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Abstract

We study subsets of the n-dimensional vector space over the finite field Fq, for odd q, which

contain either a sphere for each radius or a sphere for each first coordinate of the center. We

call such sets radii spherical Kakeya sets and center spherical Kakeya sets, respectively.

For n ≥ 4 we prove a general lower bound on the size of any set containing q − 1 different

spheres which applies to both kinds of spherical Kakeya sets. We provide constructions which

meet the main terms of this lower bound.

We also give a construction showing that we cannot get a lower bound of order of magni-

tude q
n if we take lower dimensional objects such as circles in F

3

q instead of spheres, showing

that there are significant differences to the line Kakeya problem.

Finally, we study the case of dimension n = 1 which is different and equivalent to the study

of sum and difference sets that cover Fq.

1 Introduction

A (line-)Kakeya set K ⊂ F
n
q of n-dimensional vectors over the finite field Fq of q elements is a set

containing a line in each direction. It was shown in [3] that every Kakeya set K satisfies |K| ≥ cnq
n,

where the implied constant cn depends only on the dimension n. Later research focused on the
constant cn, that is, on the one hand improved lower bounds [4] and on the other hand constructions
of ’small’ Kakeya sets [11, 13, 14].

Several variants of Kakeya sets over finite fields have been studied as well, see for example [5].
In particular the paper [15] deals with conical Kakeya sets over finite fields, that is, subsets of Fn

q

containing either a parabola or a hyperbola in every direction (ellipses are not used since they do
not have a direction). By ’directions’ we usually mean points of the hyper-plane at infinity lying on
an object. This paper deals with spheres instead of lines. However, since spheres over finite fields
have many directions, roughly qn−2 for n ≥ 3, it is not desirable to use directions to define spherical
Kakeya sets in finite fields. In analogy with the reals, we can define spherical Kakeya sets with
reference to radii (see [2, 10, 16] for real spherical Kakeya sets) or, say, the first coordinates of the
centres of the spheres.
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Spheres over finite fields are well-studied objects, see [7, 8, 12] and are defined as follows.
Throughout this paper we assume that q is the power of an odd prime. First we define the norm
‖x‖ of a vector in x = (x1, . . . , xn) ∈ F

n
q by

‖x‖ = x2
1 + . . .+ x2

n.

In the finite field case this is more suitable than the square-root of the right hand side as used for
the reals. The sphere Sr(a) of radius r ∈ F

∗
q and center a = (a1, . . . , an) ∈ F

n
q is

Sr(a) =
{

x ∈ F
n
q : ‖x− a‖ = r

}

,

that is the set of solutions x = (x1, . . . , xn) ∈ F
n
q of the quadratic diagonal equation

(x1 − a1)
2 + . . .+ (xn − an)

2 = r.

Again in the finite field case it is more suitable to use r instead of r2 as in the real case.

Now a radius spherical Kakeya set in F
n
q , n ≥ 2, contains a sphere for each radius r ∈ F

∗
q and

a (first coordinate of the) center spherical Kakeya set in F
n
q , n ≥ 2, contains a sphere for each first

coordinate a1 ∈ Fq of the center.

For n ≥ 4 we prove a general lower bound on sets K ⊂ F
n
q which contain q−1 different spheres

which is also a lower bound on the size of spherical Kakeya sets. We also provide a slightly different
lower bound for n = 2, 3.

Theorem 1.1. Let q be odd and K ⊂ F
n
q be a set containing at least q−1 distinct spheres for n ≥ 4,

or at least (q − 1)/2 distinct spheres for n = 2, 3. Then we have

|K| ≥
{

1
2q

n + 1
2q

n−1 − qn−2 − 1
2q

⌊n−1

2
⌋+2 + 1

2q
⌊n−1

2
⌋+1, n ≥ 4,

qn−qn−2

4 , n = 2, 3.

In Section 2 we prove Theorem 1.1 by combining a well-known result on the number of solutions
of quadratic diagonal equations with a simple counting argument.

In Section 3 we provide constructions of both radius spherical Kakeya sets and center spherical
Kakeya sets which attain the main terms of this bound. In particular, we construct a radius spherical
Kakeya set of size

1

2
qn +

1

2
qn−1 − qn−2 +O

(

qn−3
)

for n ≥ 8

and a center spherical Kakeya set of size

1

2
qn +

1

2
qn−1 +O

(

qn−2
)

for n ≥ 5.

(We use the notation X = O(Y ) if |X | ≤ cY for some absolute constant c > 0.)

Now we introduce lower dimensional hyper-spheres, the motivation for which will be given in
the next paragraph. Let Vd = {x ∈ F

n
q : d · x = 0} be a linear subspace of Fn

q of dimension n − 1
for some direction d ∈ F

n
q \ {0}. (We may assume that the first non-zero coordinate of d is 1.) Then

the hyper-sphere Hr(a, d) in the hyper-plane a + Vd of radius r ∈ F
∗
q , direction d ∈ F

n
q and center

a ∈ F
n
q is given by

Hr(a, d) = Sr(a) ∩ (a+ Vd).
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In Section 4 we give a negative answer to the question of whether we could use lower-
dimensional objects, for example circles in F

3
q instead of spheres, to get lower bounds of order

of magnitude qn. This question is motivated by the fact that the line Kakeya problem always deals
with objects of dimension 1 (lines). However in our case, even hyper-spheres (which are of dimension
n−2) are not enough to give asymptotic growth of order qn. In particular, we show that in F

n
q there

is a set of size qn−1 +O(qn−2), n ≥ 3, which contains a hyper-sphere for each center, direction and
radius.

As in the real case [2] our definition for spherical Kakeya sets in F
n
q can be adjusted for

dimension n = 1. A circle C = {x ∈ Fq : (x− a)2 = r2} in Fq, for some radius r ∈ F
∗
q and center

a ∈ Fq, contains exactly two points a± r. Note that here it is more suitable to use r2 instead of r
(as for real circles). A radius circular Kakeya set in Fq contains a circle for each radius r ∈ F

∗
q , or

equivalently we have
K−K = Fq,

where
K −K = {x1 − x2 : x1, x2 ∈ K}. (1)

A center circular Kakeya set in Fq contains a circle for each center a ∈ Fq, or equivalently we have

K⊕K = Fq,

where
K ⊕K = {x1 + x2 : x1, x2 ∈ K, x1 6= x2}. (2)

In Section 5 we provide constructions of both radius circular and center circular Kakeya sets in Fq

of optimal order of magnitude O
(

q1/2
)

.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1 which is based on the following lemma.

Lemma 2.1. The intersection of two different spheres Sr1(a) and Sr2(b), (a, r1) 6= (b, r2), in F
n
q ,

where q is odd and n ≥ 2, contains at most

qn−2 + q⌊(n−1)/2⌋

points.

Proof. For n ≥ 1, a1, . . . , an ∈ F
∗
q and r ∈ Fq we recall that the number N of solutions

(x1, . . . , xn) ∈ F
n
q to the quadratic diagonal equation

a1x
2
1 + . . .+ anx

2
n = r

satisfies

|N − qn−1| =
{

q⌊(n−1)/2⌋, r 6= 0,

q⌊n/2⌋ − q⌈(n−2)/2⌉, r = 0,
(3)

see for example [1, Theorem 10.5.1] or [12, Theorems 6.26 and 6.27].
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For n ≥ 2 we count the number of joint solutions x ∈ F
n
q of the two equations

‖x− a‖ = r1 (4)

and
‖x− b‖ = r2. (5)

Subtracting (5) from (4) we get

2(b− a) · x = 2(b′ − a′) · x′ + 2(bn − an)xn = r1 − r2 − ‖a‖+ ‖b‖, (6)

where a = (a′, an), b = (b′, bn) and x = (x′, xn) with a′, b′, x′ ∈ F
n−1
q and an, bn, xn ∈ Fq.

If a = b and thus r1 6= r2, then the two spheres are disjoint. Therefore we may assume a 6= b.
WLOG we may assume an 6= bn. Then xn is of the form

xn = u · x′ + c

by (6), where
u = (bn − an)

−1(a′ − b′)

and
c = (2(bn − an))

−1(r1 − r2 − ‖a‖ − ‖b‖).
Then we substitute xn in (4) and get a quadratic form in at most n− 1 variables,

‖x− a‖ = ‖x′ − a′‖+ (u · x′ + c− a1)
2 = r1.

By [12, Theorem 6.21] each quadratic form is equivalent to a diagonal equation, that is, it can be
transformed into a diagonal equation by regular linear variable substitution. Hence, it has at most
qn−2 + q⌊(n−1)/2⌋ solutions by (3) (applied with n− 1 instead of n) and the result follows. ✷

We now prove Theorem 1.1. Let K ⊂ F
n
q contain at least M different spheres S1, . . . ,SM . By

Lemma 2.1 each pair of spheres intersects in at most qn−2 + q⌊(n−1)/2⌋ points, and each contains at
least qn−1 − q⌊(n−1)/2⌋ points by (3). Hence,

∑

1≤i<j≤M

|Si ∩ Sj | ≤
(

qn−2 + q⌊(n−1)/2⌋
) M(M − 1)

2

and we get

|K| ≥
∣

∣

∣

∣

∣

M
⋃

i=1

Si

∣

∣

∣

∣

∣

≥ M
(

qn−1 − q⌊(n−1)/2⌋
)

−
(

qn−2 + q⌊(n−1)/2⌋
) M(M − 1)

2
.

Choosing

M =

{

(q − 1)/2, n = 2 or 3,
q − 1, n ≥ 4,

we get

|K| ≥ 1

2
qn +

1

2
qn−1 − qn−2 − 1

2
q⌊

n−1

2
⌋+2 +

1

2
q⌊

n−1

2
⌋+1 for n ≥ 4,

and

|K| ≥ qn − qn−2

4
for n = 2, 3,

which completes the proof. ✷
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3 Constructions

In this section we give constructions of sets K ⊂ F
n
q containing either a sphere of every radius, or of q

different first coordinates of the centres. In particular, for n ≥ 8, our construction for radii meets
the constants in Theorem 1.1 up to and including the third term, and for n ≥ 5, our construction
for centers meets the first two constants.

3.1 Spheres with different radii

First we give a construction for different radii. For r ∈ F
∗
q consider the sphere

Sr = {
(

x, y
)

∈ F
n
q : (x − r)2 + ‖y‖ = r}.

The union
⋃

r∈F∗

q

Sr contains a sphere of every radius. We use the inclusion-exclusion principle to

bound the size of this set. We firstly bound the intersection of two different spheres Sr and Ss; the
intersection points are

Sr ∩ Ss =

{

(

r + s− 1

2
, y

)

: ‖y‖ = rs−
(

r + s− 1

2

)2
}

, r 6= s, r, s ∈ F
∗
q .

|Sr ∩ Ss| is precisely the number of solutions (y1, ..., yn−1) to the equation

y21 + ...+ y2n−1 = rs−
(

r + s− 1

2

)2

.

Therefore, for each valid choice of (r, s), we have |Sr ∩ Ss| = qn−2 +O
(

q
n−1

2

)

by (3). We can now

explicitly find the sum of the size of intersections of any two spheres, as

∑

r,s∈F
∗

q

r 6=s

|Sr ∩ Ss| = (q − 1)(q − 2)
(

qn−2 +O
(

q
n−1

2

))

= qn − 3qn−1 + 2qn−2 +O
(

q
n+3

2

)

.

We can see via the x coordinate r+s−1
2 that the intersection of any three distinct spheres Sr, Ss,

and St is empty. By the inclusion exclusion principle and (3)
∣

∣

∣

∣

∣

∣

⋃

r∈F∗

q

Sr

∣

∣

∣

∣

∣

∣

=
∑

r∈F∗

q

|Sr| −
1

2

∑

r,s∈F
∗

q

r 6=s

|Sr ∩ Ss|

=
1

2
qn +

1

2
qn−1 − qn−2 +O

(

q
n+3

2

)

.

3.2 Spheres with different first coordinates of the centres

For a fixed non-square r ∈ F
∗
q consider the set

Q = {
(

x, y
)

∈ Fq × F
n−1
q : r − ‖y‖ is a square in Fq}.
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The q distinct spheres Sr(a) = {
(

x, y
)

∈ Fq × F
n−1
q : (x − a)2 + ‖y‖ = r}, a ∈ Fq, are all subsets

of Q. However, the size of Q is

qn + qn−1

2
+O

(

qn−2
)

for n ≥ 5.

Indeed, by (3) each non-zero value of ‖y‖ is attained

qn−2 +O
(

q⌊n/2⌋−1
)

times, that is qn−2+O(qn−4) for n ≥ 5. There are (q+1)/2 (non-zero) values ‖y‖ such that r−‖y‖
is a square (since r is a non-square) and x can take any value in Fq.

For n = 3, 4 we have

|Q| = qn

2
+O

(

qn−1
)

.

4 Hyper-spheres

In this section we show for n ≥ 3 that even if a set contains hyper-spheres for all directions, non-zero
centers and radii, it may have only qn−1 +O(qn−2) points.

We consider the union
H =

⋃

a∈Fn

q
\{0}

H−‖a‖(a, a)

of the hyper-spheres

H−‖a‖(a, a) = {x ∈ F
n
q : ‖x− a‖+ ‖a‖ = a · (x − a) = 0}, a ∈ F

n
q \ {0},

with center a, direction a and radius −‖a‖ (which covers all radii since each element of F∗
q is sum of

two squares). However, each x ∈ H−‖a‖(a, a) satisfies

‖x‖ = ‖x− a+ a‖ = ‖x− a‖+ ‖a‖+ 2a · (x− a) = 0,

which has at most qn−1 + q⌊n/2⌋ − q⌈(n−2)/2⌉ solutions by (3) which is an upper bound for |H|.

5 One-dimensional circular Kakeya sets

The definitions of circular Kakeya sets in dimension 1 are in fact equivalent to definitions concerning
sum and difference sets. More precisely, K ⊂ Fq is a radius circular Kakeya set in Fq if and only if

K −K = Fq

and a centre circular Kakeya set in Fq if and only if

K⊕K = Fq,

where K −K and K ⊕K are defined by (1) and (2).
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To see the first equivalence, let K ⊂ Fq be a set that contains a circle of radius r for each r ∈ F
∗
q .

Therefore there exists a ∈ Fq such that {a+ r, a− r} ⊂ K. We get a + r − (a − r) = 2r ∈ K − K.
Therefore, since 2r covers all of F∗

q , we have K−K = Fq (0 ∈ K −K trivially). Conversely, suppose
that K ⊂ Fq is a subset such that K − K = Fq. Then for each r ∈ Fq, there exist x1, x2 ∈ K, such
that x1 − x2 = 2r. By taking a = (x1 + x2)/2 we see x1 = a+ r and x2 = a− r and that the circle
{a+ r, a− r} is in K.

For the second equivalence, let K ⊂ Fq be a set containing a circle for any center a. Then for
all a ∈ Fq, there exists r ∈ F

∗
q such that {a− r, a+ r} ⊂ K. Then we have (a − r) + (a + r) = 2a,

and therefore K ⊕ K = Fq. Conversely, let K be a subset of F∗
q such that K ⊕ K = Fq. Fix a ∈ Fq.

Since K −K = Fq, there exist x1, x2 ∈ K, x1 6= x2, such that x1 + x2 = 2a. Taking r = (x1 − x2)/2
we can write x1 = a+ r and x2 = a− r, so that a circle of centre a is in K.

Since |K − K| ≤ |K|2, each radius circular Kakeya set in Fq has size at least ⌈q1/2⌉, and since
|K ⊕ K| < |K|2/2 the size of any center circular Kakeya set K of Fq is at least |K| ≥ ⌈√2q⌉. (Keep
the condition x1 6= x2 in (2) in mind.) In this section we will give constructions of radius circular
and center circular Kakeya sets K in Fq with |K| of optimal order of magnitude O(q1/2).

For a prime p > 2 it is easy to find circular Kakeya sets in Fp of size 2⌊√p⌋+ 1,

K = Kp = {0, 1, 2, ..., ⌊√p⌋} ∪ −K0, (7)

where
K0 = {⌈√p⌉, 2⌈√p⌉, ..., ⌊√p⌋⌈√p⌉} .

It is clear that K −K = Fp. Substituting −K0 by K0 in (7) we get K ⊕K = Fp.

If q = r2 is a square and α is a defining element of Fq over Fr, that is, Fq = Fr(α), then we
can choose

K = Fr ∪ αFr

of size |K| = 2q1/2 − 1 to get both K −K = Fq and K ⊕K = Fq.

If q = p2m+1 with a prime p and Fq = Fp(β) with a defining element β of Fq over Fp, then we
first choose the construction Kp from (7) and then take

K = K1 ∪K2,

where
K1 = {a0 + a1β + . . .+ amβm : a0 ∈ Kp, a1, . . . , am ∈ Fp}

and
K2 = {a0 + a1β

m+1 + . . .+ amβ2m : a0 ∈ Kp, a1, . . . , am ∈ Fp}.
It is easy to check that K −K = Fq and

|K| = (2pm − 1)|Kp| < 4q1/2 + 2(q/p)1/2.

Again substituting −K0 by K0 in (7) we get K ⊕K = Fq.

Combining all the cases we can formulate a general result.

Theorem 5.1. For a fixed power q of an odd prime let K ⊂ Fq be either a radius circular or a
center circular Kakeya set in Fq of minimal size. Then we have

q1/2 ≤ |K| < 6q1/2.
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The constants can be certainly improved using, for example, ideas from [6, 9]. However, we did
not calculate these improved constants for the readability of this paper, and since even the improved
upper bounds would not be optimal.
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