS, J. ERICKSON, AND B. MOHAR, Finding one tight cycle, ACM Trans. Algorithms,
6 (2010), p. article 61.

[20] S. CABELLO AND B. MOHAR, Finding shortest non-separating and non-contractible cycles for topologi-
cally embedded graphs, Discrete Comput. Geom., 37 (2007), pp. 213-235.

[21] P CHALERMSOOK, J. FAKCHAROENPHOL, AND D. NANONGKAI, A deterministic near-linear time
algorithm for finding minimum cuts in planar graphs, in Proc. 15th Ann. ACM-SIAM Symp. Discrete
Algorithms, 2004, pp. 828-829.

[22] E. W. CHAMBERS, E. COLIN DE VERDIERE, J. ERICKSON, E LAZARUS, AND K. WHITTLESEY, Splitting
(complicated) surfaces is hard, Comput. Geom. Theory Appl., 41 (2008), pp. 94-110.

[23] E. W. CHAMBERS AND D. EPPSTEIN, Flows in one-crossing-minor-free graphs, J. Graph Algorithms
Appl., 17 (2013), pp. 201-220, https://doi.org/10.7155/jgaa.00291.

[24] E. W. CHAMBERS, J. ERICKSON, AND A. NAYYERI, Minimum cuts and shortest homologous cycles, in
Proc. 25th Ann. Symp. Comput. Geom., 2009, pp. 377-385.

[25] E.W. CHAMBERS, J. ERICKSON, AND A. NAYYERI, Homology flows, cohomology cuts, SIAM J. Comput.,
41 (2012), pp. 1605-1634.

[26] H.-C. CHANG, J. ERICKSON, AND C. XU, Detecting weakly simple polygons, in Proc. 26th ACM-SIAM
Symp. Discrete Algorithms, 2015, pp. 1655-1670, https://doi.org/10.1137/1.9781611973730.
110.

[27] A. CHARNES, Optimality and degeneracy in linear programming, Econometrica, 20 (1952), pp. 160-
170.

[28] C. CHEN AND D. FREEDMAN, Quantifying homology classes II: Localization and stability. Preprint,
2007.

[29] C. CHEN AND D. FREEDMAN, Quantifying homology classes, in Proc. 25th Ann. Symp. Theoretical
Aspects Comput. Sci., no. 08001 in Dagstuhl Seminar Proceedings, 2008, pp. 169-180, https://doi.
org/10.4230/LIPIcs.STACS.2008.1343, http://drops.dagstuhl.de/opus/volltexte/2008/1343/.

[30] C. CHEN AND D. FREEDMAN, Hardness results for homology localization, in Proc. 21st Ann.
ACM-SIAM Symp. Discrete Algorithms, 2010, pp. 1594-1604, https://doi.org/10.1137/1.
9781611973075.129.


https://doi.org/10.1145/1721837.1721840
https://doi.org/10.1145/1810959.1810988
https://doi.org/10.1145/1810959.1810988
https://doi.org/10.7155/jgaa.00291
https://doi.org/10.1137/1.9781611973730.110
https://doi.org/10.1137/1.9781611973730.110
https://doi.org/10.4230/LIPIcs.STACS.2008.1343
https://doi.org/10.4230/LIPIcs.STACS.2008.1343
http://drops.dagstuhl.de/opus/volltexte/2008/1343/
https://doi.org/10.1137/1.9781611973075.129
https://doi.org/10.1137/1.9781611973075.129

Erin W, Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 29

[31] E. COLIN DE VERDIERE, Shortest cut graph of a surface with prescribed vertex set, in Proc. 18th Ann.
Europ. Symp. Algorithms, vol. 6347 of Lecture Notes Comput. Sci., 2010, pp. 100-111.

[32] E. COLIN DE VERDIERE AND J. ERICKSON, Tightening non-simple paths and cycles on surfaces, SIAM
J. Comput., 39 (2010), pp. 3784-3813.

[33] G. P DANTZIG, A. ORDEN, AND P WOLFE, The generalized simplex method for minimiging a linear
form under linear inequality constraints, Pacific J. Math., 5 (1955), pp. 183-195.

[34] E. D. DEMAINE, M. HAJIAGHAYI, AND B. MOHAR, Approximation algorithms via contraction decom-
position, in Proc. 18th Ann. ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 278-287.

[35] T. K. DEY, A. N. HIRANI, AND B. KRISHNAMOORTHY, Optimal homologous cycles, total unimodularity,
and linear programming, SIAM J. Comput., 40 (2011), pp. 1026-1044.

[36] T. K. DEY, K. LI, AND J. SUN, On computing handle and tunnel loops, in IEEE Proc. Int. Conf.
Cyberworlds, 2007, pp. 357-366.

[37] T. K. DEy, K. L1, J. SUN, AND D. COHEN-STEINER, Computing geometry-aware handle and tunnel
loops in 3D models, ACM Trans. Graphics, 27 (2008), pp. 1-9. Proc. SIGGRAPH 2008.

[38] S.I. DIATCH AND D. A. SPIELMAN, Faster lossy generalized flow via interior point algorithms, in Proc.
40th Ann. ACM Symp. Theory Comput., 2008, pp. 451-460.

[39] D. EPPSTEIN, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms
and Applications, 3 (1999), pp. 1-27.

[40] D. EPPSTEIN, Diameter and treewidth in minor-closed graph families, Algorithmica, 27 (2000),
pp. 275-291.

[41] D. EPPSTEIN, Dynamic generators of topologically embedded graphs, in Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms, 2003, pp. 599-608.

[42] J. ERICKSON, Maximum flows and parametric shortest paths in planar graphs, in Proc. 21st Ann.
ACM-SIAM Symp. Discrete Algorithms, 2010, pp. 794-804.

[43] J. ERICKSON, Parametric shortest paths and maximum flows in planar graphs, in Proc. 21st Ann.
ACM-SIAM Symp. Discrete Algorithms, 2010, pp. 794-804.

[44] J. ERICKSON, Shortest non-trivial cycles in directed surface graphs, in Proc. 27th Ann. Symp. Comput.
Geom., 2011, pp. 236-243, https://doi.org/10.1145/1998196.1998231.

[45] J. ERICKSON, K. FOX, AND L. LKHAMSUREN, Holiest minimum-cost paths and flows in surface graphs,
in Proc. 50th Ann. ACM Symp. Theory Comput., 2018, pp. 1319-1332, https://doi.org/10.1145/
3188745.3188904.

[46] J. ERICKSON, K. FOX, AND A. NAYYERI, Global minimum cuts in surface embedded graphs, in Proc.
23rd Ann. ACM-SIAM Symp. Discrete Algorithms, 2012, pp. 1309-1318.

[47] J. ERICKSON AND S. HAR-PELED, Optimally cutting a surface into a disk, Discrete Comput. Geom.,
31 (2004), pp. 37-59, https://doi.org/10.1007/s00454-003-2948-z.

[48] J. ERICKSON AND A. NAYYERI, Minimum cuts and shortest non-separating cycles via homology covers,
in Proc. 22nd Ann. ACM-SIAM Symp. Discrete Algorithms, 2011, pp. 1166-1176.


https://doi.org/10.1145/1998196.1998231
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1145/3188745.3188904
https://doi.org/10.1007/s00454-003-2948-z

30 Minimum cuts in surface graphs

[49] J. ERICKSON AND K. WHITTLESEY, Greedy optimal homotopy and homology generators, in Proc.
16th Ann. ACM-SIAM Symp. Discrete Algorithms, 2005, pp. 1038-1046.

[50] J. FAKCHAROENPHOL, B. LAEKHANUKIT, AND P SUKPRASERT, Finding all useless arcs in directed
planar graphs. Preprint, May 2018.

[51] J. FAKCHAROENPHOL AND S. RAO, Planar graphs, negative weight edges, shortest paths, and near
linear time, J. Comput. Syst. Sci., 72 (2006), pp. 868-889.

[52] E V. FOMIN, D. LOKSHTANOV, S. SAURABH, M. PILIPCZUK, AND M. WROCHNA, Fully polynomial-time
parameterized computations for graphs and matrices of low treewidth, ACM Trans. Algorithms, 14
(2018), pp. 34:1-34:45, https://doi.org/10.1145/3186898.

[53] L.R.FORD AND D. R. FULKERSON, Maximal flow through a network, Canad. J. Math., 8 (1956). First
published as Research Memorandum RM-1400, The RAND Corporation, Santa Monica, California,
November 19, 1954.

[54] K. Fox, Shortest non-trivial cycles in directed and undirected surface graphs, in Proc. 24th Ann.
ACM-SIAM Symp. Discrete Algorithms, 2013, pp. 352-364.

[55] A. FRANK, On the edge-connectivity algorithm of Nagamochi and Ibaraki, EGRES Quick-Proof QP-
2009-01, Egervary Research Group, E6tvos University, Budapest, 2009, http://bolyai.cs.elte.hu/
egres/www/qp-09-01.html. Written at Laboratoire Artemis, IMAG, Université J. Fourier, Grenoble,
March 1994.

[56] G. N. FREDERICKSON, Fast algorithms for shortest paths in planar graphs with applications, SIAM J.
Comput., 16 (1987), pp. 1004-1004.

[57] M. L. FURST, J. L. GROSS, AND L. A. MCGEOCH, Finding a maximum-genus graph imbedding, J.
Assoc. Comput. Mach., 35 (1988), pp. 523-534.

[58] A.V. GOLDBERG AND S. RAO, Beyond the flow decomposition barrier, J. ACM, 45 (1998), pp. 783—
797.

[59] A.V. GOLDBERG AND R. E. TARJAN, A new approach to the maximum-flow problem, J. Assoc. Comput.
Mach., 35 (1988), pp. 921-940, https://doi.org/http://doi.acm.org/10.1145/48014.61051.

[60] M. GRIGNI AND P SISSOKHO, Light spanners and approximate TSP in weighted graphs with forbidden
minors, in Proc. 13th Ann. ACM-SIAM Symp. Discrete Algorithms, 2002, pp. 852-857.

[61] J. A. GROCHOW AND J. TUCKER-FOLZ, Computational topology and the Unique Games Conjecture, in
Proc. 34th Int. Symp. Comput. Geom., vol. 99 of Leibniz Int. Proc. Informatics, 2018, pp. 43:1-
43:16, https://doi.org/10.4230/LIPIcs.S0CG.2018.43.

[62] M. GROHE, Isomorphism testing for embeddable graphs through definability, in Proc. 32nd ACM
Symp. Theory Comput., 2000, pp. 63-72.

[63] J. L. GROSS AND T. W. TUCKER, Topological graph theory, Dover Publications, 2001.

[64] T. HAGERUB J. KATAJAINEN, N. NISHIMURA, AND P RAGDE, Characterizing multiterminal flow
networks and computing flows in networks of small treewidth, J. Comput. Syst. Sci., 57 (1998),
pp. 366-375.


https://doi.org/10.1145/3186898
http://bolyai.cs.elte.hu/egres/www/qp-09-01.html
http://bolyai.cs.elte.hu/egres/www/qp-09-01.html
https://doi.org/http://doi.acm.org/10.1145/48014.61051
https://doi.org/10.4230/LIPIcs.SoCG.2018.43

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 31

[65] J. HAO AND J. B. ORLIN, A faster algorithm for finding the minimum cut in a directed graph, J.
Algorithms, 17 (1994), pp. 424-446, https://doi.org/10.1006/jagm.1994.1043.

[66] T. E. HARRIS AND E S. Ross, Fundamentals of a method for evaluating rail net capacities, Memo-
randum RM-1573, The RAND Corporation, Santa Monica, California, October 24, 1955. Cited
in [105].

[67] D. HARTVIGSEN AND R. MARDON, The all-pairs cut problem and the minimum cycle basis problem
on planar graphs, SIAM J. Discrete Math., 7 (1994), pp. 403-418.

[68] R. HASSIN AND D. B. JOHNSON, An O(nlog? n) algorithm for maximum flow in undirected planar
networks, SIAM J. Comput., 14 (1985), pp. 612-624.

[69] A. HATCHER, Algebraic Topology, Cambridge Univ. Press, 2002, http://www.math.cornell.edu/
~hatcher/AT /ATpage.html.

[70] M. HENZINGER, S. RAO, AND D. WANG, Local flow partitioning for faster edge connectivity, in
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 2017,
pp- 1919-1938, https://doi.org/10.1137/1.9781611974782.125.

[71] M. R. HENZINGER, P KLEIN, S. RAO, AND S. SUBRAMANIAN, Faster shortest-path algorithms for
planar graphs, J. Comput. Syst. Sci., 55 (1997), pp. 3-23.

[72] J. M. HOCHSTEIN AND K. WEIHE, Maximum s-t-flow with k crossings in O(k®>nlogn) time, in Proc.
18th Ann. ACM-SIAM Symp. Discrete Algorithms, 2007, pp. 843-847.

[73] J. E. HOPCROFT AND J. K. WONG, Linear time algorithm for isomorphism of planar graphs (prelimi-
nary report), in Proc. 6th Ann. ACM Symp. Theory Comput., 1974, pp. 172-184.

[74] H. IMAI AND K. IWANO, Efficient sequential and parallel algorithms for planar minimum cost flow, in
Proc. SIGAL Int. Symp. Algorithms, no. 450 in Lecture Notes Comput. Sci., Springer-Verlag, 1990,
pp. 21-30.

[75] A. ITAI AND Y. SHILOACH, Maximum flow in planar networks, SIAM J. Comput., 8 (1979), pp. 135~
150.

[76] G. E ITALIANO, Y. NUSSBAUM, P SANKOWSKI, AND C. WULFF-NILSEN, Improved algorithms for min
cut and max flow in undirected planar graphs, in Proc. 43rd Ann. ACM Symp. Theory Comput.,
2011, pp. 313-322.

[77] L. JANIGA AND V. KOUBEK, Minimum cut in directed planar networks, Kybernetika, 28 (1992),
pp. 37-49.

[78] H. KAPLAN AND Y. NUSSBAUM, Minimum s — t cut in undirected planar graphs when the source
and the sink are close, in Proc. 28th Int. Symp. Theoretical Aspects Comput. Sci., T. Schwentick
and C. Diirr, eds., vol. 9 of Leibniz Int. Proc. Informatics, Dagstuhl, Germany, 2011, Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, pp. 117-128, https://doi.org/http://dx.doi.org/10.
4230/LIPIcs.STACS.2011.117, http://drops.dagstuhl.de/opus/volltexte/2011/3004.

[79] D. R. KARGER, Minimum cuts in near-linear time., J. ACM, 47 (2000), pp. 46-76.

[80] K. KAWARABAYASHI AND M. THORUP, Deterministic edge connectivity in near-linear time, J. ACM,
66 (2018), pp. 4:1-4:50, https://doi.org/10.1145/3274663.


https://doi.org/10.1006/jagm.1994.1043
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
http://www.math.cornell.edu/~hatcher/AT/ATpage.html
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.117
https://doi.org/http://dx.doi.org/10.4230/LIPIcs.STACS.2011.117
http://drops.dagstuhl.de/opus/volltexte/2011/3004
https://doi.org/10.1145/3274663

32 Minimum cuts in surface graphs

[81] K.-1. KAWARABAYASHI AND M. THORUP, Deterministic global minimum cut of a simple graph in
near-linear time, in Proc. 47th Ann. ACM Symp. Theory Comput., 2015, pp. 665-674, https:
//doi.org/10.1145/2746539.2746588.

[82] P KLEIN, Multiple-source shortest paths in planar graphs, in Proc. 16th Ann. ACM-SIAM Symp.
Discrete Algorithms, 2005, pp. 146-155.

[83] PKLEIN, S. MOZES, AND O. WEIMANN, Shortest paths in directed planar graphs with negative lengths:
A linear-space O(nlog? n)-time algorithm, ACM Trans. Algorithms, 6 (2010), p. article 30.

[84] M. KuTtz, Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost
linear time, in Proc. 22nd Ann. Symp. Comput. Geom., 2006, pp. 430-438.

[85] J. LACKI AND P SANKOWSKI, Min-cuts and shortest cycles in planar graphs in O(nloglogn) time, in
Proc. 19th Ann. Europ. Symp. Algorithms, C. Demetrescu and M. M. Halldérsson, eds., vol. 6942
of Lecture Notes Comput. Sci., Springer, 2011, pp. 155-166.

[86] Y. T. LEE AND A. SIDFORD, Path finding methods for linear programming: Solving linear programs
in 6(vrank) iterations and faster algorithms for maximum flow, in Proc. 55th IEEE Symp. Found.
Comput. Sci., 2014, pp. 424-433, https://doi.org/10.1109/FOCS.2014.52.

[87] R.J. LIPTON, D. J. ROSE, AND R. E. TARJAN, Generalized nested dissection, SIAM J. Numer. Anal.,
16 (1979), pp. 346-358.

[88] A. MADRY, Navigating central path with electrical flows: From flows to matchings, and back, in Proc.
54th IEEE Symp. Found. Comput. Sci., 2013, pp. 253-262, https://doi.org/10.1109/FOCS.2013.
35.

[89] M. MARES, Two linear time algorithms for MST on minor closed graph classes, Archivum Mathe-
maticum, 40 (2004), pp. 315-320.

[90] S. T. MCCORMICK, M. R. RAO, AND G. RINALDI, Easy and difficult objective functions for max cut,
Math. Program., Ser. B, 94 (2003), pp. 459-466.

[91] G. L. MILLER, Isomorphism testing for graphs of bounded genus, in Proc. 12th Ann. ACM Symp.
Theory Comput., 1980, pp. 225-235.

[92] G. L. MILLER AND J. NAOR, Flow in planar graphs with multiple sources and sinks, SIAM J. Comput.,
24 (1995), pp. 1002-1017.

[93] B. MOHAR AND C. THOMASSEN, Graphs on Surfaces, Johns Hopkins Univ. Press, 2001.

[94] S. MOZzES, C. NIKOLAEV, Y. NUSSBAUM, AND O. WEIMANN, Minimum cut of directed planar graphs in
O(nloglogn) time. Preprint, February 2015.

[95] S. MozES, K. NIKOLAEY, Y. NUSSBAUM, AND O. WEIMANN, Minimum cut of directed planar graphs in
O(nloglogn) time, in Proc. 29th Ann. ACM-SIAM Symp. Discrete Algorithms, 2018, pp. 477-494,
https://doi.org/10.1137/1.9781611975031.32.

[96] K. MULMULEY, U. VAZIRANI, AND V. VAZIRANI, Matching is as easy as matrix inversion, Combinatorica,
7 (1987), pp. 105-113.

[97] H. NAGAMOCHI AND T. IBARAKI, Computing edge-connectivity in multigraphs and capacitated graphs,
SIAM J. Discrete Math., 5 (1992), pp. 54-66, https://doi.org/10.1137/0405004.


https://doi.org/10.1145/2746539.2746588
https://doi.org/10.1145/2746539.2746588
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1137/1.9781611975031.32
https://doi.org/10.1137/0405004

Erin W. Chambers, Jeff Erickson, Kyle Fox, and Amir Nayyeri 33

[98] J. B. ORLIN, Max flows in O(nm) time, or better, in Proc. 45th Ann. ACM Symp. Theory Comput.,
2013, pp. 765-774.

[99] VY. PAN AND J. H. REIF, Fast and efficient parallel solution of sparse linear systems, SIAM J. Comput.,
22 (1993), pp. 1227-1250.

[100] D. PE’ER, On minimum spanning trees, master’s thesis, Hebrew University, 1998, http://www.
math.ias.edu/~avi/STUDENTS/dpthesis.pdf.

[101] J. REIF, Minimum s-t cut of a planar undirected network in O(nlog? n) time, SIAM J. Comput., 12
(1983), pp. 71-81.

[102] G. RINGEL, Map Color Theorem, Springer-Verlag, 1974.

[103] G. RINGEL AND J. W. T. YOUNGS, Solution of the Heawood map-coloring problem, Proc. Nat. Acad.
Sci. USA, 60 (1968), pp. 438-445.

[104] A. SCHRIJVER, Combinatorial Optimization: Polyhedra and Efficiency, no. 24 in Algorithms and
Combinatorics, Springer-Verlag, 2003.

[105] A. SCHRIJVER, On the history of combinatorial optimization (till 1960), in Handbook of Discrete
Optimization, K. Aardal, G. Nemhauser, and R. Weismantel, eds., Elsevier, 2005, pp. 1-68.

[106] J. STILLWELL, Classical Topology and Combinatorial Group Theory, no. 72 in Graduate Texts in
Mathematics, Springer-Verlag, 2nd ed., 1993.

[107] M. STOER AND E WAGNER, A simple min-cut algorithm, J. ACM, 44 (1997), pp. 585-591, https:
//doi.org/10.1145/263867.263872.

[108] J. M. SULLIVAN, A Crystalline Approximation Theorem for Hypersurfaces, PhD thesis, Princeton
Univ., October 1990, http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf.

[109] S. TAZARI AND M. MULLER-HANNEMANN, Shortest paths in linear time on minor-closed graph classes,
with an application to Steiner tree approximation, Discrete Appl. Math., 157 (2009), pp. 673-684.

[110] P M. VAIDYA, Speeding-up linear programming using fast matrix multiplication, in Proc. 30th Ann.
Symp. Found. Comput. Sci., 1989, pp. 332-337.

[111] K. WEIHE, Maximum (s, t)-flows in planar networks in O(|V|log|V|)-time, J. Comput. Syst. Sci.,
55 (1997), pp. 454-476.

[112] H. WHITNEY, Planar graphs, Fund. Math., 21 (1933), pp. 73-84.


http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
http://www.math.ias.edu/~avi/STUDENTS/dpthesis.pdf
https://doi.org/10.1145/263867.263872
https://doi.org/10.1145/263867.263872
http://torus.math.uiuc.edu/jms/Papers/thesis/thesis.pdf

	1 Introduction
	1.1 Past results
	1.2 New results and organization

	2 Notation and Terminology
	2.1 Surfaces and curves
	2.2 Graph embeddings
	2.3 Duality
	2.4 Homotopy and homology
	2.5 Duality between cuts and even subgraphs

	3 Characterizing Homology
	3.1 Crossing parity vectors via forest-cotree decompositions
	3.2 Homology signatures via tree-coforest decompositions

	4 Crossing Bounds and Triangulations
	4.1 Crossing bound
	4.2 Triangulations and crossing sequences

	5 The Z2-Homology Cover
	5.1 Definition and construction
	5.2 Computing Z2-minimal cycles
	5.3 Minimum cuts from the homology cover

	6 NP-Hardness
	7 Global Minimum Cut
	7.1 Contractible
	7.2 Non-contractible
	7.3 Summing up


