The Spherical Kakeya Problem in Finite Fields

Mehdi Makhul, Audie Warren and Arne Winterhof
Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Str. 69, 4040 Linz, Austria
E-mail: \{mehdi.makhul,audie.warren,arne.winterhof\}@oeaw.ac.at

Abstract

We study subsets of the n-dimensional vector space over the finite field \mathbb{F}_{q}, for odd q, which contain either a sphere for each radius or a sphere for each first coordinate of the center. We call such sets radii spherical Kakeya sets and center spherical Kakeya sets, respectively.

For $n \geq 4$ we prove a general lower bound on the size of any set containing $q-1$ different spheres which applies to both kinds of spherical Kakeya sets. We provide constructions which meet the main terms of this lower bound.

We also give a construction showing that we cannot get a lower bound of order of magnitude q^{n} if we take lower dimensional objects such as circles in \mathbb{F}_{q}^{3} instead of spheres, showing that there are significant differences to the line Kakeya problem.

Finally, we study the case of dimension $n=1$ which is different and equivalent to the study of sum and difference sets that cover \mathbb{F}_{q}.

1 Introduction

A (line-)Kakeya set $\mathcal{K} \subset \mathbb{F}_{q}^{n}$ of n-dimensional vectors over the finite field \mathbb{F}_{q} of q elements is a set containing a line in each direction. It was shown in [3] that every Kakeya set \mathcal{K} satisfies $|\mathcal{K}| \geq c_{n} q^{n}$, where the implied constant c_{n} depends only on the dimension n. Later research focused on the constant c_{n}, that is, on the one hand improved lower bounds [4] and on the other hand constructions of 'small' Kakeya sets [11, 13, 14].

Several variants of Kakeya sets over finite fields have been studied as well, see for example [5]. In particular the paper [15] deals with conical Kakeya sets over finite fields, that is, subsets of \mathbb{F}_{q}^{n} containing either a parabola or a hyperbola in every direction (ellipses are not used since they do not have a direction). By 'directions' we usually mean points of the hyper-plane at infinity lying on an object. This paper deals with spheres instead of lines. However, since spheres over finite fields have many directions, roughly q^{n-2} for $n \geq 3$, it is not desirable to use directions to define spherical Kakeya sets in finite fields. In analogy with the reals, we can define spherical Kakeya sets with reference to radii (see [2, 10, 16] for real spherical Kakeya sets) or, say, the first coordinates of the centres of the spheres.

[^0]Spheres over finite fields are well-studied objects, see [7, 8, 12, and are defined as follows. Throughout this paper we assume that q is the power of an odd prime. First we define the norm $\|\underline{x}\|$ of a vector in $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ by

$$
\|\underline{x}\|=x_{1}^{2}+\ldots+x_{n}^{2}
$$

In the finite field case this is more suitable than the square-root of the right hand side as used for the reals. The sphere $\mathcal{S}_{r}(\underline{a})$ of radius $r \in \mathbb{F}_{q}^{*}$ and center $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ is

$$
\mathcal{S}_{r}(\underline{a})=\left\{\underline{x} \in \mathbb{F}_{q}^{n}:\|\underline{x}-\underline{a}\|=r\right\},
$$

that is the set of solutions $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ of the quadratic diagonal equation

$$
\left(x_{1}-a_{1}\right)^{2}+\ldots+\left(x_{n}-a_{n}\right)^{2}=r .
$$

Again in the finite field case it is more suitable to use r instead of r^{2} as in the real case.
Now a radius spherical Kakeya set in $\mathbb{F}_{q}^{n}, n \geq 2$, contains a sphere for each radius $r \in \mathbb{F}_{q}^{*}$ and a (first coordinate of the) center spherical Kakeya set in $\mathbb{F}_{q}^{n}, n \geq 2$, contains a sphere for each first coordinate $a_{1} \in \mathbb{F}_{q}$ of the center.

For $n \geq 4$ we prove a general lower bound on sets $\mathcal{K} \subset \mathbb{F}_{q}^{n}$ which contain $q-1$ different spheres which is also a lower bound on the size of spherical Kakeya sets. We also provide a slightly different lower bound for $n=2,3$.

Theorem 1.1. Let q be odd and $\mathcal{K} \subset \mathbb{F}_{q}^{n}$ be a set containing at least $q-1$ distinct spheres for $n \geq 4$, or at least $(q-1) / 2$ distinct spheres for $n=2,3$. Then we have

$$
|\mathcal{K}| \geq\left\{\begin{array}{l}
\frac{1}{2} q^{n}+\frac{1}{2} q^{n-1}-q^{n-2}-\frac{1}{2} q^{\left\lfloor\frac{n-1}{2}\right\rfloor+2}+\frac{1}{2} q^{\left\lfloor\frac{n-1}{2}\right\rfloor+1}, \quad n \geq 4 \\
\frac{q^{n}-q^{n-2}}{4}, \quad n=2,3
\end{array}\right.
$$

In Section 2 we prove Theorem 1.1 by combining a well-known result on the number of solutions of quadratic diagonal equations with a simple counting argument.

In Section 3 we provide constructions of both radius spherical Kakeya sets and center spherical Kakeya sets which attain the main terms of this bound. In particular, we construct a radius spherical Kakeya set of size

$$
\frac{1}{2} q^{n}+\frac{1}{2} q^{n-1}-q^{n-2}+O\left(q^{n-3}\right) \quad \text { for } n \geq 8
$$

and a center spherical Kakeya set of size

$$
\frac{1}{2} q^{n}+\frac{1}{2} q^{n-1}+O\left(q^{n-2}\right) \quad \text { for } n \geq 5
$$

(We use the notation $X=O(Y)$ if $|X| \leq c Y$ for some absolute constant $c>0$.)
Now we introduce lower dimensional hyper-spheres, the motivation for which will be given in the next paragraph. Let $\mathcal{V}_{\underline{d}}=\left\{\underline{x} \in \mathbb{F}_{q}^{n}: \underline{d} \cdot \underline{x}=0\right\}$ be a linear subspace of \mathbb{F}_{q}^{n} of dimension $n-1$ for some direction $\underline{d} \in \mathbb{F}_{q}^{n} \backslash\{\underline{0}\}$. (We may assume that the first non-zero coordinate of \underline{d} is 1.) Then the hyper-sphere $\mathcal{H}_{r}(\underline{a}, \underline{d})$ in the hyper-plane $\underline{a}+\mathcal{V}_{\underline{d}}$ of radius $r \in \mathbb{F}_{q}^{*}$, direction $\underline{d} \in \mathbb{F}_{q}^{n}$ and center $\underline{a} \in \mathbb{F}_{q}^{n}$ is given by

$$
\mathcal{H}_{r}(\underline{a}, \underline{d})=\mathcal{S}_{r}(\underline{a}) \cap\left(\underline{a}+\mathcal{V}_{\underline{d}}\right) .
$$

In Section 4 we give a negative answer to the question of whether we could use lowerdimensional objects, for example circles in \mathbb{F}_{q}^{3} instead of spheres, to get lower bounds of order of magnitude q^{n}. This question is motivated by the fact that the line Kakeya problem always deals with objects of dimension 1 (lines). However in our case, even hyper-spheres (which are of dimension $n-2)$ are not enough to give asymptotic growth of order q^{n}. In particular, we show that in \mathbb{F}_{q}^{n} there is a set of size $q^{n-1}+O\left(q^{n-2}\right), n \geq 3$, which contains a hyper-sphere for each center, direction and radius.

As in the real case [2] our definition for spherical Kakeya sets in \mathbb{F}_{q}^{n} can be adjusted for dimension $n=1$. A circle $\mathcal{C}=\left\{x \in \mathbb{F}_{q}:(x-a)^{2}=r^{2}\right\}$ in \mathbb{F}_{q}, for some radius $r \in \mathbb{F}_{q}^{*}$ and center $a \in \mathbb{F}_{q}$, contains exactly two points $a \pm r$. Note that here it is more suitable to use r^{2} instead of r (as for real circles). A radius circular Kakeya set in \mathbb{F}_{q} contains a circle for each radius $r \in \mathbb{F}_{q}^{*}$, or equivalently we have

$$
\mathcal{K}-\mathcal{K}=\mathbb{F}_{q},
$$

where

$$
\begin{equation*}
\mathcal{K}-\mathcal{K}=\left\{x_{1}-x_{2}: x_{1}, x_{2} \in \mathcal{K}\right\} . \tag{1}
\end{equation*}
$$

A center circular Kakeya set in \mathbb{F}_{q} contains a circle for each center $a \in \mathbb{F}_{q}$, or equivalently we have

$$
\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q},
$$

where

$$
\begin{equation*}
\mathcal{K} \oplus \mathcal{K}=\left\{x_{1}+x_{2}: x_{1}, x_{2} \in \mathcal{K}, x_{1} \neq x_{2}\right\} . \tag{2}
\end{equation*}
$$

In Section 5 we provide constructions of both radius circular and center circular Kakeya sets in \mathbb{F}_{q} of optimal order of magnitude $O\left(q^{1 / 2}\right)$.

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1 which is based on the following lemma.
Lemma 2.1. The intersection of two different spheres $S_{r_{1}}(\underline{a})$ and $S_{r_{2}}(\underline{b}),\left(\underline{a}, r_{1}\right) \neq\left(\underline{b}, r_{2}\right)$, in \mathbb{F}_{q}^{n}, where q is odd and $n \geq 2$, contains at most

$$
q^{n-2}+q^{\lfloor(n-1) / 2\rfloor}
$$

points.

Proof. For $n \geq 1, a_{1}, \ldots, a_{n} \in \mathbb{F}_{q}^{*}$ and $r \in \mathbb{F}_{q}$ we recall that the number N of solutions $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$ to the quadratic diagonal equation

$$
a_{1} x_{1}^{2}+\ldots+a_{n} x_{n}^{2}=r
$$

satisfies

$$
\left|N-q^{n-1}\right|=\left\{\begin{array}{cl}
q^{\lfloor(n-1) / 2\rfloor}, & r \neq 0 \tag{3}\\
q^{\lfloor n / 2\rfloor}-q^{\lceil(n-2) / 2\rceil}, & r=0
\end{array}\right.
$$

see for example [1, Theorem 10.5.1] or [12, Theorems 6.26 and 6.27].

For $n \geq 2$ we count the number of joint solutions $\underline{x} \in \mathbb{F}_{q}^{n}$ of the two equations

$$
\begin{equation*}
\|\underline{x}-\underline{a}\|=r_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\underline{x}-\underline{b}\|=r_{2} . \tag{5}
\end{equation*}
$$

Subtracting (5) from (4) we get

$$
\begin{equation*}
2(\underline{b}-\underline{a}) \cdot \underline{x}=2\left(\underline{b^{\prime}}-\underline{a}^{\prime}\right) \cdot \underline{x^{\prime}}+2\left(b_{n}-a_{n}\right) x_{n}=r_{1}-r_{2}-\|\underline{a}\|+\|\underline{b}\|, \tag{6}
\end{equation*}
$$

where $\underline{a}=\left(\underline{a^{\prime}}, a_{n}\right), \underline{b}=\left(\underline{b^{\prime}}, b_{n}\right)$ and $\underline{x}=\left(\underline{x^{\prime}}, x_{n}\right)$ with $\underline{a}^{\prime}, \underline{b^{\prime}}, \underline{x^{\prime}} \in \mathbb{F}_{q}^{n-1}$ and $a_{n}, b_{n}, x_{n} \in \mathbb{F}_{q}$.
If $\underline{a}=\underline{b}$ and thus $r_{1} \neq r_{2}$, then the two spheres are disjoint. Therefore we may assume $\underline{a} \neq \underline{b}$. WLOG we may assume $a_{n} \neq b_{n}$. Then x_{n} is of the form

$$
x_{n}=\underline{u} \cdot \underline{x^{\prime}}+c
$$

by (6), where

$$
\underline{u}=\left(b_{n}-a_{n}\right)^{-1}\left(\underline{a^{\prime}}-\underline{b^{\prime}}\right)
$$

and

$$
c=\left(2\left(b_{n}-a_{n}\right)\right)^{-1}\left(r_{1}-r_{2}-\|\underline{a}\|-\|\underline{b}\|\right) .
$$

Then we substitute x_{n} in (4) and get a quadratic form in at most $n-1$ variables,

$$
\|\underline{x}-\underline{a}\|=\left\|\underline{x^{\prime}}-\underline{a}^{\prime}\right\|+\left(\underline{u} \cdot \underline{x^{\prime}}+c-a_{1}\right)^{2}=r_{1} .
$$

By [12, Theorem 6.21] each quadratic form is equivalent to a diagonal equation, that is, it can be transformed into a diagonal equation by regular linear variable substitution. Hence, it has at most $q^{n-2}+q^{\lfloor(n-1) / 2\rfloor}$ solutions by (3) (applied with $n-1$ instead of n) and the result follows.

We now prove Theorem 1.1 Let $\mathcal{K} \subset \mathbb{F}_{q}^{n}$ contain at least M different spheres $\mathcal{S}_{1}, \ldots, \mathcal{S}_{M}$. By Lemma 2.1 each pair of spheres intersects in at most $q^{n-2}+q^{\lfloor(n-1) / 2\rfloor}$ points, and each contains at least $q^{n-1}-q^{\lfloor(n-1) / 2\rfloor}$ points by (3). Hence,

$$
\sum_{1 \leq i<j \leq M}\left|S_{i} \cap S_{j}\right| \leq\left(q^{n-2}+q^{\lfloor(n-1) / 2\rfloor}\right) \frac{M(M-1)}{2}
$$

and we get

$$
|\mathcal{K}| \geq\left|\bigcup_{i=1}^{M} \mathcal{S}_{i}\right| \geq M\left(q^{n-1}-q^{\lfloor(n-1) / 2\rfloor}\right)-\left(q^{n-2}+q^{\lfloor(n-1) / 2\rfloor}\right) \frac{M(M-1)}{2} .
$$

Choosing

$$
M=\left\{\begin{array}{cc}
(q-1) / 2, & n=2 \text { or } 3 \\
q-1, & n \geq 4
\end{array}\right.
$$

we get

$$
|\mathcal{K}| \geq \frac{1}{2} q^{n}+\frac{1}{2} q^{n-1}-q^{n-2}-\frac{1}{2} q^{\left\lfloor\frac{n-1}{2}\right\rfloor+2}+\frac{1}{2} q^{\left\lfloor\frac{n-1}{2}\right\rfloor+1} \quad \text { for } n \geq 4
$$

and

$$
|\mathcal{K}| \geq \frac{q^{n}-q^{n-2}}{4} \quad \text { for } n=2,3
$$

which completes the proof.

3 Constructions

In this section we give constructions of sets $\mathcal{K} \subset \mathbb{F}_{q}^{n}$ containing either a sphere of every radius, or of q different first coordinates of the centres. In particular, for $n \geq 8$, our construction for radii meets the constants in Theorem 1.1 up to and including the third term, and for $n \geq 5$, our construction for centers meets the first two constants.

3.1 Spheres with different radii

First we give a construction for different radii. For $r \in \mathbb{F}_{q}^{*}$ consider the sphere

$$
\mathcal{S}_{r}=\left\{(x, \underline{y}) \in \mathbb{F}_{q}^{n}:(x-r)^{2}+\|\underline{y}\|=r\right\}
$$

The union $\bigcup_{r \in \mathbb{F}_{q}^{*}} \mathcal{S}_{r}$ contains a sphere of every radius. We use the inclusion-exclusion principle to bound the size of this set. We firstly bound the intersection of two different spheres \mathcal{S}_{r} and \mathcal{S}_{s}; the intersection points are

$$
\mathcal{S}_{r} \cap \mathcal{S}_{s}=\left\{\left(\frac{r+s-1}{2}, \underline{y}\right):\|\underline{y}\|=r s-\left(\frac{r+s-1}{2}\right)^{2}\right\}, \quad r \neq s, \quad r, s \in \mathbb{F}_{q}^{*}
$$

$\left|\mathcal{S}_{r} \cap \mathcal{S}_{s}\right|$ is precisely the number of solutions $\left(y_{1}, \ldots, y_{n-1}\right)$ to the equation

$$
y_{1}^{2}+\ldots+y_{n-1}^{2}=r s-\left(\frac{r+s-1}{2}\right)^{2}
$$

Therefore, for each valid choice of (r, s), we have $\left|\mathcal{S}_{r} \cap \mathcal{S}_{s}\right|=q^{n-2}+O\left(q^{\frac{n-1}{2}}\right)$ by (3). We can now explicitly find the sum of the size of intersections of any two spheres, as

$$
\sum_{\substack{r, s \in \mathbb{F}_{q}^{*} \\ r \neq s}}\left|\mathcal{S}_{r} \cap \mathcal{S}_{s}\right|=(q-1)(q-2)\left(q^{n-2}+O\left(q^{\frac{n-1}{2}}\right)\right)=q^{n}-3 q^{n-1}+2 q^{n-2}+O\left(q^{\frac{n+3}{2}}\right)
$$

We can see via the x coordinate $\frac{r+s-1}{2}$ that the intersection of any three distinct spheres $\mathcal{S}_{r}, \mathcal{S}_{s}$, and \mathcal{S}_{t} is empty. By the inclusion exclusion principle and (3)

$$
\begin{aligned}
\left|\bigcup_{r \in \mathbb{F}_{q}^{*}} \mathcal{S}_{r}\right| & =\sum_{r \in \mathbb{F}_{q}^{*}}\left|\mathcal{S}_{r}\right|-\frac{1}{2} \sum_{\substack{r, s \in \mathbb{F}_{q}^{*} \\
r \neq s}}\left|\mathcal{S}_{r} \cap \mathcal{S}_{s}\right| \\
& =\frac{1}{2} q^{n}+\frac{1}{2} q^{n-1}-q^{n-2}+O\left(q^{\frac{n+3}{2}}\right)
\end{aligned}
$$

3.2 Spheres with different first coordinates of the centres

For a fixed non-square $r \in \mathbb{F}_{q}^{*}$ consider the set

$$
\mathcal{Q}=\left\{(x, \underline{y}) \in \mathbb{F}_{q} \times \mathbb{F}_{q}^{n-1}: r-\|\underline{y}\| \text { is a square in } \mathbb{F}_{q}\right\} .
$$

The q distinct spheres $\mathcal{S}_{r}(a)=\left\{(x, \underline{y}) \in \mathbb{F}_{q} \times \mathbb{F}_{q}^{n-1}:(x-a)^{2}+\|\underline{y}\|=r\right\}, a \in \mathbb{F}_{q}$, are all subsets of \mathcal{Q}. However, the size of \mathcal{Q} is

$$
\frac{q^{n}+q^{n-1}}{2}+O\left(q^{n-2}\right) \quad \text { for } n \geq 5
$$

Indeed, by (3) each non-zero value of $\|\underline{y}\|$ is attained

$$
q^{n-2}+O\left(q^{\lfloor n / 2\rfloor-1}\right)
$$

times, that is $q^{n-2}+O\left(q^{n-4}\right)$ for $n \geq 5$. There are $(q+1) / 2$ (non-zero) values $\|y\|$ such that $r-\|\underline{y}\|$ is a square (since r is a non-square) and x can take any value in \mathbb{F}_{q}.

For $n=3,4$ we have

$$
|\mathcal{Q}|=\frac{q^{n}}{2}+O\left(q^{n-1}\right)
$$

4 Hyper-spheres

In this section we show for $n \geq 3$ that even if a set contains hyper-spheres for all directions, non-zero centers and radii, it may have only $q^{n-1}+O\left(q^{n-2}\right)$ points.

We consider the union

$$
\mathcal{H}=\bigcup_{\underline{a} \in \mathbb{F}_{q}^{n} \backslash\{\underline{0}\}} \mathcal{H}_{-\|a\|}(\underline{a}, \underline{a})
$$

of the hyper-spheres

$$
\mathcal{H}_{-\|a\|}(\underline{a}, \underline{a})=\left\{\underline{x} \in \mathbb{F}_{q}^{n}:\|\underline{x}-\underline{a}\|+\|\underline{a}\|=\underline{a} \cdot(\underline{x}-\underline{a})=0\right\}, \quad \underline{a} \in \mathbb{F}_{q}^{n} \backslash\{\underline{0}\},
$$

with center \underline{a}, direction \underline{a} and radius $-\|\underline{a}\|$ (which covers all radii since each element of \mathbb{F}_{q}^{*} is sum of two squares). However, each $\underline{x} \in \mathcal{H}_{-\|a\|}(\underline{a}, \underline{a})$ satisfies

$$
\|\underline{x}\|=\|\underline{x}-\underline{a}+\underline{a}\|=\|\underline{x}-\underline{a}\|+\|\underline{a}\|+2 \underline{a} \cdot(\underline{x}-\underline{a})=0,
$$

which has at most $q^{n-1}+q^{\lfloor n / 2\rfloor}-q^{\lceil(n-2) / 2\rceil}$ solutions by (3) which is an upper bound for $|\mathcal{H}|$.

5 One-dimensional circular Kakeya sets

The definitions of circular Kakeya sets in dimension 1 are in fact equivalent to definitions concerning sum and difference sets. More precisely, $\mathcal{K} \subset \mathbb{F}_{q}$ is a radius circular Kakeya set in \mathbb{F}_{q} if and only if

$$
\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}
$$

and a centre circular Kakeya set in \mathbb{F}_{q} if and only if

$$
\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q}
$$

where $\mathcal{K}-\mathcal{K}$ and $\mathcal{K} \oplus \mathcal{K}$ are defined by (11) and (2).

To see the first equivalence, let $\mathcal{K} \subset \mathbb{F}_{q}$ be a set that contains a circle of radius r for each $r \in \mathbb{F}_{q}^{*}$. Therefore there exists $a \in \mathbb{F}_{q}$ such that $\{a+r, a-r\} \subset \mathcal{K}$. We get $a+r-(a-r)=2 r \in \mathcal{K}-\mathcal{K}$. Therefore, since $2 r$ covers all of \mathbb{F}_{q}^{*}, we have $\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}(0 \in \mathcal{K}-\mathcal{K}$ trivially). Conversely, suppose that $\mathcal{K} \subset \mathbb{F}_{q}$ is a subset such that $\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}$. Then for each $r \in \mathbb{F}_{q}$, there exist $x_{1}, x_{2} \in \mathcal{K}$, such that $x_{1}-x_{2}=2 r$. By taking $a=\left(x_{1}+x_{2}\right) / 2$ we see $x_{1}=a+r$ and $x_{2}=a-r$ and that the circle $\{a+r, a-r\}$ is in \mathcal{K}.

For the second equivalence, let $\mathcal{K} \subset \mathbb{F}_{q}$ be a set containing a circle for any center a. Then for all $a \in \mathbb{F}_{q}$, there exists $r \in \mathbb{F}_{q}^{*}$ such that $\{a-r, a+r\} \subset \mathcal{K}$. Then we have $(a-r)+(a+r)=2 a$, and therefore $\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q}$. Conversely, let \mathcal{K} be a subset of \mathbb{F}_{q}^{*} such that $\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q}$. Fix $a \in \mathbb{F}_{q}$. Since $\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}$, there exist $x_{1}, x_{2} \in \mathcal{K}, x_{1} \neq x_{2}$, such that $x_{1}+x_{2}=2 a$. Taking $r=\left(x_{1}-x_{2}\right) / 2$ we can write $x_{1}=a+r$ and $x_{2}=a-r$, so that a circle of centre a is in \mathcal{K}.

Since $|\mathcal{K}-\mathcal{K}| \leq|\mathcal{K}|^{2}$, each radius circular Kakeya set in \mathbb{F}_{q} has size at least $\left\lceil q^{1 / 2}\right\rceil$, and since $|\mathcal{K} \oplus \mathcal{K}|<|\mathcal{K}|^{2} / 2$ the size of any center circular Kakeya set \mathcal{K} of \mathbb{F}_{q} is at least $|\mathcal{K}| \geq\lceil\sqrt{2 q}\rceil$. (Keep the condition $x_{1} \neq x_{2}$ in (2) in mind.) In this section we will give constructions of radius circular and center circular Kakeya sets \mathcal{K} in \mathbb{F}_{q} with $|\mathcal{K}|$ of optimal order of magnitude $O\left(q^{1 / 2}\right)$.

For a prime $p>2$ it is easy to find circular Kakeya sets in \mathbb{F}_{p} of size $2\lfloor\sqrt{p}\rfloor+1$,

$$
\begin{equation*}
\mathcal{K}=\mathcal{K}_{p}=\{0,1,2, \ldots,\lfloor\sqrt{p}\rfloor\} \cup-\mathcal{K}_{0}, \tag{7}
\end{equation*}
$$

where

$$
\mathcal{K}_{0}=\{\lceil\sqrt{p}\rceil, 2\lceil\sqrt{p}\rceil, \ldots,\lfloor\sqrt{p}\rfloor\lceil\sqrt{p}\rceil\} .
$$

It is clear that $\mathcal{K}-\mathcal{K}=\mathbb{F}_{p}$. Substituting $-\mathcal{K}_{0}$ by \mathcal{K}_{0} in (7) we get $\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{p}$.
If $q=r^{2}$ is a square and α is a defining element of \mathbb{F}_{q} over \mathbb{F}_{r}, that is, $\mathbb{F}_{q}=\mathbb{F}_{r}(\alpha)$, then we can choose

$$
\mathcal{K}=\mathbb{F}_{r} \cup \alpha \mathbb{F}_{r}
$$

of size $|\mathcal{K}|=2 q^{1 / 2}-1$ to get both $\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}$ and $\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q}$.
If $q=p^{2 m+1}$ with a prime p and $\mathbb{F}_{q}=\mathbb{F}_{p}(\beta)$ with a defining element β of \mathbb{F}_{q} over \mathbb{F}_{p}, then we first choose the construction \mathcal{K}_{p} from (77) and then take

$$
\mathcal{K}=\mathcal{K}_{1} \cup \mathcal{K}_{2},
$$

where

$$
\mathcal{K}_{1}=\left\{a_{0}+a_{1} \beta+\ldots+a_{m} \beta^{m}: a_{0} \in \mathcal{K}_{p}, a_{1}, \ldots, a_{m} \in \mathbb{F}_{p}\right\}
$$

and

$$
\mathcal{K}_{2}=\left\{a_{0}+a_{1} \beta^{m+1}+\ldots+a_{m} \beta^{2 m}: a_{0} \in \mathcal{K}_{p}, a_{1}, \ldots, a_{m} \in \mathbb{F}_{p}\right\} .
$$

It is easy to check that $\mathcal{K}-\mathcal{K}=\mathbb{F}_{q}$ and

$$
|\mathcal{K}|=\left(2 p^{m}-1\right)\left|\mathcal{K}_{p}\right|<4 q^{1 / 2}+2(q / p)^{1 / 2} .
$$

Again substituting $-\mathcal{K}_{0}$ by \mathcal{K}_{0} in (7) we get $\mathcal{K} \oplus \mathcal{K}=\mathbb{F}_{q}$.
Combining all the cases we can formulate a general result.
Theorem 5.1. For a fixed power q of an odd prime let $\mathcal{K} \subset \mathbb{F}_{q}$ be either a radius circular or a center circular Kakeya set in \mathbb{F}_{q} of minimal size. Then we have

$$
q^{1 / 2} \leq|\mathcal{K}|<6 q^{1 / 2}
$$

The constants can be certainly improved using, for example, ideas from [6, 9]. However, we did not calculate these improved constants for the readability of this paper, and since even the improved upper bounds would not be optimal.

Acknowledgment

The authors are supported by the Austrian Science Fund FWF Project P 30405-N32. We would like to thank Oliver Roche-Newton for pointing out this problem.

We wish to thank the anonymous referees for their careful study of our paper and their very useful comments.

References

[1] B. C. Berndt, R. J. Evans and K. S. Williams Gauss and Jacobi sums. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley \& Sons, Inc., New York, 1998.
[2] Y. Deng, C. Hu, S. Long, T. Tang, J. Thuswaldner and L. Xi. On a variant of the Kakeya problem in \mathbb{R}. Arch. Math. (Basel) 101 (2013), no. 4, 395-400.
[3] Z. Dvir. On the size of Kakeya sets in finite fields. J. Amer. Math. Soc. 22 (2009), no. 4, 1093-1097.
[4] Z. Dvir, S. Kopparty, S. Saraf and M. Sudan. Extensions to the method of multiplicities, with applications to Kakeya sets and mergers. SIAM J. Comput. 42 (2013), no. 6, 2305-2328.
[5] J. S. Ellenberg, R. Oberlin and T. Tao. The Kakeya set and maximal conjectures for algebraic varieties over finite fields. Mathematika 56 (2010), no. 1, 1-25.
[6] K. Fried. Rare bases for finite intervals of integers. Acta Sci. Math. (Szeged) 52 (1988), no. 3-4, 303-305.
[7] A. Iosevich and D. Koh. Extension theorems for spheres in the finite field setting. Forum Math. 22 (2010), no. 3, 457-483.
[8] A. Iosevich, D. Koh, S. Lee, T. Pham and C. Shen. On restriction estimates for spheres in finite fields. Preprint 2019.
[9] X. Jia and J. Shen. Extremal bases for finite cyclic groups. SIAM J. Discrete Math. 31 (2017), no. 2, 796-804.
[10] L. Kolasa and T. Wolff. On some variants of the Kakeya problem. Pacific J. Math. 190 (1999), no. 1, 111-154.
[11] G. Kyureghyan, P. Müller and Q. Wang. On the size of Kakeya sets in finite vector spaces. Electron. J. Combin. 20 (2013), no. 3, Paper 36, 10 pp.
[12] R. Lidl and H. Niederreiter. Finite fields. Second edition. Encyclopedia of Mathematics and its Applications, 20. Cambridge University Press, Cambridge, 1997.
[13] A. Maschietti. Kakeya sets in finite affine spaces. J. Combin. Theory Ser. A 118 (2011), no. 1, 228-230.
[14] S. Saraf and M. Sudan. An improved lower bound on the size of Kakeya sets over finite fields. Anal. PDE 1 (2008), no. 3, 375-379.
[15] A. Warren and A. Winterhof. Conical Kakeya and Nikodym sets in finite fields. Finite Fields Appl. 59 (2019), 185-198.
[16] T. Wolff. A Kakeya-type problem for circles. Amer. J. Math. 119 (1997), no. 5, 985-1026.

[^0]: Mathematics Subject Classification: 52C10, 05B25, 11T99.
 Keywords and phrases. Kakeya problem, spheres, finite fields, diagonal equations, linear spaces.

