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PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE
NAVIER-STOKES-PLANCK-NERNST-POISSON EQUATION

HUAJUN GONG, CHANGYOU WANG, XIAOTAO ZHANG

ABSTRACT. In this paper, inspired by the seminal work by Caffarelli-Kohn-Nirenberg [I]
on the incompressible Navier-Stokes equation, we establish the existence of a suitable
weak solution to the Navier-Stokes-Planck-Nernst-Poisson equation in dimension three,
which is shown to be smooth away from a closed set whose 1-dimensional parabolic
Hausdorff measure is zero.

1. INTRODUCTION

Let Q C R3 be a bounded, smooth domain and 0 < T' < co. We consider the following
Navier-Stokes-Nernst-Planck-Poisson equation:

Ou+ (u-Vu—Au+VP=—(n" —n )V,

div u =0,

(1.1) ont + (u-V)nt — Ant = div(nt VD), in Qx(0,7),
on~ + (u-V)n~ — An~ = —div(n~ V),
—AU =nt —n—,

where u : Q x (0,7) — R3 denotes the velocity field of fluid, P : Q x (0,7) — R denotes
the pressure function, n*,n~ : Q x (0,7) — R are the number densities of positively and
negatively charged constituents, and ¥ is the quasi-electrostatic potential field. Along with
(T, the initial and boundary values are:

(1.2) (u,n*,n7) = (ug,ngd,ng ), in Qx {0},
ont  onT 0¥
ov v v
where v denotes the exterior unit normal vector on 9.

(1.3) u =0, 0, ond2x(0,7),

The system (LI)) models an isothermal, incompressible, viscous Newtonian fluid of uni-
form and homogeneous composition of a high number of positively and negatively charged
particles ranging from colloidal to nano size. It was proposed by Rubinstein [20] to model
electro-kinetic fluids, which describes the interaction between the macroscopic fluid motion
and the microscopic charge transportion. See Castellanos [2] for more discussions on the
physics associated with (IL)). In the system (IL]), we assume a dilute fluid and therefore the
electromagnetic forces are neglected. There have seen considerable interests in the math-
ematical analysis of the system ([LI). For example, Jerome [9] has proved the existence
of local strong solutions under the Kato’s semigroup framework. Deng-Zhao-Cui [4] have
established the existence and well-posedness of mild solutions in the Triebel-Lizorkin and
Besov spaces of negative indices. We refer to Zhao-Zhang-Liu [30] for some time decay
results of (ILI). The existence of global weak solutions of (ILIl), (I2) and (L3]) has been
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established by Schmuck [2I] under the Neumann boundary condition (for initial data with
bounded nJ and ng ), and Jerome-Sacco [10], under the mixed Dirichlet boundary condi-
tion. Fan-Li-Nakamura [5] have proved some regularity criteria of weak solutions to (L))
on 2 = R3 in the spirit of Serrin. More recently, there are some interesting works by Wang-
Liu-Tan [28] 29] on generalized Navier-Stokes-Planck-Nernst-Poisson equations through an
energetic-variational approach.

When the underlying fluid is at rest v = 0, the system (L) reduces to the Planck-
Nernst-Poisson (PNP) equation, which is the drift-diffusion model for semiconductor devices,
first proposed by Roosbroeck [19] in 1950, that has been widely accepted and applied in
semiconductor industry and in device simulation. See Gajewski [7], Mock [18], Seidman-
Troianiello [25], and Fang-Ito [6] for results on the existence of global weak solutions to the
PNP equation.

It remains to be an interesting question to investigate regularity properties of weak so-
lutions in three dimension. Motivated by the celebrated work by Scheffer [22], Caffarelli-
Kohn-Nirenberg [I], and Lin [13] on the Navier-Stokes equation, we introduce the notion
of suitable weak solution of (II))-(L2)-(L3) and establish both the existence and partial
regularity for such a weak solution. See also [8], [I4], and [3] for related works on other
complex fluids.

A constitutive equation of the Navier-Stokes-Nernst-Planck-Poisson system (1)) is the
Naiver-Stokes equation: for 0 < T < oo,

{ O+ (u-V)u—vAu+ VP = f,

(1.4) N

in QT =0 x (O,T),

with the initial-boundary condition
(1.5) u(-,0) =upin Q; w=0o0n9Q x[0,T).

The existence of global weak solutions of (L)) and (LA (7" = oco) was established by Leray
[11] and Hopf [27]. While it is an outstanding open question whether (L) and (L) has
a global smooth solution when Q = R3, there has been many research works concerning
partial regularity of suitable weak solutions of (L) initiated by Scheffer [22] and then by
Caffarelli-Kohn-Nirenberg [I], where it was proven that the singular set has 1-dimensional
Hausdorff measure zero. Such a theorem was later simplified by Lin [13]. There has also
been a lot of work on the regularity criteria of (L4) going back to Serrin [23] where it has
been proven that u € C®°(Qr), provided v € LILE(Qr), where p > 3 and 2 < g < oo satisfy
(1.6) 2 + 3 =1.
q P

The end point case p = 3 and ¢ = oo for ([L6]) was resolved by [24].

The goal of this paper is to extend the partial regularity theory on the Navier-Stokes
equation by Caffarelli-Kohn-Nirenberg [I] to the system (LII). We first recall the definition
of suitable weak solutions to the system ([LI). For 7' > 0, denote Q1 = Q x (0,7 and

D= {X | X € C(Qr,R?), divX = 0}.
Definition 1.1. We say that (u,n™,n=, V) is a weak solution of (1) in Qr, if
we L=([0,T], L*(Q,R?)) N L*([0,T], H' (2, R?)),
T e L([0,T], H () N L*([0,T), H*(Q)), n",n~ € L*(Qr,Ry),
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and the system (I1l) holds in the sense of distributions: for any ¢ € D,

/ ((u, 0ep) — (Vu, Vo) + u®@u: Vo) dadt = / {(nT —n")VV, o) drdt,
and, for any ¢ € C§°(Qr),
/ u- V¢ dxdt =0,
Qr

/ nt ,010) + (n +, Ag) + <n+, Uu - V¢>) dxdt = / <n+V\If, Vo) dxdt,
Qr Qr

/ n ,Oed) + (N7, AQ) + (n7,u- V¢>) dxdt = —/ (n~ VU, Vo) dzdt,
Qr Qr
and

/(V\I/,V¢> dx = / (nt —n7)pdr, VO<t<T,
Q Q

where (-,-) denotes the inner product of R3.

A weak solution (u, P,n*,n~, ¥) is called a suitable weak solution of (), if, in addition,
it enjoys the following properties.

Definition 1.2. A weak solution (u, P,n*,n=, W) of [ is called a suitable weak solution
of ) in Qr, if the following conditions are true:

(2) P L:(Qr),
(b) n*,n~ € L*(Qr),
(c) there exist positive constants 0 < Eq, By < 0o such that,

[ (ul + [¥P @t de < Br, Ve 0.7),

(|Vul* + |V2U|?) dadt < E,,
Qr
(1) (u, P,n™,n~, W) satisfy (L) in the sense of distributions on Q7.
(2) for any ¢ € C>®(Qr), ¢ > 0, the generalized energy inequality [I.7) holds:

2/ |Vu|2¢d:1:dt§/ |u|2(3t(b+A¢)dajdt—|—/ (Ju* +2P)u - V¢ dxdt
T Qr T

(1.7) )
- 2/ (VU ® VU — L[VUPL,) : V(ug) dudt.
Qr 2

Now we are ready to state our main theorem.
Theorem 1.1. For any 0 < T < oo, ug € L?(Q,R?), with divug = 0, and 0 < n,n, €

L2(2), with / ng dr = [ ng dx, there exists a suitable weak solution (u, P,n",n=, W) of
Q

Q
CD)-C2-@C3) in Qr such that

(i) w e LLE N LEHYQr), P € L3(Qr), 0 < nt,n~ € LL2 N L2HYXQr), ¥ €
LXHZNLH(Qr), and
[ (w,n ™, n7)]| P

LeL2NL2HL(Qr) L3 (Qr) + H\I/HLfngmLng(QT)

(1.8)

< C(lluollL2eys Ind 2@, Ing 12y -
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(ii) (u,n™,n=, V) satisfies the following global energy inequality: for any 0 <t < T,

/(|u|2 +|VV|?) (2, t) dz + 2/ (IVul? + [nT —n~ 2+ (0" +n7)|VY|?) dzds
(1.9) & ‘
< [ uol + [V of?)(z) d,
Q

where W € H?(Q) solves

%zoonaﬂ.
v

—AVg =nd —ng in Q
(iii) there exists a closed set ¥ C Qr, with PY(X) = 0, such that (u,n",n=,¥) €
C®(Qr\ ).

Here P*, 0 < k < 4, denotes the k-dimensional Hausdorff measure on R* with respect to
the parabolic distance:

5(($,t), (yvs)) = max{|:v _y|7 V |t_ Sl}

We would like to briefly mention some key steps of the proof of Theorem [Tk

(1) The existence of suitable weak solutions to (LI is established by first studying
approximate systems of ([LI)) through modifying an “retarded” mollification of its
drifting coefficients, O.(u), originally due to [I] on the Navier-Stokes equation. Here
we need to modify it so that its normal component vanishes on the boundary of
in order to guarantee the equations for n* enjoy both the positivity and maxi-
mum principle property. For the existence of suitable weak solutions to an approxi-
mate version of (ILT]), we employ a contraction map theorem on the function spaces
L}L2(Qr) for n* first employed by Schmuck [21I]. Then we prove that such a se-
quence of suitable weak solutions to the approximate equation enjoy some uniform
estimates and hence converge to a suitable weak solution to (I]).

(2) The partial regularity of a suitable weak solution constructed in (1) is proven by
employing the fact ¥ € L H2(Q7) to perform a blowing up argument to establish
an ep-decay property for (u, P) in the renormalized L3 x L3-norms, and then apply
the Reisz potential estimates on parabolic Morrey spaces to obtain L?-boundedness
of u for any 1 < ¢ < oo, which can yield the ey-smoothness of (u,n™,n~, ¥) via the
bootstrap argument.

(3) To obtain the size estimate of the singular set, we improve the eg-regularity from (2)
in a way similar to that of the Navier-Stokes equation by [I] through establishing
the so-called the ABCD Lemmas.

The paper is organized as follows. In section 2, we will establish the existence of the
suitable weak solutions of (I)-(T2)-(T3]). In section 3, we will prove an ep-regularity for
suitable weak solutions to (II)). In section 2, we will improve the eg-regularity from section
3 and provide a proof of Theorem [I.1]

2. EXISTENCE OF SUITABLE WEAK SOLUTIONS

In order to obtain the existence of suitable weak solutions of (1), we first consider the
following system: given w € C*°(Q x [0,T],R?) with divw = 0 in Q7 and w - v = 0 on
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00 x [0,T] , let (u, P,n™,n~,¥) solve
Ou+ (w-Vyu—Au+ VP =—(nt —n" )V,

divu =0,

(2.1) ont + (w-V)nt — Ant = div([nt]L V),
On~ + (w-V)n~ — An~ = =div([n~]L V),
—AVU =nT —n~

3

subject to the initial and boundary condition:

(2.2) (u,n™,n7)|1=0 = (uo,ng,ng) in Q,

ont  On~ OV
(23) u=0, W:W:E:O OnaQX(O,T).

Here [y]+ = max{y, 0} denotes the positive part of y € R.

We shall use the following function spaces:
V= C§°(Q,R?) N {u : divu = 0},
H = Closure of V in L*(Q),
V = Closure of V in H'(9).
Concerning 21)), (Z2) and (Z3)), we have the following existence result.

Theorem 2.1. For a bounded and smooth domain Q C R3, ug € H, and two nonnegative

ng,ng € L?(Q) satisfying
/ ng (z)dr = / ng (z) dz,
Q Q

if we C®(Q x [0,T],R3), with divw =0 in Qr and w-v =0 on 9 x [0,T], then there is
a unique weak solution (u, P,n™,n= W) of 1), @2), and @3) such that n™,n~ >0 in
Q% [0,7T], and

u € C([0, 7], H) n L*([0, 7], V),
(2.4) U e L=([0,T], H*()) N L*([0, T], H*()),

nton € (0, T), L2() 0 120, 7], B (@)

The existence of weak solutions (u, P,n™,n~, ¥) to 1)), (22)), and ([23) will be established

by a contraction map argument. The uniqueness of such weak solutions (u, P,n*,n~, ¥)
can be employed to show the non-negativity of n™,n~ as follows.

Lemma 2.1. Under the assumptions of Theorem[21) the weak solution (u, P,n™,n~, W) of
1), 2) and @3), satisfying Z4), must satisfy n™,n~ >0 in Q.
Proof. This proof is similar to Lemma 1 in [2I]. In order to prove that n*,n~ are non-
negative, let (i, P,n™,n~, V), satisfying (24)), be a weak solution of the system:

Qi+ (w- V)i — A+ VP = —(at — a7V,

diva =0, )
(25) 8tﬁ ( ) at = le([ﬁ*]JrV\IJ)l in QT,
O~ + (w V)n~ — An = —div([n~]+ V),

AU =pt — 7~
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subject to the initial and boundary condition:

(2.6) (@, 7", 77 )|i=0 = (uo,ng,ng) in €,

ont  On~ OV
W_W_E_O on 002 x (0,T).

The existence of such. a weak solution (, P, at,n-, \il) will be constructed by Theorem 2.1
below.

(2.7) =0,

It is readily seen that it = [A1], —[—nT].. Multiplying 229)3 by [-7 7], and integrating
over (), we have that

1d -
33 [Nl ot [ Vi) do = [ (@) V(-at] - VEds =0
2 dt Q Q Q

This implies that
=it 2 dr < / [=nol4 P dz = 0,
Q Q
+

since ng is non-negative. Thus we conclude that 2t > 0 in Q. Similarly, we can show
that 7~ > 0 in Qp. Therefore, we see that (i, P.at,n, \if) is also a weak solution of [21I),
22), and ([Z3]). From Theorem 2.1, the uniqueness holds for weak solutions to ([21I), (Z2)),
and (Z3)), satisfying (Z4]). Thus

(@, P,a*,n~,¥) = (u, P,n",n",¥) in Qr.
Hence nt =aT >0and n™ =7~ > 0in Qr. O
Proposition 2.1. Under the same assumptions as Theorem [2Z1), if, in addition, na', ng €

LP(Q) for some p > 2, then the weak solution (u, P,n™,n~,¥) of @I), @2) and 23),
satisfying 24), enjoys

(2.8) nt,n~ € L>([0,T], LP(R)), ¥ € L>([0,T], W?P(Q)),
and
/(|n+|p + |n"|P)(x,t) dx + p(p — 1)/ [(7”L"’)”_2|V7”L"’|2 + (n_)p_2|Vn_|2] dxdt
(2.9) ¢ ‘
< [P+ gY@ o, 0 <t < 7.
Q

Proof. Multiplying @) by |n*[P~2nt and @I)4 by |n~|P~2n~, integrating the resulting
equations over €2, and applying ([21))5, we obtain that

td

pdt Jo

+ =) [ (VPP 90 PP do
Q

([P + [n~ ) da

:—E/ VU -V(nt P — |n"|P) dx
p Q

-1
N / (InT P —|n"P)(n" —n")dx <0,
p Q

where we have used in the last step the fact that n*, n~ are non-negative, and the inequality

(InP = [n=P)(n" = n7) = [(nT)" = (n7)"][n" —n"] 2 0.
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Therefore we obtain that

[ (P + 077 o+ (p = 1) [ Ty 2wnt P 029 2 dadt <0

t

dt

This implies (29) and completes the proof. O

Proof of Theorem [21]. Step 1: Existence. We will modify the approach by Schmuck [21].
For T > 0, set the function space

Yr = {y=(n",n"):n* € L*([0,T],L*())},

equipped with the norm

H(n+,n H(n+ n-

My, = M aom,22(0)-

Now we define a map F : Yy — Yr as follows. For any y = (i*,n7), define F(y) =y =

(nT,n7), where y is a solution of the system:
(2.10) — AU =nt —a~ in (?9—‘11 =0 on 0192,
v
ot + (w-V)nt — Ant = div([nt] L V) in Qr,
on~ + (w-V)n~ —An~ = —div([n~]_V¥) in Qr,
@11 (n*,n7) = (g my ) on ©x {t =0},
8n+ on~
W—w—o ODBQX[O,T].

Note that for any f,g € L(Q), it holds that

Al <AL s = Lol S 1F — gl ae. Q.

Since nt —n~ € L4([0,T7], L*(Q)), it follows from W22 theory of the Laplace equation that
T e L4(0,T], W22(Q)), and

(2.12) < C|nt —n-

n HL‘I([O,T],LQ(Q)) = OHyHYT'

H@HL‘l([O,T],W?vz(Q))

By the theory of linear parabolic systems [12], there exists a unique solution (n*,n~) of
@ID) in L>=([0,T], L3(Q)) N L2([0,T], H(Q)) for any T > 0. Moreover, by multiplying
ZII); by nt and @ZII)2 by n~, integrating the resulting equation over €2, and adding
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these two equations, we obtain that
1d

= /Q<VT7 T, Vnt —[n7]_Vn ) dx

(InT 1 + |n"|?) dx + / (|VnT|? 4+ |Vn~|?) da
Q

< OV o o I T+ In7 M| o o 11V T+ 1V 2

e _ 1

< Ol [z ) (I |22 + I | 220))?
_ _ 1
(Tl L2 + 07 l2) + (VAT |l L2@) + IVRT |L2(0)] 2

(2.13) B
‘ [||V”+||L2(Q) +1IVn~ L2 )]
< Clllat |2y + 177 2@l (Int 2y + 107 r2ge)?

_ _ 1
AT 2 + I lz2) + (VAT 2 + 1VR T [ 20)]2

Vatlz) + 11V 2]
1 _
< §(||V”+||%2(Q) + [V I72q)
+C1+ (||ﬁ+||‘,{2(9) + ||7_f||%2(n))] ‘ [||”+||%2(Q) + In" lr2@))?]-

This implies that

— [ (In"]? + |n*|2)daz+/(|Vn+|2—|—|Vn*|2)d3:
(2.14) dt Jo Q
< C[l + (”fﬁ”%?(sz) + ||ﬁ_||%2(sz))] ’ [||n+||%2(sz) + ||”_||L2(Sz))2]-

Applying Gronwall’s inequality, we obtain that

sup /(|n+|2 +n" ) da +/ (IVnt 2+ |Vn~ %) dodt
0<t<T JQ Qr

¢
< e {C [ (0¥ + 17 V) dr} [ (0 2+ g o)
For R >0, if y = (n*,n~) € Yr belongs to

By ={y: [5lly, < B},

(2.15)

then ([ZTH)) yields that

T
IP@5, = [ ([ (P + ) e)do)? de < Coexn(CT + CROT < ()"

provided that T = T7 € (0,1] is chosen sufficiently small. Hence there exists a small
T =T; € (0,1] such that F(y) € BY C B).
2

Next we want to show that F' : B},f — B},f is a contractive map. For ¢ = 1,2, let
yi = (a7 ,n;) € By, andy; = (n,n;) = F(y;) € Bf; be the solutions of ZI0) and @ZIT).
Then nf — ng and n] — n, solve

Oy — Uy)

(2.16) — AW, —Wy) = (nf —ny) — (pg —ny) in O 5

=0 on 012,



SUITABLE WEAK SOLUTIONS OF NSPNP 9

ot —m3) + (w-V)nf —nd) — Alni —nf)
2)) +div(([ny ]+ — [n3]+)V¥2)  in Qr,
Oe(ny —ny) + (w-V)(ny —ny) —Alny —ny)

(217 = —div({ny |4 V(@ - B2)) — div(([n7 s — [13)1)9F2) in @r,
nf—n;,nl_—n) (0,0) on Q x {t =0},
8(7{9; ;) = 8(n18; n2) _ 0 on 9Q x [0, T).

Now multiplying @I7); by (nf — ng), @ID)2 by (n] — n, ), integrating the resulting
equations over €2, and adding them together, we obtain that

1d
53 [0t =P+l =g ) o

+ /Q (Yt =) + |V (np — ng)[?) da
- /Q 0]+ (V (@1 — ), V(nd —nd)) + (014 — [n]4) (YT, V(0 —nd)) da

+ / 171V (T1 = Wa), Vi(ny —n3) + (0714 — [0311)(VTs, V(ng —n3)) da
< CHVW2HL3(Q) (I 1+ = 3T+ llLa@ IV (nd = nd) 2y
71+ = 3 T4 s IV (007 = n)lz2(e))
+ CIV @1 = )| oy (117 (@ [V (0 = n)ll 2oy
+ I T+ s @ IV (n = n3) [l 22))
< Cllng - ﬁ5\1L2(Q){||"1+ =13 2@ V(] = nd)llr2()
1 3
(2.18) o R YA A CEaE T |
07 =15 2@V (07 = n3)ll 220
1 _ 2
+lIng = 13 | a1V (7 = 2520 }
CllIt = 1| oy + 107 =73 || gy | { I 2 IV (0 = 032
1 1
+ ||nf||z2(ﬂ)||an||i2(m||V(nf - ”;)”L?(Q)
+ 11 2@ IV (05 = 15)ll 22
1 1 _ _
+ 197 12y 1975 | 2y IV (07 = 1)l 2oy
1 _
<5 (IVOF = ni) a0 + IV (7 = )30
+ C(1+ [T 32y + 172 |2y ) (InF = nF 1320y + InT = 3 132(qy )
+ C{nF g I L gy + 197 oy 17 L gy}

' [Hﬁl o ﬁ2 HL?(Q) + Hﬁl— o ﬁg"i?(sz)}’
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where we have used the following inequalities: for any f,g € H(Q),

[ f+llze) < 1fllzs@) < C||f||L2(Q ||Vf||Lz(Q
||f+ - g+||L'*(Q < ||f gHL'g () < CHf gHL? Q)Hv(f g)||L2(Q

Therefore we conclude that

d _ _
T Q(Inl —ng|* + |y —ny| )d$+/Q(IV(n1+—n§)I2+|V(n1 —ny)[?) da

< C(1+ {75 oy + 172 2y ) (Ind = 1 1320y + It = 5 132y )
+C{HnTHLQ(Q)Hn—fHHl(Q) + H”l_HLz(Q)H”I_HHI(Q)}

R 1 P Rl LIt P

Applying Gronwall’s inequality, we obtain that

sup /(Im —ny|*+|ny —ny| )dw+/(|V(nf—n§)I2+|V(nf —ny )|?) dadt
0<t<T J O
1

T 1
2:20) < a@BHI [l = gy + 7 =77 ey it}
where .
o) = exp (€ [ (0 i gy + 173 ) )
and
T
B(T) = (H|”1 |HL°° (0,711,222 T Iy |HL°° (0, 7], L?(Q)))/ (|| HHl(Q + |y HHl(Q }dt.
It follows from (n,7; ) € BY and (ZI5) that for 0 < T < Tl,
max{a ), 8 } <C(R
Hence ([220) yields that for 0 < T < T,

T
ot o) = i nly, < [ [ nd =0 P g =z ) o)

<T{ sup /(|n1 —ng 2 +|ny —ny|?) d;v}
o<t<T Jo

T
< ToXD)BT) [ 1t = 1 + 77 =73 oo )
RYT|(nf,n7) - (5[,
21y <27|@f.an) - (a8 .np)|y,

provided T = Ty < min{T}, &=C(R)}.

This implies that F' : B},f — B},f is a contractive map with a contraction constant %
provided 75 and R are chosen sufficiently small. Therefore, there exists a unique fixed point
y = (n",n7) € By of F,ie,y = F(y). In particular (n*,n~,¥) is a solution on the
interval [0, Ts] of

(2.22) — AV =n" —n" in (2—\11 =0 on 99,
v
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O + (w- Vot — An* = div([(n*], YY) in Qr,

on~ + (w-V)n~ — An~ = =div([n~ ]+ VT) in Qr,
(2.23) (nt,n") = (nar,na) on Q x {t =0},
ont  On~
on” _on” _ 8 x [0, T
v v o < 0.7}
such that n* € LL2 N L2HN(Qr,), ¥ € LPH2 N L2 H2(Q1,), and
— + —
224)  [(n"in )HLfoLiﬂLfHé(QTz) + H‘IJHL,?OHgmLng(QT2) < C(|[(ng,ng )HL2(Q)’T2)'

For such a solution (n™,n=,¥) to [222) and Z23), let u € L>([0, Tz], H) N L%([0, T3], V)
be a weak solution to the system:

du+ (w-Viu—Au+VP=—n"—n")V¥ in Qr,

(2.25) divu =0 ?n Qr,
u = ug in  x {0},
u=0 on 00 x [0, T3],

Since (nt —n~ )V € L>([0,Ty], L? (), it follows from the regularity theory of the Stokes
equation that dyu, V2u € L2(Qq,), and VP € L2 (Qq,)), and

n T H(@tu,V%)HL% ) + HVPHL%

HUHLOO([O,TQ],L2(Q)) + ||u||L2([O,T2],H1(Q

(Q (QT2 )

(2.26) .
< C(lJuollrz(e) [1(ng s ng )2 (), T2)-

From the estimates ([224) and (2.28]), we can extend (u, P,n™,n~,¥) beyond T to be a
global weak solution of (ZII)-(22)-(@3) on the interval [0,7] such that both (Z24) and
(Z28) hold with T3 replaced by T. Finally, we know that by Lemma Bl (u, P,n™,n=, ¥)
is also a weak solution of the system 2I) in Q.

It is not hard to verify that since the solution (u, P,n",n~, ¥) to (2] constructed in Step
1 satisfies the estimates (Z24) and [226) (with 75 = T'), the LP-theory of linear parabolic
equations [I2] implies that d;nt, dn~ € Li(Qr). From

(2.27) — A(0y¥) = 9ynT — 9yn in a%(atqf) =0 on 09,

we can conclude by the LP-theory of linear elliptic equations that V29,¥ € Li (Qr).

Multiplying the equation [227) by ¥, 2I)); by u, integrating over Q and applying inte-
gration by parts, and then adding these two resulting equations together, we can obtain
that

/Q(|u|2 + [V |?) (2, t) dz + 2/ (IVul*> + [nT —=n~ |2 + (n" +n7)|VY|?) dads
(2.28) :
= /Q(Iw)l2 + [V *)(z) dz + 2/ (nt —n7)(w — ) - VU dzds

t

holds for all 0 < ¢t < T.

Step 2 Uniqueness. Next we want to prove that there exists at most one weak solution
of ZI)-EZ2)-EZ3) satisfying the estimates [Z24) and Z206). Let (uq, P, ¥1,n],ny) and
(u2, Py, Wa,ny ,ny ) be two weak solutions of (1)), [2)), and [3)), satisfying [Z24) and
228). Set

UZ’U,l—’U,Q, P:P1—P2, \112\111—\1’2, N+=nf—n§r, N_an—ng.
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Then
U + (w-V)U — AU + VP = —(Nt = N7)VVU; — (nf —n; )V,
div U =0,
(2.29) OUNT + (w-V)NT — ANT = div(N+tV¥;) + div(ng V),
ON~ + (w- V)N~ — AN~ = —div(N~V¥;) — div(n, V),
—~AU =Nt - N,

subject to the initial and boundary condition

(2.30) ANt ON- O
U_O’W_ 5 _%_Oon()ﬂx(O,T).

{(U, NT,N7)|,_, = (0,0,0) on €,

Multiplying 229); by U, 229); by N T, 229), by N, and (Z29)5 by ¥, integrating the
resulting equations over €2, and adding all these equations together, we obtain that

1d
+ / (IVUP +|NT =N 2+ |VNTP + VN2 + (nd +n3)|VE?)da
Q

(UP + VI + |NT2+ N ) da

= —/ [(N+ ~ N -V + (nf —ny)U-V¥ — (NT =N )w- V¥
Q
(2.31) T (Nt —=N7)VU; - VU + N*VE; - VN +nf VU - VN —n VU - VN*} dz
1 _
< SIINT = N7 |20 + CIUIRs @IV o0y + Cllwlie o) V720
—\[12 2 2
+ H(n;’n2 )HLG(Q)HUHL2(Q) + C(l + Hv\IleLG(Q)) HV\I]H%3(Q)
T CHV\IJlH%G(Q)HNJFH;(Q) + "(”Ivng)uie(g)||V‘I’||%3(Q)

1 2 _2
+ §(HVN+HL2(Q) + HVN HL?(Q))'

By the interpolation inequality, Sobolev’s embedding theorem, and ([2.24]), we have

IN

[leg e

Ol ooy

ClO 20y VU 2
OH\Ifl(t)”}p(Q) < O, a.e. t € [O,T],

2
OZ H(nz—'i_’ni_)HHl(Q)’
1=1

2
ClIN 220y + ClUIN Tl 2 VN 20

IN

|V,

[(ng,ny

)HLG(Q) + ||n1—||LG(Q)

1N+ s e
2
V][50

IN

V] 2 o) [V o
CIV L 19 220
C"‘V‘I’HLz(Q)HNJr - NﬁHLQ(Q)'

IN

IN
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Putting these estimates into (Z31]) and applying Young’s inequality, we would obtain

d -
G | (UR+ 9P + N4+ N da

+ / ([VUP +|NT =N P+ |VNT2+ VN2 + (nf +ny)|VE?)da
Q
(2:32) < C(1+ w3+ |7 2D o))
: (HUH%?(Q) + ||N+H2L?(Q) + ||V\I’||%2(Q))
1
+ §(||VN+”%2(Q) + VU200 + [N - N_Hiz(sz))'

This, combined with

AT) = exp (C / T+ 0l ) + |0 e ) t) < oc,
implies that for any 0 <t < T,
/Q(|U|2 VIR 4 NP+ NP (2, t) da
< (1) /Q (U + VO + N2 + [N~ 2)(a,0) do = 0.

This completes the proof. 0

Next we want to provide a global L3 -estimate of the pressure function P of the weak
solution (u, P,n*,n~, ¥) to the system (2.I). More precisely, we have

Theorem 2.2. Assume ng,n, € L*(Q) are nonnegative, ug € H, and w € C®(Qr)

satisfies divw = 0 in Qr and w-v = 0 on N x[0,T). let (u, P,n*,n=,¥), with/ Pdx =0,
Q
be the weak solution of the system (Z1) in Qr that satisfies (Z4). Then P € L3 (Qr), and

(2.33) HPHL%(QT) < C(l + lwll e 2z m Q) + Ind 22 + Ing ll220) + ||U0||L2(Q))-

Furthermore, for every nonnegative ¢ € C§°(Qr), it holds that

2/ |Vu|2¢d:cdt:/ [ul? (9 + Ap) d;vdt—i—/ (Jul*w + 2Pu) - Vo dxdt
Qr Qr Qr

(2.34) )
- 2/ (VI ® VY — 5|v\11|213) : V(ug) dzdt.

Proof. The equation ([ZI))1 2 can be written as the Stokes equation:

in Qr,

ou — Au+ VP = f
divu = 0,
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where f = —(w - V)u+ AUVWY. By Holder’s inequality, we have
HfHL%([o,T],L%(Q))
(2.35) = C[H“’HL%OLE%(QT)HVUHH(QT) + H” -n HLOO(OT 1,L2(2)) HV\I/HLOO(OT LG(Q)}

< C(l Flwlleer2nzz @ + 179 L2 + 170 | 220) + ||U0||L2(Q))-
Here we have used the Sobolev-interpolation inequality:
||wHL10L%(QT) = CHwHLgOLgmLfH;(QT)'
In particular, f € L3 ([0, 7], L17(Q)). Applying the theorem by Sohr-Wahl [26] and (Z37),
we obtain that VP e L3 ([0, 7], L1%(Q)) and

VPl ,5 <

L3 (o1, (@) = ”fHL%(OT L1t (@)
< C(l + HwHLtngmLin(QT) + [Ing 22 ) + Ing lz2@) + ||u0||L2(Q))-

This, combined with Sobolev’s inequality, implies that P € L3 (Qr) satisfies (Z33).

Mollifying u, P, f,w - Vu in R*, we obtain sequences of smooth functions ., P, fm, for
m € NT. Then, for m sufficiently large,

(2.36) Oy — Aty + VP = fr;  divu, =0,
holds in a small neighborhood of supp ¢. Moreover,
Um —u in LY (Qr), Vum — Vu in LIQOC(QT),

5
Pm — P in LIPZ)C(QT)a fm — f in (L2 )IOC(QT)
Multiplying (328) by 2u,,¢ and integrating by parts, we obtain that
2/ |V |2 ¢ dadt :/ [t | (Op + Ap) dwdt + 2/ Pty - Vo dadt
T Qr

T

+2 fm * Um@ dxdt.
Qr

Sending m — oo, we have
2/ |Vu|?¢ dodt :/ [ul? (9 + Ap) dadt + 2 Pu - Vdxdt
Qr Qr Qr
+ 2/ (—w - Vu+ AUVYE) - u¢p drdt.

Note that
—2/ w-Vu-uqu:cdt:/ lul?w - V¢ dxdt,
Qr Qr

and

1
2 [ AUV .- updrdt = —2/ (VI ® VY — 5|Vx11|213) : V(u¢) dadt.
Qr Qr

Thus we show that (Z34) holds. This completes the proof. O

Now recall the well-known Aubin-Lions’ compactness Lemma, whose proof can be found
at [27] section III.



SUITABLE WEAK SOLUTIONS OF NSPNP 15

Lemma 2.2. Let Xy, X1, Xo be three Banach spaces, with Xy and Xs self-reflexive, that
satisfy Xo C X1 C Xao. Suppose that the embedding of Xo into X1 is compact and the
embedding of X1 into Xy is continuous. For p,q € (0,00), assume that

{uk}ren C LP([0, T, Xo)
is a bounded sequence such that each uy has a weak derivative Oyuy, and the sequence

{Owur}ren € LI([0,T7], X2)

is also bounded. Then there is a subsequence of uy, converging strongly in LP([0,T], X1).

Now we utilize Theorem 2.1 to obtain a suitable weak solution to the system (LI]). For
this, we adapt the “retarded” mollifier technique by Caffarelli-Kohn-Nirenberg [I] on the
Navier-Stokes equation.

Let ¢ € C§°(R*) be non-negative and satisfy
Cdrdt =1 and supp( C {(z,t) e R*: [z]* < t, 1 <t < 2}.
R4
For f € LY(Q7), let f =R3> x R+ R> be

Fo f(z,t), if (z,t) € Qr,
10, otherwise.
Define the “retarded” mollifier of f by
_ N
(2:37) O =" | (2, D)f(@—y.t—7)dydr.

R4
Then it is well-known (see [I] Lemma A.8) that

div(©.(f)) =0 if divf =0,
sup /Q 0. (F)[2 (. ) da + /Q V(0.(f))? dedt

0<t<T

< sup / P, t) da + / V£ dud,
0<t<T JO Qr

and if f € LP(Qr) for 1 < p < oo, then ©.(f) — f in LP(Qr) as € — 0. Since O.(f) - v
may not be 0 on 92 x [0,T], we want to modify it as follows. For § > 0, let Q5 be the
d-neighborhood of Q, i.e. Q5 = {y € R3 : dist(y, Q) < 5}, and let ®5: Q — Qs be a smooth
differeomorphism such that

||q’5 - Id”cl(n) < @9,

where Id(z) =z, x € Q, is the identity map. From the definition, we see that O (Nf) =0in
(R3\ Q9¢) x [0, T]. Hence O.(f)(x,t) = Oc(f(Pac(),1)), (z,t) € Qr, satisfies that O.(f) = 0
on 9Q x [0,T]. If div(f) = 0 in Qr, then

divO, (f)(2,t) = tr[VO(f)(P2e (), 1) (VPoc (2) — I3)], (2,t) € Qr.

Therefore we have that

sup [ 18.(F) () de + / V(Be(f))[? dudt

0<t<T JQ T

< C( sup /Q|f|2(x,t)d:v+/Q |V fI? dadt),

0<t<T
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and

/ |div(O(f))|? dadt < 062/ IV |2 dadt.
Qr Qr

For 0 <t < T, let g.(t) € C®(Q) satisfy / ge(x,t) de = 0, and solve
Q

“Age(z,t) = div(O.(f))(x,t) in ‘29; (z,8) =0 on 9.

By the standard elliptic theory, we have that for any 0 <t < T,
/|Vgé|2(x,t)d17§0/ |é€(f N2 (z, t) dx<C'/ |f|?(x,t)d
Q
IV2gc 2 (2, t) dz < C | |divO.(f))]*(x,t) dz < Ce? / |V I (z,t) dv
Q Q

Now we define O.(f) € C*>(Q x (0,T),R3) by letting
Oc(f)(@,t) = Oc(f)(x,t) + Vge(x,t), (x,t) € QA x [0,T].

Then it is easy to check that for f € L¥°L2 N L?HL(Qr), with div(f) =0 in Qr,
div(©.(f)) =0 in Qr, O.(f) - v=0 on 92 x [0,T],

sup /|G) (z,t) d:C—i—/Q [V (O ()| dadt

0<t<T
< C( sup |f|2(x,t)da:—|—/ IV f|? dzdt),
0<t<T JQ Qr
and
O.(f) = fin LPLENLZHN(Q7r), as € — 0.

For any large positive integer M, set € = % Let (upr, Par, n;\r/[, 1y, Yar) solve the following
system of equations:

Ayuns + (Oc(unr) - Vuar — Aups + VPy = —(nd, —ny)V¥ar,
div up = U,

(2.38) Oty + (Oc(unr) - Vi, — And, = div (nf,V¥y), in Qr,
Oenyy + (Oc(unr) - V)nM — Any, = —div (ny, V%),

AU, = n]T/I — Ny
subject to the initial and boundary condition ([Z2]) and (Z3)).

Since (:)6(uM) = 0 in Q., the system ([238) decomposes into the PNP equation and the
inhomogeneous Stokes equation, both of which can be solved in the standard ways. While
in the interval [¢, 2¢], O, (uy) are smooth and their values depend only on the values of wy
and W) at intervale [0, €]. Hence (unr, Par,nyy, nyy, Uar) of (Z38) on the interval 2 x [e, 2¢],
along with the initial condition (uar,n};,n,,) (-, €) and the boundary condition (Z3)), can be
solved by Theorem 2] Keeping this process in each interval (me, (m+1)e),0 <m < M —1,
we obtain a global solution (uas, Par,ny;, nyy Uar) to 238), 22), and (2Z3).

It follows from Lemma 2.1, Proposition 2.1 (for p = 2), (224) and (220) of Theorem 2.1,
and (233) of Theorem 2.2 that {up} is bounded in L{°L2 N LZHY(Qr), {ni,} are non-
negative, and bounded in L{°L2 N LZ?HL(Qr), ¥ is bounded in L H2 N L?HZ(Qr), and
{Py} is bounded in L3 (Qr).
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By the equations (Z38);, (2Z38))3, (Z38)4, we have that
Orupsr = —div (uM & @E(uM) — Vuy + PMlg) — (n]\} - TLIT/[)V\IJM,
onty = —div (n},0c(un) — Vi, —ni, V),
Oy = —div(n&[éé(uM) —Vny +n, V¥y).
It is straightforward to see that {Oyuns}aren, {8tn]T/I}M€N, {0}y, }men are bounded in the
space
L3 (0, 7], W13(9)).
Hence we can apply Lemma [2.2] with

XO = Hl(Q),
Xl = L2(Q),
Xy = W-L5,

to conclude that there exist u € L°L2 N LZHX(Qr), n* € LPL2 N L2HNQr), ¥ €
LXH2NL2H3(Q7), and P € L3 (Qr) such that as M — oo, after passing to a subsequence,

(2.39) U — u in LfH;(QT)7 up — win LYQr) V1 < g < 1_30,
(2.40) (n;\r/[v n]\?[) — (Tl+, n~) in L%H%(QT),

' (nir, ny) — (0%, n7) in LY(Qp) VI <1< 3,
(2.41) VU, — V¥ in LY(Qr),
and
(2.42) Py — P in L3(Qr).

With 239), (Z40), 41), and Z42), we can easily verify that (u, P,n™,n~, ¥) is a weak
solution of (1)), 2), and Z3).

Since (uar,ny;,nyy, ¥ar) satisfies the global energy equality (Z28), with (u,nt,n~, ¥) and
w replaced by (unr,nys, nyy, Yar) and O (ups) respectively, and since

ni = nt, ny o n, @e(uM) —u, VU — VU in L3(Q7),
it is not hard to verify that as e — 0,
2/ (ni; — n&)((:)é(uM) —u)-VUyrdaeds — 0, VO <t <T,
and hence for any 0 <t < T,

/(|u|2+ |V\IJ|2)d:c+2/ (IVuf® + [n* — 02 + (n* +n7)|VE[?) deds
Q

t

< 1imi(1)1f { / (Junr|* + [V [?) do + 2/ (IVun |” + Ind; = ny > + (nd; +nap) VU [?) duds}
€E—> Q +

= lim inf (/Q(|uo|2 + [V |?) dz + 2/ (nf; —ny)(Oc(unr) — unr) - VU dzds)

e—0
t

:/(|u0|2—|— |V, |?) da,
Q

which yields that (u,n™,n~, ¥) satisfies the global energy inequality (9.
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Finally we need to verify that (u, P,n™,n~, ¥) satisfies the local energy inequality (7).
For this, consider a test function ¢ € C>°(Q7) with ¢ > 0 and supp ¢ € Qr. By Theorem
221 we have

2/ |V |?¢ dedt = / lunt[>(0r + Ap) dxdt
Qr Qr
(2.43) +/ (luns|?Oc(uns) + 2Pysung) - Vo dardt

T

1
- 2/ (VU @ VU, — 5|v\1/M|213) : V(upro) ddt.

Qr
As M — oo, by the lower semicontinuity we have that

2/ |Vul|?¢ dxdt < liminf/ |Vuar|?¢ dadt,

Qr M=oo Jor

while by (Z39)-@42) and O.(u) — u in L3(Qr) as e — 0, we have

/ lunr)?(0sp + Ag) dxdt—i—/ (Junr|*Oc(uns) + 2Pasung) - Vo dadt
Qr Qr

1
- 2/ (VU @ VU — 5|v\1/M|213) : V(un @) dzdt
— [ul?(0rd + A¢) dadt + / (|ul*u + 2Pu) - V¢ dxdt
Qr Qr
1
- 2/ (VI @ VI — 5|v\1/|213) : V(ug) dzdt.

Hence (7)) follows.

3. THE €-REGULARITY, PART [

In this section, we will prove the partial regularity of suitable weak solutions to (II]). The
crucial steps are two levels of e-regularities.

For (z,t) € Qr and r > 0, set
Bi(z)={yeR’: |y—z[<r}, Qu(z,t)={(y,7)|ly—z[<r, t—1> <1<t}
and denote B,(0) and Q,(0,0) by B, and Q.

Lemma 3.1. There exist eg > 0 and 6y € (0, %) such that if (u, P,nt,n~, W) is a suitable
weak solution of the system (Il) in Qr, which satisfies, for a (zo,tg) € Qr and 0 < 1y <
min {dist(zo, ), Vo },

(3.1)

3
7”52/ |ul? dadt + (TJl/ (V| dodt) T + (7"52/ |P|2 dadt)” < €,
Qro(movto) QTO(Io,to) Qro(mﬂyto)
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then
(907“0)_2/ |u|® dedt + ((907“0)_2/ |P|? d;vdt)2
ngro(wo,to) Q90T0 (zo,to)
1 3
(3.2) < —[rgz/ [ul® dzdt + (ro—l/ |v\1/|4d:z:dt)Z
2 Qg (w0,t0) Qe (20.t0)

+ (r0—2/ (PI# dedt)?].
Qro (z0,t0)

Proof. For zy = (z9,t9) € Qr and 19 > 0, define the scaling functions
(@, Pyt 7=, W) (2, t) = (rou, e P,n™, 0™, W) (x0 + row, to + rit).

We can verify that if (u, P,n™, n~, ) solves (L), then (4, P.at,n, \i/) solves the following
system:

O+ (- V)i — Au+ VP = —r2(At —7a~ )V,
div o =0,

(3.3) ot + (a- V)it — Ant = div(atv),
o~ + (a- V)~ — An~ = —div(a~ V),
—AT =3 (at —7i7),

From (33)5, we can see that

—r2(at —AT)VU = AV - VU = div(VT @ V¥ — %|in/|213).
Thus (33); can be rewritten as
(3.4) it + (- V)i — At + VP = div(VFP @ VI — %|V\i/|2[3).

Because of the invariance of the first four equations of ([B.3]) under translations and scalings,
we will assume zp = (0,0) and 9 = 1. We prove [32) by contradication. Suppose the
conclusion were false. Then for any 6 € (0, %), there would exist a sequence of suitable weak

solutions (u;, P*,n;",n; ,¥;) of (L) in Q; such that

(3.5) / |u;|? dedt + (/ |V\Ifi|4d:cdt)% + (/ |P,|% dadt)? = & — 0,
Q1 Q1 Q1

and
072 | |ug|® dedt + (9*2/ |Py|? ddt)’

(3 6) QG QG

1 3
> —{/ ug|? dadt + (/ |VO,|*Y) dodt) * + (/ |H|%dxdt)2].
2 1 Q1 Q1
Now we define the blowing up sequences v; = 7:—1, R; = %, P, = % on Q1. Then (v, R;)
solves the system
(3 7) { aﬂ)i —+ €;v; - V’Ui — Avi + VRZ = EZdIV(V(I)l (24 V(I)l — %|V(I)l|213),

divy; =0,

and satisfies

(3.8) /|vi|3d:cdt+(/ |V<I>i|4d:cdt)%+(/ |Ri|? dadt)? = 1,

1 1 1
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1

(3.9) 0=2 | |v|® dedt + (9—2/ |Ri|? dadt)? > =.
Qo Qo 2

Moreover, since (u;, P;, ¥;) satisfies the local energy inequality (L), we can see that

(vi, R;, @;) satisfies a rescaled version of (I7): for any 0 < ¢ € C§°(Q1),

2/ |V |>¢ dedt

< / |’Ui|2(¢t + A¢) dxdt + / (€i|vi|2 + 2R1)U1 - Vo dxdt

1

1
(310) - 2/ Ei(vq)i & V(I)Z - §|V(I)l|2f3) . V(’Uz(b) dxdt

< / [vi|? (¢ + Ag) d:cdt—i—/ (eilvi|* + 2R;)v; - Vo dadt

1

—|—C'ei/ |V<I>i|2(¢+|vi||v¢|)dazdt+/ | Vi |2 ¢ dadt.
Q1

1
By choosing suitable test functions ¢, (BI0) and @) imply that v; € LL2 N LIHL(Q
and there exists C' > 0 such that

(3.11) sup ||v;
i>1

)

1
2

< C.
HL;?OLgmLfH;(Q%) =

Moreover, we see from ([B.7) that

(3.12) || 0w <cC.

L (oW (B) =
Indeed, for ¢ € L*([—1,0], Wy *(B1)), we have

| / Dyvip dadt|
Q1
1
Q1

< CllvillZs gy + IV®illZsq) + IRl NIVelLsa

£3(Qu)
< CH¢HL3([71,0],W01’3(Bl))'

From BII) and (312), we can apply Lemma to conclude that after passing to a sub-

sequence, there exist v € L{°L? N LYH,(Q1), R € Lg(Q%) and @ € LiW;*(Qy) such

that

(3.13) v; = v in LfH;(Q%), v; = v in LS(Q%),

and

(3.14) Ri = Rin L3(Q,), & — ® in LIW(Q1).
Passing to the limit in ([B.71), we see that (v, R) solves the Stokes equation:
(3.15) dv—Av+VR=0; divvo =0 in Q.

Therefore by the standard theory on the Stokes equation, we can conclude that v € C*°(Q
and for any 6 € (0, 3),

)7

(S

(3.16) 9—2/ |v|® dxdt < 093/ [v|® dedt < CO3.
Qo Q

1
2
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This and I3) imply that for 7 sufficiently large,
(3.17) 9—2/ lvg|® dzdt < CO® 4 o(1).
Qo

Here o(1) denotes a quantity such that limo(1) = 0.

As for the pressure function R;, taking divergence of (817); yields that R; solves the Poisson
equation:

1
3.18 ARl = EidiV2 V(I)l X V(I)l - = V‘I)Z 2[3 — V; @ v; in B;.
2 2
By the Calderon-Zygmund theory, we can show that

=2 |Ri|%d:cdt§06‘_2ei%/ (|vi|3+|V<I>i|3)d:cdt+063/ |R;|? dadt
(3.19) Qo 1 1

<CO2E + O
Adding 3I7) and (BI9) together, we obtain that

)

FNgr.

(3.20) 9*2/ ;| davdt + (9*2/ |Ry|? dzdt)® < C6° + 09*265 +o(1) <
Qo Qo

provided we choose a sufficiently small 6 € (0, %) and a sufficiently large i. It is clear that

B20) contradicts to (B:9). The proof is complete. O

Keep iterating Lemma [BI], we obtain the following decay property.

Corollary 3.1. There exist ¢¢ > 0 and 0y € (O,%) such that if (u, P,nT,n=, V) is a
suitable weak solution of the system (1) in Qr, which satisfies, for a zo = (xo,to) € Qr,
0 < ro < min {dist(zo,02), Vo }, and 0 < v < 4

max {7“0_2/ |u|® dedt + (7“0_2/ |P|%dxdt)2,
(321) Qrg (20) Q"'()(ZO)

2 1
sup (r—(1+a) / Vo[t dxdt) i} <&,
0<r<ro Qr(20) 2
then for any positive integer k € NT,

1
(322)  (05r0)™ / Jul® dadt + ((65r0) / ||} dadt)® < 3 (5)"
Qe(’gro(z ) Q 2

9[)§ 0 (ZO)

Proof. Tt is readily seen that ([B.22]) follows from Lemma Bl for £ = 1. Note that (32I]) and
B22) for k =1 yield that

(907‘0)72/ |’Ul|3 dxd + ((907”0)71 / |V‘IJ|4) d.Idt)
Qogro (20) Qogro (20)

+ ((907«0)—2/ |P|? d:cdt)2 <ep.
Qogrg(20)

3
1



22 HUAJUN GONG, CHANGYOU WANG, XITAOTAO ZHANG

Hence applying Lemma [BI] we obtain that

(9§r0)2/Q ( )|u|3dxdt+((93r0)2/ |p|%dgccht)2
987“0 20

Qg(?) ro (ZU)
1 _
sl [
Qogrg (20)

+((90r0)*2/

Qogro(20)
1
= [(907"0)72/ |u|® dedt + ((907"0)72/ |P|> da:dt)Q
2 Qogro (20)
+((907‘0)_1 /

Qogrg (20)
Qogro (20)

1r1 3
Z [_ (7"0_2/ lu|® dzdt + (To_l / |Vt da:dt)Z
212 Qro(20) Qro(20)

+(r0_2/Q ( )|P|%d;cdt)2) + ((eom)*l/

Qogro (20)
1
<3 [r(;?/ Juf? dadt + (rg2/ P|? dxdt)z}
QTO (ZO) Qro (ZO)

1 3 1 3
+(_>2(T0_1/ [Vt dfl?dt)z + —((907"0)71/ V|t da:dt)Z
2 Qro (20) 2 Qogro (20)

IN

lul® dadt + ((Boro) " / V[ dadt)
Qogro (20)

1P| d:cdtﬂ

IN

|V\If|4d:vdt)%]

IN

|Vx1/|4dxdt)ﬂ

1
<(5)? [%’2/ |ul® dadt + (rgQ/ |P|? dxdt)ﬂ
2 Qo (20) Qro (20)

1 arra 1
+(§)2687‘0 [90 + 5]
Hence we have that for k£ > 1,
(9’57"0)72/ |u|® dxdt + ((957‘0)72/ |P|% da:dt)2
Qok g (20) Qok gy (20)
1
< (E)k[r(;?/ |uf dadt + (rg2/ |P|%dxdt)2]
QTO (ZO) Qro (ZO)
1 aet) LG 1o
(5 ers |00 + 500 o+ ()6
1
< (E)k [ro_z / [ul® dzdt + (rg > / |P|3 da:dt)ﬂ + 27D (Gyrg) e
Qro (ZO) Qro (ZU)
< 06824“.
This yields (8:222) and completes the proof. O

With (3:22]), we can now prove the following ep-regularity property.

Theorem 3.1. There exists eg > 0 such that for any 0 < T < oo, ug € H, and 0 < n(jf IS
L2(2) with fQ ng dx = fQ ng dz, if (u, P,nt,n=, W) is the suitable weak solution obtained
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by Theorem 1.3 (i), which satisfies

(3.23) TEQ/ |u|® dzdt + (rgl/ |Vt da:dt)% + (7"62/ |P|% da:dt)2 <e,
Qrg 20) Qrg (20) Qrg (20)

for zo = (zo,tg) € Q x (0,00) and 0 < rg < min {dist(;vo,aﬂ), \/%}, then (u,n™,n=, V) €

C*(Qro(20))-

Proof. 1t follows from (L8] and Sobolev’s embedding theorem that V¥ € L°L5(Q7), and
(3.24) HV\I]HL;X’LQ(QT) < CH\I]HL,?OHg(QT) < C([luoll L2y, (ng , ng ) L2(e))-
This implies that

4 3 4 3
(3.25) /QT(Z) |VU|* dadt < Cr HV\I/HL?OLE(QT) < Cr3, YQ,(2) C Qr.

It follows from ([B20) and (B23) that for any a € (0,2), the condition (B2I) holds on
Qo (1) for any 2 € Qro (20), provided we may choose a smaller 7o > 0, depending on €.
Thus by Corollary (BI]), we conclude that there exists 6y € (0,1) such that

- - 3 2 1k
3.26)  (050) 2/ [ul® dwdt + ((6570) 2/ |PJ2 dadt)” < Ocg(3)",
Qggro(z )

Qe’gm(zl)

for any z1 € Qo (20). Therefore there exists 7o € (0,1) such that

(3.27) 572/ lu|® dadt + (572/ |P|3 da:dt)2 < CsP™,
Qs(z1) Qs(21)

for all 21 € Qro(20) and 0 < s < 3. From @.27), we can repeat the same argument of
Lemma 3.1 and Corollary 3.1 to improve the exponent 7y such that ([B27) remains to be
true for all 79 € (0, 1).

Now we plan to apply the Riesz potential estimates between parabolic Morrey spaces to
show that u € L9(Qzg (20) for any 1 < ¢ < oo, analogous to that by Huang-Wang [13],
Hineman-Wang [I6], and Huang-Lin-Wang [17].

For any open set U C R3xR, 1 < p < 0o, and 0 < \ < 5, define the Morrey space MP*(U)
by

MPAO) = {f € L@ |fhorgey = sup / 17 ddt < oo}
zeU,r>0 Qr(2)
It follows from (B:20) and [B.27) that for any « € (0,1), it holds that

(u, V) € M*2079(Qug (20)), P € M3 (Qup (20)).

We now proceed with the estimation of u. Let n € C5°(R?) be a cut-off function of Qro (20)
such that 0 <n <1,n=11in Q= (20), and [9en|+ |V25| < Crg?. Let v : R? x (0,00) — R3
solve the Stokes equation:

O —Av+ VP = —div[?(u®@u+ (V¥ @ VU — 1|[VU[°L3))] in RY,
(3.28) divv =0 in RY,

v(-,0) =0 in R3.
By using the Oseen kernel (see Leray [I1]), an estimate of v can be given by
(3.29) lv(z,t)| < CTL (| X|)(x,t), V(z,t) € R® x (0, 00),



24 HUAJUN GONG, CHANGYOU WANG, XITAOTAO ZHANG

where
1
X=nu®@u+ (V¥ eVl - 5|v\1/|213)],

and Z; is the Reisz potential of order 1 on R* defined by
l9(y, s)] 14
Ti(g)(z,t) = ———————dyds, Vg € L"(R").
D0 = e 5. )
We can verify that X € M23(1-2)(R4) and

10 325000 gty < C [l - o + IV P10 e
< C(1+ €).

Hence we conclude that v € M 30 (R*) and

(3.30) o HM M o gy CHXHAM s gy < O e0)
By taking o 1 &, we conclude that for any 1 < g < oo, v € LQ(Q%O (z0)) and

(3.31) < C(q,70,€0)-

H’UHLLI(Q%(ZO))
Note that u — v solves the linear homogeneous Stokes equation:

O(u—v) = Alu—v)+ VP =0, diviu —v) =0 in Qo (z0)-
Then u —v € LOO(Q%U(ZO)). Therefore for any 1 < ¢ < oo, u € Lq(Q%o(zo)) and

(3.32) < O(g, 70, €0)-

HUHL‘?(Q%(%)) =
From ¥ € L°H2 N L2H3(Qr) and the Sobolev inequality, we have that AU € L3 (Qr),
VU € LY(Qr) for ¢ > 5, and

INT <c.

L% (Qr) + HV\I’HLq(QT) < CH\I}HL;’OHgﬁLEHg(QT) =
Since nt solves
on™ — AnT = (AU)nT — (u—V¥)-Vnt in Qo (20),

where (u — VV) € LI(Qr) and AV € L3(Qr) for some g > 5, we can apply the standard
theory of linear parabolic equation [I2] to conclude that there exists 8 € (0,1) such that
nt e CB(Q%D(ZQ)), and

(3.33) C(ro, €o)-

7 s o <

Similarly, we can show that n~ € C#(Qro (29)), and

4

(334) S C(To,eo).

””_”cw%(m))

Substituting the estimates B33) and B34)) into the equation ([I)5 for ¥, we conclude that
V20U e Lw([to — 64’t0] ce (BTTO (,’Eo)) and

(3.35) a4l < C(ro, €o).

T2 P—
L”"({tO*G—Z)to])C“(B% (z0))
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Substituting B33), B34), and B35) into the equation ()12, we conclude that u €
CB(Q%(ZQ)) and

(3.36) [ell 50 g (20)) < Clro, €0).
16
By a bootstrap argument, we can eventually show that (u,n*t,n=,¥) € C’OO(Q% (20)). O

Remark 3.1. Similar to [22] and [1], Theorem [ yields that (u,n*,n~, W) is smooth away
from a closed set 2, with P3(X) = 0.

4. THE e-REGULARITY, PART II

In this section, we will improve the size estimate of the singular set X for suitable weak
solutions (u, P,n*,n~, ¥) obtained by Theorem[[Tl The argument is based on the A-B-C-D
Lemmas, originally due to [I]. Namely, we want to establish the following theorem.

Theorem 4.1. Under the same assumptions as in Theorem [, there exists e, > 0 such
that if (u, P,nt,n=, W) is the suitable weak solutions of (I1) given by Theorem [I1, and
satisfies

1
(4.1) lim sup —/ |Vu|? dedt < €2
r=0 T JQ,(20)
for z0 = (wo,t0) € Qr, then (u,n*,n~, W) is smooth near zy.

For simplicity, we will assume zg = (0,0) € Q7. In order to prove Theorem 1] we first
recall the following interpolation inequality, see [1].

Lemma 4.1. For u € H'(R?),

a
2

/ |u|qu§c(/ |vu|2dx)%*“(/ |u|2dx)“+cr3<1*%>(/ lu? dz)?,
Br B B, B,
for any B, CR3,2<q¢<6 and a:%(l—%).

Assume zp = (0,0). Set

A(r)=sup 7“71/ lu|? dz,
B, x{t}

—r2<t<0

B(r)zril/ |Vul|? dzdt,

r

C(r) = 7"_2/ lu|? dzdt,
Qr

D(r):r*/ |P|? dadt.

r

By Lemma 1] we see that for any 0 < r < p, it holds that

3

(4.2) ) <G (0)° 4% (p) + (2) 41 (0)B1 ()]

Now we need to estimate the pressure function.
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Lemma 4.2. Let (u, P,nt,n", ) be a suitable weak solution of (1) in Q1 given by The-
orem[I1. Then for any 0 <r < &, we have

(43) D) < C ED(p) +(2) At (B (o) + (2)%t

Proof. Taking divergence of (I.I]);, we obtain
1
(4.4) —AP =div*[(u — (u),) ® (u — (u),) + (VI @ VT — 5|v\1/|213)] in B,.
Here (u), denotes the average of u over B,,.
Let n € C5°(R?) be a cut off function of By such that

n=1, in Bg,
(4.5) n =20, outside B,,
0<n<1, |[Vn <8~

Define an auxiliary function
Pile.t) == [ V3G =) )= () @ (= (u))

1
+ (V¥ VI — 5|v\11|213)} (y,t) dy,
Then we have
1
—AP; =div*[(u— (u),) ® (u— (u),) + (VI ® V¥ — 5|v\1/|213)] in By,

and
—A(P—P;)=0 in Bg.
For Py, we apply the Calderon-Zygmund theory to deduce

/|P1|%dx < c/ 7B — (w),* + |VO[) de
R3 R3
c / (u— (), > + [VOP) da

P

Since P — P, is harmonic in By, we get that for0 <r < £

IN

(4.6)

1 1
|P — P1|2 da:<C(T) 2/ |P—P1|%da:
72 B, P” JB,

1

2
r 3 1 3
<cO) [ IPEars 5 [ nitas)
Bg Bg

ptp

Integrating it over [—r2,0], we can show that

—/ |P|2 dxdt

<C()1/|PPM&+C(V1/1W—@%P+WM%MM
p’ p? Qp PQ,,

SC(T)l/ Pl dodt+ C(2)* 5 [ Ju= ([ dodt + O(2)Pot,
p p p Qp T

where we have used the inequality ([B.20]) in the last step.
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This, combined with the interpolation inequality

1 / 3
— u— (u),|” dzdt
pe Qpl (w)p]

1 9 31 9 3
<C sup (= lu?dz)* - (= |Vul? ddt) *

—p2<t<0 P JB, PJqQ,
implies that
r P 3 3 P2 3
Dr) < C|C)D() + (22 AL (p)BE (o) + (£)70 |

This completes the proof. O

Proof of Theorem [[.1. Here we follow the presentation by [3] closely. For 0 < § < % and
0<p<l,let 0<¢eC§®(Qoy) be such that

16
)

Applying the local energy inequality (L7)) and using divu = 0, we obtain

. 4
6=11n Qup, V6| < oo V0] +10:0] <

sup / |u|? p? da:—|—2/ |Vu|?¢? dadt
—(0p)2<t<0JQ Qx[=(0p)2,0]

< / a2 (10:] + Vo[ + [V24)) derdt
Qx[—(0p)2,0]

(4.7)
+ (1 = ()| + 2P ul| V) dode
Qx[=(0p)?,0]
1
+2/ VU @ VI — 5|Vx1/|213}(|W|<z>+|u||v¢|)dgcdt,
Qx[=(6p)2,0]
where

()= F Jufdo

B,

is the average of |u|? over B,. By using Sobolev’s inequality, we have

( /B uf? — (21 do) < C / [V .

P BP

By Holder’s inequality, we can bound

1
/ VU @ VI — 5|v\11|213|(|w|<;5+|u||v¢|)dgcdt
Qx[~(6p)2,0]

< c/ |V\IJ|2|Vu|da:dt—|—c(9p)_l/ |VU|?|u| dadt
Qop 0p

1

< c(op)%Ba(ep)(/Q VO [* dadt)
+eon) ([

|V\I/|3d:cdt)%(/ luf? dwdt)
Qop Q

< c(0p)*(B%(0p) + C(6p)),

1
2
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where we have used in the last step (325 and

/ |V [* dedt < c(6p)?.
Q

0p

Substituting these two estimates into (4.1), we obtain
1 1 2 1 1 1
A(500) + B(50p) < ¢|C3 (0p) + A% (6p) B (6p)C* (6p)
(4.8) +C(09)D (0p) + (00)2 B (99) + (0)2CH (0p)]
< c[C3(8p) + A(0) B(8p) + (6p)" + (6p)* B (6p) + D (8p)].
Thus we obtain
s 1 3 3 3
A% (50p) < ¢[C(0p) + AR (0p)BE (0p) + D2(09) + (0p)° + (09)* B (6p)|.
While we also have
D2(0p) < c0?[D*(p) +0~° A3 (p) B2 (p) + 6~ °p*),
C(0p) < c[0* A% (p) + 0724 (0) B (p),
and

A3 (0p) B (0p) < 072 A% (p) B3 (p).

Putting all these estimates together, we arrive at

e

1 1

A (§9P)+D2(§9P)

< c[02(D%(p) + A} (p) + 07 AR () BE(p) + 62 + 079" + 00 + 0% p* B ()|

<c(62+073B3(p)) (A2 (p) + D2(p)) + c(62 + 0~ 1p% + 6%0° + 01 p> Bi (p)).
For €; > 0 given by Theorem , let 6y € (0,4) be such that

.11
chp = mln{z, 56%}
Since )
lim sup —/ |Vu|? dedt < €7,

r—0 T

r

we can choose pg > 0 such that

3 2B% (p) < ~, Y0 < p < po,

FNgr.

and
9 1
0(6‘3 + 054 0% + 6505 + Go“pBB%(p)) < Eef, Y0 < p < po.-
Therefore we obtain that there exist 6y € (0, %) and pg > 0 such that

s 1 1 1, s 1
A% (00p) + D?(500p) < 5 (A% (p) + D*()*) + 5et, VO < p < po.

Iterating this inequality yields that

s, 1 1
(4.9) A%((560)"p) + D*((560)"p) <
holds for all 0 < p < pg and k > 1.

L

57 (A% (0) + D*(p)) + f
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Employing ([@9) and (2), we obtain that
1. s 1

Cl(500"0) < el(500)° A% (500 10) + (500) AT (500" ) B ((360)* )]
(4.10) < el(560)° + (300) 7} ] [ (41 () + D?(p) + €]

holds for all 0 < p < pg and k > 1.
Putting (@3] and [@I0) together, we obtain that
1 1 1 1 3 1
(11)  limsup [O((5600)°0) + D*(380)0)] < e[1 + (500)° + (500) 16} < 1k,

k—o00

holds for all p € (0, pp), provided €1 = €1(0p,€p) > 0 is chosen sufficiently small. Therefore,
by Theorem B (v, n™,n~, ¥) is smooth near zg = (0,0). This completes the proof. O

Completion of Proof of Theorem [Tt Define the singular set of (u,n™,n~, ¥) by

Y= {(:C,t) €Qr | limsupr_l/ |Vu|? dadt > e%}
Qr(2,t)

r—0

From Theorem EJl we know that ¥ is closed and (u,nt,n=,¥) € C®(Qr \ X).

Let U be a small neighborhood of ¥ and let § > 0. For each (x,¢) € X, choose 0 < r < §
such that

Tﬁl/ ( )|Vu|2d3:dt > €} and Q,.(x,t) C U.
Qr(x,t

By Vitali’s five time covering Lemma, there exists a disjoint subfamily { Q,,(x;,t;) } such
that

¥ C U Q5” (l‘i,ti).
Hence

Pas() < 5ri < 5ep” Z/
i i JQ

Sending J — 0, this implies that P*(X) = 0. The proof is now complete. O

|Vul? dedt < 561_2/ |Vu|? dedt.
U

v (Tist)
k3
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