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Abstract

The paper is devoted to an analysis of a new constraint qualification
and a derivation of the strongest existing optimality conditions for nons-
mooth mathematical programming problems with equality and inequality
constraints in terms of Demyanov-Rubinov-Polyakova quasidifferentials
under the minimal possible assumptions. To this end, we obtain a novel
description of convex subcones of the contingent cone to a set defined
by quasidifferentiable equality and inequality constraints with the use
of a new constraint qualification. We utilize these description and con-
straint qualification to derive the strongest existing optimality conditions
for nonsmooth mathematical programming problems in terms of quasid-
ifferentials under less restrictive assumptions than in previous studies.
The main feature of the new constraint qualification and related opti-
mality conditions is the fact that they depend on individual elements of
quasidifferentials of the objective function and constraints and are not
invariant with respect to the choise of quasidifferentials. To illustrate the
theoretical results, we present two simple examples in which optimality
conditions in terms of various subdifferentials (in fact, any outer semi-
continuous/limiting subdifferential) are satisfied at a nonoptimal point,
while the optimality conditions obtained in this paper do not hold true
at this point, that is, optimality conditions in terms of quasidifferentials,
unlike the ones in terms of subdifferentials, detect the nonoptimality of
this point.

1 Introduction

A class of nonsmooth quasidifferentiable functions was introduced by Demyanov,
Rubinov, and Polyakova in the late 1970s [11,12]. Since then, several collections
of papers [9,15] and monographs [14,16,17] were devoted to quasidifferential cal-
culus and its applications in the finite dimensional case. Infinite dimensional ex-
tensions of quasidifferential calculus were analysed in [5,13,22,46,52,64]. A gen-
eralization of the concept of quasidifferentiability called ε-quasidifferentiability
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was proposed by Gorokhovik [31–34]. Another generalized concept of quasidif-
ferentiability was introduced by Ishizuka [43].

Necessary conditions for an unconstrained local minimum in terms of qua-
sidifferentials were first obtained by Polyakova [56]. In [10], Demyanov and
Polyakova studied optimality conditions in terms of quasidifferentials for the
problem

min f0(x) subject to g(x) ≤ 0. (1.1)

Note that problems with several inequality constraints gi(x) ≤ 0 can be easily
reduced to the case of a single constraint by setting g(x) = maxi gi(x).

As is well-known (see, e.g. [48, Example 1]), optimality conditions for quasid-
ifferentiable programming problems cannot be formulated in the traditional way
involving the Lagrangian, which results in the fact that optimality conditions
for such problems can be stated in several non-equivalent forms. Optimality
conditions for problem (1.1) from [10] were formulated in geometric terms and
involved some cones generated by a quasidifferential of the constraint. Optimal-
ity conditions for problem (1.1) similar to Fritz John and KKT conditions in
which Lagrange multipliers depend on individual elements of quasidifferentials
were studied in [45, 48, 60]. Fritz John-type optimality conditions for problem
(1.1) were derived by Sutti [62]. Some connections between KKT form and geo-
metric form of optimality conditions for problem (1.1) were pointed out by Dinh
et. al [20, 21]. Uderzo [63] obtained optimality conditions for problem (1.1) in
terms of a quasidifferential of the nonlinear Lagrangian L(x) = p(f0(x), g(x)),
where p is an (unknown) sublinear function. Finally, various constraint qual-
ifications for problem (1.1) were discussed in [44, 45, 69], while independence
of constraint qualifications and optimality conditions for problem (1.1) on the
choice of quasidifferentials (recall that a quasidifferential is not uniquely defined)
was analyzed in [47, 49].

A geometric form of optimality conditions in terms of quasidifferentials for
problems with a single equality and no inequality constraints was obtained by
Polyakova [57]. Optimality conditions from [57] were further analyzed by Wang
and Mortensen in [68], where some results on independence of optimality condi-
tions on the choice of quasidifferentials were presented as well. Similar optimal-
ity conditions for problems with constraints of the form F (x) = 0 or F (x) ≤ 0,
where F is a so-called scalarly quasidifferentiable mapping between infinite di-
mensional spaces, were derived by Glover et al. [29, 30] and Uderzo [65, 66].

Optimality conditions in terms of quasidifferentials for nonsmooth mathe-
matical programming problems with equality, inequality, and nonfunctional con-
straints were first studied by Shapiro [59,60]. These conditions were formulated
in terms of a quasidifferential of the ℓ1 penalty function. Optimality conditions
for nonsmooth mathematical programming problems involving quasidifferentials
of the objective function and inequality constraints, and the Clarke subdiffer-
entials of the equality constraints were derived by Gao [27]. KKT optimality
conditions for such problems involving the Demyanov difference of quasidiffer-
entials were studied in [26, 28, 61, 70]. However, it is very hard to compute the
Demyanov difference of a quasidifferential in nontrivial cases, which makes such
conditions less appealing for applications, than optimality conditions in terms
of quasidifferentials. To the best of author’s knowledge, first KKT-type op-
timality conditions in terms of quasidifferentials for nonsmooth mathematical
programming problems with equality and inequality constraints were obtained
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in the recent paper [24] with the use of a Mangasarian-Fromovitz-type constraint
qualification in terms of quasidifferentials.

Finally, the problem of when necessary optimality conditions for quasidiffer-
entiable problems become sufficient ones was analyzed in [2, 29] under general-
ized invexity assumptions, while optimality conditions for vector quasidifferen-
tiable optimization problems were studied by Glover et al. [30], Basaeva [3, 4]
(see also [5, 46]), and Antczak [1].

The main goal of this article is to obtain a convenient description of convex
subcones of the contingent cone to a set defined by quasidifferentiable equality
and inequality constraints and give a new perspective on constraint qualifica-
tions and optimality conditions for nonsmooth mathematical programming in
terms of quasidifferentials. Unlike all existing results, we aim at obtaining con-
ditions that depend on individual elements of quasidifferentials and might not
be satisfied for some of them. Such conditions provide additional flexibility that
allows one to obtain much sharper results than the use of quasidifferentials as a
whole. To this end, being inspired by the papers of Di et al. [18,19] on a deriva-
tion of the classical KKT optimality conditions under weaker assumptions, we
present a completely new description of convex subcones of the contingent cone
to a set defined by quasidifferentiable equality and inequality constraints. This
description leads to a new natural constraint qualification for nonsmooth math-
ematical programming problems in terms of quasidifferentials that we utilize to
derive the strongest existing optimality conditions for such problems under less
restrictive assumptions than in all previous studies on quasidifferentiable pro-
gramming problems. See Remark 4.6 and Section 5 for a detailed comparison
of our assumptions with the assumptions used in previous studies. See also [23]
for applications of the main results of this paper to constrained nonsmooth
problems of the calculus of variations.

To illustrate our theoretical results, we present an example with a degen-
erate constraint in which all existing constraint qualifications for quasidifferen-
tiable programming problems fail, while our constraint qualification holds true.
Moreover, we demonstrate that in some cases optimality conditions in terms
of quasidifferentials are better than optimality conditions in terms of various
subdifferentials. Namely, we give two examples in which optimality conditions
in terms of the Clarke subdifferential [7, Theorem 6.1.1], the Michel-Penot sub-
differential [39], the approximate (Ioffe) subdifferential [40, Proposition 12], the
basic Mordukhovich subdifferential [51, Theorem 5.19], and the Jeyakumar-Luc
subdifferential [67, Corollary 3.4] (in fact, any outer semicontinuous/limiting
subdifferential; see, e.g. [41,55]) are satisfied at a nonoptimal point, while opti-
mality conditions in terms of quasidifferentials do not hold true at this point.
Thus, quasidifferential-based optimality conditions in some cases detect the
nonoptimality of a given point, when subdifferential-based conditions fail to
do so.

The paper is organized as follows. A description of convex subcones of the
contingent cone to a set defined by quasidifferentiable equality and inequality
constraints, as well as related constraint qualifications, are presented in Sec-
tion 3. In Section 4, this description is utilized to obtain the strongest exist-
ing necessary optimality conditions for nonsmooth mathematical programming
problems in terms of quasidifferential under less restrictive assumptions than in
previous studies. In this section we also present two examples demonstrating
that optimality conditions in terms of quasidifferentials are sometimes better
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than optimality conditions in terms of various subdifferentials. A comparison
between assumptions and constraint qualifications used in this paper and in
previous studies is presented in Section 5. Finally, for the sake of completeness,
some basic definitions from quasidifferential calculus are collected in Section 2.

2 Quasidifferentiable Functions

From this point onwards, let X be a real Banach space. Its topological dual
space is denoted by X∗, whereas the canonical duality pairing between X and
X∗ is denoted by 〈·, ·〉. Finally, denote by cl∗ the closure in the weak∗ topology.

Let U ⊂ X be an open set. Recall that a function f : U → R is called
directionally differentiable (d.d.) at a point x ∈ U iff for any v ∈ X there exists
the finite limit

f ′(x, v) = lim
α→+0

f(x+ αv) − f(x)

α
.

We say that f is d.d. at x uniformly along finite dimensional spaces iff f is d.d.
at this point and for any v ∈ X and finite dimensional subspace X0 ⊂ X one
has

f ′(x, v) = lim
[α,v′]→[+0,v],v′∈v+X0

f(x+ αv′)− f(x)

α
,

i.e. for any ε > 0 there exists δ > 0 such that for all α > 0 and v′ ∈ v + X0

with α < δ and ‖v′ − v‖ < δ one has

∣∣∣∣
f(x+ αv′)− f(x)

α
− f ′(x, v)

∣∣∣∣ < ε.

As is easily seen, if f is d.d. at x and Lipschitz continuous near this point, then
f is d.d. at this point uniformly along finite dimensional spaces. Furthermore,
note that in the finite dimensional case f is d.d. at x uniformly along finite
dimensional spaces iff

f ′(x, v) = lim
[α,v′]→[+0,v]

f(x+ αv′)− f(x)

α
∀v ∈ X,

i.e. iff f is Hadamard d.d. at x [14].

Definition 2.1. A function f : U → R is called quasidifferentiable at a point
x ∈ U iff f is d.d. at x and there exists a pair Df(x) = [∂f(x), ∂f(x)] of convex
weak∗ compact sets ∂f(x), ∂f(x) ⊂ X∗ such that

f ′(x, v) = max
x∗∈∂f(x)

〈x∗, v〉+ min
y∗∈∂f(x)

〈y∗, v〉 ∀v ∈ X (2.1)

(i.e. f ′(x, ·) can be represented as the difference of two continuous sublinear
functions). The pair Df(x) is called a quasidifferential of f at x, while the
sets ∂f(x) and ∂f(x) are called subdifferential and superdifferential of f at x
respectively. Finally, f is called quasidifferentiable at x uniformly along finite
dimensional spaces, if f is quasidifferentiable and d.d. uniformly along finite
dimensional spaces at this point.
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The calculus of quasidifferentiable functions can be found in [9,14,15]. Here
we only mention that the set of all functions that are quasidifferentiable at a
given point uniformly along finite dimensional spaces is closed under addition,
multiplication, pointwise maximum/minimum of finite families of functions, and
composition with continuously differentiable functions. Furthermore, any finite
DC (difference-of-convex) function is quasidifferentiable uniformly along finite
dimensional spaces.

Let us also note that if f is a convex function and ∂f is its subdifferential in
the sense of convex analysis, then the pair [∂f(x), 0] is a quasidifferential of f at
x. If f is a DC function, i.e. f = g− h for some convex functions g and h, then
the pair [∂g(x),−∂h(x)] is a quasidifferential of f at x. Finally, if f is locally
Lipschitz continuous and regular in the sense of Clarke (see [7, Definition 2.3.4])
at a point x, and ∂Clf(x) is the Clarke subdifferential of f at x, then the pair
[∂Clf(x), {0}] is a quasidifferential of f at x (see [9, 14, 15] for more details).

Observe that a quasidifferential of a function f is not unique. In particular,
for any quasidifferential Df(x) of f at x and any weak∗ compact convex set
C ⊂ X∗ the pair [∂f(x) + C, ∂f(x)− C] is a quasidifferential of f at x as well.
Therefore, there is an interesting problem to find a minimal, in some sense,
quasidifferential of a given function. Some results on this subject can be found
in [25, 35–38,53, 54, 58] .

Remark 2.2. Throughout the article, when we say that a function f is quasid-
ifferentiable at a point x, we suppose that some quasidifferential Df(x) of f at
x is given and formulate all assumptions with respect to the given quasidiffer-
ential Df(x). Alternatively, one can define a quasidifferential as an equivalence
class, i.e. as an infinite collection of all those pairs [∂f(x), ∂f(x)] for which (2.1)
holds true, and use equivalence classes (cf. [22,65]). In the author’s opinion, this
approach is rather cumbersome and we do not adopt it in this paper.

3 The Contingent Cone to a Set Defined by Qua-

sidifferentiable Constraints

In this section, we study the contingent cone to a set defined by quasidiffer-
entiable equality and inequality constraints and describe convex subcones of
this cone in terms quasidifferentials of the constraints. The main results of this
section were largely inspired by the papers of Di et al. [18, 19].

For any set C ⊂ X and x ∈ X denote d(x,C) = infy∈C ‖x − y‖. Recall
that the contingent cone TM (x) to a set M ⊂ X at a point x ∈ M consists
of all those v ∈ X for which lim infα→+0 d(x + αv,M)/α = 0. Equivalently,
v ∈ TM (x) iff there exist a sequence {αn} ⊂ (0,+∞) and a sequence {vn} ⊂ X
such that αn → +0 and vn → v as n → ∞, and x + αnvn ∈ M for all n ∈ N.
Note that the contingent cone need not be convex.

Our aim is to describe the cone TM (x) and/or its convex subcones in the
case when

M =
{
x ∈ X

∣∣∣ fi(x) = 0, i ∈ I, gj(x) ≤ 0, j ∈ J
}

(3.1)

in terms of quasidifferentials of the functions fi : X → R and gj : X → R (here
I = {1, . . . ,m} and J = {1, . . . , l}). To this end, we utilize the following aux-
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iliary result, which is a simple corollary to the Borsuk-Krasnoselskii antipodal
theorem (see, e.g. [71, Corollary 16.7]).

Lemma 3.1 (generalized intermediate value theorem). Let ri : [−1, 1]m → R,
i ∈ I = {1, . . . ,m}, be continuous functions such that for any i ∈ I and for all
τ j ∈ [−1, 1], j 6= i one has

ri(τ1, . . . , τ i−1,−1, τ i+1, . . . , τm) < 0,

ri(τ1, . . . , τ i−1, 1, τ i+1, . . . , τm) > 0.
(3.2)

Then there exists τ̂ ∈ (−1, 1)m such that ri(τ̂ ) = 0 for all i ∈ I.

For any C ⊂ X∗ and v ∈ X denote by s(C, v) = supx∗∈C〈x
∗, v〉 the support

function of the set C. Define also J(x) = {j ∈ J | gj(x) = 0} for any x ∈ X .
The following theorem describes how one can compute a convex subcone of
TM (x), if a certain constraint qualification is satisfied for some elements of
quasidifferentials of the functions fi and gj .

Theorem 3.2. Let the functions fi, i ∈ I, be continuous in a neighbourhood
of a point x ∈ M , the functions gj, j /∈ J(x), be upper semicontinuous (u.s.c.)
at this point, and let fi, i ∈ I, and gj, j ∈ J(x), be quasidifferentiable at x
uniformly along finite dimensional spaces. Let also x∗

i ∈ ∂fi(x), y
∗
i ∈ ∂fi(x),

i ∈ I, and z∗j ∈ ∂gj(x), j ∈ J(x), be given. Suppose finally that the following
constraint qualification holds true:

1. for any i ∈ I there exists vi ∈ X such that s(∂fi(x) + y∗i , vi) < 0 and for
any k 6= i one has s(∂fk(x) + y∗k, vi) ≤ 0 and s(−x∗

k − ∂fk(x), vi) ≤ 0;

2. for any i ∈ I there exists wi ∈ X such that s(−x∗
i − ∂fi(x), wi) < 0 and

for any k 6= i one has s(−x∗
k−∂fk(x), wi) ≤ 0 and s(∂fk(x)+y∗k, wi) ≤ 0;

3. there exists v0 ∈ X such that s(∂gj(x)+z∗j , v0) < 0 for any j ∈ J(x), while

for any i ∈ I one has s(∂fi(x)+ y∗i , v0) ≤ 0 and s(−x∗
i − ∂fi(x), v0) ≤ 0.

Then

{
v ∈ X

∣∣∣ s
(
∂fi(x) + y∗i , v

)
≤ 0, s

(
− x∗

i − ∂fi(x), v
)
≤ 0 ∀i ∈ I,

s
(
∂gj(x) + z∗j , v

)
≤ 0 ∀j ∈ J(x)

}
⊆ TM (x). (3.3)

Proof. For all τ = (τ1, . . . , τm) ∈ [−1, 1]m define

η(τ) =

m∑

i=1

(max{−τ i, 0}vi +max{τ i, 0}wi).

For any i ∈ I denote pi(·) = s(∂fi(x) + y∗i , ·) and qk(·) = s(−x∗
k − ∂fk(x), ·).

Observe that from the definition of quasidifferential it follows that for all v ∈ X
one has −qi(v) ≤ f ′

i(x, v) ≤ pi(v) (see (2.1)).
Let v ∈ X belong to the set on the left-hand side of (3.3). Taking into

account assumptions 1–3 and the fact that the functions pi are sublinear one
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obtains that for any i ∈ I, n ∈ N, γ > 0, and τ ∈ [−1, 1]m the following
inequalities hold true:

f ′
i

(
x, v + γv0 +

1

n
η(τ1, . . . , τ i−1,−1, τ i+1, . . . , τm)

)

≤ pi

(
v + γv0 +

1

n
η(τ1, . . . , τ i−1,−1, τ i+1, . . . , τm)

)
≤ pi(v) + γpi(v0)

+
1

n
pi(vi) +

1

n

∑

j 6=i

(
max{−τ j , 0}pi(vj) + max{τ j , 0}pi(wj)

)

≤
1

n
pi(vi) < 0. (3.4)

Similarly, for any i ∈ I, n ∈ N, γ > 0, and τ ∈ [−1, 1]m one has

f ′
i

(
x, v + γv0 +

1

n
η(τ1, . . . , τ i−1, 1, τ i+1, . . . , τm)

)

≥ −qi

(
x, v + γv0 +

1

n
η(τ1, . . . , τ i−1, 1, τ i+1, . . . , τm)

)
≥ −

1

n
qi(wi) > 0. (3.5)

Let us verify that from (3.4) and (3.5) it follows that for any n ∈ N and γ > 0
there exists αn(γ) > 0 such that for all 0 < α < αn(γ), i ∈ I, and τ ∈ [−1, 1]m

the following inequalities hold true:

fi

(
x+ α

(
v + γv0 +

1

n
η(τ1, . . . , τ i−1,−1, τ i+1, . . . , τm)

))
< 0, (3.6)

fi

(
x+ α

(
v + γv0 +

1

n
η(τ1, . . . , τ i−1, 1, τ i+1, . . . , τm)

))
> 0. (3.7)

Indeed, fix any i ∈ I, γ > 0, and n ∈ N. Arguing by reductio ad absurdum,
suppose that for any αn(γ) > 0 there exist α ∈ (0, αn(γ)) and τ ∈ [−1, 1]m

such that, say, (3.6) is not valid. Then there exist a sequence {αk} ⊂ (0,+∞)
converging to zero and a sequence {τk} ⊂ [−1, 1]m such that

fi

(
x+ αk

(
v + γv0 +

1

n
η(τ1k , . . . , τ

i−1
k ,−1, τ i+1

k , . . . , τmk )
))

≥ 0

Without loss of generality one can suppose that {τk} converges to some τ̂ ∈
[−1, 1]m. Therefore, utilizing the facts that fi is d.d. at x uniformly along finite
dimensional spaces, the function η(·) is continuous and takes values in the finite
dimensional space X0 = span{vi, wi | i ∈ I}, and fi(x) = 0 one obtains that

f ′
i

(
x, v + γv0 +

1

n
η(τ̂1, . . . , τ̂ i−1,−1, τ̂ i+1, . . . , τ̂m)

)
=

lim
k→∞

1

αk

fi

(
x+ αk

(
v + γv0 +

1

n
η(τ1k , . . . , τ

i−1
k ,−1, τ i+1

k , . . . , τmk )
))

≥ 0,

which contradicts (3.4).
For any j ∈ J(x) denote uj(·) = s(∂gj(x) + z∗j , ·). Note that uj are con-

tinuous sublinear functions (recall that ∂gj(x) is a convex weak∗ compact set).
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Therefore, for any j ∈ J(x), γ > 0, n ∈ N, and τ ∈ [−1, 1]m one has

g′j

(
x, v + γv0 +

1

n
η(τ)

)
≤ uj

(
v + γv0 +

1

n
η(τ)

)

≤ uj(v) + γuj(v0) +
1

n
uj(η(τ)) ≤ γuj(v0) +

1

n
max

s∈[−1,1]m
uj(η(s))

(here we used the fact that uj(v) ≤ 0, since v belongs to the set on the left-hand
side of (3.3)). By assumption 3 one has uj(v0) < 0. Consequently, for any γ > 0
one can find nγ ∈ N such that for all j ∈ J(x) and n ≥ nγ one has

g′j

(
x, v + γv0 +

1

n
η(τ)

)
≤

γ

2
uj(v0) < 0 ∀τ ∈ [−1, 1]m. (3.8)

Let us check that this inequality implies that for any γ > 0 and n ≥ nγ there
exists βn(γ) > 0 such that for all j ∈ J(x), τ ∈ [−1, 1]m, and 0 < α < βn(γ)
one has

gj

(
x+ α

(
v + γv0 +

1

n
η(τ)

))
< 0. (3.9)

Indeed, fix any j ∈ J(x), γ > 0, and n ≥ nγ . Arguing by reductio ad absurdum,
suppose that for any βn(γ) > 0 there exist α ∈ (0, βn(γ)) and τ ∈ [−1, 1]m such
that (3.9) is not valid. Then there exist a sequence {αk} ⊂ (0,+∞) converging
to zero and a sequence {τk} ⊂ [−1, 1]m such that

gj

(
x+ αk

(
v + γv0 +

1

n
η(τk)

))
≥ 0 ∀k ∈ N.

Without loss of generality one can suppose that {τk} converges to some τ̂ ∈
[−1, 1]m. Hence with the use of the facts that gj is d.d. at x uniformly along
finite dimensional spaces, the function η(·) is continuous and takes values in
the finite dimensional space X0 = span{vi, wi | i ∈ I}, and gi(x) = 0, since
j ∈ J(x), one obtains that

g′j

(
x, v + γv0 +

1

n
η(τ̂ )

)
= lim

k→∞

1

αk

gj

(
x+ αk

(
v + γv0 +

1

n
η(τk)

))
≥ 0,

which contradicts (3.8).
By our assumptions the functions fi are continuous in a neighbourhood U

of x. By virtue of the fact that the set {η(τ) ∈ X | τ ∈ [−1, 1]m} is compact,
for any n ∈ N and γ > 0 one can find δn(γ) > 0 such that

{
x+ α

(
v + γv0 +

1

n
η(τ)

)
∈ X

∣∣∣ α ∈ [0, δn(γ)], τ ∈ [−1, 1]m
}

⊂ U. (3.10)

Furthermore, choosing δn(γ) small enough one can suppose that gj(x) < 0 for
any j /∈ J(x) and x from the set on the left-hand side of (3.10), since gj(x) < 0
for any such j and these functions are u.s.c. at x.

Fix γ > 0, and for any n ≥ nγ choose 0 < αn < min{αn(γ), βn(γ), δn(γ)}
such that αn → 0 as n → ∞. For any i ∈ I and n ≥ nγ define

rin(τ) = fi

(
x+ αn

(
v + γv0 +

1

n
η(τ)

))
∀τ ∈ [−1, 1]m.
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From (3.10) and the definition of U it follows that the functions rin(·), i ∈ I, are
continuous. Furthermore, inequalities (3.6) and (3.7) imply that the functions
rin(·), i ∈ I, satisfy inequalities (3.2) from the generalized intermediate value
theorem. Therefore, by this theorem for any n ≥ nγ there exists τ̂n ∈ (−1, 1)m

such that rin(τ̂n) = 0 for all i ∈ I, i.e. fi(x + αnvn) = 0 for any i ∈ I, where
vn = v + γv0 + η(τ̂n)/n. Moreover, by (3.9) and the choice of δn(γ) one has
gj(x+αnvn) < 0 for all j ∈ J . Thus, x+αnvn ∈ M for any n ≥ nγ . Hence with
the use of the fact that vn → v+γv0 as n → ∞ one obtains that v+γv0 ∈ TM (x)
for any γ > 0, which implies that v ∈ TM (x), since the contingent cone is always
closed. Thus, the proof is complete.

Observe that the set on the left-hand side of (3.3) is a nontrivial closed
convex cone (v0 belongs to this cone). Thus, the theorem above provides one
with a way to compute convex subcones of the contingent cone TM (x) with
the use of those vectors from quasidifferentials of the functions fi and gj that
satisfy assumptions 1–3. Let us give a simple geometric description of these
assumptions, which sheds some light on the way they are connected with well-
known constraint qualifications.

Remark 3.3. It is worth noting that there is a connection between assumptions
1–3 of Theorem 3.2 and some conditions on the directional derivatives of the
functions fi and gj . Indeed, from the definition of quasidifferential (2.1) it
follows that assumption 1 is satisfied for some x∗

i ∈ ∂fi(x) and y∗i ∈ ∂fi(x),
i ∈ I, if and only if

f ′
i(x, vi) < 0, f ′

k(x, vi) = 0 ∀k 6= i. (3.11)

Similarly, assumption 2 is satisfied for some x∗
i ∈ ∂fi(x) and y∗i ∈ ∂fi(x), i ∈ I

(which might differ from the ones for which assumption 1 is valid) if and only if

f ′
i(x,wi) > 0, f ′

k(x,wi) = 0 ∀k 6= i. (3.12)

Finally, assumption 3 holds true for some x∗
i ∈ ∂fi(x), y

∗
i ∈ ∂fi(x), i ∈ I, and

z∗j ∈ ∂gj(x), j ∈ J(x), if and only if

g′j(x, v0) < 0 ∀j ∈ J(x), f ′
i(x, v0) = 0 ∀i ∈ I. (3.13)

Note, howerever, that the validity of (3.11)–(3.13) does not imply that 1–3 holds
true, since (3.11)–(3.13) only imply that each of assumptions 1–3 is valid for
some x∗

i , y
∗
i , and z∗j , while in Theorem 3.2 we must suppose that they are valid

for the same x∗
i , y

∗
i , and z∗j .

For any subset A of a real vector space E denote by

coneA =

{
n∑

i=1

λixi

∣∣∣∣∣ xi ∈ A, λi ≥ 0, i ∈ {1, . . . , n}, n ∈ N

}

the smallest convex cone containing A and by span(A) be the linear span of A.

Proposition 3.4. Let the functions fi, i ∈ I, and gj, j ∈ J(x), be quasidif-
ferentiable at a point x ∈ M . Let also x∗

i ∈ ∂fi(x), y∗i ∈ ∂fi(x), i ∈ I, and
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z∗j ∈ ∂gj(x), j ∈ J(x), be given. Then assumptions 1–3 of Theorem 3.2 are
satisfied if and only if

Ci ∩ cl∗ cone
{
− Ck

∣∣ k 6= i
}
= ∅ ∀i ∈ I, (3.14)

co
{
∂gj(x) + z∗j

∣∣ j ∈ J(x)
}
∩ cl∗ cone

{
− Ci

∣∣ i ∈ I
}
= ∅, (3.15)

where Ci = (∂fi(x) + y∗i ) ∪ (−x∗
i − ∂fi(x)), i ∈ I.

Proof. Let assumption 3 from Theorem 3.2 be valid. Then, as is easy to see,
〈x∗, v0〉 < 0 for any x∗ ∈ co{∂gj(x) + z∗j | j ∈ J(x)}, while 〈x∗, v0〉 ≥ 0 for
any x∗ ∈ cl∗ cone{−Ci | i ∈ I}. Hence (3.15) holds true. Conversely, if (3.15)
holds true, then applying the separation theorem in the space X∗ endowed with
weak∗ topology one can find v0 satisfying assumption 3. Thus, this assumption
is equivalent to (3.15).

Let now assumption 1 of Theorem 3.2 be satisfied. Then 〈x∗, vi〉 < 0 for
any x∗ ∈ ∂fi(x) + y∗i , while 〈x∗, vi〉 ≥ 0 for any x∗ ∈ cl∗ cone{−Ck | k 6= i},
which implies that the sets ∂fi(x) + y∗i and cl∗ cone{−Ck | k 6= i} do not
intersect. Conversely, if these sets do not intersect, then applying the separation
theorem in the spaceX∗ endowed with weak∗ topology one can find vi satisfying
assumption 1.

Arguing in the same way one can check that assumption 2 of Theorem 3.2
is satisfied iff the sets −x∗

i − ∂fi(x) and cl∗ cone{−Ck | k 6= i} do not have
common points. Thus, assumptions 1 and 2 are equivalent to (3.14).

Remark 3.5. One can readily check that in the case I = {1} (i.e. when there
is only one equality constraint) condition (3.14) is reduced to the assumption
that 0 /∈ C1, i.e. 0 /∈ ∂fi(x) + y∗i and 0 /∈ −x∗

i − ∂fi(x).

Let a function f : X → R be quasidifferentiable at a point x ∈ X . Denote by
[Df(x)]+ = ∂f(x) + ∂f(x) a quasidifferential sum of f at x. Quasidifferential
sum is a weak∗ compact convex set, which, as is easy to see, is not invariant under
the choice of quasidifferential. See [24, 65] for applications of quasidifferential
sum to nonsmooth optimization and related problems.

Recall that subsets A1, . . . , Am of a real vector space E are said to be linearly
independent, if the inclusion 0 ∈ λ1A1+ . . . λmAm is valid iff λ1 = . . . = λm = 0.
We say that these sets are strongly linearly independent, if Ai ∩ span{Ak | k 6=
i} = ∅ for all i ∈ {1, . . . ,m}. Clearly, if the sets Ai are strongly linearly
independent, they are linearly independent; however the converse implication
does not hold true in the general case (take E = R

2, A1 = co{(±1, 1)T}, and
A2 = {(1, 0)T}). In the case m = 1, (strong) linear independence is reduced to
the assumption that 0 /∈ A1.

Proposition 3.6. Let fi and gj be as in Proposition 3.4. Then for assumptions
1–3 of Theorem 3.2 to be satisfied for all x∗

i ∈ ∂fi(x), y
∗
i ∈ ∂fi(x), i ∈ I, and

z∗j ∈ ∂gj(x), j ∈ J(x) it is sufficient that

[Dfi(x)]
+ ∩ cl∗ span

{
[Dfk(x)]

+
∣∣ k 6= i

}
= ∅ ∀i ∈ I, (3.16)

co
{
[Dgj(x)]

+
∣∣ j ∈ J(x)

}
∩ cl∗ span

{
[Dfi(x)]

+
∣∣ i ∈ I

}
= ∅. (3.17)

Furthermore, these conditions become necessary, if the spans in (3.17) and
(3.16) are weak∗ closed (in particular, if X is finite dimensional). In addi-
tion, if the span in (3.16) is weak∗ closed for any i ∈ I, then conditions (3.17)
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and (3.16) are satisfied if and only if the Mangasarian-Fromovitz constraint
qualification in terms of quasidifferentials (q.d.-MFCQ) holds true at x, i.e. the
sets [Dfi(x)]

+, i ∈ I, are strongly linearly independent and there exists v0 ∈ X
such that 〈x∗, v0〉 = 0 for any x∗ ∈ [Dfi(x)]

+, i ∈ I, and 〈x∗, v0〉 < 0 for any
x∗ ∈ [Dgj(x)]

+, j ∈ J(x).

Proof. Let conditions (3.17) and (3.16) be satisfied. Fix any x∗
i ∈ ∂fi(x), y

∗
i ∈

∂fi(x), i ∈ I, and z∗j ∈ ∂gj(x), j ∈ J(x), and denote Ci = (∂fi(x)+y∗i )∪(−x∗
i −

∂fi(x)). From the definition of quasidifferential sum it follows that

cone
{
− Ci

∣∣ i ∈ I0
}
⊆ span

{
[Dfi(x)]

+
∣∣ i ∈ I0

}
,

co
{
∂gj(x) + z∗j

∣∣ j ∈ J(x)
}
⊆ co

{
[Dgj(x)]

+
∣∣ j ∈ J(x)

}

for any I0 ⊆ I. Therefore, (3.17) implies (3.15). Observe also that (3.16)
is satisfied iff (−[Dfi(x)]

+) ∩ cl∗ span
{
[Dfk(x)]

+
∣∣ k 6= i

}
= ∅ for all i ∈

I. Furthermore, Ci ⊆ [Dfi(x)]
+ ∪ (−[Dfi(x)]

+) for any i ∈ I by definitions.
Therefore, (3.16) implies (3.14). Hence applying Proposition 3.4 one obtains
that assumptions 1–3 of Theorem 3.2 are satisfied for all x∗

i ∈ ∂fi(x), y∗i ∈
∂fi(x), i ∈ I, and z∗j ∈ ∂gj(x), j ∈ J(x).

Suppose now that the spans in (3.17) and (3.16) are weak∗ closed, and
assumptions 1–3 of Theorem 3.2 are satisfied for all x∗

i ∈ ∂fi(x), y
∗
i ∈ ∂fi(x),

i ∈ I, and z∗j ∈ ∂gj(x), j ∈ J(x). Arguing by reductio ad absurdum, suppose
that either (3.17) or (3.16) does not hold true. Suppose at first that (3.17) is
not valid. Applying the definitions of linear span and convex conic hull one can
verify that

span
{
[Dfi(x)]

+
∣∣ i ∈ I

}
=

∑

i∈I

cone[Dfi(x)]
+ +

∑

i∈I

cone
{
− [Dfi(x)]

+
}
.

Hence for any j ∈ J(x) there exist h∗
j ∈ ∂gj(x), z

∗
j ∈ ∂gj(x), and αj ≥ 0, while

for any i ∈ I there exist x∗
i , x̂

∗
i ∈ ∂fi(x), y

∗
i , ŷ

∗
i ∈ ∂fi(x), and λi, µi ≥ 0 such

that ∑

j∈J(x)

αj(h
∗
j + z∗j ) =

∑

i∈I

λi(x
∗
i + ŷ∗i )−

∑

i∈I

µi(x̂
∗
i + y∗i ),

and
∑

j∈J(x) αj = 1 (here we used the fact that cone[Dfi(x)]
+ =

⋃
t≥0 t[Dfi(x)]

+,

since [Dfi(x)]
+ is a convex set). Therefore

co
{
∂gj(x) + z∗j

∣∣ j ∈ J(x)
}
∩ cone

{
xi + ∂fi(x), −∂fi(x)− y∗i

∣∣ i ∈ I
}
6= ∅,

which is impossible by Proposition 3.4. Arguing in a similar way one can check
that if (3.16) is not valid, then there exists x∗

i ∈ ∂fi(x), y∗i ∈ ∂fi(x), i ∈
I for which (3.14) does not holds true, which is, once again, impossible by
Proposition 3.4.

It remains to note that if the span in (3.16) is weak∗ closed for all i ∈ I, then
by definition (3.16) means that the sets [Dfi(x)]

+, i ∈ I, are strongly linearly
independent. In turn, (3.17) implies the validity of the second condition of q.d.-
MFCQ (the existence of v0) by the separation theorem, while the validity of the
converse implication follows directly from definitions.

Remark 3.7. A weak form of the Mangasarian-Fromovitz constraint qualifica-
tion in terms of quasidifferentials, in which the strong linear independence of
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[Dfi(x)]
+, i ∈ I, is replaced by their linear independence, was first introduced

by the author in [24] for an analysis of the metric regularity of quasidifferentiable
mappings. In the case when X = R

n and there are no equality constraints it was
utilized in [45, 48, 49] for an analysis of optimality conditions, while in the case
when X = R

n and there are no inequality constraints a similar condition was
proposed by Demyanov [8] for the study of implicit functions and a nonsmooth
version of Newton’s method.

Let us give several simple corollaries to Theorem 3.2. At first, note that
this theorem obviously remains valid if there are no equality or there are no
inequality constraints. Furthermore, an analysis of the proof of Theorem 3.2
indicates that when there are no equality constraints the assumption that gj
are d.d. uniformly along finite dimensional spaces is unnecessary (in this case
one defines η(·) ≡ 0).

Corollary 3.8. Let the functions fi, i ∈ I, be continuous in a neighbourhood
of a point x ∈ M , quasidifferentiable at this point uniformly along finite dimen-
sional spaces, and let J = ∅. Let also x∗

i ∈ ∂fi(x) and y∗i ∈ ∂fi(x), i ∈ I be such
that (3.14) holds true (in particular, if m = 1, then it is sufficient to suppose
that 0 /∈ ∂f1(x) + y∗1 and 0 /∈ x∗

1 + ∂f1(x)). Then
{
v ∈ X

∣∣∣ s
(
∂fi(x) + y∗i , v

)
≤ 0, s

(
− x∗

i − ∂fi(x), v
)
≤ 0, i ∈ I

}
⊆ TM (x).

Corollary 3.9. Let x ∈ M be a given point and I = ∅. Suppose that the
functions gj, j ∈ J(x), are quasidifferentiable at x, the functions gj, j /∈ J(x),
are upper semicontinuous (u.s.c.) at this point. Let also z∗j ∈ ∂gj(x), j ∈ J(x),
be such that 0 /∈ co{∂gj(x) + z∗j | j ∈ J(x)}. Then

{
v ∈ X

∣∣∣ s
(
∂gj(x) + z∗j , v

)
≤ 0, j ∈ J(x)

}
⊆ TM (x).

Theorem 3.2 can also be utilized to describe the contingent cone TM (x) in
terms of the directional derivatives of the functions fi and gj in the case when
these functions are Hadamard directionally differentiable. Recall that a function
f : X → R is called Hadamard d.d. at a point x ∈ X , if for any v ∈ X there
exists the finite limit

f ′(x, v) = lim
[α,v′]→[+0,v]

f(x+ αv′)− f(x)

α

Note that when f is Hadamard d.d. at x, f ′(x, v) coincides with the usual
directional derivative.

Corollary 3.10. Let the functions fi, i ∈ I, be continuous in a neighbourhood
of a point x ∈ M , the functions gj, j /∈ J(x), be upper semicontinuous (u.s.c.)
at this point, and let fi, i ∈ I, and gj, j ∈ J(x), be quasidifferentiable at x
uniformly along finite dimensional spaces. Suppose also that assumptions (3.16)
and (3.17) are satisfied. Then

{
v ∈ X

∣∣∣ f ′
i(x, v) = 0, i ∈ I, g′j(x, v) ≤ 0, j ∈ J(x)

}
⊆ TM (x), (3.18)

Moreover, the opposite inclusion holds true, provided fi, i ∈ I, and gj, j ∈ J(x),
are Hadamard d.d. at x (in particular, if they are Lipschitz continuous near this
point).
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Proof. Let v ∈ X belong to the left-hand side of (3.18). By the definition of
quasidifferential one has

f ′
i(x, v) = max

x∗∈∂fi(x)
〈x∗, v〉+ min

y∗∈∂fi(x)
〈y∗, v〉

(the maximum and the minimum are attained due to the fact that the sets ∂fi(x)
and ∂fi(x) are weak∗ compact). Hence for any i ∈ I there exist x∗

i ∈ ∂fi(x)
and y∗i ∈ ∂fi(x) such that s(∂fi(x) + y∗i , v) = 0 and s(−x∗

i − ∂fi(x), v) = 0.
Similarly, for any j ∈ J(x) there exists z∗j ∈ ∂gj(x) such that s(∂gj(x)+z∗j , v) ≤
0. Consequently, applying Proposition 3.6 and Theorem 3.2 one obtains that
v ∈ TM (x).

Let us prove the converse inclusion. Choose v ∈ TM (x). By definition there
exist sequences {αn} ⊂ (0,+∞) and {vn} ⊂ X such that αn → 0 and vn → v as
n → +∞, and x+ αnvn ∈ M for all n ∈ N. Fix any i ∈ I. By our assumption
fi is Hadamard d.d. at x. Therefore

f ′
i(x, v) = lim

n→∞

fi(x+ αnvn)− fi(x)

αn

= 0,

(here we used the fact that fi(x+αnvn) = 0 for all n ∈ N, since x+αnvn ∈ M).
Similarly, from the fact that x + αnvn ∈ M for all n ∈ N and the function gj,
j ∈ J(x) is Hadamard d.d. at x it follows that g′j(x, v) ≤ 0. Thus, f ′

i(x, v) = 0
for any i ∈ I and g′j(x, v) ≤ 0 for any j ∈ J(x), i.e. v belongs to the left-hand
side of (3.18), which completes the proof.

Let us finally present two simple examples illustrating Theorem 3.2.

Example 3.11. Let X = R
2, x = 0, and

M =
{
x = (x1, x2)T ∈ R

2
∣∣∣ f(x) = |x1| − x2 = 0, g(x) = x1 ≤ 0

}
.

The functions f and g are quasidifferentiable at x and one can define

∂f(x) = co

{(
1
−1

)
,

(
−1
−1

)}
, ∂f(x) =

{(
0
0

)}
,

∂g(x) =

{(
1
0

)}
, ∂g(x) =

{(
0
0

)}
.

Observe that

[Df(x)]+ = co

{(
1
−1

)
,

(
−1
−1

)}
, [Dg(x)]+ =

{(
1
0

)}
.

Thus, span[Df(x)]+ = R
2, and q.d.-MFCQ is not satisfied at x. Nevertheless,

Theorem 3.2 enables us to compute the entire cone TM (x). Indeed, put x∗ =
(−1,−1)T ∈ ∂f(x) and y∗ = 0 ∈ ∂f(x). Then 0 /∈ x∗+∂f(x) and 0 /∈ ∂f(x)+y∗.
Define z∗ = 0 ∈ ∂g(x). Then for v0 = (−1, 1)T one has

s(∂g(x) + z∗, v0) = −1 < 0, s(∂f(x) + y∗, v0) = 0, s(−x∗ − ∂f(x), v0) = 0.

Thus, all assumptions of Theorem 3.2 are satisfied for the chosen vectors x∗, y∗,
and z∗. Consequently, by this theorem the cone
{
v ∈ R

2
∣∣∣ s(∂f(x) + y∗, v) ≤ 0, s(−x∗ − ∂f(x), v) ≤ 0, s(∂g(x) + z∗, v) ≤ 0

}

=
{
v ∈ R

2
∣∣ |v1| − v2 ≤ 0, v1 + v2 ≤ 0, v1 ≤ 0

}
=

{
(−t, t)T ∈ R

2
∣∣ t ≥ 0

}
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is contained in TM (x). It remains to note that, in actuality, this cone coincides
with M and TM (x).

Example 3.12. Let X = R
2, x = 0, and

M =
{
x = (x1, x2)T ∈ R

2
∣∣∣ f(x) = | sinx1| − | sinx2| = 0

}
.

Applying standard rules of quasidifferential calculus (see, e.g. [14]) one can easily
check that f is quasidifferentiable at x and one can define Df(0) = [∂f(0), ∂f(0)]
with

∂f(0) = co

{(
1
0

)
,

(
−1
0

)}
, ∂f(0) = co

{(
0
1

)
,

(
0
−1

)}
. (3.19)

Observe that [Df(0)]+ = {x ∈ R
2 | max{|x1|, |x2|} ≤ 1}, i.e. q.d.-MFCQ

is not satisfied at x, since 0 ∈ [Df(0)]+. Nevertheless, as in the previous
example, Theorem 3.2 still allows one to compute the entire contingent cone
TM (0). Indeed, denote x∗

± = (±1, 0)T and y∗± = (0,±1)T . Clearly, 0 /∈ ∂f(0) +

y∗± and 0 /∈ ∂f(0) + x∗
±. Therefore, applying Corollary 3.8 one gets that Ki ⊂

TM (0), 1 ≤ i ≤ 4, where

K1 =
{
v ∈ R

2
∣∣∣ s(∂f(0) + y∗+, v) ≤ 0, s(−x∗

+ − ∂f(0), v) ≤ 0
}

=
{
v ∈ R

2
∣∣ |v1|+ v2 ≤ 0, −v1 + |v2| ≤ 0

}
=

{
(t,−t)T ∈ R

2
∣∣ t ≥ 0

}
,

K2 =
{
v ∈ R

2
∣∣∣ s(∂f(0) + y∗+, v) ≤ 0, s(−x∗

− − ∂f(0), v) ≤ 0
}

=
{
v ∈ R

2
∣∣ |v1|+ v2 ≤ 0, v1 + |v2| ≤ 0

}
=

{
(−t,−t)T ∈ R

2
∣∣ t ≥ 0

}
,

K3 =
{
v ∈ R

2
∣∣∣ s(∂f(0) + y∗−, v) ≤ 0, s(−x∗

+ − ∂f(0), v) ≤ 0
}

=
{
v ∈ R

2
∣∣ |v1| − v2 ≤ 0, −v1 + |v2| ≤ 0

}
=

{
(t, t)T ∈ R

2
∣∣ t ≥ 0

}
,

K4 =
{
v ∈ R

2
∣∣∣ s(∂f(0) + y∗−, v) ≤ 0, s(−x∗

− − ∂f(0), v) ≤ 0
}

=
{
v ∈ R

2
∣∣ |v1| − v2 ≤ 0, v1 + |v2| ≤ 0

}
=

{
(−t, t)T ∈ R

2
∣∣ t ≥ 0

}
.

One can verify that TM (0) = {v ∈ R
2 | |v1| − |v2| = 0} = ∪4

i=1Ki.

Remark 3.13. The main results of this section can be easily rewritten in terms of
upper convex and lower concave approximations of the directional derivatives of
the functions fi and gj and thus extended to the case when the functions fi and
gj are just directionally differentiable (but not necessarily quasidifferentiable).
Recall that a continuous sublinear function p : X → R is called an upper convex
approximation (u.c.a.) of a positively homogeneous function h : X → R, if
p(v) ≥ h(v) for all v ∈ X , while a continuous superlinear function q : X → R

is called a lower concave approximation (l.c.a.) of h, if q(v) ≤ h(v) for all
v ∈ X . Note that if a function f is quasidifferentiable at a point x, then by
the definition of quasidifferential (2.1) for any y∗ ∈ ∂f(x) the function p(·) =
s(∂f(x) + y∗, ·) is an u.c.a. of f ′(x, ·), while for any x∗ ∈ ∂f(x) the function
q(·) = −s(−x∗ − ∂f(x), ·) is a l.c.a. of f ′(x, ·). However, a function need not be
quasidifferentiable to admit upper convex and lower concave approximations of
its directional derivative (see [14, 15] for more details).

Suppose that the functions fi and gj are directionally differentiable at a
point x. Let pi be u.c.a. of f ′

i(x, ·), qi be l.c.a. of f ′
i(x, ·), i ∈ I, and uj be
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u.c.a. of g′j(x, ·), j ∈ J(x). Then assumption 1 of Theorem 3.2 can be rewritten
as follows: there exists vi ∈ X such that pi(vi) < 0 and for any k 6= i one
has pk(vi) ≤ 0 and qk(vi) ≥ 0. Assumptions 2 and 3 of this theorem can be
rewritten in a similar way. Then making necessary changes in the formulation of
Theorem 3.2 and almost literally repeating its proof one can verify the validity
of following inclusion:

{
v ∈ X

∣∣∣ pi(v) ≤ 0, qi(v) ≥ 0 ∀i ∈ I, uj(v) ≤ 0 ∀j ∈ J(x)
}
⊆ TM (x).

Optimality conditions from the following section can also be rewritten in terms
of u.c.a. of the objective function and inequality constraints and u.c.a. and
l.c.a. of equality constraints. We leave the details to the interested reader.

4 Optimality Conditions for Quasidifferentiable

Programming Problems

In this section we derive the strongest existing necessary optimality conditions
for nonsmooth nonlinear programming problems with quasidifferentiable objec-
tive function and constraints under less restrictive assumptions than in previous
studies. Our derivation of these optimality conditions is based on the description
of convex subcones of the contingent cone given in Theorem 3.2.

Consider the following optimization problem

min f0(x) s.t. fi(x) = 0 ∀i ∈ I, gj(x) ≤ 0 ∀j ∈ J, (4.1)

where f0, fi, gj : X → R are given functions, I = {1, . . . ,m}, and J = {1, . . . , l}.
Recall that J(x) = {j ∈ J | gj(x) = 0}.

Theorem 4.1. Let x be a locally optimal solution of problem (4.1) and the
following assumptions be valid:

1. f0 is quasidifferentiable and Hadamard d.d. at x;

2. the functions fi, i ∈ I, are continuous in a neighbourhood of x and qua-
sidifferentiable at x uniformly along finite dimensional spaces;

3. the functions gj, j /∈ J(x), are u.s.c. and quasidifferentiable at x, while
the functions gj, j ∈ J(x) are quasidifferentiable at x uniformly along
finite dimensional spaces;

4. vectors x∗
i ∈ ∂fi(x), y

∗
i ∈ ∂fi(x), i ∈ I, and z∗j ∈ ∂gj(x), j ∈ J(x), satisfy

assumptions 1–3 of Theorem 3.2.

Then for any y∗0 ∈ ∂f0(x) and z∗j ∈ ∂gj(x), j /∈ J(x), there exist λj ≥ 0, j ∈ J ,
such that λjgj(x) = 0 for any j ∈ J and

0 ∈ ∂f0(x) + y∗0 +

l∑

j=1

λj

(
∂gj(x) + z∗j

)
+ cl∗ cone

{
Ci | i ∈ I

}
, (4.2)

where Ci = (∂fi(x) + y∗i ) ∪ (−x∗
i − ∂fi(x)).
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Proof. With the use of the definitions of contingent cone and Hadamard direc-
tional derivative one can easily verify that the local optimality of the point x
implies that f ′

0(x, v) ≥ 0 for any v ∈ TM (x), where M is the feasible region
of problem (4.1) (see (3.1)). Hence, in particular, f ′

0(x, v) ≥ 0 for any v ∈ K,
where

K =
{
v ∈ X

∣∣∣ s
(
∂fi(x) + y∗i , v

)
≤ 0, s

(
− x∗

i − ∂fi(x), v
)
≤ 0, i ∈ I,

s
(
∂gj(x) + z∗j , v

)
≤ 0, j ∈ J(x)

}
,
(4.3)

since by Theorem 3.2 one has K ⊆ TM (x).
Choose any y∗0 ∈ ∂f0(x). By the definition of quasidifferential one has

p(v) = s
(
∂f0(x) + y∗0 , v

)
≥ f ′

0(x, v) ∀v ∈ X.

Therefore p(v) ≥ 0 for any v ∈ K, which, as is readily seen, implies that 0 is a
globally optimal solution of the convex programming problem

min p(v) s.t. qj(v) ≤ 0 ∀j ∈ J(x), v ∈ H, (4.4)

where qj(v) = s(∂gj(x) + z∗j , v) and

H =
{
v ∈ X

∣∣∣ s
(
∂fi(x) + y∗i , v

)
≤ 0, s

(
− x∗

i − ∂fi(x), v
)
≤ 0, i ∈ I

}
.

Note that the cone H is obviously closed and convex. By assumption 3 of
Theorem 3.2 there exists v0 ∈ H such that qj(v0) < 0 for any j ∈ J(x), i.e.
Slater’s condition for problem (4.4) holds true. Consequently, applying the
necessary and sufficient optimality conditions for convex programming problems
(see, e.g. [42, Theorem 1.1.2′]) one obtains that there exists λj ≥ 0, j ∈ J(x),
such that

0 ∈ ∂p(0) +
∑

j∈J(x)

λj∂qj(0) +Ho (4.5)

where Ho = {x∗ ∈ X∗ | 〈x∗, v〉 ≤ 0 ∀v ∈ H} is the polar cone of H and ∂ is the
subdifferential in the sense of convex analysis. We claim that

Ho = cl∗ cone
{
Ci | i ∈ I

}
, (4.6)

where Ci = (∂fi(x) + y∗i ) ∪ (−x∗
i − ∂fi(x)). Indeed, the inclusion “⊇” follows

directly from the definition of H . Arguing by reductio ad absurdum, suppose
that the opposite inclusion does not hold true, i.e. that there exists x∗ ∈ Ho

such that x∗ /∈ cl∗ cone{Ci | i ∈ I}. Then applying the separation theorem
in the space X∗ equipped with the weak∗ topology one gets that there exists
v ∈ X such that 〈x∗, v〉 > 0, while 〈y∗, v〉 ≤ 0 for any y∗ ∈ cl∗ cone{Ci | i ∈ I}.
From the second inequality it follows that v ∈ H by the definition of H , which is
impossible, since x∗ ∈ Ho and 〈x∗, v〉 > 0. Thus, (4.6) holds true. Consequently,
computing the subdifferentials ∂p(0) and ∂qj(0) with the use of the theorem
on the subdifferential of the supremum of a family of convex functions (see,
e.g. [42, Theorem 4.2.3]), setting λj = 0 for any j /∈ J(x), and applying (4.5)
one obtains that optimality condition (4.2) holds true.
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Corollary 4.2. Let all assumptions of the theorem above be valid and suppose
that the set cone{Ci | i ∈ I} is weak∗ closed. Then for any y∗0 ∈ ∂f0(x) and
z∗j ∈ ∂gj(x), j /∈ J(x), there exist µ

i
≥ 0, µi ≥ 0, i ∈ I, and λj ≥ 0, j ∈ J ,

such that λjgj(x) = 0 for any j ∈ J and

0 ∈ ∂f0(x) + y∗0 +
m∑

i=1

µ
j

(
∂fi(x) + y∗i

)

−
m∑

i=1

µj

(
x∗
i + ∂fi(x)

)
+

l∑

j=1

λj

(
∂gj(x) + z∗j

)
.

(4.7)

Proof. By Theorem 4.1 there exist λj ≥ 0, j ∈ J , and x∗ ∈ ∂f0(x) + y∗0 +∑
j∈J λj(∂gj(x)+z∗j ) such that −x∗ ∈ cone{Ci | i ∈ I} and λjgj(x) = 0 for any

j ∈ J . From the definitions of conic hull and the sets Ci it follows that there
exist µ

i
≥ 0 and µi ≥ 0, i ∈ I, such that

−x∗ ∈
m∑

i=1

µ
j

(
∂fi(x) + y∗i

)
−

m∑

i=1

µj

(
x∗
i + ∂fi(x)

)
,

i.e. (4.7) holds true.

Remark 4.3. Note that each equality constraint fi(x) = 0 enters optimality con-
dition (4.7) twice, as two inequality constraints, namely, fi(x) ≥ 0 and fi(x) ≤ 0,
which seems to be a specific feature of optimality conditions in terms of quasid-
ifferentials that is connected to the fact that in quasidifferentiable programming
constraints g(x) ≤ 0 and h(x) ≥ 0 enter optimality conditions differently (usu-
ally, only the sign of the corresponding multiplier changes). Both µ

i
and µi

in (4.7) can be viewed as multipliers corresponding to the equality constraint
fi(x) = 0. Thus, loosely speaking, one can say that there are two multipliers µ

i
and µi corresponding to each equality constraint fi(x) = 0. Finally, let us note
that Lagrange multipliers λi, µi

, and µi obviously depend on the choice of the
vectors x∗

i , y
∗
i and z∗j from the corresponding quasidifferentials of the objective

function and constraints and cannot be chosen independently of these vectors
in the general case (cf. [47, 48, 68]).

Let us point out a simple sufficient condition for the weak∗ closedness of the
convex conic hull cone{Ci | i ∈ I} from the corollary above, which is satisfied
in almost all finite dimensional applications. In the finite dimensional case the
subdifferentials ∂fi(x) and the superdifferentials ∂fi(x) are usually polytopes
(i.e. convex hulls of a finite number of points). Clearly, one can replace these
polytopes in the definition of cone{Ci | i ∈ I} with their extreme points, i.e.

cone{Ci | i ∈ I} = cone
{
x∗ ∈ X∗

∣∣∣

x∗ ∈ ext
(
∂fi(x) + y∗i

)
∪ ext

(
− x∗

i − ∂fi(x)
)
, i ∈ I

}
,

where extA is the set of extreme points of a convex set A. By the definition
of polytope the sets ext(∂fi(x) + y∗i ) and ext(−x∗

i − ∂fi(x)) are finite. Thus, if
the sets ∂fi(x) and ∂fi(x), i ∈ I, are polytopes, then the cone K = cone{Ci |
i ∈ I} is finitely generated and, as is well-known, weak∗ closed (see, e.g. [6,
Proposition 2.41]).
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In the case when there are no equality constraints one can obtain a slightly
stronger result than the one given in Theorem 4.1. For any convex set A denote
by NA(x) = {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ 0 ∀y ∈ A} the normal cone to the set A
at a point x ∈ A in the sense of convex analysis.

Theorem 4.4. Let x ∈ X be a locally optimal solution of the problem

min f0(x) s.t. gj(x) ≤ 0 ∀j ∈ J, x ∈ A,

where A ⊂ X is a closed convex set. Suppose that the functions f0 and gj,
j ∈ J are quasidifferentiable at x, and let z∗j ∈ ∂gj(x), j ∈ J , be such that the
following constraint qualification holds true:

0 /∈ co{∂gj(x) + z∗j | j ∈ J(x)} +NA(x). (4.8)

Then for any y∗0 ∈ ∂f0(x) there exist λj ≥ 0, j ∈ J , such that

0 ∈ ∂f0(x) + y∗0 +

l∑

j=1

λj

(
∂gj(x) + z∗j

)
+NA(x), λjgj(x) = 0 ∀j ∈ J. (4.9)

Proof. Define h(x) = maxj∈J{f0(x)−f0(x), gj(x)}. Applying standard calculus
rules for directional derivatives [14] one can check that the function h is d.d. at
x and

h′(x, v) = max
j∈J(x)

{f ′
0(x, v), g

′
j(x, v)} ∀v ∈ X. (4.10)

It is readily seen that x is a point of local minimum of the function h on the set
A− x. Therefore, h′(x, v) ≥ 0 for any v ∈ A− x due to the convexity of the set
A.

Fix any y∗0 ∈ ∂f0(x). By the definition of quasidifferential one has f ′
0(x, v) ≤

s(∂f0(x) + y∗0 , v) and g′j(x, v) ≤ s(∂gj(x) + z∗j , v) for any v ∈ X and j ∈ J(x).
Hence with the use of (4.10) one gets that

η(v) = max
j∈J(x)

{
s(∂f0(x) + y∗0 , v), s(∂gj(x) + z∗j , v)

}
≥ h′(x, v) ≥ 0

for any v ∈ A− x, i.e. 0 is a point of global minimum of the convex function η
on the set A− x. Therefore, 0 ∈ ∂η(0) +NA(x) (see, e.g. [42, Theorem 1.1.2’]).
Applying the theorem on the subdifferential of the supremum of a family of
convex functions [42, Theorem 4.2.3] one gets that ∂η(0) = coj∈J(x){∂f0(x) +
y∗0 , ∂gj(x) + z∗j }, which implies that there exist α0 ≥ 0 and αj ≥ 0, j ∈ J(x),
such that α0 +

∑
j∈J(x) αj = 1, and

0 ∈ α0

(
∂f0(x) + y∗0

)
+

∑

j∈J(x)

αj

(
∂gj(x) + z∗j

)
+NA(x).

Note that if α0 = 0, then 0 ∈ co{∂gj(x) + z∗j | j ∈ J(x)} + NA(x), which
contradicts (4.8). Thus, α0 6= 0. Hence dividing the inclusion above by α0 one
obtains that (4.9) holds true with λj = αj/α0 for any j ∈ J(x) and λj = 0 for
any j /∈ J(x).

Let us present two simple examples that illustrate Theorems 4.1 and 4.4 and,
at the same time, demonstrate that optimality conditions in terms of quasidif-
ferentials are sometimes better than optimality conditions in terms of various
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subdifferentials. In these examples we consider optimization problems without
equality constraints. A similar example of an equality constrained problem is
given in [24].

Example 4.5. Firstly we analyze a problem with a degenerate constraint. Let
X = R, and consider the following optimization problem:

min f0(x) = x s.t. g(x) = min{x, x3} ≤ 0. (4.11)

The point x = 0 is obviously not a locally optimal solution of this problem,
since the set (−∞, 0] is a feasible region of this problem. However, let us check
that optimality conditions in terms of various subdifferentials hold true at x.

Denote by L(x, λ0, λ) = λ0f0(x) + λg(x) the Lagrangian for problem (4.11).
It is easy to see that ∂ClL(x, 0, λ) = [0, λ] for any λ > 0, where ∂Cl is the Clarke
subdifferential. Thus, 0 ∈ ∂ClL(x, 0, λ), i.e. the optimality conditions in terms
of the Clarke subdifferential [7, Theorem 6.1.1] are satisfied at x.

Let us now consider the Michel-Penot subdifferential [39]. Fix any λ > 0.
For any v ∈ R the Michel-Penot directional derivative of the function L(·, 0, λ)
at x has the form

dMPL(·, 0, λ)[x, v] = sup
e∈R

lim sup
t→+0

L(x+ t(v + e), 0, λ)− L(x+ te, 0, λ)

t

= sup
e∈R

λ
(
min

{
v + e, 0

}
−min{e, 0}

)
= λmax{0, v}.

Consequently, ∂MPL(·, 0, λ)(x) = [0, λ], where ∂MP is the Michel-Penot sub-
differential of L(·, 0, λ) at x. Thus, 0 ∈ ∂MPL(·, 0, λ)(x), i.e. the optimality
conditions in terms of the Michel-Penot subdifferential [39] are satisfied at x.

Let us now turn to approximate (Ioffe) subdifferential [40, 41, 55]. Observe
that for any x ∈ (0, 1) one has L(x, 0, λ) = λx3. Therefore, for any such x
one has ∂−L(·, 0, λ)(x) = 3λx2, where ∂− is the Dini subdifferential. Hence for
the Ioffe subdifferential one has 0 ∈ ∂aL(·, 0, λ)(x) = lim supx→x ∂

−L(·, 0, λ)(x),
where lim sup is the outer limit. Thus, the optimality conditions in terms of the
Ioffe subdifferential [40, Proposition 12] are satisfied at x for any λ > 0.

Denote by ∂M the Mordukhovich basic subdifferential [50,51]. With the use
of the representation of this subdifferential as the limiting Fréchet subdifferen-
tial [50, Theorem 1.89] one can easily check that ∂M (λg)(x) = {0, λ}. Conse-
quently, −λ0∇f0(x) ∈ ∂M (λg)(x) for λ0 = 0 and any λ > 0, i.e. the optimality
conditions in terms of the Mordukhovich subdifferential [51, Theorem 5.19] are
satisfied at x as well.

Let us now consider the Jeyakumar-Luc subdifferential [67], which we denote
by ∂JL. One can check that ∂JLg(x) = {0, 1} is the smallest Jeykumar-Luc
subdifferential of g at x. For any λ > 0 and λ0 = 0 one has 0 ∈ λ0∇f0(x) +
λ co ∂JLg(x). Thus, the optimality conditions in terms of the Jeyakumar-Luc
subdifferential [67, Corollary 3.4] are satisfied at x.

Let us finally check that optimality conditions in terms of quasidifferentials
(Theorem 4.4), in contrast to optimality conditions in terms of subdifferentials,
detect the nonoptimality of the point x = 0. Indeed, the function g is obviously
quasidifferentiable at x and one can define Dg(x) = [{0}, [0, 1]]. Note that
for z∗ = 1 ∈ ∂g(x) one obviously has 0 /∈ ∂g(x) + z∗, i.e. the assumptions of
Theorem 4.4 are satisfied. Therefore, if x is a locally optimal solution of problem
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(4.11), then by Theorem 4.4 there exists λ ≥ 0 such that

0 ∈ ∇f0(x) + λ
(
∂g(x) + z∗

)
= 1 + λ1 = 1 + λ,

which is clearly impossible. Thus, one can conclude that the point x is nonop-
timal.

Remark 4.6. Various optimality conditions and constraint qualifications for qua-
sidifferentiable programming problems with inequality constraints were analyzed
in [10,24,44,45,49,69]. One can check that none of the constraint qualifications
from these papers are satisfied for problem (4.11) at the point x = 0. Moreover,
the so-called nondegeneracy condition

cl{v ∈ X | g′(x, v) < 0} = {v ∈ X | g′(x, v) ≤ 0}

does not hold true at x either. Thus, it seems that in the case of quasid-
ifferentiable programming problems constraint qualifications must depend on
individual elements of quasidifferentials just like Lagrange multipliers in qua-
sidifferentiable programming depend on individual elements of quasidifferentials.
To the best of the author’s knowledge (and much to the author’s surprise), such
constraint qualifications have never been analyzed before.

Example 4.7. Let us also consider a nondegenerate problem. Let X = R
2 and

consider the following optimization problem:

min f0(x) = |x1| − |x2| s.t. g(x) = −x1 + x2 ≤ 0. (4.12)

The point x = 0 is not a locally optimal solution of this problem, since for any
t > 0 the point x(t) = (t,−2t) is feasible for this problem and the inequality
f0(x(t)) = −t < 0 = f0(x) holds true.

Denote by L(x, λ) = f0(x) + λg(x) the Lagrangian for problem (4.12). One
can easily check that

∂MPL(·, λ)(x) = ∂ClL(·, λ)(x) = co

{(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}
+ λ

(
−1
1

)
.

Therefore optimality conditions in terms of the Michel-Penot and Clarke subd-
ifferentials are satisfied at x for any λ ∈ [0, 1]. By [67, Example 2.1] one can set
∂JLf0(x) = {(1,−1)T , (−1, 1)T}, which implies that 0 ∈ co ∂JLf0(x) + λ∇g(x)
for λ = 1, i.e. the optimality conditions in terms of the Jeyakumar-Luc subdif-
ferential are satisfied at x as well.

By [50, p. 92–93] one has ∂Mf0(x) = co{(±1,−1)T} ∪ co{(±1, 1)T}. There-
fore 0 ∈ ∂Mf0(x) + λ∇g(x) for λ = 1, i.e. the optimality conditions in terms of
the Mordukhovich basic subdifferential are satisfied at x. Finally, for any x ∈ R

2

such that x1, x2 > 0 one has L(x, 1) = 0, which implies that ∂−L(·, 1)(x) = {0}
for any such x. Hence 0 ∈ ∂aL(·, 1)(x) = lim supx→x ∂

−L(x, 1), i.e. the opti-
mality conditions in term of Ioffe’s approximate subdifferential are satisfied at
x as well.

Let us now consider optimality conditions in terms of quasidifferentials. The
function f0 is quasidifferentiable at x and one can define

∂f0(x) = co

{(
1
0

)
,

(
−1
0

)}
, ∂f0(x) = co

{(
0
1

)
,

(
0
−1

)}
.
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For y∗0 = (0, 1)T ∈ ∂f0(x) one has ∂f0(x) + y∗0 = co{(1, 1)T , (−1, 1)T }. There-
fore, 0 /∈ ∂f0(x) + y∗0 + λ∇g(x) for any λ ≥ 0. Consequently, the optimality
conditions from Theorem 4.4 are not satisfied at x, and one can conclude that the
point x is nonoptimal, since the constraint qualification ∇g(x) = (−1, 1)T 6= 0
holds true at x. Thus, unlike optimality conditions in terms of subdifferentials,
the optimality conditions in terms of quasidifferentials are able to detect the
nonoptimality of this point.

Remark 4.8. Let X = R
n and “∂” be any subdifferential mapping that satisfies

the following assumption: if a function f : Rn → R is continuously differentiable
at a sequence of points {xn} ⊂ R

n converging to some x ∈ R
n and there exists

the limit v = limn→∞ ∇f(xn), then v ∈ ∂f(x). Then in the previous example
one has 0 ∈ ∂L(·, 1)(x) and 0 ∈ ∂f0(x) + ∇g(x) due to our assumption on
“∂” and the fact that for any x ∈ R

2 such that x1, x2 > 0 one has L(x, 1) =
0, i.e. ∇xL(x, 1) = 0, and ∇f0(x) = (1,−1)T . Thus, roughly speaking, no
outer semicontinuous/limiting subdifferential can detect the nonoptimality of
the point x in the previous example.

5 A comparison of constraint qualifications

As was pointed out in the introduction, numerous papers have been devoted to
analysis of constraint qualifications and optimality conditions for nonsmooth
quasidifferentiable programming problems with equality and inequality con-
straints. Therefore, it is necessary to point out the difference between the main
results of this paper and previous studies.

Let functions f0, g : X → R be quasidifferentiable at a point x satisfying the
inequality g(x) ≤ 0. Consider the following optimization problem:

min f0(x) subject to g(x) ≤ 0.

A detailed analysis of constraint qualifications in terms of quasidifferentials for
this problem was presented in [45]. The most widely used constraint qualifica-
tion for such problems is the nondegenracy condition

cl{v ∈ X | g′(x, v) < 0} = {v ∈ X | g′(x, v) ≤ 0},

which was first utilized in quasidifferentiable optimization by Demyanov and
Polyakova [10]. As was pointed out in [45], “for a given problem it is usually hard
if not impossible to verify the nondegeneracy condition”. Therefore, different
constraint qualifications are needed. In [45] it was shown that the strongest
constraint qualification among existing ones in terms of quasidifferentials is the
assumption that the pair (∂g(x),−∂g(x)) is in general position, in the sense
that the validity of all other existing constraints qualifications implies that the
pair (∂g(x),−∂g(x)) is in general position. This assumption was introduced by
Rubinov, and it is invariant with respect to the choice of quasidifferential (see,
e.g. [14, 15]). Recall that a pair [A,B] of weak∗ compact convex subsets of X∗

is said to be in general position, if for any v ∈ X the max-face

∆(v | B) = {y∗ ∈ B | 〈y∗, v〉 = s(B, v)}

is not contained in the max-face

∆(v | A) = {x∗ ∈ A | 〈x∗, v〉 = s(A, v)}.
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If the pair (∂g(x),−∂g(x)) is in general position, then by definition the max-face
∆(0 | −∂g(x)) = −∂g(x) corresponding to the vector v = 0 is not contained
in the max-face ∆(0 | ∂g(x)) = ∂g(x). Therefore, there exists z∗ ∈ ∂g(x) such
that 0 /∈ ∂g(x) + z∗, that is, constraint qualification (4.8) from Theorem 4.4 is
satisfied for some vectors z∗ ∈ ∂g(x). However, in many particular cases this
constraint qualification can be satisfied, when the pair (∂g(x),−∂g(x)) is not in
general position.

Example 5.1. Let X = R
2 and g(x) = max{2x1, 2x2} + min{0,−x1 − x2}.

This function is quasidifferentiable and its quasidifferential at the point x = 0
has the form

∂g(0) = co

{(
2
0

)
,

(
0
2

)}
, ∂g(0) = co

{(
0
0

)
,

(
−1
−1

)}

For v = (1, 1)T one has ∆(v | −∂g(0)) = {(1, 1)T )} and ∆(v | ∂g(0)) = ∂g(0),
which implies that the pair (∂g(0),−∂g(0)) is not in general position, since
(1, 1)T ∈ ∂g(0). On the other hand, for any z∗ ∈ ∂g(0) \ {(−1,−1)T} one has
0 /∈ ∂g(0) + z∗.

Let us now consider the equality constrained problem

min f0(x) subject to f1(x) = 0.

Optimality condition (4.2) for this problem was first derived by Polyakova [57]
under the assumption that TM (x) = {v ∈ X | f ′

1(x, v) = 0}, where by definition
M = {x ∈ X | f1(x) = 0}. Furthermore, it was shown in [57] that this
assumptions is satisfied, provided 0 /∈ [Df1(x)]

+, i.e. provided q.d.-MFCQ
holds at x. Note that the constraint qualification from Theorem 3.2 (see also
Corollary 3.8) that we use is much less restrictive than q.d.-MFCQ. In particular,
q.d.-MFCQ is not satisfies for the constraint f1(x) = | sinx1| − | sinx2| = 0 at
the point x = 0, while the constraint qualification from Theorem 3.2 is satisfied
for many particular elements of a quasidifferential of f1 (see Example 3.12).

In turn, if q.d.-MFCQ is not satisfied, then, unlike the constraint qualifi-
cation from Theorem 3.2, the assumption TM (x) = {v ∈ X | f ′

1(x, v) = 0} is
hard to verify directly without employing some additional information about
the function f1 apart from its quasidifferential at x. In addition, there are cases
when this assumption is not satisfied, while the constraint qualification from
Theorem 3.2 can be applied.

Example 5.2. Let X = R
2 and

f1(x) = max{sinx1 + sinx2, 0}+min{−x1 − x2, x1}.

Then for the point x = 0 one has f ′
1(x, v) = max{v1+v2, 0}+min{−v1−v2, v1},

which yields

K =
{
v = (v1, v2) ∈ R

2
∣∣ v1, v2 > 0

}
⊂

{
v ∈ X

∣∣ f ′
1(x, v) = 0

}
.

However, from the fact that t > sin t for all t > 0 it follows that for any
x ∈ (0, π)× (0, π) one has f1(x) = sinx1 + sinx2 − x1 − x2 < 0 , which implies
that K ∩ TM (x) = ∅, that is, TM (x) 6= {v ∈ R

2 | f ′
1(x, v) = 0}. On the

other hand, applying the standard rules of the quasidifferential calculus (see,
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e.g. [14]) one can check that f1 is quasidifferentiable at x and one can define
Df1(0) = [∂f1(0), ∂f1(0)] with

∂f1(0) = co

{(
1
1

)
,

(
0
0

)}
, ∂f1(0) = co

{(
−1
−1

)
,

(
1
0

)}
.

Observe that for x∗ = (0, 0)T ∈ ∂f1(0) one has 0 /∈ x∗ + ∂f1(0) and for y∗ =
(1, 0)T ∈ ∂f1(0) one has 0 /∈ ∂f1(0) + y∗, i.e. the constraint qualification from
Theorem 3.2 holds true at x = 0 (see Corollary 3.8).

In [14, 15] it was shown that the condition TM (x) = {v ∈ X | f ′
1(x, v) = 0}

is satisfied, if both pairs (∂f1(x),−∂f1(x)) and (∂f1(x),−∂f1(x)) are in general
position. Putting v = 0 in the definition of the general position one obtains that
there exists y∗ ∈ ∂f1(x) such that 0 /∈ ∂f1(x) + y∗ and there exists x∗ ∈ ∂f1(x)
such that 0 /∈ x∗+∂f1(x), that is, the constraint qualification from Theorem 3.2
is satisfied at x for some elements of the quasidifferential of f1 at x. However,
as in the case of inequality constraint, the opposite implication does not hold
true. In many particular cases the constraint qualification from Theorem 3.2
is satisfied for some elements of a quasidifferential of f1 at x, while one of the
pairs (∂f1(x),−∂f1(x)) or (∂f1(x),−∂f1(x)) is not in general position (take the
function f1(x) = max{2x1, 2x2}+min{0,−x1 − x2} from Example 5.1).

Optimality conditions for the more general problem

min f0(x) subject to F (x) = 0,

where the mapping F : X → Y is scalarly quasidifferentiable in a neighbourhood
of x, similar to optimality condition (4.2), were studied by Uderzo [65,66] in the
case when a Banach space Y admits a Fréchet smooth renorming and a quasid-
ifferential of F satisfies certain conditions in a neighbourhood of x ensuring its
metric regularity near this point. In contrast, our conditions are formulated in
terms of quasidifferentials at the point x itself and they can be satisfied even
if the equality constraints are not metrically regular near x (for example, the
function f1(x) = max{sinx1 +sinx2, 0}+min{−x1− x2, x1} from Example 5.2
is not metrically regular near x = 0).

Optimality conditions for the general problem

min f0(x) s.t. fi(x) = 0 ∀i ∈ I, gj(x) ≤ 0 ∀j ∈ J,

similar to (4.7) were first obtained by Shapiro [59, 60] in the case X = R
n

under the assumption that for any v 6= 0 satisfying the equality f ′
i(x, v) = 0

for all i ∈ I the max-faces ∆(v | ∂fi(x)) and ∆(v | ∂fi(x)) are singletones
and the vectors x∗

i − y∗i with {x∗
i } = ∆(v | ∂fi(x)) and {y∗i } = ∆(v | ∂fi(x)),

i ∈ I, are linearly independent. Observe that this assumption is very hard to
verify in nontrivial cases, since it requires the computation of the entire set
{v 6= 0 | f ′

i(x, v) = 0 ∀i ∈ I} and all corresponding max-faces. Furthermore,
this assumption is not satisfied in many particular cases.

Example 5.3. Let X = R
2 and f1(x) = max{|x2|, |x2| − 2x1}+min{x1, 2x2}.

The function f1 is quasidifferentiable at the point x = 0 and one can define
Df1(0) = [∂f1(0), ∂f1(0)] with

∂f1(0) = co

{(
0
1

)
,

(
0
−1

)
,

(
−2
1

)
,

(
−2
−1

)}
∂f1(0) = co

{(
1
0

)
,

(
0
2

)}
.
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Note that for v = (1, 0)T one has f ′
1(x, v) = 0, but the max-face ∆(v | ∂fi(x)) =

co{(0,±1)T} is not a singleton, that is, the constraint qualification from [59,60]
is not satisfied. On the other hand, for y∗ = (0, 2)T ∈ ∂f1(x) one has 0 /∈
∂f1(x)+ y∗ and for x∗ = 0 ∈ ∂f1(x) one has 0 /∈ x∗+ ∂f1(x), i.e. the constraint
qualification from Theorem 3.2 is satisfied (see Corollary 3.8).

Finally, optimality conditions (4.7) were first obtained by the author in [24]
under significantly more restrictive assumptions than in Corollary 4.2. Namely,
in [24] it was assumed that the functions fi and gj are (in some sense) semicon-
tinuously quasidifferentiable in a neighbourhood of x and a weak q.d.-MFCQ
holds at x (see Remark 3.7). As was noted above, the constraint qualification
that we use in this paper is much less restrictive than q.d.-MFCQ. Furthermore,
in Theorem 4.1 and Corollary 4.2 we assume that all functions are quasidifferen-
tiable only at the point x and do not impose any assumptions on a semicontinuity
of the corresponding quasidifferential mappings.

6 Conclusions

In this paper, we presented a new description of convex subcones of the con-
tingent cone to a set defined by quasidifferentiable equality and inequality con-
straints. This description is based on the use of individual elements of qua-
sidifferentials of constraints and was inspired by the works of Di et al. [18, 19]
on the derivation of the classical KKT optimality conditions under weaker as-
sumptions. Furthermore, the description of convex subcones of the contingent
cone provides one with a natural constraint qualification for nonsmooth mathe-
matical programming problems in terms of quasidifferentials and allows one to
derive, apparently, the strongest quasidifferential-based optimality conditions
for such problems under the weakest possible assumptions. See [23] for applica-
tions of these constraint qualification and optimality conditions to constrained
nonsmooth problems of the calculus of variations.

The examples given in the end of the paper demonstrate that our constraint
qualification can be satisfied for seemingly degenerate problems, for which other
constraint qualifications in terms of quasidifferentials fail. Furthermore, they
demonstrate that in some cases optimality conditions in terms of quasidifferen-
tials are superior to the ones in terms of various subdifferentials, since they are
able to detect the nonoptimality of a given point, when optimality conditions
based on various subdifferentials fail to do so.

It should be noted that neither the description of convex subcones nor the
constraint qualification and optimality conditions presented in this paper are
invariant under the choice of corresponding quasidifferentials. The invariance of
constraint qualifications, optimality conditions, descent directions etc. on the
choice of quasidifferentials has attracted a considerable attention of researchers
(see, e.g. [47,49,68]); however, it seems that non-invariant conditions depending
on individual elements of quasidifferentials can lead to stronger results.
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[64] A. Uderzo. Fréchet quasidifferential calculus with applications to metric
regularity of continuous maps. Optim., 54:469–493, 2005.

28



[65] A. Uderzo. Stability properties of quasidifferentiable systems. Vestnik St.
Petesb. Univ. Series 10. Appl. Math., Informatics, Control Processes, 3:70–
84, 2006. [in Russian].

[66] A. Uderzo. Convex difference criteria for the quantitative stability of para-
metric quasidifferentiable systems. Set-Valued Anal., 15:81–104, 2007.

[67] X. Wang and V. Jeyakumar. A sharp Lagrange multiplier rule for nons-
mooth mathematical programming problems involving equality constraints.
SIAM J. Optim., 10:1136–1148, 2000.

[68] Z. Wang and R. Mortensen. Necessary minimum conditions and steep-
est descent directions in quasi-differentiable calculus: independence of the
specific forms of quasidifferentials. Optim., 31:223–232, 1994.

[69] D. E. Ward. A constraint qualification in quasidifferentiable programming.
Optim., 22:661–668, 1991.

[70] Z.-Q. Xia, C.-L. Song, and L.-W. Zhang. On Fritz John and KKT neces-
sary conditions of constrained quasidifferentiable optimization. Int. J. Pure
Appl. Math., 23:299–310, 2005.

[71] E. Zeidler. Nonlinear Functional Analysis and its Applications I: Fixed-
Point Theorems. Springer-Verlag, New York, 1986.

29


	1 Introduction
	2 Quasidifferentiable Functions
	3 The Contingent Cone to a Set Defined by Quasidifferentiable Constraints
	4 Optimality Conditions for Quasidifferentiable Programming Problems
	5 A comparison of constraint qualifications
	6 Conclusions

