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Abstract

For a class C of graphs G equipped with functions fG defined on
subsets of EpGq or V pGq, we say that C is k-scattered with respect
to fG if there exists a constant ℓ such that for every graph G P C,
the domain of fG can be partitioned into subsets of size at most k so
that the union of every collection of the subsets has fG value at most
ℓ. We present structural characterizations of graph classes that are
k-scattered with respect to several graph connectivity functions.

In particular, our theorem for cut-rank functions provides a rough
structural characterization of graphs having no mK1,n vertex-minor,
which allows us to prove that such graphs have bounded linear rank-
width.
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1 Introduction

All graphs in this paper are undirected and simple. For a graph G, we write
V pGq and EpGq to denote the vertex set and edge set of G, respectively.

In the theory of split decompositions, Cunningham [7] introduced the
concept of a brittle graph. A split of a graph G is a partition pA,Bq of
the vertex set such that |A|, |B| ě 2 and no two vertices in A have distinct
nonempty sets of neighbors in B. Brittle graphs are connected graphs such
that every vertex bipartition into two sets of size at least 2 is a split. All
brittle graphs are complete graphs or stars. Brittle graphs form basic classes
of graphs in canonical split decompositions.

Motivated by brittle graphs, we introduce the general concept of a par-
tition pX1,X2, . . . ,Xmq of the vertex set or the edge set of a graph such
that each Xi has at most k elements, and for every I Ď t1, 2, . . . ,mu, some
connectivity measurement between

Ť

iPI Xi and the rest is at most ℓ, for
given integers k and ℓ. Brittle graphs then can be seen as graphs that ad-
mit a partition pX1,X2, . . . ,Xmq, where X1,X2, . . . ,Xm consist of distinct
individual vertices, and for every I Ď t1, 2, . . . ,mu, the cut-rank function
of

Ť

iPI Xi is at most 1. This concept trades off between the allowed sizes
of parts in a partition and the allowed values for a selected connectivity
measurement.

We formally define this concept and provide examples. Let X be a finite
set and f : 2X Ñ Z. The f -width of a partition pX1,X2, . . . ,Xmq of X, for
some m, is

max

#

f
`

ď

iPI

Xi

˘

: I Ď t1, 2, . . . ,mu

+

.

The k-brittleness of f is the minimum f -width of all partitions of X into
parts of size at most k.

We are mainly interested in the following four functions arising from
graphs naturally.

• For a subset F of EpGq, let κGpF q be the number of vertices incident
with both an edge in F and an edge not in F .

• For a subset S of V pGq, let ηGpSq be the number of edges incident
with both a vertex in S and a vertex not in S.

• For a subset S of V pGq, let νGpSq be the size of a maximum matching
of a bipartite subgraph of G obtained by taking edges joining S and
V pGqzS.

2



A

Figure 1: The graph 4P4{A for a path P4 “ abcd with A “ ta, du.

• For a subset S of V pGq, let ρGpSq be the rank of the S ˆ pV pGqzSq
0-1 matrix over the binary field whose pa, bq-entry for a P S, b R S is
1 if a, b are adjacent and 0 otherwise. This function is called the cut-
rank function of G. (See Oum [26] for more properties of the cut-rank
functions.)

The k-brittleness of κG, ηG, νG, ρG are called the vertex k-brittleness
βκ
k pGq, the edge k-brittleness β

η
kpGq, the matching k-brittleness βν

k pGq, the
rank k-brittleness β

ρ
kpGq of G, respectively. We say that a class C of graphs

is vertex k-scattered if the vertex k-brittleness of graphs in C is bounded,
edge k-scattered if the edge k-brittleness of graphs in C is bounded, matching
k-scattered if the matching k-brittleness of graphs in C is bounded, and rank
k-scattered if the rank k-brittleness of graphs in C is bounded.

A class C of graphs is called a subgraph ideal if it contains every graph
isomorphic to a subgraph of a graph in C. We characterize subgraph ide-
als which are vertex k-scattered, edge k-scattered, or matching k-scattered.
We remark that corresponding k-brittleness parameters do not increase by
taking a subgraph. Our first theorem characterizes a vertex k-scattered sub-
graph ideal. For a graph H, we write mH to denote the disjoint union of m
copies of H. A set A of vertices is independent if no two vertices in A are
adjacent. (Note that H is independent.) For a graph H and an independent
set A Ĺ V pHq, we write mH{A to denote the graph obtained from mH by
identifying all m copies of each vertex in A into one vertex. Note that the
number of vertices of mH{A is mp|V pHq| ´ |A|q ` |A| and 1H{A “ H. See
Figure 1 for an illustration.

Theorem 1.1. Let k be a positive integer. A subgraph ideal C is vertex
k-scattered if and only if

t1H{A, 2H{A, 3H{A, 4H{A, . . .u Ę C
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for every connected graph H with exactly k ` 1 edges and each of its inde-
pendent sets A Ĺ V pHq such that H ´ A is connected.

Our second theorem characterizes an edge k-scattered subgraph ideal.

Theorem 1.2. Let k be a positive integer. A subgraph ideal C is edge k-
scattered if and only if

tK1,1,K1,2,K1,3, . . .u Ę C

and
tT, 2T, 3T, 4T, . . .u Ę C

for every tree T on k ` 1 vertices.

Our third theorem characterizes a matching k-scattered subgraph ideal.

Theorem 1.3. Let k be a positive integer. A subgraph ideal C is matching
k-scattered if and only if

tT, 2T, 3T, . . .u Ę C

for every tree T on k ` 1 vertices.

Finally we characterize rank k-scattered graph classes. As the cut-rank
function may increase when we take a subgraph, subgraph ideals are not
suitable for the study of rank k-scattered graph classes. For instance, com-
plete graphs are rank 1-scattered and yet an arbitrary graph is a subgraph
of a complete graph.

Instead of subgraphs, the containment relation called vertex-minors is
more suitable for the study of rank k-scattered graph classes. A vertex-
minor of a graph G is an induced subgraph of a graph that can be obtained
from G by a sequence of local complementations [2, 3, 4, 26], where local
complementation at a vertex v is an operation to flip the adjacency relations
between every pair of neighbors of v. The precise definition will be presented
in Section 2. The cut-rank function is preserved when applying local com-
plementations [3, 26] and therefore, the rank k-brittleness of a graph does
not increase when taking vertex-minors.

A class C of graphs is called a vertex-minor ideal if it contains every graph
isomorphic to a vertex-minor of a graph in C. Our last theorem characterizes
rank k-scattered vertex-minor ideals.
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Theorem 1.4. Let k be a positive integer. A vertex-minor ideal C is rank
k-scattered if and only if

tH, 2H, 3H, 4H, . . .u Ę C

for every connected graph H on k ` 1 vertices.

There are lots of interesting open problems on vertex-minors. In partic-
ular, the conjecture of Oum [27], if true, implies that for every circle graph
H, every graph G with sufficiently large rank-width has a vertex-minor iso-
morphic to H. This statement was known to be true when G is a bipartite
graph, a circle graph, or a line graph [26, 27]. Very recently, Geelen, Kwon,
McCarty, and Wollan [16] announced that they have a proof of this state-
ment. Their proof uses our Theorem 1.4 as a starting point.

Kanté and Kwon [19] proposed the following analogous conjecture for
linear rank-width.

Conjecture 1.5 (Kanté and Kwon [19]). For every fixed forest T , there
is an integer fpT q such that every graph of linear rank-width at least fpT q
contains a vertex-minor isomorphic to T .

By Ramsey’s theorem, every sufficiently large connected graph contains
one of K1,n, Kn, or Pn as an induced subgraph and if n is huge, then each
of these graphs contains a large star graph as a vertex-minor. Therefore
for each fixed n, each component of a graph having no K1,n vertex-minor
has bounded number of vertices and thus it has bounded linear rank-width.
Thus, Conjecture 1.5 is true when T is a star.

We can strengthen this observation using Theorem 1.4 and verify Con-
jecture 1.5 when T is the disjoint union of stars.

Theorem 1.6. For positive integers m and n, the class of graphs having no
vertex-minor isomorphic to mK1,n has bounded linear rank-width.

Dahlberg, Helsen, and Wehner [8] showed that it is NP-complete to
decide whether a graph G contains a vertex-minor isomorphic to a graph H,
even if both H and G are restricted to circle graphs. However, we do not
know the complexity of deciding whether a graph contains a vertex-minor
isomorphic to a fixed graph H. By Theorem 1.6, we can recognize whether
a graph contains a vertex-minor isomorphic to the fixed disjoint union of
stars and complete graphs in polynomial time. This works as follows. By
Theorem 1.6, if the input graph has large linear rank-width, then trivially
it has a vertex-minor isomorphic to mK1,n for some large m and n where
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mK1,n contains the disjoint union of stars and complete graphs as a vertex-
minor. Otherwise, the input graph has bounded rank-width and so the
theorem of Courcelle and Oum [6] provides a polynomial-time algorithm.

This paper is organized as follows. In Section 2, we present necessary def-
initions and notations. Section 3 proves Theorem 1.1 for vertex k-scattered
subgraph ideals, Section 4 proves Theorem 1.2 for edge k-scattered subgraph
ideals, Section 5 proves Theorem 1.3 for matching k-scattered subgraph ide-
als, and Section 6 proves Theorem 1.4 for rank k-scattered vertex-minor ide-
als. Section 7 compares our concepts with various other graph parameters.
Section 8 discusses the application of Theorem 1.4 for linear rank-width,
proving Theorem 1.6.

2 Preliminaries

For a graph G and a vertex set S of G, we write GrSs to denote the subgraph
of G induced by S. For v P V pGq and S Ď V pGq, G´v is the graph obtained
from G by removing v and all edges incident with v, and G´S is the graph
obtained by removing all vertices in S. For F Ď EpGq, G´F is the subgraph
of G with the vertex set V pGq and the edge set EpGqzF . For a vertex v

of a graph G, NGpvq is the set of neighbors of v in G, and the degree of
v is the number of edges incident with v. For two disjoint vertex subsets
A and B of G, we write GrA,Bs to denote the bipartite subgraph on the
bipartition pA,Bq consisting of all edges of G having one end in A and
the other end in B. For two graphs G and H, let G Y H be the graph
pV pGq Y V pHq, EpGq Y EpHqq.

A matching of a graph is a set of edges of which no two edges share an
end. For a matching M , we write V pMq to denote the set of all vertices
incident with an edge in M . A clique in a graph is a set of pairwise adjacent
vertices, and an independent set in a graph is a set of pairwise non-adjacent
vertices.

The adjacency matrix of a graph G “ pV,Eq, denoted by ApGq, is a
V ˆV 0-1 matrix whose pv,wq entry is 1 if and only if v and w are adjacent.

We write Pn and Kn to denote a path on n vertices and a complete graph
on n vertices respectively. We write Km,n to denote a complete bipartite
graph with bipartition pA,Bq where |A| “ m and |B| “ n. For a graph G,
we denote by G the complement of G.

We write Rpn; kq to denote the minimum number N such that every
coloring of the edges of KN into k colors induces a monochromatic complete
subgraph on n vertices. Ramsey’s theorem implies that Rpn; kq exists.
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Figure 2: An example of pivoting.

Vertex-minors For a vertex v in a graph G, performing a local comple-
mentation at v is to replace the subgraph of G induced on NGpvq by its
complement graph. We write G ˚ v to denote the graph obtained from G

by applying a local complementation at v. Two graphs G and H are locally
equivalent if G can be obtained from H by a sequence of local complementa-
tions. A graph H is a vertex-minor of a graph G if H is an induced subgraph
of a graph locally equivalent to G.

For an edge uv of a graph G, pivoting the edge uv in G is to take a series
of three local complementations at u, v, and u. We write G ^ uv to denote
the graph obtained by pivoting uv. In other words, G ^ uv “ G ˚ u ˚ v ˚ u.
Note that G ^ uv is identical to the graph obtained from G by flipping the
adjacency relation between every pair of vertices x and y where x and y are
contained in distinct sets of NGpuqzpNGpvqYtvuq, NGpvqzpNGpuqYtuuq, and
NGpuq X NGpvq, and finally swapping the labels of u and v [26]. To flip the
adjacency relation between two vertices, we delete the edge if it exists and
add it otherwise. See Figure 2 for an example. For more details, see [26].

Graph operations For two graphs G and H on disjoint vertex sets, each
having n vertices, we would like to introduce operations to construct graphs
on 2n vertices by making the disjoint union of them and adding some edges
between two graphs. Roughly speaking, GaH will add a perfect matching,
GbH will add the complement of a perfect matching, and GmH will add a
bipartite chain graph. Formally, for two n-vertex graphs G and H with fixed
ordering on the vertex sets tv1, v2, . . . , vnu and tw1, w2, . . . , wnu respectively,
let G a H, G b H, G m H be graphs on the vertex set V pGq Y V pHq whose
subgraph induced by V pGq or V pHq is G or H, respectively such that for
all i, j P t1, 2, . . . , nu,

(i) viwj P EpG a Hq if and only if i “ j,

(ii) viwj P EpG b Hq if and only if i ‰ j,

7



v1 w1

v2 w2

v3 w3

v4 w4

v5 w5

v1 w1

v2 w2

v3 w3

v4 w4

v5 w5

v1 w1

v2 w2

v3 w3

v4 w4

v5 w5

Figure 3: K5 a K5, K5 b K5, and K5 m K5.

(iii) viwj P EpG m Hq if and only if i ě j.

See Figure 3 for illustrations of K5 aK5, K5 bK5, and K5 mK5. In each of
the constructed graphs, we say that vi is matched with wj when i “ j.

3 Vertex k-scattered subgraph ideals

In this section, we characterize vertex k-scattered subgraph ideals.

Theorem 1.1. Let k be a positive integer. A subgraph ideal C is vertex
k-scattered if and only if

t1H{A, 2H{A, 3H{A, 4H{A, . . .u Ę C

for every connected graph H with exactly k ` 1 edges and each of its inde-
pendent set A Ĺ V pHq such that H ´ A is connected.

For the forward part, we show the following.

Lemma 3.1. Let k, ℓ be positive integers. Let H be a connected graph with
exactly k ` 1 edges. If A is an independent set of H such that H ´ A is
connected, then the vertex k-brittleness of p2ℓ ` 1qH{A is at least ℓ ` 1.

Proof. Suppose not. Let G “ p2ℓ ` 1qH{A. Let pX1,X2, . . . ,Xtq be a
partition of EpGq such that its κG-width is at most ℓ and |Xi| ď k for all
1 ď i ď t.

For a component C of G ´ A, let

YC “ ti P t1, . . . , tu : some vertex in V pCq is incident with an edge in Xiu.

For each component C of G ´ A, |YC | ě 2 because |X1|, |X2|, . . . , |Xt| ď k

and vertices in C are incident with more than k edges in total.
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Let us pick a random subset I of t1, 2, . . . , tu. For each component C of
G´A, the probability that YC X I ‰ H and YCzI ‰ H is 1´ 21´|YC | ě 1{2.
By the linearity of the expectation, there exists a subset I 1 of t1, 2, . . . , tu
such that at least ℓ ` 1 components C of G ´ A satisfy YC X I 1 ‰ H and
YCzI 1 ‰ H. If YC X I 1 ‰ H and YCzI 1 ‰ H for some component C, then
V pCq has a vertex incident with both an edge in

Ť

iPI 1 Xi and an edge in
Ť

iRI 1 Xi, because C is connected.
This means that κGp

Ť

iPI 1 Xiq ě ℓ`1, contradicting our assumption.

For the converse direction of Theorem 1.1, we prove that for positive
integers k and n, every graph with sufficiently large vertex k-brittleness
must contain a subgraph isomorphic to nH{A for some connected graph H

with k ` 1 edges and some independent set A Ĺ V pHq such that H ´ A

is connected. We prove this statement by induction on k. The following
lemma will be used in the induction step.

Lemma 3.2. Let H be a connected graph with exactly k edges and let A Ĺ
V pHq be an independent set such that H ´ A is connected. Let m, n be
positive integers such that m ě 4pk ` 1q2n2. Let G be a graph containing
mH{A as a subgraph. If for each component C of pmH{Aq ´ A, G has an
edge not in EpmH{Aq but incident with vertices in C, then G contains a
subgraph isomorphic to nH 1{A1 for some connected graph H 1 with k`1 edges
and an independent set A1 Ĺ V pH 1q such that H 1 ´ A1 is connected.

Proof. It is trivial if n “ 1. Thus we may assume that n ą 1. Let us choose a
minimal subgraph G1 of G such that V pGq “ V pG1q, EpG1qXEpmH{Aq “ H
and for every component C of pmH{Aq ´ A, there is an edge in G1 incident
with some vertex of C. Then G1 is a forest and pV pGqzV pmH{Aqq Y A is
independent in G1 by the minimality. Moreover, between two components
of pmH{Aq ´ A, G1 has at most one edge and for each component C of
pmH{Aq ´ A, the graph G1rA Y V pCqs has at most one edge. Moreover if
G1rA Y V pCqs has an edge, then no other edges of G1 have exactly one end
in V pCq. Let m1 be the number of components C of pmH{Aq ´A such that
G1rA Y V pCqs has no edge.

Let G2 be the subgraph of G1 obtained by deleting all edges e having
both ends in V pCq YA for some component C of pmH{Aq ´A. As one edge
of G1 is incident with at most two components, G2 has at least m1{2 edges
and G1 has at least m1{2 ` pm ´ m1q edges.

If m ´m1 ą
`

k`1
2

˘

pn´ 1q, then by the pigeon-hole principle, there exists
a pair of vertices x and y in H such that at least n isomorphic copies
of H in mH{A has the copies x1, y1 of x and y, respectively, such that
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x1, y1 are adjacent in G1. Then let H 1 be the graph obtained from H by
adding xy. Then G has nH 1{A as a subgraph. So, we may assume that
m ´ m1 ď

`

k`1
2

˘

pn ´ 1q.
Note that vertices in A are isolated in G2. If a vertex v in V pmH{Aq

has degree more than 1 in G2, then no vertex in G ´ V pmH{Aq is adjacent
to v in G2 because G1 is chosen to be minimal. Therefore all neighbors of
v in G2 are in distinct components of pmH{Aq ´ A. Notice that the same
holds for a vertex v outside of mH{A, because pV pGqzV pmH{Aqq Y A is
independent in G2.

If G2 has a vertex v of degree more than pk ` 1qpn ´ 1q, then more than
pk ` 1qpn ´ 1q components of pmH{Aq ´ A have vertices adjacent to v in
G2. By the pigeon-hole principle, there exists a vertex w of H ´ A such
that in at least n components of pmH{Aq ´ A, the copies of w are adjacent
to v in G2. Let H 1 be the graph obtained from H by adding a new vertex
v of degree 1 adjacent to w. Let A1 “ A Y tvu. Then G has nH 1{A1 as a
subgraph and both H 1 and H 1 ´ A1 are connected. So we may assume that
the maximum degree of G2 is at most pk ` 1qpn ´ 1q.

As G2 is a forest, G2 is bipartite. By König’s theorem on the edge
coloring, G2 is pk ` 1qpn ´ 1q-edge-colorable. So G2 has a matching M with

|M | ě
|EpG2q|

pk ` 1qpn ´ 1q
ě

m1

2pk ` 1qpn ´ 1q
.

Suppose that m1 ą 4pk ` 1q2pn ´ 1q2. Let C1, C2, . . ., Cm be the
components of pmH{Aq ´A. Let I be a random subset of t1, 2, . . . ,mu and
X “

Ť

iPI V pCiq. For each edge e in M , the probability that e has exactly
one end in X is 1{2, no matter whether e has one or two ends in V pmH{Aq.
Thus, there exist I and M 1 Ď M such that |M 1| ě |M |{2 ą pk ` 1qpn ´ 1q
and every edge of M 1 has one end in X and the other end not in X. By the
pigeon-hole principle, there exists a vertex u of H ´ A such that at least n
edges e of M 1 are incident with copies of u in mH{A. Then let H 1 be the
graph obtained from H by adding a new vertex v and an edge from v to u

and let A1 “ A. Then G has nH 1{A1 as a subgraph and both H 1 and H 1 ´A1

are connected. Therefore we may assume that m1 ď 4pk ` 1q2pn ´ 1q2.
Then m “ m1 ` pm ´ m1q ď 4pk ` 1q2pn ´ 1q2 `

`

k`1
2

˘

pn ´ 1q. As
n´ 1 ă 2n ´ 1 and k{2 ă 4pk ` 1q, we deduce that m ă 4pk ` 1q2pn´ 1q2 `
4pk ` 1q2p2n´ 1q “ 4pk` 1q2n2. This contradicts our assumption on m.

Lemma 3.3. Every graph with vertex 1-brittleness at least 256n4 contains
nP3{A as a subgraph for some independent set A Ĺ V pP3q such that P3 ´A

is connected.
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Proof. Let G be a graph with vertex 1-brittleness at least 256n4. We may
assume that G has no components with at most 2 vertices. If G has at least
n components, then each component has P3 as a subgraph and therefore
nP3{H is a subgraph of G. So we may assume that G has less than n

components.
Let G1 be the induced subgraph of G obtained by deleting all degree-1

vertices. Then if a vertex of G1 has degree less than 2, then it has its private
neighbor in V pGqzV pG1q of degree 1 in G.

If G1 has a vertex v of degree at least 16n2, then G1 has mP2{tvu as
a subgraph where m is the degree of v in G1. By Lemma 3.2, G contains
nP3{A for some independent set A Ĺ V pP3q where P3 ´ A is connected. So
we may assume that every vertex of G1 has degree less than 16n2.

If G1 has a matching M of size at least 16n2, then G1 has mP2{H as
a subgraph where m “ |M |. By Lemma 3.2, G contains nP3{A for some
independent set A Ĺ V pP3q where P3 ´ A is connected. So we may assume
that every matching of G1 has less than 16n2 edges.

Then by the theorem of Vizing, G1 is 16n2-edge-colorable and therefore
|EpG1q| ď 16n2p16n2 ´ 1q “ 256n4 ´ 16n2. As G1 has at most n ´ 1 compo-
nents, |V pG1q| ď |EpG1q| ` n ´ 1 ă 256n4. Then the vertex 1-brittleness of
G is less than 256n4, which is a contradiction.

For a set A of vertices of a graph G, a Tutte bridge of A in G is either
an edge joining two vertices in A or a connected subgraph of G consisting
of one component C of G ´ A and all edges joining C and A. Alternatively
we may define a Tutte bridge as a connected subgraph of G induced by an
equivalence class on EpGq where two edges e and f are equivalent if and only
if there is a path starting with e and ending with f such that no internal
vertex is in A.

For a Tutte bridge B of A in G, deleting B from G is to remove all edges
in B and remove all vertices in V pBqzA. Note that every component of G
is a Tutte bridge of H. The next lemma shows that the vertex k-brittleness
does not decrease too much by deleting small Tutte bridges.

Lemma 3.4. Let G be a graph and A be a set of vertices of G. If G1 is the
subgraph of G obtained by deleting all Tutte bridges of A having at most k
edges, then βκ

k pG1q ě βκ
k pGq ´ |A|.

Proof. Let P 1 “ pX1,X2, . . . ,Xtq be a partition of EpG1q whose κG1-width
is equal to βκ

k pG1q. We extend P 1 to a partition P of EpGq by adding
EpBq as one part for each Tutte bridge B of A in G with at most k edges.

11



Then the κG-width of P is at most βκ
k pG1q ` |A| and therefore βκ

k pGq ď
βκ
k pG1q ` |A|.

To complete our proof, we will iteratively find an independent set Ai and
two Tutte bridges of Ai having at most k edges for each i. By combining two
Tutte bridges, we will build a bigger connected subgraph, assuming that Ai

is nonempty. Then we apply the sunflower lemma for the sets A1, A2, . . .,
which will allow us to find what we wanted. The next lemma allows us to
find two Tutte bridges to be combined later.

Lemma 3.5. Let m, n, k be positive integers. Let H be a connected graph
with k edges and let A Ĺ V pHq be an independent set of H such that H ´A

is connected. Let G be a graph having mH{A as a subgraph such that no
subgraph of G is isomorphic to nH 1{A1 for some connected graph H 1 with
k`1 edges and an independent set A1 Ĺ V pH 1q for which H 1´A1 is connected.
Let X be a set of vertices of G. If m ą 4pk ` 1q2n2 ` |X|, then G has two
distinct Tutte bridges B1, B2 of A, satisfying the following.

(i) Each Bi has exactly k edges.

(ii) V pB1q X A “ V pB2q X A “ A.

(iii) neither B1 ´ A nor B2 ´ A has a vertex in X.

Proof. By Lemma 3.2, less than 4pk`1q2n2 components C of mH{A´A are
incident with an edge in EpGqzEpmH{Aq. Therefore there are at least |X|`
2 components of mH{A ´ A that form Tutte bridges of A in G isomorphic
to H. Among them, at least two, say B1 and B2, will not intersect X.
Since H, H ´ A are connected and A is independent in H, we deduce that
V pB1q X A “ V pB2q X A “ A.

We need the sunflower lemma. Let F be a family of sets. A subset
tM1,M2, . . . ,Mpu of F is a sunflower with core A (possibly an empty set)
and p petals if for all distinct i, j P t1, 2, . . . pu, Mi X Mj “ A.

Theorem 3.6 (Sunflower Lemma [12, Erdős and Rado]). Let k and p be
positive integers, and F be a family of sets each of cardinality k. If |F| ą
k!pp ´ 1qk, then F contains a sunflower with p petals.

Later we will apply Lemma 3.5 iteratively and take Fi :“ B1 Y B2 and
Si :“ A in the i-th round. Then we will apply the following lemma with
t :“ 2k. Note that under this setting, B1YB2 is connected if A is non-empty.
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Lemma 3.7. Let m, n, k, t be positive integers. Let G be a graph. For each
i P t1, 2, . . . ,mu, let Fi be a connected subgraph of G with exactly t edges
having an independent set Si Ĺ V pFiq such that 1 ď |Si| ď k and Fi ´ X

is connected for all X Ĺ Si. If V pFiq X V pFjq Ď Si X Sj and Si ‰ Sj for

all 1 ď i ă j ď m and m ą k ¨ k!
`

pt`1qt{2
t

˘k
pn ´ 1qk, then G has a subgraph

isomorphic to nH{A for some connected graph H with exactly t edges and
an independent set A Ĺ V pHq such that H ´ A is connected.

Proof. We may assume n ą 1 because otherwise we can take H “ F1 and
A “ H. Let p “

`

pt`1qt{2
t

˘

pn´ 1q ` 1 ě 2. By the pigeonhole principle, more
than k!pp´1qk of S1, S2, . . . , Sm have the same cardinality. By Theorem 3.6,
there exist i1 ă i2 ă ¨ ¨ ¨ ă ip such that tSi1 , Si2 , . . . , Sipu is a sunflower with
p petals and |Si1 | “ |Si2 | “ ¨ ¨ ¨ “ |Sip |.

Let A be the core, that is A “
Şp

j“1 Sij . Since Si ‰ Sj for all i ‰ j, we
have A ‰ Sij for all j P t1, 2, . . . , pu and therefore Fij ´ A is connected.

Since V pFiq X V pFjq Ď Si X Sj for all 1 ď i ă j ď m, we deduce that

Fi1 ´A, Fi2 ´A, . . ., Fip ´A are vertex-disjoint. There are at most
`

pt`1qt{2
t

˘

connected non-isomorphic graphs having exactly t edges and so at least n

of Fi1 , Fi2 , . . ., Fip are pairwise isomorphic with isomorphisms fixing A, by
the pigeonhole principle. This proves the lemma.

Proposition 3.8. For positive integers k and n, there exists an integer
ℓ “ ℓpk, nq such that every graph with vertex k-brittleness at least ℓ contains
nH{A as a subgraph for some connected graph H with exactly k ` 1 edges
and an independent set A Ĺ V pHq such that H ´ A is connected.

Proof. We define that

ℓp1, nq :“ 256n4,

and for k ě 2,

ℓpk, nq :“ ℓ

˜

k ´ 1, 4pk ` 1q2n2 ` k2 ¨ k!

ˆ

p2k ` 1qk

2k

˙k

pn ´ 1qk

¸

` k2 ¨ k!

ˆ

p2k ` 1qk

2k

˙k

pn ´ 1qk.

We prove the statement by induction on k. If k “ 1, then it is true by
Lemma 3.3. Now, we prove for k ě 2. Suppose G has vertex k-brittleness
at least ℓ “ ℓpk, nq and no subgraph of G is isomorphic to nH 1{A1 for a
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connected graph H 1 with k`1 edges having an independent set A1 Ĺ V pH 1q

such that H 1´A1 is connected. Let m “ 4pk`1q2n2`k2 ¨k!
`

p2k`1qk
2k

˘k
pn´1qk.

Let G1 be the subgraph of G obtained by deleting all components with at
most k edges. By Lemma 3.4, βκ

k pG1q “ βκ
k pGq. Since ℓpk, nq ě ℓpk ´

1,mq, by the induction hypothesis, G1 has mH1{A1 as a subgraph for some
connected graph H1 with k edges having an independent set A1 Ĺ V pH1q
such that H1 ´ A1 is connected. Note that |A1| ď k. We may assume that
n ě 2, since G1 has a component with more than k edges.

If A1 “ H, then each component of mH1{A1 has a vertex incident (in
G1) with an edge not in EpmH1{A1q because every component of G1 has
more than k edges. By Lemma 3.2. G has a connected subgraph H with an
independent set A having desired properties, contradicting our assumption.
Therefore A1 ‰ H.

By Lemma 3.5, G1 has two Tutte bridges B1,1 and B1,2 of A1, each
having exactly k edges such that V pB1,1q X A1 “ V pB1,2q X A1 “ A1. Let
F1 “ B1,1 Y B1,2. Since A1 ‰ H, F1 is a connected graph. Then F1 ´ X is
connected for all X Ĺ A1.

For i “ t2, . . . , k¨k!
`p2k`1qk

2k

˘k
pn´1qk`1u, we defineGi as the subgraph of

Gi´1 obtained by deleting all Tutte bridges of Ai´1 having at most k edges
and then deleting all components having at most k edges. By applying
Lemma 3.4 twice, we deduce that βκ

k pGiq ě βκ
k pGi´1q ´ |Ai´1| ´ |H| ě

βκ
k pGi´1q ´ k. By induction,

βκ
k pGiq ě βκ

k pG1q ´ pi ´ 1qk ě ℓpk ´ 1,mq,

and by the induction hypothesis, Gi has mHi{Ai as a subgraph for some
connected graph Hi with k edges and an independent set Ai Ĺ V pHiq such
that Hi ´Ai is connected. Note that |Ai| ď k. If Ai “ H, then each compo-
nent of mHi{Ai has a vertex incident (in Gi) with an edge not in EpmHi{Aiq
because every component of Gi has more than k edges, contradicting the
assumption by Lemma 3.2. Thus Ai ‰ H. Since

m ą 4pk ` 1q2n2 ` pi ´ 1qk,

by Lemma 3.5, Gi has two Tutte bridges Bi,1 and Bi,2 of Ai, each having
exactly k edges such that V pBi,1q X Ai “ V pBi,2q X Ai “ Ai and neither
Bi,1´Ai nor Bi,2´Ai has a vertex in A1YA2Y¨ ¨ ¨YAi´1. Let Fi “ Bi,1YBi,2.
As Ai ‰ H, Fi is a connected graph. Then Fi´X is connected for allX Ĺ Ai.

We claim that for i ă j, V pFiq X V pFjq Ď Ai X Aj . Suppose not. Let
x P V pFiq X V pFjq. When we construct Gi`1 from Gi, we remove all Tutte
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bridges of Ai with at most k edges, including all vertices of Fi ´ Ai. Since
Fj is a subgraph of Gj , we deduce that x P Ai. Because we choose Fj so
that Fj ´ Aj has no vertex in A1 YA2 Y ¨ ¨ ¨ YAj´1 but x P Ai, we conclude
that x P Aj. This proves the claim.

Suppose that Ai “ Aj for some i ă j. By construction, Bj,1 ´ Aj has
no vertex in A1 Y A2 Y ¨ ¨ ¨ Y Aj´1. Note that Bj,1 is not a Tutte bridge of
Ai in Gi. So Gi has an edge e joining a vertex v P V pBj,1 ´ Aiq to a vertex
w not in V pBj,1q. Note that w R V pGjq because Bj,1 is a Tutte bridge of
Aj in Gj . Let p be the minimum integer such that p ě i, w P V pGpq, and
w R V pGp`1q. Since Bj,1 is a subgraph of Gp and no vertex of Bj,1 ´ Aj is
in Ap, all edges of Bj,1 together with e are in the same Tutte bridge of Ap in
Gp, which has more than k edges. Furthermore all edges of Bj,1 and e are
in the same component in the graph obtained from Gp by deleting all Tutte
bridges of Ap with at most k edges. So w is not deleted when constructing
Gp`1, contradicting the assumption that w R V pGp`1q. Therefore Ai ‰ Aj

for all i ă j.

By applying Lemma 3.7 to Fi and Ai for all 1 ď i ď k ¨ k!
`p2k`1qk

2k

˘k
pn ´

1qk ` 1, we deduce that G has a subgraph isomorphic to nH{A for some
connected graph H with 2k edges having an independent set A Ĺ V pHq
such that H ´ A is connected.

We claim that H contains a connected subgraph H 1 with exactly k ` 1
edges such that H 1 ´ pA X V pH 1qq is connected. If H ´ A has more than k

edges, then we can simply take H 1 as a connected subgraph of H ´ A with
k ` 1 edges. If H ´ A has at most k edges, then let H 1 be a connected
subgraph of H containing H ´ A as a subgraph such that H 1 has exactly
k ` 1 edges. This proves the claim. However, this claim contradicts our
assumption because G contains nH 1{A1 as a subgraph where A1 “ A X
V pH 1q.

Lemma 3.1 and Proposition 3.8 imply Theorem 1.1.

4 Edge k-scattered subgraph ideals

In this section, we characterize edge k-scattered subgraph ideals.

Theorem 1.2. Let k be a positive integer. A subgraph ideal C is edge k-
scattered if and only if

tK1,1,K1,2,K1,3, . . .u Ę C
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and
tT, 2T, 3T, 4T, . . .u Ę C

for every tree T on k ` 1 vertices.

First we prove that for some connected graph H on k ` 1 vertices, the
disjoint union of sufficiently many copies of H should have large edge k-
brittleness. In fact, this is same for matching k-brittleness and rank k-
brittleness, which we prove at the same time as follows.

Lemma 4.1. Let m, n, k be positive integers with n ą 2m and H be a
connected graph on k ` 1 vertices. Then the following hold.

(i) nH has edge k-brittleness at least m ` 1.

(ii) nH has matching k-brittleness at least m ` 1.

(iii) nH has rank k-brittleness at least m ` 1.

Proof. Let G :“ nH. Let pX1,X2, . . . ,Xtq be a partition of V pGq such
that |Xi| ď k. Let C1, C2, . . . , Cn be the components of G. Note that
each Ci intersects at least two of X1, X2, . . ., Xt. Let I be a random
subset of t1, 2, . . . , tu. For each ℓ, the probability that Cℓ contains both a
vertex in

Ť

iPI Xi and a vertex in
Ť

jPt1,2,...,tuzI Xj is at least 1{2. Thus, by
the linearity of expectation, there exists I Ď t1, 2, . . . , tu such that more
than m components of G have both a vertex in

Ť

iPI Xi and a vertex in
Ť

jPt1,2,...,tuzI Xj . This implies that ηGp
Ť

iPI Xiq ą m, νGp
Ť

iPI Xiq ą m, and
ρGp

Ť

iPI Xiq ą m.

For edge k-brittleness, a large star is also an obstruction.

Lemma 4.2. For positive integers k and m, K1,k`m has edge k-brittleness
at least m ` 1.

Proof. Let pX1,X2, . . . ,Xtq be a partition of V pK1,k`mq such that |Xi| ď k.
We may assume that X1 contains the center of K1,k`m. Then ηK1,k`m

pX1q ě
pk ` mq ´ pk ´ 1q.

Now, we show the backward direction of Theorem 1.2.

Proposition 4.3. For all positive integers k and n, there exists an integer
ℓ “ ℓpk, nq such that every graph with edge k-brittleness more than ℓ contains
a subgraph isomorphic to either K1,n or nT for some tree T on k`1 vertices.
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Proof. Let ℓp1, nq “ npn´1q and ℓpk, nq “ ℓpk´1, 4kpn´1q2 `1q for k ě 2.
We proceed by induction on k. We may assume that every vertex has

degree at most n ´ 1. If k “ 1, then by the theorem of Vizing, G has a
matching of size at least |EpGq|{n. Since the edge 1-brittleness is less than
or equal to |EpGq|, G has a matching of size more than ℓp1, nq{n “ n ´ 1,
and so G contains a subgraph isomorphic to nK2. Thus, we may assume
that k ą 1.

We may assume that every component of G has more than k vertices,
because otherwise removing them does not decrease the edge k-brittleness.
By the induction hypothesis, G has a subgraph isomorphic to mT for a tree
T on k vertices wherem “ 4kpn´1q2`1. Let C1, C2, . . ., Cm be the disjoint
copies of T in G.

Let G1 be a minimal subgraph of G such that for all 1 ď i ď m, G1

has at least one edge joining Ci with a vertex not in Ci. Since each edge
of G1 is incident with at most two of C1, C2, . . ., Cm, we have |EpG1q| ě
rm{2s ą 2kpn ´ 1q2. Note that G1 is a forest. So by König’s theorem on the
edge coloring of bipartite graphs, G1 is pn ´ 1q-edge-colorable and so it has
a matching M with |M | ą 2kpn ´ 1q. Each edge of M is incident with at
least one copy of some vertex of T in mT .

Let I be a random subset of t1, 2, . . . ,mu. Let X “
Ť

iPI V pCiq and
Y “ V pGqzX. The probability that an edge in M has one end in X and
the other end in Y is 1{2 and therefore there exist I and M 1 Ď M such that
|M 1| ě |M |{2 ą kpn ´ 1q and each edge of M 1 has one end in X and the
other end in Y .

Now M 1 has a subset M2 with |M2| ą n ´ 1 such that there exists a
vertex w of T with the property that for every edge of M2, its end in X is
a copy of w in mT . Let T 1 be the tree obtained from T by adding a new
vertex adjacent to w only. Then G has nT 1 as a subgraph.

Proposition 4.3 and Lemmas 4.1 and 4.2 imply Theorem 1.2.

5 Matching k-scattered subgraph ideals

In this section, we characterize matching k-scattered subgraph ideals. We
already proved in Lemma 4.1 that for a connected graph H on k ` 1 ver-
tices, the disjoint union of sufficiently many copies of H has large matching
k-brittleness. Such obstructions exactly characterize matching k-scattered
subgraph ideals.
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Theorem 1.3. Let k be a positive integer. A subgraph ideal C is matching
k-scattered if and only if

tT, 2T, 3T, . . .u Ę C

for every tree T on k ` 1 vertices.

First let us prove that deleting a vertex does not decrease the matching
k-brittleness a lot.

Lemma 5.1. Let k be a positive integer. For each vertex v of a graph G,

βν
k pGq ď βν

k pG ´ vq ` 1.

Proof. Let P 1 “ pX1,X2, . . . ,Xtq be a partition of V pG ´ vq such that
|Xi| ď k and the νG´v-width of P 1 is minimum, that is βν

k pG ´ vq. Let P “
pX1,X2, . . . ,Xt, tvuq. Then the νG-width of P is at most βν

k pG´ vq ` 1.

The following proposition with Lemma 4.1 proves Theorem 1.3.

Proposition 5.2. For all positive integers k and n, there exists ℓ “ ℓpk, nq
such that every graph with matching k-brittleness more than ℓ contains a
subgraph isomorphic to nT for some tree T on k ` 1 vertices.

Proof. Let ℓpk, nq “ pk ` 1qkpn ´ 1q. Let G be a graph with matching
k-brittleness more than ℓpk, nq. Let G0 “ G and S0 “ H. We claim
that there exist disjoint subsets S1, S2, . . ., Spk`1qk´1pn´1q, Spk`1qk´1pn´1q`1

such that each Si induces a connected subgraph of G with k ` 1 vertices.
For i “ 1, 2, . . . , pk ` 1qk´1pn ´ 1q ` 1, let Gi be the induced subgraph of
Gi´1 ´ Si´1 obtained by deleting all components with at most k vertices.
Notice that by Lemma 5.1, βν

k pGiq ě βν
k pGi´1q´ |Si´1| “ βν

k pGi´1q´pk`1q.
By induction, we deduce that βν

k pGiq ě βν
k pGq ´ pk ` 1qpi ´ 1q ą 0. Thus

Gi contains a component with more than k vertices and therefore it has a
vertex set Si of size k ` 1 inducing a connected subgraph. This proves the
claim.

Let Ti be a spanning tree of GrSis for each i. Since the number of labeled
trees on k ` 1 vertices is pk ` 1qk´1, there exist more than n ´ 1 of these
spanning trees that are pairwise isomorphic.

6 Rank k-scattered vertex-minor ideals

We characterize rank k-scattered vertex-minor ideals. As we mentioned, the
rank k-brittleness of a graph may increase when taking a subgraph. Instead
we use vertex-minors because of the following lemma.
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Lemma 6.1 (See Oum [26, Proposition 2.6]). If G is locally equivalent to
G1, then for every subset X of vertices of G, ρGpXq “ ρG1pXq.

Here is our main theorem for rank k-scattered vertex-minor ideals.

Theorem 1.4. Let k be a positive integer. A vertex-minor ideal C is rank
k-scattered if and only if for every connected graph H on k ` 1 vertices,

tH, 2H, 3H, 4H, . . .u Ę C.

First, it is easy to observe the following.

Proposition 6.2. If H is a vertex-minor of G, then

β
ρ
kpGq ď β

ρ
kpHq ` |V pGq| ´ |V pHq|.

Proof. Let G1 be a graph locally equivalent to G such that H is an induced
subgraph of G1. Note that applying local complementation does not change
the rank k-brittleness of a graph by Lemma 6.1. Therefore, we have βρ

kpG1q “
β
ρ
kpGq. It is easy to observe that removing a vertex may decrease the rank

k-brittleness by at most 1 by a proof analogous to the proof of Lemma 5.1.
Therefore, βρ

kpHq ě β
ρ
kpG1q ´ p|pV pG1q| ´ |V pHq|q “ β

ρ
kpGq ´ p|pV pGq| ´

|V pHq|q, as required.

Lemma 4.1 states that for a connected graph H on k ` 1 vertices, the
disjoint union of sufficiently many copies of H has large rank k-brittleness.
It means that if tH, 2H, 3H, 4H, . . .u Ď C for some connected graph H on
k ` 1 vertices, then C is not rank k-scattered. Now we focus on the other
direction of Theorem 1.4. We need the following Ramsey-type theorem for
bipartite graphs without twins.

Theorem 6.3 (Ding, Oporowski, Oxley, Vertigan [11]). For every positive
integer n, there exists an integer fpnq such that for every bipartite graph
G with a bipartition pS, T q, if no two vertices in S have the same set of
neighbors and |S| ě fpnq, then S and T have n-element subsets S1 and T 1,
respectively, such that GrS1, T 1s is isomorphic to Kn a Kn, Kn m Kn, or
Kn b Kn.

In several places of the proof, when we obtain H1 aH2 or H1bH2 where
H1,H2 P tKn,Knu, we want to make each part an independent set. The
following lemma describes how to reduce each of them to Kn1 aKn1 for some
n1.

Lemma 6.4. Let n be an integer.
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(1) If n ě 2, then Kn aKn has a vertex-minor isomorphic to Kn´1 aKn´1.

(2) If n ě 3, then Kn aKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(3) If n ě 3, then Kn bKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(4) If n ě 3, then Kn bKn has a vertex-minor isomorphic to Kn´2 aKn´2.

(5) If n ě 2, then Kn bKn has a vertex-minor isomorphic to Kn´1 aKn´1.

Proof. (1) Let V pKnq “ tvi : 1 ď i ď nu and V pKnq “ twi : 1 ď i ď nu.
The graph pKn a Kn ´ w1q ˚ v1 ´ v1 is isomorphic to Kn´1 a Kn´1.

(2) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph ppKn a Kn ´ tv1, w2uq ˚ v2 ˚ w1q ´ tv2, w1u is
isomorphic to Kn´2 a Kn´2.

(3) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph ppKn b Kn ´ tv1, w2uq ^ v2w1q ´ tv2, w1u is
isomorphic to Kn´2 a Kn´2.

(4) Let V pKnq “ tvi : 1 ď i ď nu and V pKnq “ twi : 1 ď i ď nu. The
graph pKn b Kn ´ w1q ˚ v1 ´ v1 is isomorphic to Kn´1 a Kn´1. Thus, by
(1), it contains a vertex-minor isomorphic to Kn´2 a Kn´2.

(5) Let tvi : 1 ď i ď nu and twi : 1 ď i ď nu be the vertex sets of
two copies of Kn. The graph pKn b Kn ´ w1q ˚ v1 ´ v1 is isomorphic to
Kn´1 a Kn´1.

From H1 m H2 with H1,H2 P tKn,Knu, we can obtain a long induced
path as a vertex-minor. So, if n is sufficiently large, then this directly gives
us mPk`1 for some large m.

Lemma 6.5 (Kwon and Oum [21]). Let n be a positive integer.

(1) Kn m Kn is locally equivalent to P2n.

(2) Kn m Kn is locally equivalent to P2n.

(3) If n ě 2, then Kn m Kn has a vertex-minor isomorphic to P2n´2.

Proof. (1) and (2) are proved in [21]. To prove (3), let tvi : 1 ď i ď nu and
twi : 1 ď i ď nu be the vertex sets of two copies of Kn, where vi is adjacent
to wj if and only if i ě j. Then pKn m Kn ´ w1q ˚ v1 ´ v1 is isomorphic to
Kn´1 m Kn´1. Thus, the result follows from (2).
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We will prove the backward direction of Theorem 1.4 by induction on
k. In the procedure, we find a vertex-minor containing a vertex set S which
induces a subgraph isomorphic to mH for some connected graph H on k

vertices. Generally, we meet two situations: the cut-rank of S is large or
small. In the next lemma, we prove that if the cut-rank of S is large, then
we can directly find a vertex-minor isomorphic to the disjoint union of many
copies of some connected graph on k ` 1 vertices. If the cut-rank is small,
then we will recursively find another such set after excluding S.

Lemma 6.6. For positive integers k and n, there exists a positive integer
m “ f1pk, nq such that if a graph G admits a set W “ tw1, . . . , wmu that is
a clique or an independent set satisfying the following two properties, then
G has a vertex-minor isomorphic to nH 1 for some connected graph H 1 on
k ` 1 vertices.

(i) G ´ W “ mH for some connected graph H on k vertices.

(ii) For some vertex v of H and its copies v1, v2, . . ., vm in mH, vi is
adjacent to wj if and only if i “ j. (In other words, the subgraph
induced by W Y tv1, v2, . . . , vmu is isomorphic to Km a Km or Km a
Km.)

Proof. Let Hi be the i-th copy of H in G´W . We fix an isomorphism from
H to Hi and isomorphisms between copies of H so that these isomorphisms
are compatible.

Assume that m ą 2k´1pm1 ´ 1q. For each wi, there are at most 2k´1

possible sets of neighbors in Hi. So there exists a subset W1 of W with
|W1| “ m1 such that the set of all neighbors of each wi P W1 in Hi is
identical up to isomorphisms between copies of H.

Assume that m1 ě Rpm2; p2k´1q2q. For a vertex wi and j ‰ i, there
are 2k´1 possible ways of having edges between the j-th copy of H ´ v and
wi. By applying Ramsey’s theorem, we deduce that there exists a subset
W2 Ď W1 of size m2 such that for all i ă j with wi, wj P W2, the set of
all neighbors of wi in Hj is identical up to isomorphisms between copies of
H and the set of all neighbors of wj in Hi is identical up to isomorphisms
between copies of H.

Assume that

m2 ě max

ˆR

pk ` 2qn ´ 1

2

V

` 1, n ` 3

˙

.

Suppose that there exist i1 ă i2 ă i3 such that wi1 , wi2 , wi3 P W2 and there
exists a vertex u of H so that exactly one of the copies of u in Hi1 and Hi3
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Figure 4: Obtaining G1 “ pG ^ v1w2q ´ V pH1q ´ V pH2q ´ w1 ´ w2 from G

in the proof of Lemma 6.7.

is adjacent to wi2 . Then G contains Km2´1 m Km2´1 or Km2´1 m Km2´1 as
an induced subgraph. By Lemma 6.5, G has a vertex-minor isomorphic to
Ppk`2qn´1 and therefore G has nPk`1 as a vertex-minor.

Thus we may assume that there are no such i1 ă i2 ă i3. Since m2 ě 3,
for all i ‰ j with wi, wj P W2, the set of all neighbors of wi in Hj is identical
up to isomorphisms between copies of H.

Suppose that wi P W2 has no neighbors inHj when j ‰ i and wj P W2. If
W2 is an independent set, then clearly G has an induced subgraph isomorphic
to m2H

1 for some connected graph H 1 on k ` 1 vertices. If W2 is a clique,
then for some wi P W2, G ˚ wi contains an induced subgraph isomorphic to
pm2 ´ 1qH 1 for some connected graph H 1 on k ` 1 vertices.

Thus, we may assume that wi P W2 has at least one neighbor uj in Hj

for some j ‰ i with wj P W2. Let G
1 “ G^wiuj ´V pHiq´V pHjq´wi ´wj .

If W2 is an independent set, then G1 has an induced subgraph isomorphic to
pm2 ´ 2qH 1 for some connected graph H 1 on k ` 1 vertices. This is because,
by (ii), in G, vℓ is adjacent to wℓ and non-adjacent to wi and uj for all ℓ
with wℓ P W2, ℓ ‰ i, j.

If W2 is a clique, then let wi1 P W2ztwi, wju and G2 “ G1 ˚wi1 ´V pHi1q.
Then G2 contains an induced subgraph isomorphic to pm2 ´ 3qH 1 for some
connected graph H 1 on k ` 1 vertices, again by (ii).

So we can take

f1pk, nq :“ 2k´1
´

R
`

maxpr pk`2qn´1

2
s ` 1, n ` 3q; p2k´1q2

˘

´ 1
¯

` 1.

Lemma 6.7. For positive integers k and n, there exists a positive integer
m “ f2pk, nq such that if a graph G admits a set W “ tw1, . . . , wmu that is
a clique or an independent set satisfying the following two properties, then
G has a vertex-minor isomorphic to nH 1 for some connected graph H 1 on
k ` 1 vertices.
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(i) G ´ W “ mH for some connected graph H on k vertices.

(ii) For some vertex v of H and its copies v1, v2, . . ., vm in mH, vi is
adjacent to wj if and only if i ‰ j. (In other words, the subgraph
induced by W Y tv1, v2, . . . , vmu is isomorphic to Km b Km or Km b
Km.)

Proof. Let f2pk, nq :“ f1pk, nq ` 2 for the function f1 in Lemma 6.6. Let
G1 “ pG^ v1w2q ´V pH1q ´V pH2q ´w1 ´w2 where H1, H2 are the first and
second copies of H. Then G1 ´ pW ztw1, w2uq is isomorphic to pm´2qH and
G1 satisfies the condition for Lemma 6.6. See Figure 4 for an illustration.

Lemma 6.8. For positive integers k and n, there exists an integer N :“
Npk, nq with the following property. Let H be a connected graph on k ver-
tices, and G be a graph and S Ď V pGq such that GrSs is isomorphic to
qH for some integer q and ρGpSq ě N . Then G contains a vertex-minor
isomorphic to nH 1 for some connected graph H 1 on k ` 1 vertices.

Proof. Let f be the function defined in Theorem 6.3. Let f1, f2 be the
functions defined in Lemmas 6.6 and 6.7. We define that

n3pk, nq :“ maxpf1pk, nq, f2pk, nq, r pk`2qn´1

2
sq,

n2pk, nq :“

#

pk ´ 1qn3pk, nq ` 1 if k ą 1,

maxpn ` 2, rp3n ` 1q{2sq if k “ 1,

n1pk, nq :“ R pn2pk, nq; 2q ,

Npk, nq :“ fpn1pk, nqq.

We shortly denote n1pk, nq, n2pk, nq, n3pk, nq, Npk, nq as n1, n2, n3, N

respectively.
Choose B Ď V pGqzS such that |B| “ N and rank pApGqrS,Bsq “ N .
Observe that two distinct vertices in B have distinct sets of neighbors

in S. Since N “ fpn1q, by Theorem 6.3, there exist A1 Ď S and B1 Ď B

with |A1| “ |B1| “ n1 such that GrA1, B1s is isomorphic to Kn1
a Kn1

,
Kn1

m Kn1
, or Kn1

b Kn1
.

Since n1 “ Rpn2; 2q, by Ramsey’s theorem, there exists B2 Ď B1 such
that |B2| “ n2 and B2 is a clique or an independent set. Let A2 Ď A1 be
the set of vertices matched with vertices in B2 in the subgraph GrA1, B1s.
Thus, GrA2, B2s is isomorphic to Kn2

a Kn2
, Kn2

m Kn2
, or Kn2

b Kn2
.

If k “ 1, then by Lemma 6.4 or 6.5, GrA2 YB2s contains a vertex-minor
isomorphic to Kn aKn, because n2 ě n`2, n2 ě p3n`1q{2, and P3n´1 has
Kn a Kn as an induced subgraph. So, we may assume that k ě 2.
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Observe that H has a vertex v such that A2 has at least rn2{ks “ n3

copies of v. Let A3 be a set of n3 copies of v in A2, and B3 Ď B2 be the set
of vertices matched with vertices in A3 in the subgraph GrA2, B2s. Let C be
the set of components of GrSs containing a vertex in A3. Clearly, we have

• |C| “ n3,

• GrA3, B3s is isomorphic to Kn3
a Kn3

, Kn3
m Kn3

, or Kn3
b Kn3

,

• A3 is an independent set,

• B3 is a clique or an independent set.

If GrA3, B3s is isomorphic to Kn3
mKn3

, then GrA3 YB3s is isomorphic
to Kn3

mKn3
or Kn3

mKn3
, and thus by Lemma 6.5, it is locally equivalent to

P2n3
. As 2n3 ě pk ` 2qn´ 1, P2n3

contains an induced subgraph isomorphic
to nPk`1. Therefore, we may assume GrA3, B3s is isomorphic to Kn3

aKn3

or Kn3
bKn3

. By Lemmas 6.6 and 6.7, we deduce that G has a vertex-minor
isomorphic to nH 1 for some connected graph H 1 on k ` 1 vertices.

From now on, our main focus is to deal with the case that the cut-rank
of S is small, where S is the vertex set inducing the disjoint union of many
copies of a connected graph H.

Lemma 6.9. Let k and n be positive integers and let ℓ “ k2kpNpk,nq´1q ` 1
for the function N in Lemma 6.8. Let H be a connected graph on k vertices.
If G has an induced subgraph isomorphic to ℓH, then at least one of the
following holds.

(i) G has a vertex-minor isomorphic to nH 1 for some connected graph H 1

on k ` 1 vertices.

(ii) There exists A Ď V pGq such that GrAs is isomorphic to pk ` 1qH and
for each vertex of H, its copies in GrAs have the same set of neighbors
in V pGqzA.

Proof. Let S Ď V pGq be a vertex set such that GrSs is isomorphic to ℓH.
If ρGpSq ě Npk, nq, then by Lemma 6.8, G contains a vertex-minor

isomorphic to nH 1 for some connected graph H 1 on k`1 vertices. Therefore,
we may assume that ρGpSq ă Npk, nq.

Let V pHq “ tz1, z2, . . . , zku. For each i P t1, 2, . . . , ku, let Zi be the set
of all copies of zi in S. Since ρGpSq ă Npk, nq,

rankApGqrZi, V pGqzSs ď Npk, nq ´ 1

24



for each i P t1, 2, . . . , ku and so ApGqrZi, V pGqzSs has at most 2Npk,nq´1

distinct rows because it is a 0-1 matrix. In other words,

|tNGpvq X pV pGqzSq : v P Ziu| ď 2Npk,nq´1

for each 1 ď i ď k.
Since rℓ{2kpNpk,nq´1qs ě k`1, by the pigeon-hole principle, there exists a

set C of at least k`1 components of GrSs such that for each i P t1, 2, . . . , ku,
vertices in Zi X p

Ť

CPC V pCqq have the same set of neighbors in V pGqzS. It
implies (ii).

Lemma 6.10. Let k, n be positive integers. If a graph has more than

pn ´ 1q2pk`1

2
q components having exactly k ` 1 vertices, then it contains an

induced subgraph isomorphic to nH for some connected graph H on k ` 1
vertices.

Proof. The number of non-isomorphic graphs on k ` 1 vertices is at most

2pk`1

2
q. By the pigeon-hole principle, at least n components are pairwise

isomorphic.

We will use the following lemma under the condition that t “ k but we
prove a stronger statement for the convenience of the proof.

Lemma 6.11. Let k, t be integers such that 1 ď t ď k. Let H be a connected
graph on k vertices. Let G be a graph such that every component has more
than k vertices and G contains pt ` 1qH as an induced subgraph. If

• for each vertex of H, their copies in pt ` 1qH have the same set of
neighbors in V pGqzV ppt ` 1qHq and

• each component of pt ` 1qH has at most t vertices having a neighbor
in V pGqzV ppt ` 1qHq,

then there exist a graph G1 locally equivalent to G, disjoint subsets S, T of
V pG1q and a vertex v in S such that

(i) G1rSs is a connected graph on k ` 1 vertices,

(ii) |T | ď tpk ` 1q, and

(iii) G1rSztvus is a component of G1 ´ pT Y tvuq.
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Proof. Let A Ď V pGq such that GrAs is isomorphic to pt ` 1qH. Let
C :“ tC1, C2, . . . , Ct`1u be the set of components of GrAs, and let V pHq “
tz1, z2, . . . , zku. For each i P t1, 2, . . . , ku, let Zi be the set of all copies of
zi in A. Let Ui be the set of neighbors of vertices of Zi on V pGqzA in G,
that is, Ui “ NGprq X pV pGqzAq for r P Zi. Let X Ď t1, 2, . . . , ku be the set
of integers i such that Ui is non-empty. By the assumption |X| ď t. Since
each component of G has more than k vertices, we have |X| ą 0. Without
loss of generality, we may assume X “ t1, . . . , |X|u.

We proceed by induction on t.
If t “ 1, then let x P Z1 X V pC1q and y P U1. We obtain a new graph

from G by removing vertices of V pC1qztxu and pivoting xy. Note that
the set of neighbors of x in G ´ pV pC1qztxuq is exactly U1. Thus, after
pivoting xy, all edges between the vertex z in Z1 X V pC2q and U1ztyu are
removed and z has exactly one neighbor x on V pGqzV pC2q. Therefore,
pG1, S, T, vq “ pG ^ xy, V pC2q Y txu, pV pC1qztxuq Y tyu, xq is a required
tuple.

Now we assume that t ě 2. We may assume that |X| “ t by the induction
hypothesis.

Let x P Z1 X V pC1q and y P U1. We obtain G1 from G by removing
vertices of V pC1qztxu and pivoting xy. Let A1 “ AzV pC1q. Note that in G,
the set of neighbors of x in V pGqzV pC1q is exactly U1. Thus,

• the adjacency relations between two vertices in A1 do not change by
pivoting xy,

• all edges between Z1ztxu and U1ztyu are removed by pivoting xy.

Furthermore, as vertices in each Zi have the same set of neighbors on
V pGqzA in G, G1 has the following properties.

• For all i1 P t2, . . . , tu, two vertices in Zi1 X A1 have the same set of
neighbors in V pG1qzA1.

• If t ă k, then for i1 P tt ` 1, . . . , ku, vertices in Zi1 X A1 have no
neighbors in V pG1qzA1.

If vertices in ZjXA1 have no neighbors on V pG1qzpA1Ytx, yuq for all 2 ď
j ď k in G1, then pG1, S, T, vq “ pG^xy, V pC2q Y txu, pV pC1qztxuq Y tyu, xq
is a required tuple. Thus, we may assume that there is j P t2, . . . , ku such
that vertices in Zj X A1 have a neighbor on V pG1qzpA1 Y tx, yuq in G1.

Note that G1 ´ tx, yu contains an induced subgraph isomorphic to tH

on the vertex set A1 such that
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• for each vertex of H, their copies in tH have the same set of neighbors
in V pG1 ´ tx, yuqzA1,

• each component of tH has at least one and less than t vertices having
a neighbor in V pG1 ´ tx, yuqzA1.

By the induction hypothesis, G1 ´ tx, yu has the tuple pG1, S, T, vq. Let G2

be the graph locally equivalent to G such that G2 ´ V pC1q ´ y “ G1. Then
pG2, S, T Y V pC1q Y tyu, vq is a required tuple for G.

We prove the main proposition.

Proposition 6.12. For positive integers k and n, there exists an integer
ℓ “ ℓpk, nq such that every graph with rank k-brittleness more than ℓ contains
a vertex-minor isomorphic to nH for some connected graph H on k ` 1
vertices.

Proof. Let f,N be the functions defined in Theorem 6.3 and Lemma 6.8,
respectively. We define

• ℓ2p1, nq :“ maxpn ` 2, rp3n ` 1q{2sq,

• ℓ1p1, nq :“ Rpℓ2p1, nq; 4q,

• ℓp1, nq :“ fpℓ1p1, nqq ´ 1,

and for k ě 2, let

• ℓ3pk, nq :“ k2kpNpk,nq´1q ` 1,

• ℓ2pk, nq :“ max
´

pk ` 2qn, 2pk`1

2
qpn ´ 1q ` 2

¯

,

• ℓ1pk, nq :“ Rpℓ2pk, nq; 2k`1q,

• ℓpk, nq :“ ℓpk ´ 1, ℓ3pk, nqq ` pk ` 1q2pℓ1pk, nq ´ 1q.

We will prove the statement by induction on k. We shortly denote ℓ1pk, nq,
ℓ2pk, nq, ℓ3pk, nq, ℓpk, nq as ℓ1, ℓ2, ℓ3, ℓ, respectively.

Let us first consider the case that k “ 1. Suppose G has rank 1-
brittleness more than ℓ. Then, there exists a vertex set A such that ρGpAq ą
ℓ. Choose A1 Ď A and B1 Ď V pGqzA such that |A1| “ |B1| “ ℓ ` 1 and
rank pApGqrA1, B1sq “ ℓ ` 1. Note that two vertices in B1 have distinct
neighbors on A1. Since ℓ ` 1 “ fpℓ1q, by Theorem 6.3, there exist A2 Ď A1

and B2 Ď B1 with |A2| “ |B2| “ ℓ1 such that GrA2, B2s is isomorphic to
Kℓ1 a Kℓ1 , Kℓ1 m Kℓ1 , or Kℓ1 b Kℓ1 .

As ℓ1 “ Rpℓ2; 4q, by Ramsey’s theorem, there exist A3 Ď A2 andB3 Ď B2

such that
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• GrA3, B3s is isomorphic to Kℓ2 a Kℓ2 , Kℓ2 m Kℓ2 , or Kℓ2 b Kℓ2 , and

• each of A3 and B3 is a clique or an independent set.

If GrA3, B3s is isomorphic to Kℓ2 m Kℓ2 , then by Lemma 6.5, GrA3 Y B3s
contains a vertex-minor isomorphic to P2ℓ2´2. As 2ℓ2 ´ 2 ě 2p3n`1

2
q ´ 2 ě

3n ´ 1, P2ℓ2´2 contains an induced subgraph isomorphic to nK2. Therefore
we may assume that GrA3, B3s is isomorphic to Kℓ2 a Kℓ2 or Kℓ2 b Kℓ2 .
Because ℓ2 ě n ` 2, by Lemma 6.4, G contains a vertex-minor isomorphic
to Kn a Kn, which is isomorphic to nK2, as required.

Now, we prove for k ě 2. Suppose G has rank k-brittleness more than ℓ.
Among all graphs G1 locally equivalent to G, choose G1 admitting a sequence
of m ` 1 tuples

pS0, T0q, pS1, T1, v1q, pS2, T2, v2q, . . . , pSm, Tm, vmq

with the maximum m such that

• S0 “ T0 “ H,

• S1, S2, . . . , Sm, T1, T2, . . . , Tm are pairwise disjoint subsets of V pG1q,

• for each i P t1, 2, . . . ,mu,

– |Si| “ k ` 1 and G1rSis is connected,

– |Ti| ď kpk ` 1q,

– vi P Si,

– no vertex in Siztviu has a neighbor in V pG1qzp
Ť

0ďjďipSj Y Tjqq.

Such a graph G1 exists trivially because pS0, T0q is a valid sequence for
G and so m ě 0.

Suppose that m ă ℓ1. Let G1 :“ G1 ´ p
Ť

0ďjďmpSj Y Tjqq. Since G1 is
locally equivalent to G, βρ

kpG1q “ β
ρ
kpGq, and therefore,

β
ρ
kpG1q “ β

ρ
kpGq ą ℓpk ´ 1, ℓ3q ` pk ` 1q2pℓ1 ´ 1q.

As |
Ť

0ďjďmpSj Y Tjq| ď pk ` 1q2m ď pk ` 1q2pℓ1 ´ 1q, by Proposition 6.2,
we have that βρ

kpG1q ą ℓpk ´ 1, ℓ3q. Let G2 be the graph obtained from G1

by removing all components having at most k vertices. It is not difficult to
observe that βρ

kpG2q “ β
ρ
kpG1q.

As β
ρ
k´1pG2q ě β

ρ
kpG2q, by the induction hypothesis, G2 contains a

vertex-minor isomorphic to ℓ3F for some connected graph F on k vertices.
Thus, there exist a graph G3 locally equivalent to G2 and a vertex subset A
of G3 such that G3rAs is isomorphic to ℓ3F .

Note that ℓ3 “ k2kpNpk,nq´1q ` 1. So, by Lemma 6.9, either
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(1) G3 contains a vertex-minor isomorphic to nH for some connected graph
H on k ` 1 vertices, or

(2) there exists A1 Ď V pG3q such that G3rA1s is isomorphic to pk ` 1qF and
for each vertex of F , its copies in G3rA1s have the same set of neighbors
in V pG3qzA1.

We may assume that p2q holds. Since G3 is locally equivalent to G2, every
component of G3 has more than k vertices. By Lemma 6.11 (with t :“ k),
there exist a graph G4 locally equivalent to G3, disjoint subsets S, T of
V pG4q, and a vertex v in S such that

(i) G4rSs is a connected graph on k ` 1 vertices,

(ii) |T | ď kpk ` 1q, and

(iii) G4rSztvus is a component of G4 ´ pT Y tvuq.

In G1, no vertex in Siztviu has a neighbor in V pG1qzp
Ť

0ďjďmpSj Y Tjqq.
Let G2 be the graph obtained from G1 by applying the same sequence of
local complementations needed to obtain G4 from G2. Since G2 has no
vertex in

Ť

0ďjďmpSj Y Tjq and at most one vertex of G1rSis has a neighbor
in V pG1qz

Ť

0ďjďmpSj Y Tjq, we deduce that G2rSis “ G1rSis for all i P
t1, 2, . . . ,mu. Therefore, G2 admits the sequence pS0, T0q, pS1, T1, v1q, . . .,
pSm, Tm, vmq, pS, T, vq, contradicting the assumption on the choice of G1

with the maximum m. Thus m ě ℓ1.

In G1, for i, j P t1, 2, . . . , ℓ1u with i ă j, vi may have neighbors on Sj,
but vj has no neighbors on Siztviu. Let si,1, si,2, . . . , si,k be the vertices in
Siztviu for each i.

We construct a complete graph on the vertex set tw1, w2, . . . , wℓ1u, and
for i, j P t1, 2, . . . , ℓ1u with i ă j, we color the edge wiwj by one of 2k`1

colors, depending on the adjacency relation between vi and Sj. As ℓ1 “
Rpℓ2; 2

k`1q, there exists a subset I Ď t1, 2, . . . , ℓ1u such that |I| “ ℓ2 and
edges between two vertices in twi : i P Iu are monochromatic. This also
implies that tvi : i P Iu is a clique or an independent set. Let i1 ă i2 ă
¨ ¨ ¨ ă iℓ2 be the elements of I.

For some i, j P I with i ă j, if vi is adjacent to sj,j1 for some j1, then
for all i, j P I with i ‰ j, vi is adjacent to sj,j1 if and only if i ă j.
By taking vertices vi1 , vi3 , . . ., vi2tℓ2{2u´1

and si2,j1, si4,j1, . . ., si2tℓ2{2u,j
1, we

obtain an induced subgraph of G1 isomorphic to either Ktℓ2{2u m Ktℓ2{2u or

Ktℓ2{2u m Ktℓ2{2u. By Lemma 6.5, G1 contains a vertex-minor isomorphic
to Pℓ2´1. As ℓ2 ´ 1 ě pk ` 2qn ´ 1, Pℓ2´1 contains an induced subgraph
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isomorphic to nPk`1. Thus, G contains a vertex-minor isomorphic to nPk`1.
Therefore we may assume that for i, j P I with i ă j, vi has no neighbors in
Sjztvju.

If tvi : i P Iu is independent in G1, then G1r
Ť

iPI Sis is the disjoint
union of ℓ2 connected graphs, each having exactly k ` 1 vertices. Since

ℓ2 ą 2pk`1

2
qpn ´ 1q, by Lemma 6.10, G contains a vertex-minor isomorphic

to nH for some connected graph H on k ` 1 vertices.
If tvi : i P Iu is a clique in G1, then let i1 P I and let G2 “ G1 ˚ vi1 .

Then G2r
Ť

iPI,i‰i1 Sis is the disjoint union of ℓ2 ´ 1 connected graphs, each

having exactly k ` 1 vertices. Since ℓ2 ´ 1 ą 2pk`1

2
qpn ´ 1q, by Lemma 6.10,

G contains a vertex-minor isomorphic to nH for some connected graph H

on k ` 1 vertices.

Here is the proof of Theorem 1.4. Let C be a vertex-minor ideal. Suppose
C is rank k-scattered, that is, there exists an integer ℓ such that every graph
G P C has rank k-brittleness at most ℓ. Then by (3) of Lemma 4.1, for every
connected graph H on k ` 1 vertices, C does not contain p2ℓ ` 1qH.

For the converse, suppose that for every connected graph H on k ` 1
vertices, there exists nH such that nHH R C. Since there are only finitely
many non-isomorphic graphs on k ` 1 vertices, there exists the maximum n

among all nH . Then nH R C for all connected graphs H on k ` 1 vertices.
By Proposition 6.12, all graphs in C have rank k-brittleness at most ℓpk, nq.

7 Comparisons

In this section, we compare our concepts with existing concepts on graphs.
See Figure 5 for the relations that we are going to prove.

7.1 Vertex cover number and matching 1-scatteredness

A set S of vertices in G is a vertex cover of G if G ´ S has no edges. Let
τpGq denote the minimum size of a vertex cover of a graph G, which we call
the vertex cover number of G.

Proposition 7.1. A class of graphs has bounded vertex cover number if and
only if it is matching 1-scattered.

Proof. We claim that

βν
1 pGq ď τpGq ď 4βν

1 pGq.
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bounded
rank-width

bounded
tree-width

bounded
linear rank-width

bounded
path-width

bounded
rank-depth (shrub-depth)

bounded
modular-width

bounded
tree-depth

rank k-scattered
for some k

vertex k-scattered
for some k

matching k-scattered
for some k

rank 1-scattered
bounded

neighborhood diversity

edge k-scattered
for some k

matching 1-scattered bounded
vertex cover number

k1Ðk`1

k1Ðk

k1Ðkk1Ðpk
2
q

Figure 5: Comparing graph classes. An arrow from A to B means that a
class with the property A satisfies the property B. A red solid arrow from A

to B with the condition k1 Ð fpkq implies that if a class has the property A

with k, then it has the property B with k :“ k1. A dashed arrow from A to
B means that if a class has the property A with k, then it has the property
B with k :“ k1 but we do not have a function for k1 depending only on k.
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It is easy to see that βν
1 pGq ď τpGq because G has no matching of size larger

than τpGq.
Let us assume that βν

1 pGq ď m. Let M be a maximum matching of
G. If |M | ą 2m, then by the probabilistic argument, there is a subset I of
V pGq such that at least half of the edges in M joins a vertex in I to a vertex
in V pGqzI, contradicting the assumption that βν

1 pGq ď m. So |M | ď 2m.
Then the set of all ends of edges in M is a vertex cover of size at most
4m.

Proposition 7.2. There is a matching 1-scattered class of graphs that is
not edge k-scattered for any integer k.

Proof. The graph K1,n has matching 1-brittleness 1, while it has edge k-
brittleness at least n ´ k ` 1 by Lemma 4.2.

7.2 Neighborhood diversity and rank 1-scatteredness

The neighborhood diversity was introduced by Lampis [22]. Two vertices
v and w in a graph G are twins if v and w have the same set of neighbors
in V pGqztv,wu. The neighborhood diversity of a graph G is the minimum t

such that there is a partition of the vertex set of G into at most t sets, each
of which is a set of pairwise twins.

Proposition 7.3. A class of graphs has bounded neighborhood diversity if
and only if it is rank 1-scattered.

Proof. For the forward direction, we claim that the rank 1-brittleness of a
graph is less than or equal to its neighborhood diversity. Let G be a graph
of neighborhood diversity at most t. For a set A of vertices, let MA be the
Aˆ pV pGqzAq submatrix of the adjacency matrix of G over the binary field
so that rankMA “ ρGpAq. Then MA has at most t distinct rows and so
ρGpAq ď t for all A Ď V pGq. It implies that βρ

1pGq ď t.
The backward direction is implied by the lemma of Nguyen and Oum [25,

Lemma 5.3], showing that if ρGpXq ď n for all X Ď V pGq, then the neigh-
borhood diversity is at most 22n`2.

Lampis [22, Lemma 2] shows that if G has a vertex cover of size t, then
its neighborhood diversity is at most 2t ` t.

Proposition 7.4. There is a class of graphs of neighborhood diversity 1 that
has unbounded tree-width.

Proof. The complete graph Kn has neighborhood diversity 1 and yet its
tree-width is n ´ 1.
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7.3 Modular-width

The modular-width of a graph was defined by Gajarský, Lampis, and Ordy-
niak [13]. We remark that this modular-width is different from the modular-
width defined by Rao [29].

A module of a graph G is a set M of vertices such that no vertex in
V pGqzM has both a neighbor and a non-neighbor in M . A module M is
trivial if |M | ď 1 or M “ V pGq. A graph is prime if it has no non-trivial
modules.

For a positive integer k, let Mk be the smallest class of graphs having
the following four properties:

1. Mk contains all graphs of at most 1 vertex.

2. If G and H are in Mk, then so is the disjoint union of G and H.

3. If G and H are in Mk, then so is the complete join of G and H, that
is the graph obtained from the disjoint union of G and H by adding
edges between all pairs of vertices in V pGq and V pHq.

4. If G1, G2, . . ., Gm are graphs in Mk for some m ď k and G is a
graph on the vertex set tv1, v2, . . . , vmu, then Mk contains the graph
obtained from G by substituting vi with Gi for all 1 ď i ď m.

The modular-width of a graph G, denoted by mwpGq, is the minimum posi-
tive integer k such that G P Mk.

We will use the fact that if every prime induced subgraph of a graph G

has at most k vertices, then the modular-width of G is at most k.

Proposition 7.5. Every rank 1-scattered class of graphs has bounded modular-
width.

Proof. We claim that ifm “ β
ρ
1 pGq, then every prime induced subgraph of G

has less than Rpfpm`2q; 2q vertices, where f is the function in Theorem 6.3.
Suppose for contradiction that a prime induced subgraph H of G has at
least Rpfpm ` 2q; 2q vertices. Then by Ramsey’s theorem, H has a clique
or an independent set A of size fpm ` 2q. For two vertices v, w in A, since
tv,wu is not a module of H, NHpvqzA ‰ NHpwqzA. So, by Theorem 6.3,
HrA,V pHqzAs contains an induced subgraph isomorphic to Km`2 aKm`2,
Km`2mKm`2, or Km`2bKm`2. It implies that the matrix AHrA,V pHqzAs
has rank at least m ` 1, and therefore ρGpAq ě m ` 1, contradicting the
assumption that G has rank 1-brittleness m. Thus, every prime induced
subgraph of G has less than Rpfpm` 2q; 2q vertices, and so G has modular-
width less than Rpfpm ` 2q; 2q.
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Proposition 7.6. There is a rank 2-scattered class of graphs having un-
bounded modular-width.

Proof. It is easy to see that Kn a Kn is prime if n ě 3, and thus it has
modular-width 2n if n ě 3. But βρ

2 pKn aKnq ď 2 and so tKn aKn : n ě 3u
is rank 2-scattered.

7.4 Edge k-scatteredness

Proposition 7.7. (1) Every edge k-scattered class of graphs is vertex
`

k
2

˘

-
scattered and matching k-scattered.

(2) For every integer k ą 1, there exists an edge k-scattered class of graphs
that is neither vertex p

`

k
2

˘

´ 1q-scattered nor matching pk ´ 1q-scattered.

Proof. (1) We claim that

βκ

pk
2
q
pGq ď 4βη

k pGq and βν
k pGq ď β

η
kpGq.

Let P “ pX1,X2, . . . ,Xtq be a partition of V pGq such that |Xi| ď k for
all i and the ηG-width of P is β

η
kpGq. Then, the number of edges meeting

two parts of P is at most 2βη
k pGq. Now, we take a partition P 1 of EpGq such

that for each i P t1, 2, . . . , tu, all the edges in GrXis form one part of P 1,
and individual edges meeting two parts of X1, . . . ,Xt form individual parts.
Then P 1 has κG-width at most 4βη

k pGq and each part of P 1 has at most
`

k
2

˘

edges. Thus we conclude that βκ

pk
2
q
pGq ď 4βη

k pGq.

Note that for every vertex set A of G, νGpAq ď ηGpAq. Thus, P has
νG-width at most βη

kpGq, which implies that βν
k pGq ď β

η
k pGq.

(2) The graph p2ℓ`1qKk has edge k-brittleness 0, while it has vertex p
`

k
2

˘

´1q-
brittleness at least ℓ` 1 by Lemma 3.1 and has matching pk ´ 1q-brittleness
at least ℓ ` 1 by Lemma 4.1.

7.5 Vertex k-scatteredness and matching k-scatteredness

Proposition 7.8. (1) Every vertex k-scattered class of graphs is matching
pk ` 1q-scattered.

(2) For every positive integer k, there exists a vertex k-scattered class of
graphs that is not matching k-scattered.

(3) If a class of graphs is matching k-scattered for some integer k, then there
exists an integer k1 such that it is vertex k1-scattered.
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Proof. (1) We claim that

βν
k`1pGq ď 2βκ

k pGq.

Let P “ pX1,X2, . . . ,Xtq be a partition of EpGq such that |Xi| ď k for all
i and the κG-width of P is βκ

k pGq. By the probabilistic argument, there are
at most 2βκ

k pGq vertices meeting at least two parts of P . Let S be the set
of vertices incident with edges meeting at least two parts of P . Since no
vertex of G ´ S meets at least two parts of P , each connected component
H of G ´S has at most k edges and at most k ` 1 vertices. Now, we take a
partition P 1 of V pGq so that the vertex set of each connected component of
G´S forms a part, and vertices in S form individual parts. It is not hard to
see that P 1 has ηG-width at most |S| ď 2βκ

k2
pGq. Thus, βν

k`1pGq ď 2βκ
k pGq.

(2) The graph p2ℓ ` 1qPk`1 has vertex k-brittleness 0 while it has matching
k-brittleness at least ℓ ` 1 by Lemma 4.2.

(3) We claim that

if βν
k pGq ď m, then βκ

p4m`k
2

q
pGq ď 4m.

Let P “ pX1,X2, . . . ,Xtq be a partition of V pGq such that |Xi| ď k for
all i and the νG-width of P is at most m. Let k1 “

`

4m`k
2

˘

. Let H be
the subgraph of G consisting of edges meeting two parts of P . Let M be a
maximum matching of H. If |M | ą 2m, then by the probabilistic argument,
there is a subset I of t1, 2, . . . , tu such that at least half of the edges in
M joins a vertex in Xi for some i P I to a vertex in Xj for some j R I,
contradicting the assumption that νG-width of P is at most m.

Thus, |M | ď 2m. Let S be the set of ends of M . Then |S| ď 4m and
S meets every edge of H. Then every component of G ´ S is a subset of
Xi for some i and so has at most k vertices. Now, we take a partition P 1

of EpGq so that for each component C of G ´ S, the set of edges incident
with a vertex in C forms a part, and the edges joining two vertices of S form
individual parts. Then each part of P 1 has at most

`

4m`k
2

˘

edges and no
vertex outside of S meets more than one part of P 1, meaning that κG-width
of P 1 is at most 4m. Thus, βκ

p4m`k

2
q
pGq ď 4m.

Proposition 7.9. (1) Every matching k-scattered class of graphs is rank
k-scattered.

(2) For every integer k ą 1, there exists a matching k-scattered class of
graphs that is not rank pk ´ 1q-scattered.

35



Proof. Observe that if a square 0-1 matrix is non-singular, then the corre-
sponding bipartite graph has a perfect matching. Thus, if a binary matrixM

has rank r, then its corresponding bipartite graph has a matching of size r.
Thus, for all S Ď V pGq, ρGpSq ď νGpSq. This implies that βρ

kpGq ď βν
k pGq.

It is easy to see (2) from tnKk : n ě 1u by Lemma 4.1.

7.6 Tree-depth

A rooted forest is a forest in which every connected component has a specified
node called a root. The closure of a rooted forest T is the graph obtained
from T by adding an edge between every vertex and all its ancestors. The
height of a rooted forest is the number of vertices in a longest path from
a root to a leaf. The tree-depth of a graph G, denoted by tdpGq, is the
minimum height of a rooted forest whose closure contains G as a subgraph,
see the book [24, Chapter 6].

Let us show that every matching k-scattered class of graphs has bounded
tree-depth.

Proposition 7.10. Every matching k-scattered class of graphs has bounded
tree-depth.

Proof. It is enough to prove that

tdpGq ď 4βν
k pGq ` k.

Let P “ pX1,X2, . . . ,Xtq be a partition of V pGq such that |Xi| ď k for all i
and the νG-width of P is βν

k pGq. Let M be a maximal matching of G such
that every edge of M is incident with two sets of tX1,X2, . . . ,Xtu. If |M | ě
2βν

k pGq ` 1, then there exists a subset I of t1, 2, . . . , tu such that at least
βν
k pGq ` 1 edges of M are incident with both

Ť

iPI Xi and V pGqzp
Ť

iPI Xiq,
which implies that the νG-width of P is at least βν

k pGq ` 1, a contradiction.
Therefore, |M | ď 2βν

k pGq.
Let U be the set of all vertices incident with an edge of M . Then

|U | ď 4βν
k pGq. By the choice of M , G ´ U has no edges incident with two

parts of P . So, G ´ U has tree-depth at most k and G has tree-depth at
most 4βν

k pGq ` k.

By Proposition 7.10, every matching k-scattered class of graphs has
bounded path-width and bounded tree-width, due to the inequality twpGq ď
pwpGq ď tdpGq ´1 [1], where tw denotes the tree-width and pw denotes the
path-width.
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Proposition 7.11. There is a class of graphs of bounded tree-depth that is
not rank k-scattered for any integer k.

Proof. The graph mK1,n has tree-depth 2 and yet its rank k-brittleness is
at least m{2 when n ě k by Lemma 4.1.

7.7 Shrub-depth and rank-depth

As a dense analogue of tree-depth, Ganian, Hliněný, Nešetřil, Obdržálek,
and Ossona de Mendez [15] proposed the notion of shrub-depth. DeVos,
Kwon, and Oum [9] introduced the notion of rank-depth of G as the branch-
depth of ρG, and showed that a class of graphs has bounded rank-depth if
and only if it has bounded shrub-depth. So we will omit the definition of
shrub-depth and review the definition of branch-depth instead.

A radius of a tree is the minimum r such that there is a node having
distance at most r from every node. For a function λ : 2E Ñ Z

ě0 on the
subsets of a finite set E, a decomposition of λ is a pair pT, σq of a tree T

with at least one internal node and a bijection σ from E to the set of leaves
of T . The radius of a decomposition pT, σq is defined to be the radius of the
tree T . For an internal node v P V pT q, the components of the graph T ´ v

give rise to a partition Pv of E by σ. The width of v is defined to be

max
P 1ĎPv

λ

˜

ď

XPP 1

X

¸

.

The width of the decomposition pT, σq is the maximum width of an internal
node of T . We say that a decomposition pT, σq is a pk, rq-decomposition of
λ if the width is at most k and the radius is at most r. The branch-depth
of λ is the minimum k such that there exists a pk, kq-decomposition of λ.
If |E| ă 2, then there exists no decomposition and we define λ to have
branch-depth λpHq.

We denote by rdpGq the rank-depth of a graph, that is the branch-depth
of ρG. We now prove that every rank k-scattered class of graphs has bounded
rank-depth.

Proposition 7.12. Every rank k-scattered class of graphs has bounded rank-
depth.

Proof. We claim that

rdpGq ď maxpk, βρ
kpGq, 2q.
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Let P “ pX1,X2, . . . ,Xtq be a partition of V pGq such that |Xi| ď k for
all i and the ρG-width of P is β

ρ
kpGq. We can obtain a pmaxpk, βρ

kpGqq, 2q-
decomposition for ρG as follows. Let T be a tree obtained from K1,t with
center r and leaves r1, r2, . . . , rt by attaching |Xi| leaves to ri for each i. We
map all vertices of Xi to distinct leaves adjacent to ri. Then the width of r
is βρ

kpGq and the width of ri is at most k.

7.8 Linear rank-width

Let us present the definition of linear rank-width [14, 18, 28]. For a graph G,
an ordering px1, . . . , xnq of the vertex set V pGq is called a linear layout of G.
If |V pGq| ě 2, then the width of a linear layout px1, . . . , xnq of G is defined
as max

1ďiďn´1
ρGptx1, . . . , xiuq, and if |V pGq| “ 1, then the width is defined

to be 0. The linear rank-width of G, denoted by lrwpGq, is defined as the
minimum width over all linear layouts of G. For two orderings px1, . . . , xnq,
py1, . . . , ymq, we write px1, . . . , xnq ‘ py1, . . . , ymq :“ px1, . . . , xn, y1, . . . , ymq
to denote the concatenation of two orderings.

We now aim to obtain an inequality between linear rank-width and
rank k-brittleness. Kwon, McCarty, Oum, and Wollan [20] observed that
lrwpGq ď rdpGq2, and combining it with Proposition 7.12, we can obtain a
quadratic upper bound of linear rank-width in terms of rank k-brittleness.
Instead, we will obtain a linear upper bound directly. For that, we use the
submodularity of the matrix rank function.

Proposition 7.13 (See [23, Proposition 2.1.9]). Let M be a matrix over a
field F. Let C be the set of column indexes of M , and R be the set of row
indexes of M . Then for all X1,X2 Ď R and Y1, Y2 Ď C,

rankpM rX1, Y1sq ` rankpM rX2, Y2sq ě

rankpM rX1 X X2, Y1 Y Y2sq ` rankpM rX1 Y X2, Y1 X Y2sq.

Proposition 7.14. For every integer k ą 0, the linear rank-width of a graph
G is at most βρ

kpGq ` tk{2u.

Proof. Let x :“ β
ρ
kpGq. By the definition of rank k-brittleness, there exists a

partition pX1,X2, . . . ,Xtq of V pGq such that for each i P t1, 2, . . . , tu, |Xi| ď
k, and for every I Ď t1, 2, . . . , tu, ρGp

Ť

iPI Xiq ď x. For each i P t1, 2, . . . , tu,
let Li be any ordering of Xi.

We claim that the ordering L “ L1 ‘ L2 ‘ ¨ ¨ ¨ ‘ Lt is a linear layout
of G having width at most x ` tk{2u. It suffices to prove that for each
i P t1, 2, . . . , tu and a partition pA,Bq of Xi, ρGpA Y

Ť

jăiXjq ď x ` tk{2u.
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By symmetry, we may assume that |A| ď tk{2u. Let X “
Ť

jăiXj and
Y “ V pGqzX. Let M be the adjacency matrix of G. By Proposition 7.13,

ρGpA Y Xq “ rankM rA Y X,Y zAs ` rankM rH, Y s

ď rankM rX,Y s ` rankM rA,Y zAs ď x ` tk{2u .

This proves the proposition.

As the rank-width [26] of a graph is always less than or equal to its
linear rank-width, we can deduce that the rank-width of a graph G is at
most βρ

kpGq ` tk{2u.

Proposition 7.15. There is a class of graphs of modular-width 1 that has
unbounded linear rank-width.

Proof. Graphs of modular-width 1 are precisely cographs [5] and cographs
have unbounded linear rank-width, shown by Gurski and Wanke [17].

8 An application

As an application of Theorem 1.4, we prove that for fixed positive integers
m and n, mK1,n-vertex-minor free graphs have bounded linear rank-width.
We will use the fact that every sufficiently large connected graph contains
either a vertex of large degree or a long induced path.

Proposition 8.1 (See Diestel [10, Proposition 1.3.3]). For integers k ą 3
and ℓ ą 0, every connected graph on at least k´1

k´3
pk ´ 2qℓ´2 vertices contains

a vertex of degree at least k or an induced path on ℓ vertices.

Now we are ready to deduce Theorem 1.6 from Theorem 1.4 and Propo-
sition 7.14.

Theorem 1.6. For positive integers m and n, the class of graphs having no
vertex-minor isomorphic to mK1,n has bounded linear rank-width.

Proof. We may assume that n ě 3. Trivially K1,n is locally equivalent to
Kn`1. By Lemma 6.5, P2n is locally equivalent to Kn mKn, and a vertex of
degree n in Kn mKn gives a vertex-minor isomorphic to K1,n. Therefore, by

Proposition 8.1, every connected graph on at least Rpn;2q´1

Rpn;2q´3
pRpn; 2q ´2q2n´2

vertices has a vertex-minor isomorphic to K1,n.

Let k :“ rRpn;2q´1

Rpn;2q´3
pRpn; 2q ´ 2q2n´2s ´ 1. Let C be the class of graphs

having no mK1,n as a vertex-minor. Then for every connected graph H on
k ` 1 vertices, mH R C. Therefore by Theorem 1.4, C is rank k-scattered.
By Proposition 7.14, C has bounded linear rank-width.
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