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Abstract

In this paper we consider a numerical homogenization technique for curl-curl-problems
that is based on the framework of the Localized Orthogonal Decomposition and which was
proposed in [D. Gallistl, P. Henning, B. Verfürth. SIAM J. Numer. Anal. 56-3:1570–1596,
2018 ] for problems with essential boundary conditions. The findings of the aforementioned
work establish quantitative homogenization results for the time-harmonic Maxwell’s equations
that hold beyond assumptions of periodicity, however, a practical realization of the approach
was left open. In this paper, we transfer the findings from essential boundary conditions
to natural boundary conditions and we demonstrate that the approach yields a computable
numerical method. We also investigate how boundary values of the source term can effect the
computational complexity and accuracy. Our findings will be supported by various numerical
experiments, both in 2D and 3D.
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method, a priori analysis
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1 Introduction

In recent years, the interest in so called metamaterials has been growing rapidly. These materials
are typically engineered on a nano- or microscale to exhibit unusual properties, such as band gaps
and negative refraction [26, 40, 27]. A common example is photonic crystals, which are composed
of periodic cell structures interacting with light.

To model photonic crystals and other metamaterials properly, a numerical method that can
handle such heterogeneous (or multiscale) media efficiently is needed. It is well known that classi-
cal finite element methods struggle to produce good approximations in this case, unless the mesh
width is sufficiently small to resolve the microscopic variations intrinsic to the problem. Indeed,
the mesh typically needs to be fine enough to resolve all features in the medium/metamaterial.
This leads to issues with computational cost and available memory, which can be often only
overcome by so-called multiscale methods. Multiscale methods are based on solving local de-
coupled problems on the microscale whose solutions are used to correct the original model
and turn it into a homogenized macroscale model that can be solved cheaply. In the context
of electromagnetic waves in multiscale media, corresponding methods were proposed in, e.g.,
[8, 24, 41, 35, 42, 20, 10, 25, 9].

In [17] a method based on the Localized Orthogonal Decomposition (LOD) framework was
proposed for multiscale curl-curl-problems with essential boundary conditions. The LOD tech-
nique was first introduced in [32] for elliptic equations in the H1-space and was later developed
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to include many other types of equations and spaces, see, e.g., [2, 7, 18, 21, 29, 30, 31, 37, 33]
and the references therein. The technique relies on a splitting of the solution space into a coarse
and a fine part, using a suitable (quasi-) interpolation operator. The coarse part is typically a
classical finite element space and the fine part contains all the details not captured by the coarse
space. The basis functions of the coarse space are then enhanced by computing so called cor-
rectors in the detail space. Due to an exponential decay of these correctors, they are quasi-local
and can be computed efficiently by solving small problems. The resulting space (consisting of the
corrected coarse basis functions) can be used in a Galerkin approach to find approximations that
exhibit superior approximation properties in the energy norm when compared with the original
coarse space. These results hold without assumptions on the structure of the problem, such as
periodicity, scale separation or symmetry.

Despite the wide range of successful applications, a construction of the LOD for H(curl)-
conforming Nédélec finite element spaces turned out to be very challenging. The reason was the
absence of suitable projection operators that are at the heart of the method (since corrections
are always constructed in the kernel of such operators). The required projections need to be
computable, local, H(curl)-stable, and they need to commute with exterior derivatives. With
the groundbreaking work by Falk and Winther [14], such a projection was finally found and
paved the way for extending the LOD framework to H(curl)-spaces [17]. However, so far, the
construction by Falk and Winther is only explicitly available for de Rham complexes with natural
boundary conditions, whereas the theoretical results in [17] are obtained for curl-curl-problems
with essential boundary conditions. This discrepancy (which turns out to be a non-trivial issue)
prevented a practical implementation of the H(curl)-LOD until now. Hence, the main objective
of this paper is to explain how the method can indeed be used for practical computations and to
demonstrate its performance in numerical experiments. Here we have several goals. First, we show
how the H(curl)-LOD can be extended from essential boundary conditions to natural boundary
conditions. This enables us use the explicitly known Falk-Winther projection constructed in [14],
which we used in our implementation. For the arising method we prove that linear convergence
is obtained in the H(curl)-norm whenever the source term fulfills f · n = 0. For general right
hand sides f ∈ H(div) we prove convergence of order

√
H. These reduced convergence rates for

general f originate from the trace of the error on the domain boundary, which dominates the
overall accuracy of the numerical method. This contribution can only be eliminated if the source
term has a vanishing normal trace on ∂Ω. In order to restore a full linear convergence for general
sources f we propose the usage of so-called source term correctors that can be used to make the
error component on ∂Ω sufficiently small. As it turns out, such source term correctors can be also
a helpful tool to solve the curl-curl-problem with essential boundary conditions since it allows
the usage of the same Falk-Winther projection as for the case of natural boundary conditions.
With this, we are able to practically solve the same types of problems as considered in [17]. All
the proposed methods were implemented and we include numerical examples in both 2D and 3D
to support our theoretical findings. To the authors’ knowledge this is also the first time that
the edge-based Falk-Winther projection was implemented and the code for the projection (using
the FEniCS software [28]) is available at [1]. Finally, we shall also demonstrate numerically that
if we use a projection that is locally not commuting with exterior derivatives, then the arising
H(curl)-LOD suffers from reduced convergence rates. This shows that the required features of
the projection are not only artifacts of the proof-technique but are central to obtain a converging
method.

Another method based on the LOD framework was recently proposed in [38]. A different
projection is constructed by utilizing the discrete Helmholtz decomposition of the fine detail
space. Numerical experiments show that the proposed projection has the localization property,
but an analytical proof of this property remains open.



3

The paper is organized as follows. In Section 2, the curl-curl-problem is introduced and in
Section 3 the method for natural boundary conditions is described. Essential boundary conditions
are briefly discussed in Section 4. Finally, numerical experiments are presented in Section 5. The
construction of the Falk-Winther projection and a discussion of how to implement it is left to the
appendix.

2 Problem setting and notation

Given a computational domain Ω ⊂ R3, we consider the curl-curl-problem of the following form.
Find u : Ω→ C3 such that

curl(µ curl u) + κu = f , in Ω,

µ curl u× n = 0, on Γ,
(1)

where n is the outward unit normal to Γ := ∂Ω. In the context of the time-harmonic Maxwell’s
equations, u = E describes the (unknown) electric field and the right hand side f is a source term
related to current densities. The coefficients µ and κ are typically complex-valued and scalar
parameter functions that describe material properties. In particular, they depend on electric
permittivity and the conductivity of the medium through which the electric field propagates.
We indirectly assume that the propagation medium is a highly variable “multiscale medium”,
i.e., the coefficients µ and κ are rapidly varying on a fine scale. In this work we mainly focus
on natural boundary conditions (or Neumann-type boundary condition) which are of the form
µ curl u × n = 0 on Γ. In the context of Maxwell’s equations this corresponds to a boundary
condition for (a 90 degree rotation of) the tangential component of the magnetic field.

In order to state a variational formulation of problem (1), we introduce a few spaces. For
that purpose, let G ⊆ R3 denote an arbitrary bounded Lipschitz domain. We define the space of
H(curl)-functions on G by

H(curl, G) := {v ∈ L2(G,C3)| curl v ∈ L2(G,C3)}.

The space is equipped with the standard inner product

(v,w)H(curl,G) := (curl v, curl w)L2(G) + (v,w)L2(G)

where (·, ·)L2(G) is the complex L2-inner product. Furthermore, we define the space of H(div)-
functions by

H(div, G) := {v ∈ L2(G,C3)|div v ∈ L2(G,C)}

with corresponding inner product

(·, ·)H(div,G) := (div v,div w)L2(G) + (v,w)L2(G).

The restriction of H(div, G) to functions with a zero normal trace is given by

H0(div, G) := {v ∈ H(div, G)| v · n|∂G = 0}.

If we drop the dependency on G, we always mean the corresponding space with G = Ω. With
this we consider the following variational formulation of problem (1): find u ∈ H(curl) such that

B(u,v) := (µ curl u, curl v)L2(Ω) + (κu,v)L2(Ω) = (f ,v)L2(Ω), for all v ∈ H(curl). (2)

Observe that the natural boundary condition µ curl u × n = 0 on Γ is intrinsically incorporated
in the variational formulation.

For problem (2) to be well-defined, we shall also make a set of assumptions on the data, which
read as follows.
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(A1) Ω ⊂ R3 is an open, bounded, contractible polyhedron with a Lipschitz boundary.

(A2) The coefficients fulfill µ ∈ L∞(Ω,R3×3) and κ ∈ L∞(Ω,C3×3).

(A3) The source term fulfills f ∈ H(div).

(A4) The coefficients are such that the sesquilinear form B : H(curl)×H(curl)→ C given by (2)
is elliptic on H(curl), i.e., there exists α > 0 such that

|B(v,v)| ≥ α‖v‖2H(curl) for all v ∈ H(curl).

We assume that this property is independent of the computational domain Ω (i.e., we can
restrict the sesquilinear form to subdomains of Ω and have still ellipticity).

Under the above assumptions (A1)-(A4), we have that (2) is well-defined by the Lax-Milgram-
Babuška theorem [5]. Note that none of the assumptions is very restrictive and that they are
fulfilled in many physical setups (cf. [17, 16] for discussions and examples). In [41] it was
also demonstrated that the coercivity can be relaxed to a frequency-dependent inf-sup-stability
condition for indefinite problems. However, in order to avoid the additional technical details that
would come with the indefinite setting, we will only focus on the simpler H(curl)-elliptic case as
given by (A4).

3 Numerical homogenization for natural boundary conditions

In this section, we follow the arguments presented in [17] for the case of essential boundary
conditions (i.e., u× n = 0 on Γ) to transfer them to the case of natural boundary conditions as
given in (1).

3.1 Basic discretization and multiscale issues

Let us start with some basic notation that is used for a conventional discretization of (1). This
setting will be also used to exemplify why such a standard discretization of multiscale curl-curl-
problems is problematic.

Throughout this paper, we make the following assumptions on the discretization.

(B1) TH is a shape-regular and quasi-uniform partition of Ω, in particular we have ∪TH = Ω.

(B2) The elements of TH are (closed) tetrahedra and are such that any two distinct elements
T, T ′ ∈ TH are either disjoint or share a common vertex, edge or face.

(B3) The mesh size (i.e., the maximum diameter of an element of TH) is denoted by H.

On TH we consider lowest-order H1-, H(div)- and H(curl)-conforming elements. Here, S(TH) ⊂
H1(Ω) denotes the space of TH -piecewise affine and continuous functions (i.e., scalar-valued first-
order Lagrange finite elements) and we set S̊(TH) := S(TH) ∩ H1

0 (Ω) as the subset with a zero
trace on ∂Ω. The lowest order Nédélec finite element (cf. [34, Section 5.5]) is denoted by

N (TH) := {v ∈ H(curl)|∀T ∈ TH : v|T (x) = aT × x + bT with aT ,bT ∈ C3}.

Later on, we will also need the lowest-order Raviart–Thomas finite element space, which is given
by

RT (TH) := {v ∈ H(div)|∀T ∈ TH : v|T (x) = aT x + bT with aT ∈ C,bT ∈ C3}.
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With this, a standard H(curl)-conforming discretization of problem (2) is to find uH ∈ N (TH)
such that

B(uH ,vH) = (f ,vH)L2(Ω), for all v ∈ N (TH). (3)

As a Galerkin approximation, uH is a quasi-best approximation in the H(curl)-norm and fulfills
the classical estimate

‖u− uH‖H(curl) ≤ C inf
vH∈N (TH)

‖u− vH‖H(curl) ≤ CH
(
‖u‖H1(Ω) + ‖ curl u‖H1(Ω)

)
. (4)

A serious issue is faced if µ and κ are multiscale coefficients that are rapidly oscillating with a
characteristic length scale of the oscillations that is of order δ � 1. In this case, both ‖u‖H1(Ω)

and ‖ curl u‖H1(Ω) will blow up, even for differentiable coefficients µ and κ. Even worse, if µ and
κ are discontinuous, then the required regularity u, curl u ∈ H1(Ω,C3) might not be available at
all (cf. [11, 12, 6]). In such a setting the estimate (4) becomes meaningless, as convergence rates
can become arbitrarily slow. On top of that, convergence can only be observed in the fine scale
regime H < δ. This imposes severe restrictions on the mesh resolution and the costs for solving
(3) can become tremendous. It is worth to mention that the picture does not change if we look at
the error in the L2-norm. This is because ‖u−uH‖L2(Ω) and ‖u−uH‖H(curl) are typically of the
same order, due to the large kernel of the curl-operator. In particular, for large mesh sizes H the
space N (TH) does not contain any good L2-approximations of u. This is because fast variations
in κ cause equally fast oscillations in u with an amplitude of order O(1). These oscillations
cannot be captured on coarse meshes and due to their non-negligible amplitude they are crucial
in the L2-sense. For periodic coefficients, the appearance of such oscillations can be explained
with analytical homogenization theory (cf. [20]). An example for a function u that illustrates this
aspect is given in Figure 2 below. Note that this is a crucial difference to H1-elliptic problems,
where good L2-approximations on coarse meshes are at least theoretically available (though they
are typically not found by standard Galerkin methods). A very good review about this topic for
H1-elliptic problems is given in [36].

3.2 De Rham complex and subscale correction operators

As discussed in the previous subsection, a conventional discretization of the curl-curl-problem
(2) is problematic as it requires very fine meshes TH and hence very high-dimensional discrete
spaces. Motivated by this issue, the question posed in [17] is whether it is possible to construct a
quasi-local sub-scale correction operator K that acts on H(curl) and which only depends on B(·, ·)
(but not on the source term f), such that the original multiscale problem can be replaced by a
numerically homogenized equation. By “numerically homogenized equation” we mean an equation
that can be discretized with a Galerkin method in the standard (coarse) space N (TH), such that
the corresponding (homogenized) solution u0

H ∈ N (TH) is a good coarse scale approximation
of u (in the dual space norm ‖ · ‖H(div)′ , cf. [17] for details) and such that u0

H + K(u0
H) (i.e.,

homogenized solution plus corrector) yields a good approximation of u in the H(curl)-norm. The
(numerically) homogenized equation takes the form

B((I +K)u0
H , (I +K)v) = (f , (I +K)v)L2(Ω) for all v ∈ N (TH)

and provided thatK is available, this can be solved cheaply in a coarse (and hence low-dimensional)
spaceN (TH). In [17], such a homogenized problem was obtained for essential boundary conditions
using the technique of Localized Orthogonal Decompositions (LOD).

The central tool in the construction of a suitable corrector operator K is the existence of local
and stable projection operators that commute with the exterior derivative. For that we apply
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the theory of finite element exterior calculus (FEEC), where we refer to the excellent survey
papers [3, 4] for an introduction to the topic. A cochain complex of vector spaces is essentially
a sequence of homomorphisms between these spaces with the property that the image of each of
the homomorphisms is a subset of the kernel of the next homomorphism. If the vector spaces are
the spaces of differential p-forms on some smooth manifold and if the homomorphisms are given
by the exterior derivative, we call the cochain complex a de Rham complex. In the following, we
consider the L2 de Rham complex with natural boundary conditions which is of the form

H1(Ω)
grad−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω).

Obviously, we have for the exterior derivative curl ◦ grad = 0 and div ◦ curl = 0, which shows the
central property of a cochain complex (that is the inclusion of the image of each homomorphism
into the kernel of the next). We also consider the corresponding finite element subcomplex (of
lowest order spaces)

S(TH)
grad−→ N (TH)

curl−→ RT (TH)
div−→ P(TH),

where P(TH) ⊂ L2(Ω) is the space of TH -piecewise constant functions. In this setting (and in
more general form), Falk and Winther [14] proved the existence of stable and local projections
πH between any Hilbert space of the de Rham complex and the corresponding discrete space of
the finite element subcomplex, so that the following diagram commutes:

H1(Ω)
grad−→ H(curl,Ω)

curl−→ H(div,Ω)
div−→ L2(Ω)−→ πV

H

−→ πE
H

−→ πF
H

−→ πT
H

S(TH)
grad−→ N (TH)

curl−→ RT (TH)
div−→ P(TH).

Here, V stands for vertex, E stands for edges, F for faces and T for tetrahedra. In particular
(and for our setting very essential) is the commutation

πEH(∇v) = ∇πVH(v) for all v ∈ H1(Ω). (5)

The operators are local (i.e., local information can only spread in small nodal environments) and
they admit local stability estimates, for T ∈ TH , of the form

‖πH(v)‖L2(T ) . ‖v‖L2(U(T )) +H|v|HΛ(U(T )) and |πH(v)|HΛ(T ) . |v|HΛ(U(T )) (6)

for all v ∈ HΛ(Ω), where HΛ(Ω) stands for either of the spaces H1(Ω), H(curl,Ω) or H(div,Ω),
the semi-norm is given by |v|HΛ = ‖dv‖L2 where d stands for the exterior derivative on HΛ(Ω)
and πH stands for the corresponding projection operator from the commuting diagram. The
constant C > 0 in the estimate is generic and the patch U(K) is a small environment of K that
consists of elements from TH and which has a diameter of order H. We refer the reader to [14,
Theorem 2.2] for further details on this aspect.

The idea proposed in [17] is now to correct/enrich the conventional discrete spaces ΛH =
image(πH) by information from the kernel of the projections. Due to the direct and stable
decomposition

HΛ(Ω) = ΛH(Ω)⊕W(Ω),

where W(Ω) := kern(πH), we know that the exact solution u to the curl-curl-problem (2) can
be uniquely decomposed into a coarse contribution in ΛH(Ω) = N (TH) and a fine (or detail)
contribution in W := W(Ω) = kern(πEH), i.e.,

u = πEH(u) + (u− πEH(u)). (7)
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In order to identify and characterize the components of this decomposition, a Green’s corrector
operator

G : H(curl)′ →W

can be introduced. For F ∈ H(curl)′ it is defined by the equation

B( G(F) ,w) = F(w) for all w ∈W. (8)

It is well-defined by the Lax-Milgram-Babuška theorem due to assumption (A4) and since W is
a closed subspace as the kernel of a H(curl)-stable projection. The main feature of the Green’s
corrector is that it allows us to characterize the H(curl)-stable decomposition of the exact solution
u ∈ H(curl) to problem (2) as

u = uH − (G ◦ L)(uH) + G(f), (9)

where uH := πEH(u) ∈ N (TH) is the coarse part. The operator L is the differential operator
associated with B(·, ·), i.e., L(v) := B(v, ·).

To see that (9) holds, we start from the unique decomposition (7) and insert it into (2), where
we restrict the test functions to W ⊂ H(curl). This yields

B(u− πEH(u),w) = −B(πEH(u),w) + (f ,w)L2(Ω) = −B((G ◦ L)(uH),w) + B(G(f),w)

for all w ∈W. Since both u− πEH(u) and G(f)− (G ◦ L)(uH) are elements of W, they must be
identical, proving (9).

3.3 Idealized multiscale method for curl-curl-problems

In the last subsection we saw that the exact solution can be decomposed into u = uH − (G ◦
L)(uH) + G(f), where uH := πEH(u). This motivates to define the ideal corrector operator K :
N (TH)→W as

K := −G ◦ L

and to consider a numerical homogenized equation of the form: find u0
H ∈ N (TH) such that

B((I +K)u0
H , (I +K)v) = (f , (I +K)v)L2(Ω) for all v ∈ N (TH). (10)

Since this is a Galerkin approximation, Céa’s lemma implies that (I +K)u0
H is an H(curl)-quasi

best approximation of u in (I +K)N (TH) and hence

‖u− (I +K)u0
H‖H(curl) . ‖u− (I +K)uH‖H(curl)

(9)
= ‖G(f)‖H(curl).

In fact, if µ and κ are self-adjoint, it can be shown that u0
H = πEH(u) and hence the error has the

exact characterization u − (I + K)u0
H = G(f) (this can be proved analogously to [17, Theorem

10]).
As we just saw, in order to quantify the discretization error eH = u− (I +K)u0

H , all we have
to do is to estimate G(f). Since Ω is a contractible domain, we know that G(f) ∈ H(curl) admits
a regular decomposition (cf. [22, 23]) of the form

G(f) = z +∇θ, where z ∈ [H1(Ω)]3 and θ ∈ H1(Ω), (11)

and with

‖z‖H1(Ω) + ‖θ‖H1(Ω) . ‖G(f)‖H(curl). (12)
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Exploiting the commuting property of the Falk-Winther projections, we obtain that we can write
G(f) ∈W as

G(f) = G(f)− πEH(G(f))
(5)
= (z− πEH(z)) +∇(θ − πVH(θ)). (13)

By the Bramble-Hilbert lemma together with the local stability estimates (6) we easily see that
for any T ∈ TH it holds

‖z− πEH(z)‖L2(T ) ≤ CH‖z‖H1(U(T )) (14)

and analogously

‖θ − πVH(θ)‖L2(T ) ≤ CH‖θ‖H1(U(T )). (15)

Again, U(T ) is a generic environment of T that consists of few (i.e., O(1)) elements from TH .
Observe that this yields a local regular decomposition of interpolation errors in the spirit of
Schöberl (cf. [39, Theorem 1] and [17, Lemma 4]).

Next, we use the identity (13) in the definition of the Green’s corrector G to obtain

α‖G(f)‖2H(curl) ≤ B(G(f),G(f)) = (f , z− πEH(z)) + (f ,∇(θ − πVH(θ)))L2(Ω) (16)

= (f , z− πEH(z))− (div f , θ − πVH(θ))L2(Ω) + (f · n, θ − πVH(θ))L2(Γ).

Using the interpolation error estimates (14) and (15) for the Falk-Winther projections, we imme-
diately have

(f , z− πEH(z)) . H‖f‖L2(Ω)‖z‖H(curl)

(12)

. H‖f‖L2(Ω)‖G(f)‖H(curl). (17)

and

−(div f , θ − πVH(θ))L2(Ω) . H‖ div f‖L2(Ω)‖θ‖H1(Ω)

(12)

. H‖ div f‖L2(Ω)‖G(f)‖H(curl). (18)

It remains to estimate the last term. For that, let FH,Γ denote the set of faces (from our trian-
gulation) that are located on the domain boundary Γ. We obtain with the local trace inequality

|(f · n, θ − πVH(θ))L2(Γ)| ≤
∑

S∈FH,Γ

‖f · n‖L2(S)‖θ − πVH(θ)‖L2(S)

≤ ‖f · n‖L2(Γ)

 ∑
S∈FH,Γ

‖θ − πVH(θ)‖2L2(S)

1/2

. ‖f · n‖L2(Γ)

 ∑
T∈TH

T∩Γ∈FH,Γ

H−1‖θ − πVH(θ)‖2L2(T ) +H‖∇θ −∇πVH(θ)‖2L2(T )


1/2

(6),(15)

. ‖f · n‖L2(Γ)

 ∑
T∈TH

T∩Γ∈FH,Γ

H‖∇θ‖2L2(U(T )) +H‖∇θ‖2L2(U(T ))


1/2

(12)

.
√
H ‖f · n‖L2(Γ)‖G(f)‖H(curl). (19)

Here we used the regularity of the mesh TH and that each T -neighborhood U(T ) contains only
O(1) elements. Combining the estimates (16), (17), (18) and (19), we obtain the following
conclusion.
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Conclusion 3.1. Let u ∈ H(curl) denote the exact solution to curl-curl-problem (3) with natural
boundary conditions and let u0

H ∈ N (TH) denote the solution to ideal numerically homogenized
equation (10), then it holds the error estimate

‖u− (I +K)u0
H‖H(curl) . H ‖f‖H(div) +

√
H ‖f · n‖L2(Γ).

In particular, if f ∈ H0(div) (i.e., it has a vanishing normal trace), then we have optimal order
convergence with

‖u− (I +K)u0
H‖H(curl) . H ‖f‖H(div).

From Conclusion 3.1 we see that in general we expect the error to be dominated by the term√
H ‖f · n‖L2(Γ). Note that in the case of essential boundary conditions, the problematic term

(f ·n, θ−πVH(θ))L2(Γ) will always vanish since the corresponding regular decomposition guarantees
that θ = 0 on Γ (cf. [22, 39]).

Before we discuss how to restore the linear convergence for source terms with arbitrary normal
trace, we need to discuss how to localize the corrector operator K.

3.4 Localized multiscale method for curl-curl-problems

From a computational point of view, the ideal multiscale method (10) is not feasible, as it requires
the computation of global correctors K(ψE) for each nodal basis function ψE of the Nédélec space
N (TH). The equation that describes a corrector K(ψE) ∈W reads

B(K(ψE) ,w) = −B(ψE ,w) for all w ∈W.

This problem has the same computational complexity as the original curl-curl-problem. Solving
it for every basis function would hence multiply the original computing costs. To avoid this issue,
we first split the global corrector K into a set of element correctors KT . For a tetrahedron T ∈ TH ,
the corresponding element corrector KT (vH) ∈W is defined as

B(KT (vH) ,w) = −BT (vH ,w) for all w ∈W, (20)

where BT (v,w) := (µ curl v, curl w)L2(T ) + (κ v,w)L2(T ). Obviously, we have

K(vH) =
∑
T∈TH

KT (vH). (21)

The advantage of this formulation is that we can now exploit the strong localization of the
element correctors KT . In fact, they show an extremely fast decay to zero away from the element
T . The decay can be quantified and is exponential in units of H. This is a consequence of the
local support of the source term (i.e., BT (·, ·)) and the fact that KT maps into the kernel of
the Falk-Winther projection. This allows to restrict the computational domain in (20) to small
environments Nm(T ) of T that have a diameter of order m · H. The decay was first proved in
[17, Theorem 14] for the case of essential boundary conditions (i.e., for K(ψE) × n = 0 on Γ).
For natural boundary conditions we can proceed similarly (with minor modifications) to obtain
the following result.

Lemma 3.2. Given T ∈ TH , we define the (open) m-layer neighborhood recursively by

N0(T ) := int(T ) and Nm(T ) := int
(⋃
{K ∈ TH |K ∩Nm−1(T ) 6= ∅}

)
.
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On these patches (for m > 0) we define the truncated element correctors

KT,m(vH) ∈W( Nm(T ) ) := {w ∈W|w ≡ 0 in Ω \Nm(T )}

as solutions to

B(KT,m(vH) ,w) = −BT (vH ,w) for all w ∈W( Nm(T ) ) (22)

For vH ∈ N (TH), an approximation of the global corrector is given (in the spirit of (21)) by

Km(vH) :=
∑
T∈TH

KT,m(vH).

The error between the truncated approximation Km and the ideal corrector K can be bounded by

‖K(vH)−Km(vH)‖H(curl) ≤ Cρm‖vH‖H(curl),

where 0 < ρ < 1 and C > 0 are generic constants that are independent of m, H or the speed of
the variations of µ and κ.

Remark 3.3 (Boundary conditions of the truncated element correctors). Observe that the trun-
cated element correctors KT,m(vH) given by (22) have mixed boundary conditions. On ∂Nm(T )\Γ
they fulfill essential boundary conditions, i.e., KT,m(vH) × n = 0, and on ∂Nm(T ) ∩ Γ they ful-
fill natural boundary conditions, i.e., µ curlKT,m(vH) × n = 0. This is in contrast to the ideal
element correctors given by (20) which only involve natural boundary conditions.

From Lemma 3.2 we see that that we can approximate the global corrector K efficiently by
computing a set of element correctors KT,m with a small local support Nm(T ). With this we
can formulate the following main theorem on the overall accuracy of localized multiscale scheme
(which belongs to the class of LOD methods, cf. [17, 19, 32]).

Theorem 3.4. Let u ∈ H(curl) denote the exact solution to the curl-curl-problem with natural
boundary conditions. Furthermore, let Km denote the corrector approximation from Lemma 3.2
and let uH,m ∈ N (TH) denote the unique solution to the numerically homogenized equation

B((I +Km)uH,m, (I +Km)vH) = (f , (I +Km)vH)L2(Ω) for all vH ∈ N (TH).

Then the following error estimates holds

‖u− (uH,m +Km(uH,m))‖H(curl) . (H + ρm) ‖f‖H(div) +
√
H ‖f · n‖L2(Γ). (23)

In particular, if m & | log(H)|/| log(ρ)| and f ∈ H0(div), then we have optimal order convergence
in H, i.e., it holds

‖u− (uH,m +Km(uH,m))‖H(curl) . H ‖f‖H(div).

Proof. The proof is analogous to [17, Conclusion 15]. Let uH = πEH(u) ∈ N (TH) be the Falk-
Winther projection of the exact solution. Then we have with Lemma 3.2

‖u− uH −Km(uH)‖H(curl)

(9)

≤ ‖G(f)‖H(curl) + ‖K(uH)−Km(uH)‖H(curl)

≤ ‖G(f)‖H(curl) + Cρm‖πEH(u)‖H(curl)

(6)

≤ ‖G(f)‖H(curl) + Cρm‖u‖H(curl)

≤ ‖G(f)‖H(curl) + Cρm‖f‖H(div).

Conclusion 3.1 together with the quasi-best approximation property of Galerkin methods finishes
the proof.
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Theorem 3.4 shows that we can still achieve the same order of accuracy as for the ideal
multiscale method (10) if the number of layers m is selected proportional to | log(H)|. Practically
this means that in order to compute a sufficiently accurate corrector Km, we need to solve
local problems on small patches with a diameter of order H| log(H)|. The number of these
local problems equals the number of all tetrahedra times the number of edges of a tetrahedron
(which is equal to the number of basis functions of N (TH) that have support on a tetrahedron
T ∈ TH). Hence, the total number of local problems is 6 · ]TH . All these problems are small,
cheap to solve and they are fully independent from each other, which allows for parallelization in
a straightforward way.

There are two more issues to be discussed, first, we need a computational representation of
the Falk-Winther projection operator πEH . As this summarizes the results of the previous works
[14, 17] and in particular [15], we postpone it to the appendix. The second issue that remains is
the question if and how we can restore a full linear convergence for the error in (23), if f does not
have a vanishing normal trace. We will investigate this question in the next subsection.

3.5 Source term and boundary corrections

In Theorem 3.4 we have seen that we can in general not expect a full linear convergence in the
mesh size H, unless f ∈ H0(div). The estimate (23) suggests a convergence of order H1/2, which
we can also confirm numerically (cf. Section 5.2). Hence, as the full linear rate is typically
not achieved for arbitrary source terms, this poses the question if we can modify the method
accordingly.

One popular way to handle the influence of dominating source terms or also general (inhomo-
geneous) boundary conditions is to compute source and boundary corrections (cf. [19] for details
in the context of H1-elliptic problems). Here we recall decomposition (9), which says that we can
write the exact solution as

u = uH +K(uH) + G(f).

Practically, we can approximate G(f) in the spirit of Lemma 3.2 by a corrector Gm(f) based on
localization. This means, that for each T ∈ TH , we can solve for an element source corrector
GT,m(f) ∈W( Nm(T ) ) with

B( GT,m(f) ,w) = (f ,w)L2(T ) for all w ∈W( Nm(T ) ).

The global source corrector is then given by

Gm(f) :=
∑
T∈TH

GT,m(f).

After this, we can solve the corrected homogenized problem which is of the following form: find
ucorr
H,m ∈ N (TH) such that

B((I +Km)ucorr
H,m, (I +Km)vH) = (f , (I +Km)vH)L2(Ω) − B(Gm(f), (I +Km)vH)

for all vH ∈ N (TH). The final approximation is given by

ums
H,m := (I +Km)ucorr

H,m + Gm(f)

and it is possible to prove that the error converges exponentially fast in m to zero:

‖u− ums
H,m‖H(curl) . ρm‖f‖L2(Ω), for a generic 0 < ρ < 1.

The error estimate can be proved using similar arguments as in the proof of Theorem 3.4. Here
we recall that ρ is independent of m and H. By selecting m & k| log(H)|/| log(ρ)|, we can achieve
the convergence rate Hk for any k ≥ 1. For very large m (i.e Nm(T ) = Ω) the method is exact.
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Remark 3.5. Note that this strategy can be also valuable for handling general non-homogenous
boundary conditions. For example, considering the boundary condition µ curl u × n = g on Γ
(which can be straightforwardly incorporated into the variational formulation), it is possible to
compute boundary correctors to increase the accuracy. This works analogously to the case of
source correctors, i.e., one needs to compute element boundary correctors GE(g) ∈ W for each
boundary edge E ⊂ Γ. The edge boundary correctors solve problems of the form

B(GE(g),w) = (g,w)L2(E) for all w ∈W.

Though the above strategy can potentially yield any degree of accuracy, it involves a com-
putational overhead, since it additionally requires to compute the whole set of element source
correctors GT,m(f). One way to reduce this overhead is to only compute correctors GT,m(f) for
which T is close to the boundary. For example, we can set

T in
H := {T ∈ TH | Nm(T ) ∩ Γ 6= ∅} and T out

H := TH \ T in
H .

In this case we have for the error

u−
(
uH +Km(uH) +

∑
T∈T out

H

GT,m(f)
)

= (Km −K)uH +
∑

T∈T in
H

(GT,m − GT )f +
∑

T∈T out
H

(GT,m − GT )f −
∑

T∈T in
H

GT,m(f).

Here, the first three terms show an exponential convergence with order ρm, whereas the last term is
not polluted by the boundary influence and converges with order H, since (

∑
T∈T in

H
GT,m(f))|Γ = 0.

4 Numerical homogenization for essential boundary conditions

In the following we want to consider the curl-curl-problem with essential boundary conditions as
originally done in [17], i.e., we seek u0 : Ω→ C3 such that

curl(µ curl u0) + κu0 = f , in Ω,

u0 × n = 0, on ∂Ω.
(24)

For the variational formulation we denote the restriction of H(curl) to functions with a vanishing
normal trace on Γ by

H0(curl) := {v ∈ H(curl,Ω)| v × n|∂Γ = 0}.

Hence, the weak formulation of (24) becomes: find u0 ∈ H0(curl) with

B(u0,v) = (f ,v)L2(Ω) for all v ∈ H0(curl).

Assuming again (A1)-(A4), this problem is well-posed.
To discretize the problem, let the subspace of N (TH) which contains functions with a ho-

mogenous tangential trace to be given by

N̊ (TH) := N (TH) ∩H0(curl).

With this a multiscale approximation analogously to the case of natural boundary conditions
(cf. Section 3) can be obtained by considering Falk-Winther projections between the spaces with
vanishing traces (cf. [17, 14]), i.e., local and stable projections

π̊EH : H0(curl)→ N̊ (TH) and π̊VH : H1
0 (Ω)→ S̊(TH) := S(TH) ∩H1

0 (Ω)
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with the commuting property ∇π̊VH(v) = π̊EH(∇v) for all v ∈ H1
0 (Ω). In this setting, the following

result can be proved (see [17]):
Recall the notation from Section 3.4. For T ∈ TH and m ∈ N>0, let the local detail space be

given by
W̊( Nm(T ) ) := {w ∈ kern(̊πEH)|w ≡ 0 in Ω \Nm(T )} ⊂ H0(curl)

and the element correctors K̊T,m(vH) ∈ W̊( Nm(T ) ) be the solutions to

B(K̊T,m(vH),w) = BT (vH ,w) for all w ∈ W̊( Nm(T ) ). (25)

We define the global corrector as usual by K̊m(vH) :=
∑

T∈TH K̊T,m(vH). With this, the final

multiscale approximation is given by ůH,m ∈ N̊ (TH) with

B((I + K̊m)ůH,m, (I + K̊m)v) = (f , (I + K̊m)v) for all v ∈ N̊ (TH) (26)

and it holds the error estimate

‖u− (I + K̊m)ůH,m‖H(curl) . (H + ρm)‖f‖H(div),

where 0 < ρ < 1 is a generic decay constant as before. Note that this result holds independently
of the normal trace of f . This is due to the regular decomposition of functions v ∈ H0(curl),
which is of the form v = z + ∇θ, where z ∈ [H1

0 (Ω)]3 and θ ∈ H1
0 (Ω). Hence, the problematic

term (f · n, θ)L2(Γ) in (16) (which cause the degeneration of convergence rates) is equal to zero.
The main issue with essential boundary conditions is the availability of the required Falk-

Winther projection π̊EH (in the de Rham complex with vanishing traces). So far, the projection
has not yet been explicitly constructed, which is also the main reason why the approach of [17]
was not yet numerically validated. It is worth to mention that a corresponding construction
would be similar to the construction in the case of natural boundary conditions (see Appendix
A), with the difference that all degrees of freedom on the boundary need to be set to zero in the
construction (cf. the descriptions in [14] and in [13, Section 7.1]). To our understanding, this
leads to local equations (as part of the construction of the projection) which are formulated on a
complex with mixed boundary conditions, which we however had problems to solve numerically.
Hence, an implementation of π̊EH remains open, which raises the question if it is possible to work
with the projection πEH on the full space instead.

In [17, Section 8] it was suggested to start from πEH and then set all weights to zero that
belong to edge-based basis functions ψE for a boundary edge E ⊂ Γ. This means the multiscale
method is based on the kernel of the operator

π0,E
H := I0,E

H ◦ πEH : H0(curl)→ N̊ (TH),

where I0,E
H : H0(curl)→ N̊ (TH) is the standard edge-based Nédélec interpolation operator. This

choice works indeed well if f ∈ H(div) has a vanishing normal trace, but it fails for general f (i.e.,
if f · n 6= 0 on Γ). The reason is that π0,E

H does no longer fulfill the very important commuting
diagram property in a “one-coarse layer”-environment of Γ. This leads to a local loss of stability.
In the arising multiscale method, it can be compensated if f · n = 0. However, in any other case
the stability issues on the boundary cause a pollution of the numerical solution. We added a
corresponding numerical experiment in Section 5.4 which shows that the convergence rate is no
longer linear but only O(H1/2).

As an alternative we suggest to simply keep on using the same πEH as for the case of natural
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boundary conditions and proceed otherwise analogously to (26). Practically, this means that we
select the local detail space for the computation of K0

T,m (analogously to (25)) as

W0( Nm(T ) ) := {w ∈ H0(curl)| πEH(w) = 0 and w ≡ 0 in Ω \Nm(T )}.

Otherwise, nothing changes and the multiscale approximation is given by u0
H,m ∈ N̊ (TH) with

B((I +K0
m)u0

H,m, (I +K0
m)v) = (f , (I +K0

m)v) for all v ∈ N̊ (TH). (27)

Since typically πEH(v) 6∈ N̊ (TH) for w ∈ H0(curl), the modified formulation introduces an error
at the boundary which reduces the overall convergence rate. This is similar to the case of natural
boundary conditions with f · n 6= 0. Indeed, the experiments in Section 5.3 and Section 5.4 show
that we get full linear convergence in the case when f ·n = 0 and convergence of order

√
H when

f · n 6= 0. Again, a full linear rate can be reconstructed by using source term corrections close to
the boundary as described in Section 3.5. This is investigated numerically in Section 5.4. Here
we stress that the use of source correctors to handle the case of essential boundary conditions
with f · n 6= 0 is currently the only available option for optimal convergence rates. A preferable
alternative would be a multiscale construction based on a computable Falk-Winther projection
for essential boundary conditions as this would not require additional source correctors. However,
as explained above, such a projection is currently not available.

5 Numerical Experiments

In this section we present some numerical examples in both 2D and 3D to verify the theoretical
findings. For simplicity, we choose the computational domain to be either the unit square or the
unit cube, depending on the dimension of the problem. In 2D, the considered curl-curl-problem
is defined analogously to the 3D problem given by (2), however, with the difference that the
2-dimensional curl-operator maps vector fields to scalar values via curl(v) := ∂x1v2− ∂x2v1. The
Falk-Winther projection in 2D and 3D is discussed in Appendix A. All other modifications in
the problem and method formulation are straightforward. Even though there are no analytical
results for the 2D case, our numerical experiments will show that the convergence behavior is
analogous to the theoretically supported 3D setting.

To compute the error of the method in the examples below, we compute a reference solution
on a finer (uniform) mesh, of size h =

√
2 ·2−6 in 2D and h =

√
3 ·2−4 in 3D, using classical FEM

in the lowest order Nédélec space N (Th). The relative errors are reported in the energy norm
induced by the sesquilinear form B(·, ·). That is, if e denotes the difference between the full LOD
multiscale approximation uH,m +Km(uH,m) and the reference solution uh, then the relative error
is computed as (

B(e, e)

B(uh,uh)

)1/2

=

(
(µ curl e, curl e) + (κe, e)

(µ curl uh, curl uh) + (κuh,uh)

)1/2

.

To achieve a multiscale character of the problem, we choose the coefficients, µ and κ, to be
checkerboards. The values in the cubes (squares in 2D) are set to 1 (black) and 0.001 (white),
respectively. See Figure 1 for a visualization. The size of the checkerboard (i.e., the size of each
constant block) is always chosen to be twice the size of the reference mesh. This means that the
reference solution always resolves the coefficients. A typical reference solution in the 2D case is
plotted in Figure 2, where we clearly see the multiscale structure from the checkerboard.

All implementations are made using the FEniCS software [28]. The code for the Falk-Winther
projection in both 2D and 3D can be obtained from [1].
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(a) Two dimensions (b) Three dimensions

Figure 1: Checkerboard coefficient for two and three dimensions.

Figure 2: Reference solution in 2D with f(x, y) = [sin(2πx), sin(2πy)] and natural boundary
conditions.

5.1 Example 1 - Natural boundary conditions

In this example we show that we obtain linear convergence of the method for problems that fulfill
f · n = 0, as predicted in Theorem 3.4.

In 2D we choose f(x, y) = [sin(2πx), sin(2πy)] and we compute LOD approximations on
uniform meshes of size H =

√
2 ·2−j , j = 0, ..., 5. Furthermore, we let the number of layers in the

patch Nm(T ) range through m = 1, 1, 2, 2, 3, 4 as H decreases. For each value of H, the error for
the LOD method is compared to the classical finite element approximation in the Nédélec space
N (TH).

In 3D we choose f(x, y, z) = [−x(x − 1)(2z − 1), 0, z(z − 1)(2x − 1)]. The LOD and the
corresponding FEM approximations are computed for H =

√
3 · 2−j , j = 0, .., 3.

The results are plotted in Figure 3, where we clearly see the linear convergence (marked by
a dashed line) and also that the method produces significantly smaller errors than the classical
FEM on the same coarse mesh TH .
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Figure 3: Relative errors for the LOD (blue ∗) and the FEM (red ◦) approximations of Example
1 plotted against the mesh size H. The dashed line is cH.

5.2 Example 2 - Natural boundary conditions

Here we show that the convergence is of order H1/2 if f ·n 6= 0, in accordance with Theorem 3.4.
In 2D we choose f(x, y) = [1, 1]. The meshes for the LOD approximations and the reference

mesh remain the same as in Example 5.1.
First, to demonstrate that the reduced convergence does not depend on the localization pa-

rameter m, we use the ideal method. That is, we do not use any localization when computing the
LOD approximations. In Figure 4 we clearly see that the H1/2-term dominates the convergence
(H1/2 marked by a dashed line). In the plot the error for iteration j = 0 is omitted for the LOD
approximation, because the error in this particular setting is close to zero. We also note that,
despite the reduced convergence rate, the method still outperforms the classical FEM in terms of
accuracy relative to the number of degrees of freedom in the solution space.

To improve the error we test the source term corrections proposed in Section 3.5. We present
results in 2D for two cases: 1. when the correction is computed for all triangles and 2. when
it is only computed for triangles that intersect the outer boundary Γ. In Table 1 we see how
this affects the error for some values of H and m. As expected, computing the corrections for all
triangles in the domain decreases the error drastically. Note that for the ideal method (without
localization) the error would vanish completely. Furthermore, we can see that computing the
corrections only for triangles intersecting the boundary still reduces the error significantly.

Essentially, source corrections allow for an arbitrary accuracy depending on the size of the
localization patches (i.e., the value of m) and the number of coarse elements on which the source
correction is computed. From our experiments we see that one layer of coarse elements around
the boundary is often sufficient to obtain a reasonable accuracy.

Table 1: Relative errors for the LOD approximation of Example 2 with and without correction
for the source term.

H =
√

2 · 2−2, m = 2 H =
√

2 · 2−3, m = 3

LOD without correction 0.1731 0.1235

Corrections for triangles at the boundary 0.101 0.0828

Corrections for all triangles 0.738 · 10−4 0.261 · 10−4
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Figure 4: Relative errors for the LOD without localization (blue ∗) and the FEM (red ◦) approx-
imations of Example 2 plotted against the mesh size H. The dashed line is cH1/2.

5.3 Example 3 - Essential boundary conditions

In this example we test the convergence rate for the problem with essential boundary conditions,
i.e., problem (24), as described in Section 4 when f ·n = 0 is fulfilled. We choose the same setting
as in Section 5.1, except that we impose homogeneous essential boundary conditions instead. In
Figure 5, we clearly see that linear order convergence is achieved in 2D. In 3D linear convergence
is achieved except for the coarsest mesh size. The dashed line is plotted from the second point.
The experiment demonstrates that if f · n = 0, then the same Falk-Winther projection can be
used for solving both the curl-curl-problem with essential boundary conditions and the curl-curl-
problem with natural boundary conditions. In both cases, an optimal linear convergence rate is
obtained.
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100

(b) Three dimensions

Figure 5: Relative errors for the LOD (blue ∗) and the FEM (red ◦) approximations of Example
3 plotted against the mesh size H. The dashed line is cH.

5.4 Example 4 - Essential boundary conditions

In this example we consider again essential boundary conditions, i.e., problem (24). Otherwise
we put ourselves in the same setting as in Section 5.2.
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First, we conclude that the convergence rate is of order H1/2 if f · n 6= 0, see Figure 6. Here
we have used the LOD method without localization to show that the reduced convergence rate
is not due to the localization parameter. We also note that the method still outperforms the
classical FEM (in terms of accuracy relative to the number of degrees of freedom), despite the
reduced convergence rate.

As in Section 5.2 we also try to improve the error by using the source term correctors. The
results are displayed in Table 2 for some values of H and m. As we can see, the error is improved
drastically when computing the correction for all triangles. If the computations are restricted to
the triangles intersecting the boundary, the error is still improved.

10-2 10-1 100
10-2

10-1

100

Figure 6: Relative errors for the LOD without localization (blue ∗) and the FEM (red ◦) approx-
imations of Example 4 plotted against the mesh size H. The dashed line is cH1/2.

Table 2: Relative errors for the LOD approximation of Example 4 with and without correction
for the source term.

H =
√

2 · 2−2, m = 2 H =
√

2 · 2−3, m = 3

LOD without correction 0.186 0.134

Corrections for triangles at the boundary 0.117 0.0964

Corrections for all triangles 3.92 · 10−3 2.78 · 10−3

Finally, we comment on the operator π0,E
H = I0,E

H ◦ πEH , see Section 4. This is the operator
which puts all weights to zero for the edge-basis functions ψE corresponding to a boundary edge.
In Figure 7, we see that this approach still shows reduced convergence of order

√
H, which is

similar to the current approach of just keeping πHE . We conclude that it is not enough to simply
put all weights to zero to achieve the Falk-Winther projection with essential boundary conditions
π̊EH that is required for the results of [17] to hold true (i.e., a linear order convergence in H
independent of the normal trace of f).

Acknowledgements. The authors thank Barbara Verfürth for the many fruitful discussions on
the general methodology and Joachim Schöberl for the helpful and valuable comments on the
Falk-Winther operator.
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Figure 7: Relative errors for the LOD approximation of Example 4 without localization (blue ∗)
based on π0,E

H plotted against the mesh size H. The dashed line is cH1/2.
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A Construction of the Falk-Winther operator

In the following we describe the implementation of the Falk-Winther projection operator πEH :
H(curl)→ N (TH) as constructed in [15, 14]. Here we note that a discussion of its implementation
can be already partially found in [17], which however contains some minor mistakes, which are
fixed in the following descriptions. Our implementation is discussed for the 3D case, but we also
comment on what needs to be changed for the 2D case.

Adapting the notation from the aforementioned references, we let ∆0(TH) denote the set of
vertices of TH and ∆1(TH) is the set of edges. The space N (TH) is spanned by the edge-oriented
basis functions (ψE)E∈∆1(TH) that are uniquely defined for any E ∈ ∆1(TH) through the property

ˆ
E
ψE · tE ds = 1 and

ˆ
E′
ψE · tE ds = 0 for all E′ ∈ ∆1(TH) \ {E}.
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Here, tE denotes the unit tangent to the edge E with a globally fixed sign. In the following we
denote by y1(E) and y2(E) the endpoints of E, where we make the orientation convention that

tE = (y1(E)− y2(E))/|E|, where |E| := length(E).

The (edge-based) Falk-Winter projection πEH : H(curl)→ N (TH) is of the form

πEHu := S1u +
∑

E∈∆1(TH)

ˆ
E

(
(I − S1)Q1

Eu
)
· tE dsψE . (28)

Here, S1 is constructed in such a way that πEH commutes with the nodal Falk-Winther projection
(i.e., πEH(∇v) = ∇πVH(v) for all v ∈ H1(Ω)). However, since S1 is not a projection, the second term
involving the operator Q1

E needs to be introduced. This ensures that πEH is invariant on N (TH).
We shall describe the construction of the various constituents in the following subsections, where
will also comment on their practical realization.

A.1 Construction of πV
H

For a better understanding of the construction, we start with describing the nodal Falk-Winther
projection πVH : H1(Ω)→ S(TH). For that, we denote for each vertex y ∈ ∆0(TH) the associated
nodal patch by

ωy := int
(⋃
{T ∈ TH : y ∈ T}

)
.

With this, we also define the piecewise constant function z0
y by

z0
y =

{
(meas(ωy))−1 in ωy

0 in Ω \ ωy

(29)

Furthermore, the restriction of S(TH) to ωy is denoted by S(TH(ωy)) (i.e., scalar-valued first-order
Lagrange finite elements on (TH)|ωy

).

The construction of πVH is simply based on a local H1-projection on each patch ωy. More
precisely, we let Q0

y : H1(ωy) → S(TH(ωy)) be defined through the solution to a local Neumann
problem, where Q0

y(v) ∈ S(TH(ωy)) solves
ˆ
ωy

∇Q0
y(v) · ∇w =

ˆ
ωy

∇v · ∇w for all w ∈ S(TH(ωy))

under the constraint
´
ωy
Q0

y(v) dx = 0. Since Q0
y does not preserve constants, we need to restore

them through a local averaging operator M0 : L2(Ω)→ S(TH), which is defined by

M0v :=
∑

y∈40(TH)

(ˆ
ωy

z0
y v dx

)
λy.

Here, λy ∈ S(TH) is the standard nodal basis function (hat function) associated with the vertex
y, i.e., it fulfills λy(ỹ) = δyỹ for all ỹ ∈ ∆0(TH).

With this, the node-based Falk-Winther projection is given by

πVH(v) := M0(v) +
∑

y∈40(TH)

(Q0
y(v))(y) λy.

The operator is designed in the same way in 2D. Though the construction of πVH is not required
for the construction of πEH , it can be helpful for validating the implementation through checking
the commuting diagram property.
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A.2 Construction of S1

In the next step, we discuss the construction of S1 in (28). We start with defining the extended
edge patch, for an edge E ∈ ∆1(TH), as the union of the two nodal patches that are associated
with the corners of the edge. More precisely, for an edge E = conv{y1, y2} ∈ ∆1(TH) with vertices
(corners) y1, y2 ∈ ∆0(TH), the extended edge patch is given by

ωext
E := ωy1 ∪ ωy2 .

Furthermore, recalling the definition of zy0 from (29), we define for any edge E = conv{y1, y2} ∈
∆1(TH) with vertices y1, y2 ∈ ∆0(TH) the piecewise constant function (δz0)E ∈ L2(Ω) by

(δz0)E := z0
y1
− z0

y2
.

Before we can proceed, we need some additional notation. For that, we let TH(ωext
E ) be the

restriction of the mesh TH to the extended edge-patch ωext
E . We define the space of lowest-order

Nédélec finite elements over TH(ωext
E ) and with a zero tangential trace on ∂ωext

E by

N̊ (TH(ωext
E )) := {vH ∈ N (TH(ωext

E ))| vH × n = 0 on ∂ωext
E }.

Similarly, we let R̊T (TH(ωext
E )) denote the space of lowest-order Raviart–Thomas finite elements

over TH(ωext
E ) and with a zero normal trace on ∂ωext

E , i.e.,

R̊T (TH(ωext
E )) := {vH ∈ RT (TH(ωext

E ))| vH · n = 0 on ∂ωext
E }.

Given E ∈ ∆1(TH), we search for a representation of (δz0)E as the divergence of a R̊T -function.
More precisely, we seek for each (δz0)E a function

z1
E ∈ R̊T (TH(ωext

E ))

such that

div z1
E = −(δz0)E and (z1

E , curl τ ) = 0 for all τ ∈ N̊ (TH(ωext
E )).

This problem is well-posed, since (δz0)E is TH -piecewise constant with zero average over ωext
E .

Existence and uniqueness then follow from the exactness of the corresponding discrete complex
with vanishing traces (cf. [14]). A motivation for the crucial role of z1

E for the commuting
property of the projection πEH is given in Section A.3 below.

Remark A.1. In practice, z1
E can be found by solving the following saddle point problem. Find

(z1
E ,v) ∈ R̊T (TH(ωext

E ))× N̊ (TH(ωext
E )) such that

(div z1
E , div v) + (w, curl v) = (−(δz0)E , div w) for all w ∈ R̊T (TH(ωext

E ))

(z1
E , curl τ ) = 0 for all τ ∈ N̊ (TH(ωext

E )).

Using the functions z1
E , we define the operator M1 : L2(Ω;C3) → N (TH) that maps any

function u ∈ L2(Ω;C3) to

M1u :=
∑

E∈∆1(TH)

ˆ
ωext
E

u · z1
E dxψE .

As a last constituent of S1, we define the operator

Q1
y,− : H(curl, ωy)→ S(TH(ωy))



24

again through the solution of a local discrete Neumann problem. More precisely, for u ∈
H(curl, ωy), the image Q1

y,−u ∈ S(TH(ωy)) is the solution to

(u−∇Q1
y,−u,∇v) = 0 for all v ∈ S(TH(ωy))ˆ

ωy

Q1
y,−u dx = 0.

Note the close relation of Q1
y,− to the operator Q0

y from Section A.2.

With all the parts available, we can define the operator S1 : H0(curl,Ω)→ N̊ (TH) via

S1u := M1u +
∑

y∈∆0(TH)

(Q1
y,−u)(y)∇λy. (30)

From a practical point of view, it is useful to rewrite the operator S1 in terms of the edge-based
basis functions ψE of N (TH). Given a vertex y ∈ ∆0(TH), we can expand λy in terms of the
basis functions (ψE)E∈∆1(TH). We obtain

∇λz =
∑

E∈∆1(TH)

ˆ
E
∇λz · tE dsψE =

∑
E∈∆1(z)

sign(tE · ∇λz)ψE

where ∆1(z) ⊆ ∆1(TH) is the set of all edges that contain z. Thus, we can rewrite the operator
S1 from (30) as

S1u := M1u +
∑

E∈∆1(TH)

(
(Q1

y1(E),−u)(y1(E))− (Q1
y2(E),−u)(y2(E))

)
ψE . (31)

At this point we have the commuting property, but S1 is not a projection yet.

Remark A.2. For the practical realization of the operator S1, we seek a matrix representation,
S, of S1 : N (Th)→ N (TH), where Th is a refinement of TH that resolves the multiscale variations
of the problem. For a given edge E ∈ ∆1(TH), define the vector ME

ME :=

[ˆ
ωext
E

z1
E ·ψe dx

]
e∈Th(ωext

E )

.

To compute Q1
y,−, the mean constraint is enforced by a classical Lagrange multiplier, which leads

to a saddle point system. For a node y ∈ ∆0(TH) define the matrices

Ay :=

[ˆ
ωy

∇λz · ∇λw dx

]
z,w∈∆0(TH(ωy))

By :=

[ˆ
ωy

∇λz ·ψe dx

]
z∈∆0(TH(ωy))
e∈∆1(Th(ωy))

and the vector

Cy =

[ˆ
ωy

λz dx

]
z∈∆0(TH(ωy))

.

Solve the following system for Qy [
Ay C∗y
Cy 0

] [
Qy

Vy

]
=

[
By

0

]
and let Qj = Qy [yj(E), :], for j = 1, 2. Finally, the matrix representation of S1 can be expressed
as

S(E, [e1, ..., eN ]) = ME +Q1 −Q2,

where e1, ...., eN denotes the edges in the patch Th(ωext
E ).
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Remark A.3. In the 2D case, the computation of z1
E needs to be slightly changed. The lowest-

order Nédélec space with zero tangential trace on ∂ωext
E , N̊ (TH(ωext

E )), should be replaced with
the first-order (scalar-valued) Lagrange finite element space with zero trace on ∂ωext

E , that is,

S̊(TH(ωext
E )) := {v ∈ S(TH)| v = 0 on ∂ωext

E }.

Except for curl having a different meaning in 2D, this is the only change in the interpolation πEH
that needs to be made for the 2D case.

A.3 Commuting property ∇ ◦ πV
H = S1 ◦ ∇

For a better understanding of the construction of S1, we will demonstrate that it indeed implies
the commuting property

∇πVH(v) = S1(∇v) for all v ∈ H1(Ω).

We start with applying S1 to a gradient ∇v for some v ∈ H1(Ω). First, we easily observe

Q1
y,−(∇v) = Q0

y(v).

Next, for an edge E = {y1, y2} we consider the tangential component of ∇M0(v) (i.e., the local
degree of freedom) which is given by

ˆ
E
∇M0(v) · tE ds = |E|−1

ˆ
E
∇M0(v) · (y1 − y2)

= |E|−1

ˆ
E

((ˆ
ωy1

z0
y1
v dx

)
∇λy1 +

(ˆ
ωy2

z0
y2
v dx

)
∇λy2

)
· (y1 − y2)

= |E|−1

ˆ
E

(ˆ
ωy1

z0
y1
v dx−

ˆ
ωy2

z0
y2
v dx

)
∇λy1 · (y1 − y2)

=

(ˆ
ωy1

z0
y1
v dx−

ˆ
ωy2

z0
y2
v dx

)

=

ˆ
ωext
E

(δ0
z)E v dx = −

ˆ
ωext
E

div z1
E v dx =

ˆ
ωext
E

z1
E ∇v dx.

Since ∇M0(v) ∈ N (TH) is uniquely determined by these degrees of freedom, we have

∇M0(v) =
∑

E∈∆1(TH)

(ˆ
ωext
E

z1
E ∇v dx

)
ψE = M1(∇v).

Combining the equations Q1
y,−(∇v) = Q0

z(v) and ∇M0(v) = M1(∇v) for all v ∈ H1(Ω), we
obtain

∇πVH(v) = ∇M0(v) +
∑

z∈4̊0(TH)

(Q0
zv)(z) ∇λz = M1(∇v) +

∑
y∈4̊0(TH)

Q1
y,−(∇v)(y) ∇λy

(30)
= S1(∇v)

as desired. Observe that it can be helpful for the validation of the Falk-Winther implementation
to check the commuting property ∇πVHv = S1(∇v) numerically.
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A.4 Construction of Q1
E

As mentioned before, the operator S1 commutes with vertex-based Falk-Winther operator πVH ,
but it is not a projection yet. In order to modify S1 accordingly, another operator

Q1
E : H(curl, ωext

E )→ N (TH(ωext
E ))

needs to be introduced for all edges E ∈ ∆1(TH). Given an edge E and some some u ∈
H(curl, ωext

E ) the image Q1
E(u) ∈ N (TH(ωext

E )) is defined by the system

(u−Q1
Eu,∇τ) = 0 for all τ ∈ S(TH(ωext

E ))

(curl(u−Q1
Eu), curl v) = 0 for all v ∈ N (TH(ωext

E )).

Again, existence and uniqueness follow from the exactness of the discrete complex (cf. [3, 4, 14]).
With Q1

E available, it is now possible to compute the edge-based Falk-Winther projection
according to (28) by

πEHu = S1u +
∑

E∈∆1(TH)

ˆ
E

(
(I − S1)Q1

Eu
)
· tE dsψE ,

where I denotes the identity operator.

Remark A.4. Similarly to the S1 operator in Remark A.2, we seek a matrix representation QE

of Q1
E : N (Th)→ N (TH) for the implementation. Given an edge E ∈ TH , assemble the matrices

AE :=

[ˆ
ωext
E

curlψE · curlψÊ dx

]
E,Ê∈∆1(TH(ωext

E ))

BE :=

[ˆ
ωext
E

ψE · ∇λy dx

]
E∈∆1(TH(ωext

E ))

y∈∆0(TH(ωext
E ))

CE :=

[ˆ
ωext
E

curlψE · curlψe dx

]
E∈∆1(TH(ωext

E ))

e∈∆1(Th(ωext
E ))

DE :=

[ˆ
ωext
E

ψe · ∇λy dx

]
e∈∆1(Th(ωext

E ))

y∈∆0(TH(ωext
E ))

and solve the following system for QE[
AE B∗E
BE 0

] [
QE

VE

]
=

[
CE

DE

]
.

This gives us QE . To achieve a matrix representation, here denoted by P , of the Falk-Winther
projection πEH : N (Th) → N (TH), we restrict the matrix S to edge patch ωext

E and denote this
matrix by Sωext

E
. Thus, P can be computed by

P (E, [e1, ..., eN ]) = S(E, [e1, ..., eN ]) + (QE − Sωext
E
QE)(E, :).

Note that P can be assembled by looping over all the edges in the coarse mesh TH and all
computations are restricted to either the edge patch ωext

E or the nodal patch ωy. This means that
the assembly of P can be made efficiently.
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