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PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE

NAVIER-STOKES-PLANCK-NERNST-POISSON EQUATION

HUAJUN GONG, CHANGYOU WANG, XIAOTAO ZHANG

Abstract. In this paper, inspired by the seminal work by Caffarelli-Kohn-Nirenberg [1]
on the incompressible Navier-Stokes equation, we establish the existence of a suitable
weak solution to the Navier-Stokes-Planck-Nernst-Poisson equation in dimension three,
which is shown to be smooth away from a closed set whose 1-dimensional parabolic
Hausdorff measure is zero.

1. Introduction

Let Ω ⊂ R
3 be a bounded, smooth domain and 0 < T < ∞. We consider the following

Navier-Stokes-Nernst-Planck-Poisson equation:

(1.1)





∂tu+ (u · ∇)u−∆u+∇P = −(n+ − n−)∇Ψ,

div u = 0,
∂tn

+ + (u · ∇)n+ −∆n+ = div(n+∇Ψ),
∂tn

− + (u · ∇)n− −∆n− = −div(n−∇Ψ),
−∆Ψ = n+ − n−,

in Ω× (0, T ),

where u : Ω × (0, T ) → R
3 denotes the velocity field of fluid, P : Ω × (0, T ) → R denotes

the pressure function, n+, n− : Ω × (0, T ) → R are the number densities of positively and
negatively charged constituents, and Ψ is the quasi-electrostatic potential field. Along with
(1.1), the initial and boundary values are:

(1.2) (u, n+, n−) = (u0, n
+
0 , n

−
0 ), in Ω× {0},

(1.3) u = 0,
∂n+

∂ν
=

∂n−

∂ν
=

∂Ψ

∂ν
= 0, on ∂Ω× (0, T ),

where ν denotes the exterior unit normal vector on ∂Ω.

The system (1.1) models an isothermal, incompressible, viscous Newtonian fluid of uni-
form and homogeneous composition of a high number of positively and negatively charged
particles ranging from colloidal to nano size. It was proposed by Rubinstein [20] to model
electro-kinetic fluids, which describes the interaction between the macroscopic fluid motion
and the microscopic charge transportion. See Castellanos [2] for more discussions on the
physics associated with (1.1). In the system (1.1), we assume a dilute fluid and therefore the
electromagnetic forces are neglected. There have seen considerable interests in the math-
ematical analysis of the system (1.1). For example, Jerome [9] has proved the existence
of local strong solutions under the Kato’s semigroup framework. Deng-Zhao-Cui [4] have
established the existence and well-posedness of mild solutions in the Triebel-Lizorkin and
Besov spaces of negative indices. We refer to Zhao-Zhang-Liu [30] for some time decay
results of (1.1). The existence of global weak solutions of (1.1), (1.2) and (1.3) has been
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established by Schmuck [21] under the Neumann boundary condition (for initial data with
bounded n+

0 and n−
0 ), and Jerome-Sacco [10], under the mixed Dirichlet boundary condi-

tion. Fan-Li-Nakamura [5] have proved some regularity criteria of weak solutions to (1.1)
on Ω = R

3 in the spirit of Serrin. More recently, there are some interesting works by Wang-
Liu-Tan [28, 29] on generalized Navier-Stokes-Planck-Nernst-Poisson equations through an
energetic-variational approach.

When the underlying fluid is at rest u = 0, the system (1.1) reduces to the Planck-
Nernst-Poisson (PNP) equation, which is the drift-diffusion model for semiconductor devices,
first proposed by Roosbroeck [19] in 1950, that has been widely accepted and applied in
semiconductor industry and in device simulation. See Gajewski [7], Mock [18], Seidman-
Troianiello [25], and Fang-Ito [6] for results on the existence of global weak solutions to the
PNP equation.

It remains to be an interesting question to investigate regularity properties of weak so-
lutions in three dimension. Motivated by the celebrated work by Scheffer [22], Caffarelli-
Kohn-Nirenberg [1], and Lin [13] on the Navier-Stokes equation, we introduce the notion
of suitable weak solution of (1.1)-(1.2)-(1.3) and establish both the existence and partial
regularity for such a weak solution. See also [8], [14], and [3] for related works on other
complex fluids.

A constitutive equation of the Navier-Stokes-Nernst-Planck-Poisson system (1.1) is the
Naiver-Stokes equation: for 0 < T ≤ ∞,

(1.4)

{
∂tu+ (u · ∇)u − ν∆u+∇P = f,

∇ · u = 0,
in QT = Ω× (0, T ),

with the initial-boundary condition

(1.5) u(·, 0) = u0 in Ω; u = 0 on ∂Ω× [0, T ).

The existence of global weak solutions of (1.4) and (1.5) (T = ∞) was established by Leray
[11] and Hopf [27]. While it is an outstanding open question whether (1.4) and (1.5) has
a global smooth solution when Ω = R

3, there has been many research works concerning
partial regularity of suitable weak solutions of (1.4) initiated by Scheffer [22] and then by
Caffarelli-Kohn-Nirenberg [1], where it was proven that the singular set has 1-dimensional
Hausdorff measure zero. Such a theorem was later simplified by Lin [13]. There has also
been a lot of work on the regularity criteria of (1.4) going back to Serrin [23] where it has
been proven that u ∈ C∞(QT ), provided u ∈ L

q
tL

p
x(QT ), where p ≥ 3 and 2 ≤ q < ∞ satisfy

(1.6)
2

q
+

3

p
= 1.

The end point case p = 3 and q = ∞ for (1.6) was resolved by [24].

The goal of this paper is to extend the partial regularity theory on the Navier-Stokes
equation by Caffarelli-Kohn-Nirenberg [1] to the system (1.1). We first recall the definition
of suitable weak solutions to the system (1.1). For T > 0, denote QT = Ω× (0, T ) and

D :=
{
X | X ∈ C∞

0 (QT ,R
3), divX = 0

}
.

Definition 1.1. We say that (u, n+, n−,Ψ) is a weak solution of (1.1) in QT , if

u ∈ L∞([0, T ], L2(Ω,R3)) ∩ L2([0, T ], H1(Ω,R3)),

Ψ ∈ L∞([0, T ], H1(Ω)) ∩ L2([0, T ], H2(Ω)), n+, n− ∈ L2(QT ,R+),
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and the system (1.1) holds in the sense of distributions: for any ϕ ∈ D,

ˆ

QT

(
〈u, ∂tϕ〉 − 〈∇u,∇ϕ〉+ u⊗ u : ∇ϕ

)
dxdt =

ˆ

QT

〈(n+ − n−)∇Ψ, ϕ〉 dxdt,

and, for any φ ∈ C∞
0 (QT ),

ˆ

QT

u · ∇φ dxdt = 0,

ˆ

QT

(
〈n+, ∂tφ〉+ 〈n+,∆φ〉+ 〈n+, u · ∇φ〉

)
dxdt =

ˆ

QT

〈n+∇Ψ,∇φ〉 dxdt,
ˆ

QT

(
〈n−, ∂tφ〉+ 〈n−,∆φ〉 + 〈n−, u · ∇φ〉

)
dxdt = −

ˆ

QT

〈n−∇Ψ,∇φ〉 dxdt,

and
ˆ

Ω

〈∇Ψ,∇φ〉 dx =

ˆ

Ω

(n+ − n−)φdx, ∀0 < t < T,

where 〈·, ·〉 denotes the inner product of R3.

A weak solution (u, P, n+, n−,Ψ) is called a suitable weak solution of (1.1), if, in addition,
it enjoys the following properties.

Definition 1.2. A weak solution (u, P, n+, n−,Ψ) of (1.1) is called a suitable weak solution
of (1.1) in QT , if the following conditions are true:

(a) P ∈ L
3
2 (QT ),

(b) n+, n− ∈ L2(QT ),
(c) there exist positive constants 0 < E1, E2 < ∞ such that,





ˆ

Ω

(|u|2 + |∇Ψ|2(x, t) dx ≤ E1, ∀t ∈ (0, T ),
ˆ

QT

(|∇u|2 + |∇2Ψ|2) dxdt ≤ E2,

(1) (u, P, n+, n−,Ψ) satisfy (1.1) in the sense of distributions on QT .
(2) for any φ ∈ C∞(QT ), φ ≥ 0, the generalized energy inequality (1.7) holds:

2

ˆ

QT

|∇u|2φdxdt ≤
ˆ

QT

|u|2(∂tφ+∆φ) dxdt +

ˆ

QT

(|u|2 + 2P )u · ∇φdxdt

− 2

ˆ

QT

(
∇Ψ⊗∇Ψ− 1

2
|∇Ψ|2I3

)
: ∇(uφ) dxdt.

(1.7)

Now we are ready to state our main theorem.

Theorem 1.1. For any 0 < T ≤ ∞, u0 ∈ L2(Ω,R3), with divu0 = 0, and 0 ≤ n+
0 , n

−
0 ∈

L2(Ω), with

ˆ

Ω

n+
0 dx =

ˆ

Ω

n−
0 dx, there exists a suitable weak solution (u, P, n+, n−,Ψ) of

(1.1)-(1.2)-(1.3) in QT such that

(i) u ∈ L∞
t L2

x ∩ L2
tH

1
x(QT ), P ∈ L

5
3 (QT ), 0 ≤ n+, n− ∈ L∞

t L2
x ∩ L2

tH
1
x(QT ), Ψ ∈

L∞
t H2

x ∩ L2
tH

3
x(QT ), and∥∥(u, n+, n−)

∥∥
L∞

t L2
x∩L2

tH
1
x(QT )

+
∥∥P

∥∥
L

5
3 (QT )

+
∥∥Ψ

∥∥
L∞

t H2
x∩L2

tH
3
x(QT )

≤ C
(
‖u0‖L2(Ω), ‖n+

0 ‖L2(Ω), ‖n−
0 ‖L2(Ω)

)
.

(1.8)
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(ii) (u, n+, n−,Ψ) satisfies the following global energy inequality: for any 0 < t ≤ T ,
ˆ

Ω

(|u|2 + |∇Ψ|2)(x, t) dx + 2

ˆ

Qt

(|∇u|2 + |n+ − n−|2 + (n+ + n−)|∇Ψ|2) dxds

≤
ˆ

Ω

(|u0|2 + |∇Ψ0|2)(x) dx,
(1.9)

where Ψ0 ∈ H2(Ω) solves

−∆Ψ0 = n+
0 − n−

0 in Ω;
∂Ψ0

∂ν
= 0 on ∂Ω.

(iii) there exists a closed set Σ ⊂ QT , with P1(Σ) = 0, such that (u, n+, n−,Ψ) ∈
C∞(QT \ Σ).

Here Pk, 0 ≤ k ≤ 4, denotes the k-dimensional Hausdorff measure on R
4 with respect to

the parabolic distance:

δ((x, t), (y, s)) = max
{
|x− y|,

√
|t− s|

}
.

We would like to briefly mention some key steps of the proof of Theorem 1.1:

(1) The existence of suitable weak solutions to (1.1) is established by first studying
approximate systems of (1.1) through modifying an “retarded” mollification of its
drifting coefficients, Θǫ(u), originally due to [1] on the Navier-Stokes equation. Here
we need to modify it so that its normal component vanishes on the boundary of Ω
in order to guarantee the equations for n± enjoy both the positivity and maxi-
mum principle property. For the existence of suitable weak solutions to an approxi-
mate version of (1.1), we employ a contraction map theorem on the function spaces
L4
tL

2
x(QT ) for n± first employed by Schmuck [21]. Then we prove that such a se-

quence of suitable weak solutions to the approximate equation enjoy some uniform
estimates and hence converge to a suitable weak solution to (1.1).

(2) The partial regularity of a suitable weak solution constructed in (1) is proven by
employing the fact Ψ ∈ L∞

t H2
x(QT ) to perform a blowing up argument to establish

an ǫ0-decay property for (u, P ) in the renormalized L3 ×L
3
2 -norms, and then apply

the Reisz potential estimates on parabolic Morrey spaces to obtain Lq-boundedness
of u for any 1 < q < ∞, which can yield the ǫ0-smoothness of (u, n+, n−,Ψ) via the
bootstrap argument.

(3) To obtain the size estimate of the singular set, we improve the ǫ0-regularity from (2)
in a way similar to that of the Navier-Stokes equation by [1] through establishing
the so-called the ABCD Lemmas.

The paper is organized as follows. In section 2, we will establish the existence of the
suitable weak solutions of (1.1)-(1.2)-(1.3). In section 3, we will prove an ǫ0-regularity for
suitable weak solutions to (1.1). In section 2, we will improve the ǫ0-regularity from section
3 and provide a proof of Theorem 1.1.

2. Existence of suitable weak solutions

In order to obtain the existence of suitable weak solutions of (1.1), we first consider the
following system: given w ∈ C∞(Ω × [0, T ],R3) with div w = 0 in QT and w · ν = 0 on
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∂Ω× [0, T ] , let (u, P, n+, n−,Ψ) solve

(2.1)





∂tu+ (w · ∇)u−∆u+∇P = −(n+ − n−)∇Ψ,

divu = 0,
∂tn

+ + (w · ∇)n+ −∆n+ = div([n+]+∇Ψ),
∂tn

− + (w · ∇)n− −∆n− = −div([n−]+∇Ψ),
−∆Ψ = n+ − n−,

subject to the initial and boundary condition:

(2.2) (u, n+, n−)|t=0 = (u0, n
+
0 , n

−
0 ) in Ω,

(2.3) u = 0,
∂n+

∂ν
=

∂n−

∂ν
=

∂Ψ

∂ν
= 0 on ∂Ω× (0, T ).

Here [y]+ = max{y, 0} denotes the positive part of y ∈ R.

We shall use the following function spaces:

V = C∞
0 (Ω,R3) ∩ {u : divu = 0},

H = Closure of V in L2(Ω),

V = Closure of V in H1(Ω).

Concerning (2.1), (2.2) and (2.3), we have the following existence result.

Theorem 2.1. For a bounded and smooth domain Ω ⊂ R
3, u0 ∈ H, and two nonnegative

n+
0 , n

−
0 ∈ L2(Ω) satisfying

ˆ

Ω

n+
0 (x) dx =

ˆ

Ω

n−
0 (x) dx,

if w ∈ C∞(Ω× [0, T ],R3), with div w = 0 in QT and w · ν = 0 on ∂Ω× [0, T ], then there is
a unique weak solution (u, P, n+, n−,Ψ) of (2.1), (2.2), and (2.3) such that n+, n− ≥ 0 in
Ω× [0, T ], and

(2.4)





u ∈ C([0, T ],H) ∩ L2([0, T ],V),

Ψ ∈ L∞([0, T ], H2(Ω)) ∩ L2([0, T ], H3(Ω)),

n+, n− ∈ L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1(Ω)).

The existence of weak solutions (u, P, n+, n−,Ψ) to (2.1), (2.2), and (2.3) will be established
by a contraction map argument. The uniqueness of such weak solutions (u, P, n+, n−,Ψ)
can be employed to show the non-negativity of n+, n− as follows.

Lemma 2.1. Under the assumptions of Theorem 2.1, the weak solution (u, P, n+, n−,Ψ) of
(2.1), (2.2) and (2.3), satisfying (2.4), must satisfy n+, n− ≥ 0 in QT .

Proof. This proof is similar to Lemma 1 in [21]. In order to prove that n+, n− are non-

negative, let (ũ, P̃ , ñ+, ñ−, Ψ̃), satisfying (2.4), be a weak solution of the system:

(2.5)





∂tũ+ (w · ∇)ũ−∆ũ+∇P̃ = −(ñ+ − ñ−)∇Ψ̃,

divũ = 0,

∂tñ
+ + (w · ∇)ñ+ −∆ñ+ = div([ñ+]+∇Ψ̃),

∂tñ
− + (w · ∇)ñ− −∆ñ− = −div([ñ−]+∇Ψ̃),

−∆Ψ̃ = ñ+ − ñ−,

in QT ,
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subject to the initial and boundary condition:

(2.6) (ũ, ñ+, ñ−)|t=0 = (u0, n
+
0 , n

−
0 ) in Ω,

(2.7) ũ = 0,
∂ñ+

∂ν
=

∂ñ−

∂ν
=

∂Ψ̃

∂ν
= 0 on ∂Ω× (0, T ).

The existence of such. a weak solution (ũ, P̃ , ñ+, ñ−, Ψ̃) will be constructed by Theorem 2.1
below.

It is readily seen that ñ+ = [ñ+]+−[−ñ+]+. Multiplying (2.29)3 by [−ñ+]+ and integrating
over Ω, we have that

1

2

d

dt

ˆ

Ω

|[−ñ+]+|2 dx+

ˆ

Ω

|∇[−ñ+]+|2 dx =

ˆ

Ω

[ñ+]+∇[−ñ+]+ · ∇Ψ̃ dx = 0

This implies that
ˆ

Ω

|[−ñ+]+|2 dx ≤
ˆ

Ω

|[−n0]+|2 dx = 0,

since n+
0 is non-negative. Thus we conclude that ñ+ ≥ 0 in QT . Similarly, we can show

that ñ− ≥ 0 in QT . Therefore, we see that (ũ, P̃ , ñ+, ñ−, Ψ̃) is also a weak solution of (2.1),
(2.2), and (2.3). From Theorem 2.1, the uniqueness holds for weak solutions to (2.1), (2.2),
and (2.3), satisfying (2.4). Thus

(ũ, P̃ , ñ+, ñ−, Ψ̃) ≡ (u, P, n+, n−,Ψ) in QT .

Hence n+ ≡ ñ+ ≥ 0 and n− ≡ ñ− ≥ 0 in QT . �

Proposition 2.1. Under the same assumptions as Theorem 2.1, if, in addition, n+
0 , n

−
0 ∈

Lp(Ω) for some p ≥ 2, then the weak solution (u, P, n+, n−,Ψ) of (2.1), (2.2) and (2.3),
satisfying (2.4), enjoys

(2.8) n+, n− ∈ L∞([0, T ], Lp(Ω)), Ψ ∈ L∞([0, T ],W 2,p(Ω)),

and
ˆ

Ω

(|n+|p + |n−|p)(x, t) dx + p(p− 1)

ˆ

Qt

[
(n+)p−2|∇n+|2 + (n−)p−2|∇n−|2

]
dxdt

≤
ˆ

Ω

(|n+
0 |p + |n−

0 |p)(x) dx, 0 ≤ t < T.

(2.9)

Proof. Multiplying (2.1)3 by |n+|p−2n+ and (2.1)4 by |n−|p−2n−, integrating the resulting
equations over Ω, and applying (2.1)5, we obtain that

1

p

d

dt

ˆ

Ω

(|n+|p + |n−|p) dx

+ (p− 1)

ˆ

Ω

(|∇n+|2|n+|p−2 + |∇n−|2|n−|p−2) dx

= −p− 1

p

ˆ

Ω

∇Ψ · ∇(|n+|p − |n−|p) dx

= −p− 1

p

ˆ

Ω

(|n+|p − |n−|p)(n+ − n−) dx ≤ 0,

where we have used in the last step the fact that n+, n− are non-negative, and the inequality

(|n+|p − |n−|p)(n+ − n−) = [(n+)p − (n−)p][n+ − n−] ≥ 0.
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Therefore we obtain that

d

dt

ˆ

Ω

(|n+|p + |n−|p) dx+ (p− 1)

ˆ

Qt

[
(n+)p−2|∇n+|2 + (n−)p−2|∇n−|2

]
dxdt ≤ 0.

This implies (2.9) and completes the proof. �

Proof of Theorem 2.1. Step 1: Existence. We will modify the approach by Schmuck [21].
For T > 0, set the function space

YT ≡
{
y = (n+, n−) : n± ∈ L4([0, T ], L2(Ω))

}
,

equipped with the norm

∥∥(n+, n−)
∥∥
YT

=
∥∥(n+, n−)

∥∥
L4([0,T ],L2(Ω))

.

Now we define a map F : YT 7→ YT as follows. For any y = (n̄+, n̄−), define F (y) = y =
(n+, n−), where y is a solution of the system:

(2.10) −∆Ψ = n̄+ − n̄− in Ω;
∂Ψ

∂ν
= 0 on ∂Ω,

(2.11)





∂tn
+ + (w · ∇)n+ −∆n+ = div([n+]+∇Ψ) in QT ,

∂tn
− + (w · ∇)n− −∆n− = −div([n−]−∇Ψ) in QT ,

(n+, n−) = (n+
0 , n

−
0 ) on Ω× {t = 0},

∂n+

∂ν
=

∂n−

∂ν
= 0 on ∂Ω× [0, T ].

Note that for any f, g ∈ L1(Ω), it holds that

|[f ]+| ≤ |f |, |[f ]+ − [g]+| ≤ |f − g| a.e. Ω.

Since n̄+− n̄− ∈ L4([0, T ], L2(Ω)), it follows from W 2,2-theory of the Laplace equation that
Ψ ∈ L4([0, T ],W 2,2(Ω)), and

(2.12)
∥∥Ψ

∥∥
L4([0,T ],W 2,2(Ω))

≤ C
∥∥n̄+ − n̄−

∥∥
L4([0,T ],L2(Ω))

≤ C
∥∥ȳ

∥∥
YT

.

By the theory of linear parabolic systems [12], there exists a unique solution (n+, n−) of
(2.11) in L∞([0, T ], L2(Ω)) ∩ L2([0, T ], H1(Ω)) for any T > 0. Moreover, by multiplying
(2.11)1 by n+ and (2.11)2 by n−, integrating the resulting equation over Ω, and adding



8 HUAJUN GONG, CHANGYOU WANG, XIAOTAO ZHANG

these two equations, we obtain that

1

2

d

dt

ˆ

Ω

(|n+|2 + |n−|2) dx +

ˆ

Ω

(|∇n+|2 + |∇n−|2) dx

= −
ˆ

Ω

〈∇Ψ, [n+]+∇n+ − [n−]−∇n−〉 dx

≤ C
∥∥∇Ψ

∥∥
L6(Ω)

∥∥|n+|+ |n−|
∥∥
L3(Ω)

∥∥|∇n+|+ |∇n−|
∥∥
L2(Ω)

≤ C‖Ψ‖W 2,2(Ω)(‖n+‖L2(Ω) + ‖n−‖L2(Ω))
1
2

· [(‖n+‖L2(Ω) + ‖n−‖L2(Ω)) + (‖∇n+‖L2(Ω) + ‖∇n−‖L2(Ω))]
1
2

· [‖∇n+‖L2(Ω) + ‖∇n−‖L2(Ω)]

≤ C[‖n̄+‖L2(Ω) + ‖n̄−‖L2(Ω)](‖n+‖L2(Ω) + ‖n−‖L2(Ω))
1
2

· [(‖n+‖L2(Ω) + ‖n−‖L2(Ω)) + (‖∇n+‖L2(Ω) + ‖∇n−‖L2(Ω))]
1
2

· [‖∇n+‖L2(Ω) + ‖∇n−‖L2(Ω)]

≤ 1

2

(
‖∇n+‖2L2(Ω) + ‖∇n−‖2L2(Ω))

+ C
[
1 +

(
‖n̄+‖4L2(Ω) + ‖n̄−‖4L2(Ω)

)]
·
[
‖n+‖2L2(Ω) + ‖n−‖L2(Ω))

2
]
.

(2.13)

This implies that

d

dt

ˆ

Ω

(|n+|2 + |n−|2) dx +

ˆ

Ω

(|∇n+|2 + |∇n−|2) dx

≤ C
[
1 +

(
‖n̄+‖4L2(Ω) + ‖n̄−‖4L2(Ω)

)]
·
[
‖n+‖2L2(Ω) + ‖n−‖L2(Ω))

2
]
.

(2.14)

Applying Gronwall’s inequality, we obtain that

sup
0≤t≤T

ˆ

Ω

(|n+|2 + |n−|2) dx+

ˆ

QT

(|∇n+|2 + |∇n−|2) dxdt

≤ eCt exp
{
C

ˆ t

0

(
‖n̄+‖4L2(Ω) + ‖n̄−‖4L2(Ω)

)
dτ

} ˆ

Ω

(|n+
0 |2 + |n−

0 |2)(x) dx.
(2.15)

For R > 0, if ȳ = (n̄+, n̄−) ∈ YT belongs to

BY
R =

{
ȳ :

∥∥ȳ
∥∥
YT

≤ R
}
,

then (2.15) yields that

∥∥F (ȳ)
∥∥4
YT

=

ˆ T

0

( ˆ

Ω

(|n+|2 + |n−|2)(x, t) dx)2 dt ≤ C0 exp(CT + CR4)T ≤ (
R

2
)4,

provided that T = T1 ∈ (0, 1] is chosen sufficiently small. Hence there exists a small
T = T1 ∈ (0, 1] such that F (ȳ) ∈ BY

R
2

⊂ BY
R .

Next we want to show that F : BY
R 7→ BY

R is a contractive map. For i = 1, 2, let
ȳi =

(
n̄+
i , n̄

−
i

)
∈ BY

R and yi = (n+
i , n

−
i ) = F (ȳi) ∈ BY

R be the solutions of (2.10) and (2.17).

Then n+
1 − n+

2 and n−
1 − n−

2 solve

(2.16) −∆(Ψ1 −Ψ2) = (n̄+
1 − n̄−

1 )− (n̄+
2 − n̄−

2 ) in Ω;
∂(Ψ1 −Ψ2)

∂ν
= 0 on ∂Ω,
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(2.17)





∂t(n
+
1 − n+

2 ) + (w · ∇)(n+
1 − n+

2 )−∆(n+
1 − n+

2 )

= div([n+
1 ]+∇(Ψ1 −Ψ2)) + div(([n+

1 ]+ − [n+
2 ]+)∇Ψ2) in QT ,

∂t(n
−
1 − n−

2 ) + (w · ∇)(n−
1 − n−

2 )−∆(n−
1 − n−

2 )

= −div([n−
1 ]+∇(Ψ1 −Ψ2))− div(([n−

1 ]+ − [n−
2 ]+)∇Ψ2) in QT ,

(n+
1 − n+

2 , n
−
1 − n−

2 ) = (0, 0) on Ω× {t = 0},
∂(n+

1 − n+
2 )

∂ν
=

∂(n−
1 − n−

2 )

∂ν
= 0 on ∂Ω× [0, T ].

Now multiplying (2.17)1 by (n+
1 − n+

2 ), (2.17)2 by (n−
1 − n−

2 ), integrating the resulting
equations over Ω, and adding them together, we obtain that

1

2

d

dt

ˆ

Ω

(|n+
1 − n+

2 |2 + |n−
1 − n−

2 |2) dx

+

ˆ

Ω

(|∇(n+
1 − n+

2 )|2 + |∇(n−
1 − n−

2 )|2) dx

= −
ˆ

Ω

[n+
1 ]+〈∇(Ψ1 −Ψ2),∇(n+

1 − n+
2 )〉+ ([n+

1 ]+ − [n+
2 ]+)〈∇Ψ2,∇(n+

1 − n+
2 )〉 dx

+

ˆ

Ω

[n−
1 ]+〈∇(Ψ1 −Ψ2),∇(n−

1 − n−
2 )〉+ ([n−

1 ]+ − [n−
2 ]+)〈∇Ψ2,∇(n−

1 − n−
2 )〉 dx

≤ C
∥∥∇Ψ2

∥∥
L6(Ω)

(
‖[n+

1 ]+ − [n+
2 ]+‖L3(Ω)‖∇(n+

1 − n+
2 )‖L2(Ω)

+ ‖[n−
1 ]+ − [n−

2 ]+‖L3(Ω)‖∇(n−
1 − n−

2 )‖L2(Ω)

)

+ C
∥∥∇(Ψ1 −Ψ2)

∥∥
L6(Ω)

(
‖[n+

1 ]+‖L3(Ω)‖∇(n+
1 − n+

2 )‖L2(Ω)

+ ‖[n−
1 ]+‖L3(Ω)‖∇(n−

1 − n−
2 )‖L2(Ω)

)

≤ C
∥∥n̄+

2 − n̄−
2

∥∥
L2(Ω)

{
‖n+

1 − n+
2 ‖L2(Ω)‖∇(n+

1 − n+
2 )‖L2(Ω)

+ ‖n+
1 − n+

2 ‖
1
2

L2(Ω)‖∇(n+
1 − n+

2 )‖
3
2

L2(Ω)

+ ‖n−
1 − n−

2 ‖L2(Ω)‖∇(n−
1 − n−

2 )‖L2(Ω)

+ ‖n−
1 − n−

2 ‖
1
2

L2(Ω)‖∇(n−
1 − n−

2 )‖
3
2

L2(Ω)

}

+ C
[∥∥n̄+

1 − n̄+
2

∥∥
L2(Ω)

+
∥∥n̄−

1 − n̄−
2

∥∥
L2(Ω)

]{
‖n+

1 ‖L2(Ω)‖∇(n+
1 − n+

2 )‖L2(Ω)

+ ‖n+
1 ‖

1
2

L2(Ω)‖∇n+
1 ‖

1
2

L2(Ω)‖∇(n+
1 − n+

2 )‖L2(Ω)

+ ‖n−
1 ‖L2(Ω)‖∇(n−

1 − n−
2 )‖L2(Ω)

+ ‖n−
1 ‖

1
2

L2(Ω)‖∇n−
1 ‖

1
2

L2(Ω)‖∇(n−
1 − n−

2 )‖L2(Ω)

}

≤ 1

2

(
‖∇(n+

1 − n+
2 )‖2L2(Ω) + ‖∇(n−

1 − n−
2 )‖2L2(Ω)

)

+ C
(
1 +

∥∥n̄−
1

∥∥4
L2(Ω)

+
∥∥n̄−

2

∥∥4
L2(Ω)

)(
‖n+

1 − n+
2 ‖2L2(Ω) + ‖n−

1 − n−
2 ‖2L2(Ω)

)

+ C
{∥∥n+

1

∥∥
L2(Ω)

∥∥n+
1

∥∥
H1(Ω)

+
∥∥n−

1

∥∥
L2(Ω)

∥∥n−
1

∥∥
H1(Ω)

}

·
[∥∥n̄+

1 − n̄+
2

∥∥2
L2(Ω)

+
∥∥n̄−

1 − n̄−
2

∥∥2
L2(Ω)

]
,

(2.18)
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where we have used the following inequalities: for any f, g ∈ H1(Ω),



‖f+‖L3(Ω) ≤ ‖f‖L3(Ω) ≤ C‖f‖

1
2

L2(Ω)‖∇f‖
1
2

L2(Ω),

‖f+ − g+‖L3(Ω) ≤ ‖f − g‖L3(Ω) ≤ C‖f − g‖
1
2

L2(Ω)‖∇(f − g)‖
1
2

L2(Ω).

Therefore we conclude that
d

dt

ˆ

Ω

(|n+
1 − n+

2 |2 + |n−
1 − n−

2 |2) dx+

ˆ

Ω

(|∇(n+
1 − n+

2 )|2 + |∇(n−
1 − n−

2 )|2) dx

≤ C
(
1 +

∥∥n̄−
1

∥∥4
L2(Ω)

+
∥∥n̄−

2

∥∥4
L2(Ω)

)(
‖n+

1 − n+
2 ‖2L2(Ω) + ‖n−

1 − n−
2 ‖2L2(Ω)

)

+C
{∥∥n+

1

∥∥
L2(Ω)

∥∥n+
1

∥∥
H1(Ω)

+
∥∥n−

1

∥∥
L2(Ω)

∥∥n−
1

∥∥
H1(Ω)

}

·
[∥∥n̄+

1 − n̄+
2

∥∥2
L2(Ω)

+
∥∥n̄−

1 − n̄−
2

∥∥2
L2(Ω)

]
.(2.19)

Applying Gronwall’s inequality, we obtain that

sup
0≤t≤T

ˆ

Ω

(|n+
1 − n+

2 |2 + |n−
1 − n−

2 |2) dx +

ˆ

Q

(|∇(n+
1 − n+

2 )|2 + |∇(n−
1 − n−

2 )|2) dxdt

≤ α(T )β
1
2 (T )

{ˆ T

0

[
∥∥n̄+

1 − n̄+
2

∥∥4
L2(Ω)

+
∥∥n̄−

1 − n̄−
2

∥∥4
L2(Ω)

] dt
} 1

2

(2.20)

where

α(T ) = exp
(
C

ˆ T

0

(
1 +

∥∥n̄−
1

∥∥4
L2(Ω)

+
∥∥n̄−

2

∥∥4
L2(Ω)

)
dt
)
,

and

β(T ) =
(∥∥|n+

1 |
∥∥2
L∞([0,T ],L2(Ω))

+
∥∥|n−

1 |
∥∥2
L∞([0,T ],L2(Ω))

) ˆ T

0

(
∥∥n+

1

∥∥2
H1(Ω)

+
∥∥n−

1

∥∥2
H1(Ω)

}
dt.

It follows from (n̄+
1 , n̄

−
1 ) ∈ BY

R and (2.15) that for 0 < T ≤ T1,

max
{
α(T ), β(T )

}
≤ C(R).

Hence (2.20) yields that for 0 < T ≤ T1,

∥∥(n+
1 , n

−
1 )− (n+

2 , n
−
2 )

∥∥4
YT

≤
ˆ T

0

{ˆ

Ω

(|n+
1 − n+

2 |2 + |n−
1 − n−

2 |2) dx
}2

dt

≤ T
{

sup
0≤t≤T

ˆ

Ω

(|n+
1 − n+

2 |2 + |n−
1 − n−

2 |2) dx
}2

≤ Tα2(T )β(T )

ˆ T

0

[
∥∥n̄+

1 − n̄+
2

∥∥4

L2(Ω)
+
∥∥n̄−

1 − n̄−
2

∥∥4
L2(Ω)

] dt

≤ C(R)T
∥∥(n̄+

1 , n̄
−
1 )− (n̄+

2 , n̄
−
2 )

∥∥4
YT

≤ 2−4
∥∥(n̄+

1 , n̄
−
1 )− (n̄+

2 , n̄
−
2 )

∥∥4
YT

,(2.21)

provided T = T1 ≤ min{T1,
1
16C(R)

}
.

This implies that F : BY
R 7→ BY

R is a contractive map with a contraction constant 1
2 ,

provided T2 and R are chosen sufficiently small. Therefore, there exists a unique fixed point
y = (n+, n−) ∈ BY

R of F , i.e., y = F (y). In particular (n+, n−,Ψ) is a solution on the
interval [0, T2] of

(2.22) −∆Ψ = n+ − n− in Ω;
∂Ψ

∂ν
= 0 on ∂Ω,
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(2.23)





∂tn
+ + (w · ∇)n+ −∆n+ = div([n+]+∇Ψ) in QT ,

∂tn
− + (w · ∇)n− −∆n− = −div([n−]+∇Ψ) in QT ,

(n+, n−) = (n+
0 , n

−
0 ) on Ω× {t = 0},

∂n+

∂ν
=

∂n−

∂ν
= 0 on ∂Ω× [0, T2],

such that n± ∈ L∞
t L2

x ∩ L2
tH

1
x(QT2), Ψ ∈ L∞

t H2
x ∩ L2

tH
3
x(QT2), and∥∥(n+, n−)

∥∥
L∞

t L2
x∩L2

tH
1
x(QT2)

+
∥∥Ψ

∥∥
L∞

t H2
x∩L2

tH
3
x(QT2 )

≤ C
(∥∥(n+

0 , n
−
0 )

∥∥
L2(Ω)

, T2

)
.(2.24)

For such a solution (n+, n−,Ψ) to (2.22) and (2.23), let u ∈ L∞([0, T2],H) ∩ L2([0, T2],V)
be a weak solution to the system:

(2.25)





∂tu+ (w · ∇)u−∆u+∇P = −(n+ − n−)∇Ψ in QT ,

divu = 0 in QT ,

u = u0 in Ω× {0},
u = 0 on ∂Ω× [0, T2],

Since (n+−n−)∇Ψ ∈ L∞([0, T2], L
3
2 (Ω)), it follows from the regularity theory of the Stokes

equation that ∂tu,∇2u ∈ L
3
2 (QT2), and ∇P ∈ L

3
2 (QT2)), and∥∥u

∥∥
L∞([0,T2],L2(Ω))

+
∥∥u

∥∥
L2([0,T2],H1(Ω))

+
∥∥(∂tu,∇2u)

∥∥
L

3
2 (QT2)

+
∥∥∇P

∥∥
L

3
2 (QT2)

≤ C(‖u0‖L2(Ω), ‖(n+
0 , n

−
0 )‖L2(Ω), T2).

(2.26)

From the estimates (2.24) and (2.26), we can extend (u, P, n+, n−,Ψ) beyond T2 to be a
global weak solution of (2.1)-(2.2)-(2.3) on the interval [0, T ] such that both (2.24) and
(2.26) hold with T2 replaced by T . Finally, we know that by Lemma 2.1, (u, P, n+, n−,Ψ)
is also a weak solution of the system (2.1) in QT .

It is not hard to verify that since the solution (u, P, n+, n−,Ψ) to (2.1) constructed in Step
1 satisfies the estimates (2.24) and (2.26) (with T2 = T ), the Lp-theory of linear parabolic

equations [12] implies that ∂tn
+, ∂tn

− ∈ L
5
4 (QT ). From

(2.27) −∆(∂tΨ) = ∂tn
+ − ∂tn

− in Ω;
∂

∂ν
(∂tΨ) = 0 on ∂Ω,

we can conclude by the Lp-theory of linear elliptic equations that ∇2∂tΨ ∈ L
5
4 (QT ).

Multiplying the equation (2.27) by Ψ, (2.1)1 by u, integrating over Ω and applying inte-
gration by parts, and then adding these two resulting equations together, we can obtain
that

ˆ

Ω

(|u|2 + |∇Ψ|2)(x, t) dx + 2

ˆ

Qt

(|∇u|2 + |n+ − n−|2 + (n+ + n−)|∇Ψ|2) dxds

=

ˆ

Ω

(|u0|2 + |∇Ψ0|2)(x) dx + 2

ˆ

Qt

(n+ − n−)(w − u) · ∇Ψ dxds

(2.28)

holds for all 0 < t ≤ T .

Step 2 Uniqueness. Next we want to prove that there exists at most one weak solution
of (2.1)-(2.2)-(2.3) satisfying the estimates (2.24) and (2.26). Let (u1, P1,Ψ1, n

+
1 , n

−
1 ) and

(u2, P2,Ψ2, n
+
2 , n

−
2 ) be two weak solutions of (2.1), (2.2), and (2.3), satisfying (2.24) and

(2.26). Set

U = u1 − u2, P = P1 − P2, Ψ = Ψ1 −Ψ2, N+ = n+
1 − n+

2 , N− = n−
1 − n−

2 .
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Then

(2.29)





∂tU + (w · ∇)U −∆U +∇P = −(N+ −N−)∇Ψ1 − (n+
2 − n−

2 )∇Ψ,

div U = 0,
∂tN

+ + (w · ∇)N+ −∆N+ = div(N+∇Ψ1) + div(n+
2 ∇Ψ),

∂tN
− + (w · ∇)N− −∆N− = −div(N−∇Ψ1)− div(n−

2 ∇Ψ),
−∆Ψ = N+ −N−,

subject to the initial and boundary condition

(2.30)




(U,N+, N−)

∣∣
t=0

= (0, 0, 0) on Ω,

U = 0,
∂N+

∂ν
=

∂N−

∂ν
=

∂Ψ

∂ν
= 0 on ∂Ω× (0, T ).

Multiplying (2.29)1 by U , (2.29)3 by N+, (2.29)4 by N−, and (2.29)5 by Ψ, integrating the
resulting equations over Ω, and adding all these equations together, we obtain that

1

2

d

dt

ˆ

Ω

(|U |2 + |∇Ψ|2 + |N+|2 + |N−|2) dx

+

ˆ

Ω

(|∇U |2 + |N+ −N−|2 + |∇N+|2 + |∇N−|2 + (n+
2 + n−

2 )|∇Ψ|2) dx

= −
ˆ

Ω

[
(N+ −N−)U · ∇Ψ1 + (n+

2 − n−
2 )U · ∇Ψ− (N+ −N−)w · ∇Ψ

+ (N+ −N−)∇Ψ1 · ∇Ψ+N+∇Ψ1 · ∇N+ + n+
2 ∇Ψ · ∇N+ − n−

1 ∇Ψ · ∇N−
]
dx

≤ 1

2

∥∥N+ −N−
∥∥2
L2(Ω)

+ C‖U‖2L3(Ω)‖∇Ψ1‖2L6(Ω) + C‖w‖2L∞(Q)

∥∥∇Ψ
∥∥2
L2(Ω)

+
∥∥(n+

2 , n
−
2 )

∥∥2

L6(Ω)

∥∥U
∥∥2
L2(Ω)

+ C
(
1 +

∥∥∇Ψ1

∥∥2
L6(Ω)

)∥∥∇Ψ‖2L3(Ω)

+ C‖∇Ψ1‖2L6(Ω)

∥∥N+
∥∥2
L3(Ω)

+
∥∥(n−

1 , n
+
2 )

∥∥2
L6(Ω)

‖∇Ψ‖2L3(Ω)

+
1

2

(∥∥∇N+
∥∥2
L2(Ω)

+
∥∥∇N−

∥∥2
L2(Ω)

)
.

(2.31)

By the interpolation inequality, Sobolev’s embedding theorem, and (2.24), we have

∥∥U
∥∥2
L3(Ω)

≤ C
∥∥U

∥∥
L2(Ω)

∥∥∇U
∥∥
L2(Ω)

,
∥∥∇Ψ1(t)

∥∥
L6(Ω)

≤ C‖Ψ1(t)‖H2(Ω) ≤ C, a.e. t ∈ [0, T ],

∥∥(n+
2 , n

−
2 )

∥∥
L6(Ω)

+
∥∥n−

1

∥∥
L6(Ω)

≤ C

2∑

i=1

∥∥(n+
i , n

−
i )

∥∥
H1(Ω)

,

∥∥N+
∥∥2

L3(Ω)
≤ C

∥∥N+
∥∥2
L2(Ω)

+ C
∥∥N+

∥∥
L2(Ω)

∥∥∇N+
∥∥
L2(Ω)

,

∥∥∇Ψ
∥∥2
L3(Ω)

≤
∥∥∇Ψ

∥∥
L2(Ω)

∥∥∇Ψ
∥∥
L6(Ω)

≤ C
∥∥∇Ψ

∥∥
L2(Ω)

∥∥Ψ
∥∥
H2(Ω)

≤ C
∥∥∇Ψ

∥∥
L2(Ω)

∥∥N+ −N−
∥∥
L2(Ω)

.
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Putting these estimates into (2.31) and applying Young’s inequality, we would obtain

d

dt

ˆ

Ω

(|U |2 + |∇Ψ|2 + |N+|2 + |N−|2) dx

+

ˆ

Ω

(|∇U |2 + |N+ −N−|2 + |∇N+|2 + |∇N−|2 + (n+
2 + n−

2 )|∇Ψ|2) dx

≤ C
(
1 + ‖w‖2L∞(Q) +

∥∥(n−
1 , n

+
2 )

∥∥2

H1(Ω)

)

·
(
‖U‖2L2(Ω) +

∥∥N+
∥∥2
L2(Ω)

+
∥∥∇Ψ‖2L2(Ω)

)

+
1

2

(
‖∇N+‖2L2(Ω) + ‖∇U‖2L2(Ω) +

∥∥N+ −N−
∥∥2
L2(Ω)

)
.

(2.32)

This, combined with

γ(T ) = exp
(
C

ˆ T

0

(1 + ‖w|‖2L∞(Q) +
∥∥(n−

1 , n
+
2 )

∥∥2
H1(Ω)

) dt
)
< ∞,

implies that for any 0 < t < T ,

ˆ

Ω

(|U |2 + |∇Ψ|2 + |N+|2 + |N−|2)(x, t) dx

≤ γ(T )

ˆ

Ω

(|U |2 + |∇Ψ|2 + |N+|2 + |N−|2)(x, 0) dx = 0.

This completes the proof. �

Next we want to provide a global L
5
3 -estimate of the pressure function P of the weak

solution (u, P, n+, n−,Ψ) to the system (2.1). More precisely, we have

Theorem 2.2. Assume n+
0 , n

−
0 ∈ L2(Ω) are nonnegative, u0 ∈ H, and w ∈ C∞(QT )

satisfies divw = 0 in QT and w ·ν = 0 on ∂Ω×[0, T ]. let (u, P, n+, n−,Ψ), with

ˆ

Ω

P dx = 0,

be the weak solution of the system (2.1) in QT that satisfies (2.4). Then P ∈ L
5
3 (QT ), and

(2.33)
∥∥P

∥∥
L

5
3 (QT )

≤ C
(
1 + ‖w‖L∞

t L2
x∩L2

tH
1
x(QT ) + ‖n+

0 ‖L2(Ω) + ‖n−
0 ‖L2(Ω) + ‖u0‖L2(Ω)

)
.

Furthermore, for every nonnegative φ ∈ C∞
0 (QT ), it holds that

2

ˆ

QT

|∇u|2φdxdt =

ˆ

QT

|u|2(∂tφ+∆φ) dxdt +

ˆ

QT

(|u|2w + 2Pu) · ∇φdxdt

− 2

ˆ

QT

(
∇Ψ⊗∇Ψ− 1

2
|∇Ψ|2I3

)
: ∇(uφ) dxdt.

(2.34)

Proof. The equation (2.1)1,2 can be written as the Stokes equation:

{
∂tu−∆u+∇P = f,

divu = 0,
in QT ,
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where f = −(w · ∇)u +∆Ψ∇Ψ. By Hölder’s inequality, we have
∥∥f

∥∥
L

5
3 ([0,T ],L

15
14 (Ω))

≤ C
[∥∥w

∥∥
L10

t L
30
13
x (QT )

∥∥∇u
∥∥
L2(QT )

+
∥∥n+ − n−

∥∥
L∞([0,T ],L2(Ω))

∥∥∇Ψ
∥∥
L∞([0,T ],L6(Ω)

]

≤ C
(
1 + ‖w‖L∞

t L2
x∩L2

tH
1
x(QT ) + ‖n+

0 ‖L2(Ω) + ‖n−
0 ‖L2(Ω) + ‖u0‖L2(Ω)

)
.

(2.35)

Here we have used the Sobolev-interpolation inequality:
∥∥w

∥∥
L10

t L
30
13
x (QT )

≤ C
∥∥w

∥∥
L∞

t L2
x∩L2

tH
1
x(QT )

.

In particular, f ∈ L
5
3 ([0, T ], L

15
14 (Ω)). Applying the theorem by Sohr-Wahl [26] and (2.35),

we obtain that ∇P ∈ L
5
3 ([0, T ], L

15
14 (Ω)) and

∥∥∇P
∥∥
L

5
3 ([0,T ],L

15
14 (Ω))

≤ C
∥∥f

∥∥
L

5
3 ([0,T ],L

15
14 (Ω))

≤ C
(
1 +

∥∥w
∥∥
L∞

t L2
x∩L2

tH
1
x(QT )

+ ‖n+
0 ‖L2(Ω) + ‖n−

0 ‖L2(Ω) + ‖u0‖L2(Ω)

)
.

This, combined with Sobolev’s inequality, implies that P ∈ L
5
3 (QT ) satisfies (2.33).

Mollifying u, P, f, w · ∇u in R
4, we obtain sequences of smooth functions um, Pm, fm, for

m ∈ N
+. Then, for m sufficiently large,

(2.36) ∂tum −∆um +∇Pm = fm; div um = 0,

holds in a small neighborhood of supp φ. Moreover,

um → u in L3
loc(QT ), ∇um → ∇u in L2

loc(QT ),

Pm → P in L
5
3

loc(QT ), fm → f in (L2
tL

3
2
x )loc(QT ).

Multiplying (3.28) by 2umφ and integrating by parts, we obtain that

2

ˆ

QT

|∇um|2φdxdt =

ˆ

QT

|um|2(∂tφ+∆φ) dxdt + 2

ˆ

QT

Pmum · ∇φdxdt

+ 2

ˆ

QT

fm · umφdxdt.

Sending m → ∞, we have

2

ˆ

QT

|∇u|2φdxdt =

ˆ

QT

|u|2(∂tφ+∆φ) dxdt + 2

ˆ

QT

Pu · ∇φdxdt

+ 2

ˆ

QT

(−w · ∇u+∆Ψ∇Ψ) · uφdxdt.

Note that

−2

ˆ

QT

w · ∇u · uφdxdt =

ˆ

QT

|u|2w · ∇φdxdt,

and

2

ˆ

QT

∆Ψ∇Ψ · uφdxdt = −2

ˆ

QT

(
∇Ψ⊗∇Ψ − 1

2
|∇Ψ|2I3

)
: ∇(uφ) dxdt.

Thus we show that (2.34) holds. This completes the proof. �

Now recall the well-known Aubin-Lions’ compactness Lemma, whose proof can be found
at [27] section III.
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Lemma 2.2. Let X0, X1, X2 be three Banach spaces, with X0 and X2 self-reflexive, that
satisfy X0 ⊂ X1 ⊂ X2. Suppose that the embedding of X0 into X1 is compact and the
embedding of X1 into X2 is continuous. For p, q ∈ (0,∞), assume that

{uk}k∈N ⊂ Lp([0, T ], X0)

is a bounded sequence such that each uk has a weak derivative ∂tuk and the sequence

{∂tuk}k∈N ∈ Lq([0, T ], X2)

is also bounded. Then there is a subsequence of uk converging strongly in Lp([0, T ], X1).

Now we utilize Theorem 2.1 to obtain a suitable weak solution to the system (1.1). For
this, we adapt the “retarded” mollifier technique by Caffarelli-Kohn-Nirenberg [1] on the
Navier-Stokes equation.

Let ζ ∈ C∞
0 (R4) be non-negative and satisfy

ˆ

R4

ζ dxdt = 1 and supp ζ ⊂
{
(x, t) ∈ R

4 : |x|2 < t, 1 < t < 2
}
.

For f ∈ L1(QT ), let f̄ = R
3 × R 7→ R

3 be

f̄ =

{
f(x, t), if (x, t) ∈ ΩT ,

0, otherwise.

Define the “retarded” mollifier of f by

(2.37) Θǫ(f)(x, t) = ǫ−4

ˆ

R4

ζ(
y

ǫ
,
τ

ǫ
)f̄(x− y, t− τ)dydτ.

Then it is well-known (see [1] Lemma A.8) that




div(Θǫ(f)) = 0 if divf = 0,

sup
0≤t≤T

ˆ

Ω

|Θǫ(f)|2(x, t) dx +

ˆ

QT

|∇(Θǫ(f))|2 dxdt

≤ sup
0≤t≤T

ˆ

Ω

|f |2(x, t) dx +

ˆ

QT

|∇f |2 dxdt,

and if f ∈ Lp(QT ) for 1 ≤ p < ∞, then Θǫ(f) → f in Lp(QT ) as ǫ → 0. Since Θǫ(f) · ν
may not be 0 on ∂Ω × [0, T ], we want to modify it as follows. For δ > 0, let Ωδ be the
δ-neighborhood of Ω, i.e. Ωδ =

{
y ∈ R

3 : dist(y,Ω) ≤ δ
}
, and let Φδ : Ω → Ωδ be a smooth

differeomorphism such that ∥∥Φδ − Id
∥∥
C1(Ω)

≤ Cδ,

where Id(x) = x, x ∈ Ω, is the identity map. From the definition, we see that Θǫ(f) = 0 in

(R3\Ω2ǫ)×[0, T ]. Hence Θ̃ǫ(f)(x, t) = Θǫ(f(Φ2ǫ(x), t)), (x, t) ∈ QT , satisfies that Θ̃ǫ(f) = 0
on ∂Ω× [0, T ]. If div(f) = 0 in QT , then

divΘ̃ǫ(f)(x, t) = tr[∇Θǫ(f)(Φ2ǫ(x), t)(∇Φ2ǫ(x)− I3)], (x, t) ∈ QT .

Therefore we have that

sup
0≤t≤T

ˆ

Ω

|Θ̃ǫ(f)|2(x, t) dx +

ˆ

QT

|∇(Θ̃ǫ(f))|2 dxdt

≤ C
(

sup
0≤t≤T

ˆ

Ω

|f |2(x, t) dx +

ˆ

QT

|∇f |2 dxdt
)
,
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and
ˆ

QT

|div(Θ̃ǫ(f))|2 dxdt ≤ Cǫ2
ˆ

QT

|∇f |2 dxdt.

For 0 < t < T , let gǫ(t) ∈ C∞(Ω) satisfy

ˆ

Ω

gǫ(x, t) dx = 0, and solve

−∆gǫ(x, t) = div(Θ̃ǫ(f))(x, t) in Ω;
∂gǫ

∂ν
(x, t) = 0 on ∂Ω.

By the standard elliptic theory, we have that for any 0 < t < T ,




ˆ

Ω

|∇gǫ|2(x, t) dx ≤ C

ˆ

Ω

|Θ̃ǫ(f))|2(x, t) dx ≤ C

ˆ

Ω

|f |2(x, t) dx,
ˆ

Ω

|∇2gǫ|2(x, t) dx ≤ C

ˆ

Ω

|divΘ̃ǫ(f))|2(x, t) dx ≤ Cǫ2
ˆ

Ω

|∇f |2(x, t) dx.

Now we define Θ̂ǫ(f) ∈ C∞(Ω× (0, T ),R3) by letting

Θ̂ǫ(f)(x, t) = Θ̃ǫ(f)(x, t) +∇gǫ(x, t), (x, t) ∈ Ω× [0, T ].

Then it is easy to check that for f ∈ L∞
t L2

x ∩ L2
tH

1
x(QT ), with div(f) = 0 in QT ,

div(Θ̂ǫ(f)) = 0 in QT , Θ̂ǫ(f) · ν = 0 on ∂Ω× [0, T ],

sup
0≤t≤T

ˆ

Ω

|Θ̂ǫ(f)|2(x, t) dx +

ˆ

QT

|∇(Θ̂ǫ(f))|2 dxdt

≤ C
(

sup
0≤t≤T

ˆ

Ω

|f |2(x, t) dx +

ˆ

QT

|∇f |2 dxdt
)
,

and

Θ̂ǫ(f) → f in L∞
t L2

x ∩ L2
tH

1
x(QT ), as ǫ → 0.

For any large positive integerM , set ǫ = T
M
. Let (uM , PM , n+

M , n−
M ,ΨM ) solve the following

system of equations:

(2.38)





∂tuM + (Θ̂ǫ(uM ) · ∇)uM −∆uM +∇PM = −(n+
M − n−

M )∇ΨM ,

div uM = 0,

∂tn
+
M + (Θ̂ǫ(uM ) · ∇)n+

M −∆n+
M = div (n+

M∇ΨM ),

∂tn
−
M + (Θ̂ǫ(uM ) · ∇)n−

M −∆n−
M = −div (n−

M∇ΨM ),
−∆ΨM = n+

M − n−
M .

in QT ,

subject to the initial and boundary condition (2.2) and (2.3).

Since Θ̂ǫ(uM ) = 0 in Qǫ, the system (2.38) decomposes into the PNP equation and the
inhomogeneous Stokes equation, both of which can be solved in the standard ways. While

in the interval [ǫ, 2ǫ], Θ̂ǫ(uM ) are smooth and their values depend only on the values of uM

and ΨM at intervale [0, ǫ]. Hence (uM , PM , n+
M , n−

M ,ΨM ) of (2.38) on the interval Ω× [ǫ, 2ǫ],

along with the initial condition (uM , n+
M , n−

M )(·, ǫ) and the boundary condition (2.3), can be
solved by Theorem 2.1. Keeping this process in each interval (mǫ, (m+1)ǫ), 0 ≤ m ≤ M−1,
we obtain a global solution (uM , PM , n+

M , n−
M ,ΨM ) to (2.38), (2.2), and (2.3).

It follows from Lemma 2.1, Proposition 2.1 (for p = 2), (2.24) and (2.26) of Theorem 2.1,
and (2.33) of Theorem 2.2 that {uM} is bounded in L∞

t L2
x ∩ L2

tH
1
x(QT ), {n±

M} are non-
negative, and bounded in L∞

t L2
x ∩ L2

tH
1
x(QT ), ΨM is bounded in L∞

t H2
x ∩ L2

tH
3
x(QT ), and

{PM} is bounded in L
5
3 (QT ).
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By the equations (2.38)1, (2.38)3, (2.38)4, we have that




∂tuM = −div (uM ⊗ Θ̂ǫ(uM )−∇uM + PMI3)− (n+
M − n−

M )∇ΨM ,

∂tn
+
M = −div (n+

M Θ̂ǫ(uM )−∇n+
M − n+

M∇ΨM ),

∂tn
−
M = −div(n−

M Θ̂ǫ(uM )−∇n−
M + n−

M∇ΨM ).

It is straightforward to see that {∂tuM}M∈N , {∂tn+
M}M∈N , {∂tn−

M}M∈N are bounded in the
space

L
5
3 ([0, T ],W−1,52 (Ω)).

Hence we can apply Lemma 2.2 with




X0 := H1(Ω),
X1 := L2(Ω),

X2 := W−1, 52 ,

to conclude that there exist u ∈ L∞
t L2

x ∩ L2
tH

1
x(QT ), n± ∈ L∞

t L2
x ∩ L2

tH
1
x(QT ), Ψ ∈

L∞
t H2

x∩L2
tH

3
x(QT ), and P ∈ L

5
3 (QT ) such that as M → ∞, after passing to a subsequence,

(2.39) um ⇀ u in L2
tH

1
x(QT ), uM → u in Lq(QT ) ∀1 < q <

10

3
,

(2.40)

{
(n+

M , n−
M ) ⇀ (n+, n−) in L2

tH
1
x(QT ),

(n+
M , n−

M ) → (n+, n−) in Ll(ΩT ) ∀1 < l < 10
3 ,

(2.41) ∇ΨM → ∇Ψ in L4(QT ),

and

(2.42) PM ⇀ P in L
5
3 (QT ).

With (2.39), (2.40), (2.41), and (2.42), we can easily verify that (u, P, n+, n−,Ψ) is a weak
solution of (1.1), (2.2), and (2.3).

Since (uM , n+
M , n−

M ,ΨM ) satisfies the global energy equality (2.28), with (u, n+, n−,Ψ) and

w replaced by (uM , n+
M , n−

M ,ΨM ) and Θ̂ǫ(uM ) respectively, and since

n+
M → n+, n−

M → n−, Θ̂ǫ(uM ) → u, ∇ΨM → ∇Ψ in L3(QT ),

it is not hard to verify that as ǫ → 0,

2

ˆ

Qt

(n+
M − n−

M )(Θ̂ǫ(uM )− u) · ∇ΨM dxds → 0, ∀0 < t ≤ T,

and hence for any 0 < t < T ,
ˆ

Ω

(|u|2 + |∇Ψ|2) dx+ 2

ˆ

Qt

(|∇u|2 + |n+ − n−|2 + (n+ + n−)|∇Ψ|2) dxds

≤ lim inf
ǫ→0

{ ˆ

Ω

(|uM |2 + |∇ΨM |2) dx + 2

ˆ

Qt

(|∇uM |2 + |n+
M − n−

M |2 + (n+
M + n−

M )|∇ΨM |2) dxds
}

= lim inf
ǫ→0

( ˆ

Ω

(|u0|2 + |∇Ψ0|2) dx+ 2

ˆ

Qt

(n+
M − n−

M )(Θ̂ǫ(uM )− uM ) · ∇ΨM dxds
)

=

ˆ

Ω

(|u0|2 + |∇Ψ0|2) dx,

which yields that (u, n+, n−,Ψ) satisfies the global energy inequality (1.9).
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Finally we need to verify that (u, P, n+, n−,Ψ) satisfies the local energy inequality (1.7).
For this, consider a test function φ ∈ C∞(QT ) with φ ≥ 0 and supp φ ⋐ QT . By Theorem
2.2, we have

2

ˆ

QT

|∇uM |2φdxdt =

ˆ

QT

|uM |2(∂tφ+∆φ) dxdt

+

ˆ

QT

(|uM |2Θ̂ǫ(uM ) + 2PMuM ) · ∇φdxdt

− 2

ˆ

QT

(
∇ΨM ⊗∇ΨM − 1

2
|∇ΨM |2I3

)
: ∇(uMφ) dxdt.

(2.43)

As M → ∞, by the lower semicontinuity we have that

2

ˆ

QT

|∇u|2φdxdt ≤ lim inf
M→∞

ˆ

QT

|∇uM |2φdxdt,

while by (2.39)–(2.42) and Θ̂ǫ(uM ) → u in L3(QT ) as ǫ → 0, we have

ˆ

QT

|uM |2(∂tφ+∆φ) dxdt +

ˆ

QT

(|uM |2Θ̂ǫ(uM ) + 2PMuM ) · ∇φdxdt

− 2

ˆ

QT

(
∇ΨM ⊗∇ΨM − 1

2
|∇ΨM |2I3

)
: ∇(uMφ) dxdt

→
ˆ

QT

|u|2(∂tφ+∆φ) dxdt +

ˆ

QT

(|u|2u+ 2Pu) · ∇φdxdt

− 2

ˆ

QT

(
∇Ψ ⊗∇Ψ− 1

2
|∇Ψ|2I3

)
: ∇(uφ) dxdt.

Hence (1.7) follows.

3. the ǫ-regularity, part I

In this section, we will prove the partial regularity of suitable weak solutions to (1.1). The
crucial steps are two levels of ǫ-regularities.

For (x, t) ∈ QT and r > 0, set

Br(x) =
{
y ∈ R

3 : |y − x| < r
}
, Qr(x, t) =

{
(y, τ) | |y − x| < r, t− r2 < τ < t

}
,

and denote Br(0) and Qr(0, 0) by Br and Qr.

Lemma 3.1. There exist ǫ0 > 0 and θ0 ∈ (0, 1
2 ) such that if (u, P, n+, n−,Ψ) is a suitable

weak solution of the system (1.1) in QT , which satisfies, for a (x0, t0) ∈ QT and 0 < r0 <

min
{
dist(x0, ∂Ω),

√
t0
}
,

(3.1)

r−2
0

ˆ

Qr0(x0,t0)

|u|3 dxdt+
(
r−1
0

ˆ

Qr0 (x0,t0)

|∇Ψ|4 dxdt
) 3

4 +
(
r−2
0

ˆ

Qr0(x0,t0)

|P | 32 dxdt
)2

< ǫ30,
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then

(θ0r0)
−2

ˆ

Qθ0r0
(x0,t0)

|u|3 dxdt+
(
(θ0r0)

−2

ˆ

Qθ0r0
(x0,t0)

|P | 32 dxdt
)2

≤ 1

2

[
r−2
0

ˆ

Qr0(x0,t0)

|u|3 dxdt +
(
r−1
0

ˆ

Qr0 (x0,t0)

|∇Ψ|4 dxdt
) 3

4

+
(
r−2
0

ˆ

Qr0(x0,t0)

|P | 32 dxdt
)2]

.

(3.2)

Proof. For z0 = (x0, t0) ∈ QT and r0 > 0, define the scaling functions
(
ũ, P̃ , ñ+, ñ−, Ψ̃

)
(x, t) =

(
r0u, r

2
0P, n

+, n−,Ψ
)
(x0 + r0x, t0 + r20t).

We can verify that if (u, P, n+, n−,Ψ) solves (1.1), then
(
ũ, P̃ , ñ+, ñ−, Ψ̃

)
solves the following

system:

(3.3)





∂tũ+ (ũ · ∇)ũ −∆ũ+∇P̃ = −r20(ñ
+ − ñ−)∇Ψ̃,

div ũ = 0,

∂tñ
+ + (ũ · ∇)ñ+ −∆ñ+ = div(ñ+∇Ψ̃),

∂tñ
− + (ũ · ∇)ñ− −∆ñ− = −div(ñ−∇Ψ̃),

−∆Ψ̃ = r20(ñ
+ − ñ−),

From (3.3)5, we can see that

−r20(ñ
+ − ñ−)∇Ψ̃ = ∆Ψ̃ · ∇Ψ̃ = div(∇Ψ̃ ⊗∇Ψ̃− 1

2
|∇Ψ̃|2I3).

Thus (3.3)1 can be rewritten as

(3.4) ∂tũ+ (ũ · ∇)ũ−∆ũ+∇P̃ = div(∇Ψ̃ ⊗∇Ψ̃− 1

2
|∇Ψ̃|2I3).

Because of the invariance of the first four equations of (3.3) under translations and scalings,
we will assume z0 = (0, 0) and r0 = 1. We prove (3.2) by contradication. Suppose the
conclusion were false. Then for any θ ∈ (0, 1

2 ), there would exist a sequence of suitable weak

solutions (ui, P
i, n+

i , n
−
i ,Ψi) of (1.1) in Q1 such that

(3.5)

ˆ

Q1

|ui|3 dxdt+
( ˆ

Q1

|∇Ψi|4 dxdt
) 3

4 +
( ˆ

Q1

|Pi|
3
2 dxdt

)2
= ǫ3i → 0,

and

θ−2

ˆ

Qθ

|ui|3 dxdt+
(
θ−2

ˆ

Qθ

|Pi|
3
2 dxdt

)2

>
1

2

[ˆ

Q1

|ui|3 dxdt+
( ˆ

Q1

|∇Ψi|4) dxdt
) 3

4 +
( ˆ

Q1

|Pi|
3
2 dxdt

)2]
.

(3.6)

Now we define the blowing up sequences vi =
ui

ǫi
, Ri =

Pi

ǫi
, Φi =

Ψi

ǫi
on Q1. Then (vi, Ri)

solves the system

(3.7)

{
∂tvi + ǫivi · ∇vi −∆vi +∇Ri = ǫidiv

(
∇Φi ⊗∇Φi − 1

2 |∇Φi|2I3
)
,

divvi = 0,

and satisfies

(3.8)

ˆ

Q1

|vi|3 dxdt+
( ˆ

Q1

|∇Φi|4 dxdt
) 3

4 +
( ˆ

Q1

|Ri|
3
2 dxdt

)2
= 1,
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θ−2

ˆ

Qθ

|vi|3 dxdt+
(
θ−2

ˆ

Qθ

|Ri|
3
2 dxdt

)2
>

1

2
.(3.9)

Moreover, since (ui, Pi,Ψi) satisfies the local energy inequality (1.7), we can see that
(vi, Ri,Φi) satisfies a rescaled version of (1.7): for any 0 ≤ φ ∈ C∞

0 (Q1),

2

ˆ

Q1

|∇vi|2φdxdt

≤
ˆ

Q1

|vi|2(φt +∆φ) dxdt +

ˆ

Q1

(ǫi|vi|2 + 2Ri)vi · ∇φdxdt

− 2

ˆ

Q1

ǫi(∇Φi ⊗∇Φi −
1

2
|∇Φi|2I3) : ∇(viφ) dxdt

≤
ˆ

Q1

|vi|2(φt +∆φ) dxdt +

ˆ

Q1

(ǫi|vi|2 + 2Ri)vi · ∇φdxdt

+ Cǫi

ˆ

Q1

|∇Φi|2(φ+ |vi||∇φ|) dxdt +
ˆ

Q1

|∇vi|2φdxdt.

(3.10)

By choosing suitable test functions φ, (3.10) and (3.8) imply that vi ∈ L∞
t L2

x ∩ L2
tH

1
x(Q 1

2
)

and there exists C > 0 such that

(3.11) sup
i≥1

∥∥vi
∥∥
L∞

t L2
x∩L2

tH
1
x(Q 1

2
)
≤ C.

Moreover, we see from (3.7) that

(3.12)
∥∥∂tvi

∥∥
L

3
2 ([−1,0],W−1, 3

2 (B1))
≤ C.

Indeed, for φ ∈ L3([−1, 0],W 1,3
0 (B1)), we have

∣∣
ˆ

Q1

∂tviφdxdt
∣∣

=
∣∣
ˆ

Q1

[(ǫivi ⊗ vi −∇vi) : ∇φ+Ridivφ− ǫi(∇Φi ⊗∇Φi −
1

2
|∇Φi|2I3) : ∇φ] dxdt

∣∣

≤ C
(
‖vi‖2L3(Q1)

+ ‖∇Φi‖2L3(Q1)
+ ‖Ri‖

L
3
2 (Q1)

)
‖∇φ‖L3(Q1)

≤ C
∥∥φ

∥∥
L3([−1,0],W 1,3

0 (B1))
.

From (3.11) and (3.12), we can apply Lemma 2.2 to conclude that after passing to a sub-

sequence, there exist v ∈ L∞
t L2

x ∩ L2
tH

1
x(Q 1

2
), R ∈ L

5
3 (Q 1

2
) and Φ ∈ L4

tW
1,4
x (Q 1

2
) such

that

(3.13) vi ⇀ v in L2
tH

1
x(Q 1

2
), vi → v in L3(Q 1

2
),

and

(3.14) Ri ⇀ R in L
5
3 (Q 1

2
), Φi ⇀ Φ in L4

tW
1,4
x (Q 1

2
).

Passing to the limit in (3.7), we see that (v,R) solves the Stokes equation:

(3.15) ∂tv −∆v +∇R = 0; divv = 0 in Q 1
2
.

Therefore by the standard theory on the Stokes equation, we can conclude that v ∈ C∞(Q 1
2
),

and for any θ ∈ (0, 12 ),

(3.16) θ−2

ˆ

Qθ

|v|3 dxdt ≤ Cθ3
ˆ

Q 1
2

|v|3 dxdt ≤ Cθ3.
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This and (3.13) imply that for i sufficiently large,

(3.17) θ−2

ˆ

Qθ

|vi|3 dxdt ≤ Cθ3 + o(1).

Here o(1) denotes a quantity such that lim
i

o(1) = 0.

As for the pressure function Ri, taking divergence of (3.7)1 yields that Ri solves the Poisson
equation:

(3.18) ∆Ri = ǫidiv
2
(
∇Φi ⊗∇Φi −

1

2
|∇Φi|2I3 − vi ⊗ vi

)
in B 1

2
.

By the Calderon-Zygmund theory, we can show that

θ−2

ˆ

Qθ

|Ri|
3
2 dxdt ≤ Cθ−2ǫ

3
2

i

ˆ

Q1

(|vi|3 + |∇Φi|3) dxdt + Cθ3
ˆ

Q1

|Ri|
3
2 dxdt

≤ Cθ−2ǫ
3
2

i + Cθ3.

(3.19)

Adding (3.17) and (3.19) together, we obtain that

(3.20) θ−2

ˆ

Qθ

|vi|3 dxdt+
(
θ−2

ˆ

Qθ

|Ri|
3
2 dxdt

)2 ≤ Cθ3 + Cθ−2ǫ
3
2
i + o(1) ≤ 1

4
,

provided we choose a sufficiently small θ ∈ (0, 1
2 ) and a sufficiently large i. It is clear that

(3.20) contradicts to (3.9). The proof is complete. �

Keep iterating Lemma 3.1, we obtain the following decay property.

Corollary 3.1. There exist ǫ0 > 0 and θ0 ∈ (0, 12 ) such that if (u, P, n+, n−,Ψ) is a
suitable weak solution of the system (1.1) in QT , which satisfies, for a z0 = (x0, t0) ∈ QT ,
0 < r0 < min

{
dist(x0, ∂Ω),

√
t0
}
, and 0 < α < 4

max
{
r−2
0

ˆ

Qr0 (z0)

|u|3 dxdt +
(
r−2
0

ˆ

Qr0(z0)

|P | 32 dxdt
)2
,

sup
0<r≤r0

(
r−(1+α)

ˆ

Qr(z0)

|∇Ψ|4 dxdt
) 3

4

}
<

1

2
ǫ30,

(3.21)

then for any positive integer k ∈ N
+,

(θk0r0)
−2

ˆ

Q
θk0 r0

(z0)

|u|3 dxdt+
(
(θk0r0)

−2

ˆ

Q
θk0 r0

(z0)

|P | 32 dxdt
)2 ≤ Cǫ30

(1
2

)k
.(3.22)

Proof. It is readily seen that (3.22) follows from Lemma 3.1 for k = 1. Note that (3.21) and
(3.22) for k = 1 yield that

(θ0r0)
−2

ˆ

Qθ0r0
(z0)

|u|3 dxd+
(
(θ0r0)

−1

ˆ

Qθ0r0
(z0)

|∇Ψ|4) dxdt
) 3

4

+
(
(θ0r0)

−2

ˆ

Qθ0r0
(z0)

|P | 32 dxdt
)2

< ǫ30.
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Hence applying Lemma 3.1, we obtain that

(θ20r0)
−2

ˆ

Q
θ20r0

(z0)

|u|3 dxdt+
(
(θ20r0)

−2

ˆ

Q
θ20r0

(z0)

|P | 32 dxdt
)2

≤ 1

2

[
(θ0r0)

−2

ˆ

Qθ0r0
(z0)

|u|3 dxdt+
(
(θ0r0)

−1

ˆ

Qθ0r0
(z0)

|∇Ψ|4 dxdt
) 3

4

+
(
(θ0r0)

−2

ˆ

Qθ0r0
(z0)

|P | 32 dxdt
)2]

≤ 1

2

[
(θ0r0)

−2

ˆ

Qθ0r0
(z0)

|u|3 dxdt+
(
(θ0r0)

−2

ˆ

Qθ0r0
(z0)

|P | 32 dxdt
)2

+
(
(θ0r0)

−1

ˆ

Qθ0r0
(z0)

|∇Ψ|4 dxdt
) 3

4

]

≤ 1

2

[1
2

(
r−2
0

ˆ

Qr0 (z0)

|u|3 dxdt +
(
r−1
0

ˆ

Qr0(z0)

|∇Ψ|4 dxdt
) 3

4

+
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2)

+
(
(θ0r0)

−1

ˆ

Qθ0r0
(z0)

|∇Ψ|4 dxdt
) 3

4

]

≤ (
1

2
)2
[
r−2
0

ˆ

Qr0(z0)

|u|3 dxdt +
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2]

+(
1

2
)2
(
r−1
0

ˆ

Qr0(z0)

|∇Ψ|4 dxdt
) 3

4 +
1

2

(
(θ0r0)

−1

ˆ

Qθ0r0
(z0)

|∇Ψ|4 dxdt
) 3

4

≤ (
1

2
)2
[
r−2
0

ˆ

Qr0(z0)

|u|3 dxdt +
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2]

+(
1

2
)2ǫ30r

α
0

[
θα0 +

1

2

]
.

Hence we have that for k ≥ 1,

(θk0r0)
−2

ˆ

Q
θk
0
r0

(z0)

|u|3 dxdt+
(
(θk0r0)

−2

ˆ

Q
θk
0
r0

(z0)

|P | 32 dxdt
)2

≤ (
1

2
)k
[
r−2
0

ˆ

Qr0 (z0)

|u|3 dxdt +
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2]

+(
1

2
)2ǫ30r

α
0

[
θ
α(k−1)
0 +

1

2
θ
α(k−2)
0 + · · ·+ (

1

2
)k−2θα0

]

≤ (
1

2
)k
[
r−2
0

ˆ

Qr0 (z0)

|u|3 dxdt +
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2]

+ 2−(k−1)(θ0r0)
αǫ30

≤ Cǫ302
−k.

This yields (3.22) and completes the proof. �

With (3.22), we can now prove the following ǫ0-regularity property.

Theorem 3.1. There exists ǫ0 > 0 such that for any 0 < T ≤ ∞, u0 ∈ H, and 0 ≤ n±
0 ∈

L2(Ω) with
´

Ω
n+
0 dx =

´

Ω
n−
0 dx, if (u, P, n+, n−,Ψ) is the suitable weak solution obtained



SUITABLE WEAK SOLUTIONS OF NSPNP 23

by Theorem 1.3 (i), which satisfies

(3.23) r−2
0

ˆ

Qr0 (z0)

|u|3 dxdt+
(
r−1
0

ˆ

Qr0 (z0)

|∇Ψ|4 dxdt
) 3

4 +
(
r−2
0

ˆ

Qr0 (z0)

|P | 32 dxdt
)2 ≤ ǫ30,

for z0 = (x0, t0) ∈ Ω× (0,∞) and 0 < r0 < min
{
dist(x0, ∂Ω),

√
t0
}
, then (u, n+, n−,Ψ) ∈

C∞(Q r0
2
(z0)).

Proof. It follows from (1.8) and Sobolev’s embedding theorem that ∇Ψ ∈ L∞
t L6

x(QT ), and

(3.24)
∥∥∇Ψ

∥∥
L∞

t L6
x(QT )

≤ C
∥∥Ψ

∥∥
L∞

t H2
x(QT )

≤ C
(
‖u0‖L2(Ω), ‖(n+

0 , n
−
0 )‖L2(Ω)

)
.

This implies that

(3.25)

ˆ

Qr(z)

|∇Ψ|4 dxdt ≤ Cr3
∥∥∇Ψ

∥∥4
L∞

t L6
x(QT )

≤ Cr3, ∀Qr(z) ⊂ QT .

It follows from (3.25) and (3.23) that for any α ∈ (0, 2), the condition (3.21) holds on
Q r0

2
(z1) for any z1 ∈ Q r0

2
(z0), provided we may choose a smaller r0 > 0, depending on ǫ0.

Thus by Corollary (3.1), we conclude that there exists θ0 ∈ (0, 12 ) such that

(θk0r0)
−2

ˆ

Q
θk0 r0

(z1)

|u|3 dxdt+
(
(θk0r0)

−2

ˆ

Q
θk0 r0

(z1)

|P | 32 dxdt
)2 ≤ Cǫ30

(1
2

)k
,(3.26)

for any z1 ∈ Q r0
2
(z0). Therefore there exists τ0 ∈ (0, 1) such that

(3.27) s−2

ˆ

Qs(z1)

|u|3 dxdt+
(
s−2

ˆ

Qs(z1)

|P | 32 dxdt
)2 ≤ Cs3τ0 ,

for all z1 ∈ Q r0
2
(z0) and 0 < s < r0

2 . From (3.27), we can repeat the same argument of

Lemma 3.1 and Corollary 3.1 to improve the exponent τ0 such that (3.27) remains to be
true for all τ0 ∈ (0, 1).

Now we plan to apply the Riesz potential estimates between parabolic Morrey spaces to
show that u ∈ Lq(Q r0

2
(z0) for any 1 < q < ∞, analogous to that by Huang-Wang [15],

Hineman-Wang [16], and Huang-Lin-Wang [17].

For any open set U ⊂ R
3×R, 1 ≤ p < ∞, and 0 ≤ λ ≤ 5, define the Morrey space Mp,λ(U)

by

Mp,λ(U) :=
{
f ∈ L

p
loc(U) :

∥∥f
∥∥p
Mp,λ(U)

= sup
z∈U,r>0

rλ−5

ˆ

Qr(z)

|f |p dxdt < ∞
}
.

It follows from (3.25) and (3.27) that for any α ∈ (0, 1), it holds that

(u,∇Ψ) ∈ M3,3(1−α)
(
Q r0

2
(z0)

)
, P ∈ M

3
2 ,3(1−α)

(
Q r0

2
(z0)

)
.

We now proceed with the estimation of u. Let η ∈ C∞
0 (R4) be a cut-off function of Q r0

2
(z0)

such that 0 ≤ η ≤ 1, η ≡ 1 in Q z0
2
(z0), and |∂tη|+ |∇2η| ≤ Cr−2

0 . Let v : R3 × (0,∞) 7→ R
3

solve the Stokes equation:

(3.28)





∂tv −∆v +∇P = −div
[
η2
(
u⊗ u+ (∇Ψ ⊗∇Ψ− 1

2 |∇Ψ|2I3)
)]

in R
4
+,

divv = 0 in R
4
+,

v(·, 0) = 0 in R
3.

By using the Oseen kernel (see Leray [11]), an estimate of v can be given by

(3.29) |v(x, t)| ≤ CI1(|X |)(x, t), ∀(x, t) ∈ R
3 × (0,∞),
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where

X = η2
[
u⊗ u+ (∇Ψ ⊗∇Ψ− 1

2
|∇Ψ|2I3)

]
,

and I1 is the Reisz potential of order 1 on R
4 defined by

I1(g)(x, t) =
ˆ

R4

|g(y, s)|
δ4((x, t), (y, s))

dyds, ∀g ∈ L1(R4).

We can verify that X ∈ M
3
2 ,3(1−α)(R4) and

∥∥X
∥∥
M

3
2
,3(1−α)(R4)

≤ C
[
‖u‖2

M3,3(1−α)(Q r0
2
(z0))

+ ‖∇Ψ‖2
M3,3(1−α)(Q r0

2
(z0))

]

≤ C(1 + ǫ0).

Hence we conclude that v ∈ M
3(1−α)
1−2α ,3(1−α)(R4) and

(3.30)
∥∥∥v

∥∥∥
M

3(1−α)
1−2α

,3(1−α)
(R4)

≤ C
∥∥∥X

∥∥∥
M

3
2
,3(1−α)(R4)

≤ C(1 + ǫ0).

By taking α ↑ 1
2 , we conclude that for any 1 < q < ∞, v ∈ Lq(Q r0

2
(z0)) and

(3.31)
∥∥v

∥∥
Lq(Q r0

2
(z0))

≤ C(q, r0, ǫ0).

Note that u− v solves the linear homogeneous Stokes equation:

∂t(u− v)−∆(u− v) +∇P = 0, div(u − v) = 0 in Q r0
2
(z0).

Then u− v ∈ L∞(Q r0
4
(z0)). Therefore for any 1 < q < ∞, u ∈ Lq(Q r0

4
(z0)) and

(3.32)
∥∥u

∥∥
Lq(Q r0

4
(z0))

≤ C(q, r0, ǫ0).

From Ψ ∈ L∞
t H2

x ∩ L2
tH

3
x(QT ) and the Sobolev inequality, we have that ∆Ψ ∈ L

10
3 (QT ),

∇Ψ ∈ Lq(QT ) for q > 5, and
∥∥∆Ψ

∥∥
L

10
3 (QT )

+
∥∥∇Ψ

∥∥
Lq(QT )

≤ C
∥∥Ψ

∥∥
L∞

t H2
x∩L2

tH
3
x(QT )

≤ C.

Since n+ solves

∂tn
+ −∆n+ = (∆Ψ)n+ − (u−∇Ψ) · ∇n+ in Q r0

4
(z0),

where (u −∇Ψ) ∈ Lq(QT ) and ∆Ψ ∈ L
q
2 (QT ) for some q > 5, we can apply the standard

theory of linear parabolic equation [12] to conclude that there exists β ∈ (0, 1) such that
n+ ∈ Cβ(Q r0

4
(z0)), and

(3.33)
∥∥n+

∥∥
Cβ(Q r0

4
(z0))

≤ C(r0, ǫ0).

Similarly, we can show that n− ∈ Cβ(Q r0
4
(z0)), and

(3.34)
∥∥n−

∥∥
Cβ(Q r0

4
(z0))

≤ C(r0, ǫ0).

Substituting the estimates (3.33) and (3.34) into the equation (1.1)5 for Ψ, we conclude that

∇2Ψ ∈ L∞([t0 − r20
64 , t0], C

α(B r0
8
(x0)) and

(3.35)
∥∥∇2Ψ

∥∥
L∞([t0−

r2
0

64
,t0],Cα(B r0

8
(x0))

≤ C(r0, ǫ0).
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Substituting (3.33), (3.34), and (3.35) into the equation (1.1)1,2, we conclude that u ∈
Cβ(Q r0

16
(z0)) and

(3.36)
∥∥u

∥∥
Cβ(Q r0

16
(z0))

≤ C(r0, ǫ0).

By a bootstrap argument, we can eventually show that (u, n+, n−,Ψ) ∈ C∞(Q r0
32
(z0)). �

Remark 3.1. Similar to [22] and [1], Theorem 3.1 yields that (u, n+, n−,Ψ) is smooth away

from a closed set Σ, with P 5
3 (Σ) = 0.

4. the ǫ-regularity, part II

In this section, we will improve the size estimate of the singular set Σ for suitable weak
solutions (u, P, n+, n−,Ψ) obtained by Theorem 1.1. The argument is based on the A-B-C-D
Lemmas, originally due to [1]. Namely, we want to establish the following theorem.

Theorem 4.1. Under the same assumptions as in Theorem 1.1, there exists ǫ1 > 0 such
that if (u, P, n+, n−,Ψ) is the suitable weak solutions of (1.1) given by Theorem 1.1, and
satisfies

(4.1) lim sup
r→0

1

r

ˆ

Qr(z0)

|∇u|2 dxdt < ǫ21

for z0 = (x0, t0) ∈ QT , then (u, n+, n−,Ψ) is smooth near z0.

For simplicity, we will assume z0 = (0, 0) ∈ QT . In order to prove Theorem 4.1, we first
recall the following interpolation inequality, see [1].

Lemma 4.1. For u ∈ H1(R3),
ˆ

Br

|u|q dx ≤ C
( ˆ

Br

|∇u|2 dx
) q

2−a(
ˆ

Br

|u|2 dx
)a

+ Cr3(1−
q
2 )
( ˆ

Br

|u|2 dx
) q

2 ,

for any Br ⊂ R
3, 2 ≤ q ≤ 6 and a = 3

2 (1 −
q
6 ).

Assume z0 = (0, 0). Set

A(r) = sup
−r2≤t≤0

r−1

ˆ

Br×{t}

|u|2 dx,

B(r) = r−1

ˆ

Qr

|∇u|2 dxdt,

C(r) = r−2

ˆ

Qr

|u|3 dxdt,

D(r) = r−2

ˆ

Qr

|P | 32 dxdt.

By Lemma 4.1, we see that for any 0 < r ≤ ρ, it holds that

(4.2) C(r) ≤ C0

[( r
ρ

)3
A

3
2 (ρ) +

(ρ
r

)3
A

3
4 (ρ)B

3
4 (ρ)

]
.

Now we need to estimate the pressure function.
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Lemma 4.2. Let (u, P, n+, n−,Ψ) be a suitable weak solution of (1.1) in Q1 given by The-
orem 1.1. Then for any 0 < r ≤ ρ

2 , we have

(4.3) D(r) ≤ C

[
r

ρ
D(ρ) +

(ρ
r

)2

A
3
4 (ρ)B

3
4 (ρ) +

(ρ
r

)2
ρ

3
2

]
.

Proof. Taking divergence of (1.1)1, we obtain

−∆P = div2
[
(u− (u)ρ)⊗ (u − (u)ρ) + (∇Ψ ⊗∇Ψ− 1

2
|∇Ψ|2I3)

]
in Bρ.(4.4)

Here (u)ρ denotes the average of u over Bρ.

Let η ∈ C∞
0 (R3) be a cut off function of B ρ

2
such that

(4.5)





η = 1, in B ρ
2
,

η = 0, outside Bρ,

0 ≤ η ≤ 1, |∇η| ≤ 8ρ−1.

Define an auxiliary function

P1(x, t) = −
ˆ

R3

∇2
yG(x− y) : η2(y)

[
(u− (u)ρ)⊗ (u − (u)ρ)

+
(
∇Ψ⊗∇Ψ− 1

2
|∇Ψ|2I3

)]
(y, t) dy,

Then we have

−∆P1 = div2
[
(u − (u)ρ)⊗ (u− (u)ρ) + (∇Ψ⊗∇Ψ − 1

2
|∇Ψ|2I3)

]
in B ρ

2
,

and
−∆(P − P1) = 0 in B ρ

2
.

For P1, we apply the Calderon-Zygmund theory to deduce
ˆ

R3

|P1|
3
2 dx ≤ C

ˆ

R3

η3(|u− (u)ρ|3 + |∇Ψ|3) dx

≤ C

ˆ

Bρ

(|u− (u)ρ|3 + |∇Ψ|3) dx(4.6)

Since P − P1 is harmonic in B ρ
2
, we get that for 0 < r < ρ

2 ,

1

r2

ˆ

Br

|P − P1|
3
2 dx ≤ C(

r

ρ
)
1

ρ2

ˆ

B ρ
2

|P − P1|
3
2 dx

≤ C(
r

ρ
)
[ 1

ρ2

ˆ

B ρ
2

|P | 32 dx+
1

ρ2

ˆ

B ρ
2

|P1|
3
2 dx

]
.

Integrating it over [−r2, 0], we can show that

1

r2

ˆ

Qr

|P | 32 dxdt

≤ C
( r
ρ

) 1

ρ2

ˆ

Qρ

|P | 32 dxdt+ C
(ρ
r

)2 1

ρ2

ˆ

Qρ

(|u − (u)ρ|3 + |∇Ψ|3) dxdt

≤ C
( r
ρ

) 1

ρ2

ˆ

Qρ

|P | 32 dxdt+ C
(ρ
r

)2 1

ρ2

ˆ

Qρ

|u− (u)ρ|3 dxdt+ C
(ρ
r

)2
ρ

3
2 ,

where we have used the inequality (3.25) in the last step.
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This, combined with the interpolation inequality

1

ρ2

ˆ

Qρ

|u− (u)ρ|3 dxdt

≤ C sup
−ρ2≤t≤0

(1
ρ

ˆ

Bρ

|u|2 dx
) 3

4 ·
(1
ρ

ˆ

Qρ

|∇u|2 dxdt
) 3

4 ,

implies that

D(r) ≤ C
[
(
r

ρ
)D(ρ) + (

ρ

r
)2A

3
4 (ρ)B

3
4 (ρ) +

(ρ
r

)2
ρ

3
2

]
.

This completes the proof. �

Proof of Theorem 4.1. Here we follow the presentation by [3] closely. For 0 < θ < 1
2 and

0 < ρ < 1, let 0 ≤ φ ∈ C∞
0 (Qθρ) be such that

φ = 1 in Q θρ
2
, |∇φ| ≤ 4

θρ
, |∇2φ|+ |∂tφ| ≤

16

(θρ)2
.

Applying the local energy inequality (1.7) and using divu = 0, we obtain

sup
−(θρ)2≤t≤0

ˆ

Ω

|u|2φ2 dx + 2

ˆ

Ω×[−(θρ)2,0]

|∇u|2φ2 dxdt

≤
ˆ

Ω×[−(θρ)2,0]

|u|2(|∂tφ|+ |∇φ|2 + |∇2φ|) dxdt

+

ˆ

Ω×[−(θρ)2,0]

(
||u|2 − (|u|2)ρ|+ 2|P |)|u||∇φ| dxdt

+ 2

ˆ

Ω×[−(θρ)2,0]

∣∣∇Ψ ⊗∇Ψ− 1

2
|∇Ψ|2I3

∣∣(|∇u|φ+ |u||∇φ|) dxdt,

(4.7)

where

(|u|2)ρ =

 

Bρ

|u|2 dx

is the average of |u|2 over Bρ. By using Sobolev’s inequality, we have

( ˆ

Bρ

||u|2 − (|u|2)2ρ|
3
2 dx

) 2
3 ≤ C

ˆ

Bρ

|u||∇u| dx.

By Hölder’s inequality, we can bound
ˆ

Ω×[−(θρ)2,0]

∣∣∇Ψ⊗∇Ψ− 1

2
|∇Ψ|2I3

∣∣(|∇u|φ+ |u||∇φ|) dxdt

≤ c

ˆ

Qθρ

|∇Ψ|2|∇u| dxdt+ c(θρ)−1

ˆ

Qθρ

|∇Ψ|2|u| dxdt

≤ c(θρ)
1
2B

1
2 (θρ)

( ˆ

Qθρ

|∇Ψ|4 dxdt
) 1

2

+ c(θρ)−1
( ˆ

Qθρ

|∇Ψ|3 dxdt
) 2

3
( ˆ

Qθρ

|u|3 dxdt
) 1

3

≤ c(θρ)2
(
B

1
2 (θρ) + C

1
3 (θρ)

)
,
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where we have used in the last step (3.25) and
ˆ

Qθρ

|∇Ψ|4 dxdt ≤ c(θρ)
3
2 .

Substituting these two estimates into (4.7), we obtain

A(
1

2
θρ) +B(

1

2
θρ) ≤ c

[
C

2
3 (θρ) +A

1
2 (θρ)B

1
2 (θρ)C

1
3 (θρ)

+ C
1
3 (θρ)D

2
3 (θρ) + (θρ)2B

1
2 (θρ) + (θρ)2C

1
3 (θρ)

]

≤ c
[
C

2
3 (θρ) +A(θρ)B(θρ) + (θρ)4 + (θρ)2B

1
2 (θρ) +D

4
3 (θρ)

]
.

(4.8)

Thus we obtain

A
3
2 (

1

2
θρ) ≤ c

[
C(θρ) +A

3
2 (θρ)B

3
2 (θρ) +D2(θρ) + (θρ)6 + (θρ)3B

3
4 (θρ)

]
.

While we also have

D2(θρ) ≤ cθ2
[
D2(ρ) + θ−6A

3
2 (ρ)B

3
2 (ρ) + θ−6ρ3

]
,

C(θρ) ≤ c
[
θ3A

3
2 (ρ) + θ−3A

3
4 (ρ)B

3
4 (ρ),

and

A
3
2 (θρ)B

3
2 (θρ) ≤ θ−3A

3
2 (ρ)B

3
2 (ρ).

Putting all these estimates together, we arrive at

A
3
2 (

1

2
θρ) +D2(

1

2
θρ)

≤ c
[
θ2(D2(ρ) +A

3
2 (ρ)) + θ−8A

3
2 (ρ)B

3
2 (ρ) + θ2 + θ−4ρ3 + θ6ρ6 + θ

9
4 ρ3B

3
4 (ρ)

]

≤ c
(
θ2 + θ−8B

3
2 (ρ)

)(
A

3
2 (ρ) +D2(ρ)

)
+ c

(
θ2 + θ−4ρ3 + θ6ρ6 + θ

9
4 ρ3B

3
4 (ρ)

)
.

For ǫ1 > 0 given by Theorem , let θ0 ∈ (0, 12 ) be such that

cθ20 = min{1
4
,
1

8
ǫ21}.

Since

lim sup
r→0

1

r

ˆ

Qr

|∇u|2 dxdt < ǫ21,

we can choose ρ0 > 0 such that

cθ−2
0 B

3
2 (ρ) ≤ 1

4
, ∀0 < ρ < ρ0,

and

c
(
θ20 + θ−4

0 ρ3 + θ60ρ
6 + θ

9
4
0 ρ

3B
3
4 (ρ)

)
≤ 1

2
ǫ21, ∀0 < ρ < ρ0.

Therefore we obtain that there exist θ0 ∈ (0, 1
2 ) and ρ0 > 0 such that

A
3
2 (

1

2
θ0ρ) +D2(

1

2
θ0ρ) ≤

1

2

(
A

3
2 (ρ) +D2(ρ)2

)
+

1

2
ǫ21, ∀0 < ρ < ρ0.

Iterating this inequality yields that

A
3
2 ((

1

2
θ0)

kρ) +D2((
1

2
θ0)

kρ) ≤ 1

2k
(A

3
2 (ρ) +D2(ρ)) + ǫ21(4.9)

holds for all 0 < ρ < ρ0 and k ≥ 1.
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Employing (4.9) and (4.2), we obtain that

C((
1

2
θ0)

kρ) ≤ c
[
(
1

2
θ0)

3A
3
2 ((

1

2
θ0)

k−1ρ) + (
1

2
θ0)

−3A
3
4 ((

1

2
θ0)

k−1ρ)B
3
4 ((

1

2
θ0)

k−1ρ)
]

≤ c
[
(
1

2
θ0)

3 + (
1

2
θ0)

−3ε
3
2
1

][ 1

2k−1
(A

3
2 (ρ) +D2(ρ)) + ǫ21

]
(4.10)

holds for all 0 < ρ < ρ0 and k ≥ 1.

Putting (4.9) and (4.10) together, we obtain that

lim sup
k→∞

[
C((

1

2
θ0)

kρ) +D2((
1

2
θ0)

kρ)
]
≤ c

[
1 + (

1

2
θ0)

3 + (
1

2
θ0)

−3ǫ
3
2
1 ]ǫ

2
1 ≤ 1

2
ǫ30,(4.11)

holds for all ρ ∈ (0, ρ0), provided ǫ1 = ǫ1(θ0, ǫ0) > 0 is chosen sufficiently small. Therefore,
by Theorem 3.1 (u, n+, n−,Ψ) is smooth near z0 = (0, 0). This completes the proof. �

Completion of Proof of Theorem 1.1: Define the singular set of (u, n+, n−,Ψ) by

Σ =
{
(x, t) ∈ QT | lim sup

r→0
r−1

ˆ

Qr(x,t)

|∇u|2 dxdt > ǫ21

}
.

From Theorem 4.1, we know that Σ is closed and (u, n+, n−,Ψ) ∈ C∞(QT \ Σ).
Let U be a small neighborhood of Σ and let δ > 0. For each (x, t) ∈ Σ, choose 0 < r < δ

such that

r−1

ˆ

Qr(x,t)

|∇u|2 dxdt > ǫ21 and Qr(x, t) ⊂ U.

By Vitali’s five time covering Lemma, there exists a disjoint subfamily {Qri(xi, ti) } such
that

Σ ⊂
⋃

i

Q5ri(xi, ti).

Hence

P1
5δ(Σ) ≤

∑

i

5ri ≤ 5ǫ−2
1

∑

i

ˆ

Qri
(xi,ti)

|∇u|2 dxdt ≤ 5ǫ−2
1

ˆ

U

|∇u|2 dxdt.

Sending δ → 0, this implies that P1(Σ) = 0. The proof is now complete. �
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