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Abstract. In this paper we are concerned with numerical methods for Helmholtz
equations with large wave numbers. We design a least squares method for discretiza-
tion of the considered Helmholtz equations. In this method, an auxiliary unknown
is introduced on the common interface of any two neighboring elements and a qua-
dratic objective functional is defined by the jumps of the traces of the solutions
of local Helmholtz equations across all the common interfaces, where the local
Helmholtz equations are defined on elements and are imposed Robin-type bound-
ary conditions given by the auxiliary unknowns. A minimization problem with the
objective functional is proposed to determine the auxiliary unknowns. The result-
ing discrete system of the auxiliary unknowns is Hermitian positive definite and so
it can be solved by the preconditioned conjugate gradient (PCG) method. Under
some assumptions we show that the generated approximate solutions possess almost
the same L2 convergence order as the plane wave methods (for the case of constant
wave number). Moreover, we construct a substructuring preconditioner for the
discrete system of the auxiliary unknowns. Numerical experiments show that the
proposed methods are very effective and have little “wave number pollution” for
the tested Helmholtz equations with large wave numbers.
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1. Introduction

Let Ω be a bounded, connected and Lipschitz domain in R2. Consider the
Helmholtz equations 

−∆u− κ2u = f in Ω,

∂u

∂n
+ iκu = g on ∂Ω,

(1.1)

where n denotes the unit outward normal on the boundary ∂Ω and κ is the wave
number defined by κ(x) = ω

c(x) > 0, with ω > 0 being a constant and c(x) being a

bounded and positive function defined on Ω. In applications, ω denotes the angular
frequency, which may be very large, and c(x) denotes the wave speed (the acoustic
velocity), which may not be a constant function on Ω, i.e., the involved media is
inhomogeneous.

Helmholtz equation is the basic model in sound propagation. It is a very im-
portant topic to design a high accuracy method for Helmholtz equations with large
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wave numbers, such that the so called “wave number pollution” can be reduced.
The “wave number pollution” says that, for a finite element method for the dis-
cretization of (1.1), the mesh size h must satisfy hω1+δ = O(1) for some positive
number δ to achieve a given accuracy of the approximate solutions when the wave
number ω increases, which means that the accuracies of the approximate solutions
are obviously destroyed if fixing the value of hω but increasing the wave number ω.
For convenience, we call the parameter δ as the “pollution index”, which describes
the degree of wave number pollution. For the standard linear finite element method,
the “pollution index” δ = 1 (see [37]). Of curse, we hope to design a “good” finite
element method for (1.1) such that the pollution index δ is sufficiently small.

In recent years, many interesting methods for the discretization of Helmholtz
equations with large wave numbers have been proposed, for example (but not all),
the higher order finite element methods (hp-FEM) [11, 37], the ultra weak vari-
ational formulation (UWVF) [4], the plane wave least squares (PWLS) methods
[28, 29, 38], the plane wave discontinuous Galerkin (PWDG) methods [19, 26],
the method of fundamental solutions [2, 7], the plane wave method with Lagrange
multipliers (PWLM) [14], the variational theory of complex rays [42], the high or-
der element discontinuous Galerkin method (HODG) [11, 16], local discontinuous
Galerkin method (LDG) [17], hybridizable discontinuous Galerkin method (HDG)
[5, 6, 20, 25, 39, 40, 44] and the discontinuous Petrov-Galerkin (DPG) method
[9, 21, 48], the ray-based finite element method [13] and the generalized plane wave
method [34]. All these methods are superior to the standard linear finite element
method in the sense that the pollution index δ < 1.

It is known that the plane wave finite element methods have little “wave number
pollution” (i.e., the pollution index δ is very small) and can generate higher accu-
racy approximations than the polynomial basis finite element methods for solving
the Helmholtz equations with large (piecewise constant) wave numbers when finite
element spaces have the same degrees of freedom. A comparison of finite element
methods based on high-order polynomial basis functions and plane wave basis func-
tions was given in [36]. The numerical results reported in [36] indicate that, if only
the degrees of freedom on element boundaries for high-order polynomial method
are calculated (the degrees of freedom in the interior of elements are eliminated),
the high-order polynomial method can deliver comparable to the PWDG method.
Unfortunately, the plane wave methods cannot be directly applied to the discretiza-
tion of nonhomogeneous Helmholtz equations in inhomogeneous media. A plane
wave method combined with local spectral element for nonhomogeneous Helmholtz
equations in homogeneous media was proposed in [30] (see also [29]). A generalized
plane wave method for homogeneous Helmholtz equations in inhomogeneous media
was introduced in [34].

The HDG-type methods (and the DPG method) have been studied in many
works (see the references listed above). We would like to simply recall the ideas
of the HDG methods. Let Ω be decomposed into a union of elements {Ωk}, and
let γ denote the element interface, which is a union of all the common edges of
two neighboring elements. For the HDG-type methods, the equation (1.1) is first
transformed into a first-order system of the original unknown u and an auxiliary
unknown Φ = (iω)−1∇u, then the restrictions of the unknowns u and Φ on the
elements {Ωk} are eliminated by solving all the local first-order systems to obtain
an interface equation of the trace u|γ (and the trace (∇u · n)|γ in [39]) in some
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manner. For the DPG method, there are two interface unknowns that are defined
by the traces u|γ and (∇u · n)|γ and the interface equation becomes Hermitian
positive definite by introducing nonstandard test space that is the image of the
trial space under a suitable mapping. In both the HDG-type methods and the DPG
method, the unknown needed to be globally solved was defined on the interface γ,
so these methods have less cost of calculation than the standard hp finite element
method proposed in [37]. The HDG-type methods and the DPG method have their
respective merits: the HDG-type methods are easier to implement than the DPG
method since the HDG-type methods use the standard polynomial basis functions;
the interface equation needed to be solved globally is Hermitian positive definite
for the DPG method, but it is still indefinite as the original equation (1.1) for the
HDG-type methods.

In the present paper, we design a novel discretization method for Helmholtz
equations with large wave numbers such that the method can absorb the merits of
the HDG-type methods and the DPG method. The basic ideas of the new method
can be roughly described as follows. We introduce an auxiliary unknown λh that is
an edge-wise q order polynomial on γ, and compute p order (p ≥ q+ 2) polynomial
solutions {uh,k} of the discrete variational problems of all local Helmholtz equations,
where each local Helmholtz equation is the restriction of (1.1) on some element Ωk
and is imposed a Robin-type boundary condition given by the auxiliary unknown
λh. We define a minimization problem with a quadratic objective functional defined
by the jumps of the traces of the solutions {uh,k} across the interface γ. This
minimization problem results in a Hermitian positive definite algebraic system of
the auxiliary unknown λh. After solving the algebraic system, we can easily obtain
an approximate solution of the original Helmholtz equation by solving small local
problems on the elements in parallel manner. This method has some similarity with
the HDG method but it has essential differences from the HDG method: (a) each
element subproblem is just the local variational problem of the original Helmholtz
equation (1.1), so only one internal unknown uh,k needs to be computed for an
element Ωk; (b) the interface unknown λh, which may be discontinuous on the
interface γ, is defined independently on every edge of elements; (c) the interface
unknown λh is determined by a minimization problem, so the interface equation is
Hermitian positive definite.

The new method possesses the following merits: (i) the proposed method is
practical to general nonhomogeneous Helmholtz equations in inhomogeneous media
(comparing the plane wave methods); (ii) the algebraic system of λh is Hermitian
positive definite (comparing the HDG-type methods, the PWDG method and the
PWLM method), so it can be solved by the PCG method, which has stable conver-
gence and less cost of calculation, and the construction of preconditioner for this
system has more choices (for example, the well-known BDDC method can be con-
sidered); (iii) it is cheap to implement since only one unknown uh,k is introduced in
an element Ωk and only one unknown λh|γlj is involved on each local interface γlj
(comparing the HDG-type methods and the DPG method); (iv) the method is easy
to implement since the subproblem for computing uh,k on an element Ωk is directly
defined by the original second order Helmholtz equation and the basis functions on
every element Ωk and every element edge are standard polynomials (comparing the
DPG method).
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Since the resulting approximate solution (uh, λh) do not satisfy a mixed varia-
tional problem (as in the Lagrange multiplier methods) or a hybridizable variational
problem (as in the HDG methods), well-posedness and convergence of the proposed
method cannot be proved by the techniques developed in existing works.

By developing some new techniques, we show that the proposed discretization
method is well-posed and the resulting approximate solution possesses almost the
same L2 error estimate as the plane wave methods under suitable assumptions,
which indicate that the proposed method has little “wave number pollution”. In
addition, we construct a domain decomposition preconditioner for the algebraic
system of λh. The BDDC method is a popular substructuring domain decompo-
sition method, which was first proposed in [10] and then was extended to various
models by many researchers. The key idea of the BDDC method is to compute
basis functions of the coarse space by solving local minimization problems. This
method has some advantages over the traditional substructuring methods, but the
minimization problems for computing coarse basis functions can be defined only for
symmetric and positive definite systems. Thanks to the Hermitian positive definite-
ness of the algebraic system of λh, we can construct a substructuring preconditioner
for the system by the BDDC method. However, we find that the coarse space de-
fined by the BDDC method is unsatisfactory for the current situation. Because of
this, we construct a variant of the BDDC preconditioner for the algebraic system of
λh by changing the definition of coarse space. Numerical results indicate that the
proposed discretization method and preconditioner are very efficient for the tested
Helmholtz equations with large wave numbers.

The paper is organized as follows: In Section 2, we describe the proposed least
squares variational formulation for Helmholtz equations. In Section 3, we construct
a substructuring preconditioner for the discrete system. The main results about
error estimates are presented in Section 4. In Section 5, we give proofs of the
main results in details. Finally, we report some numerical results to confirm the
effectiveness of the new method in Section 6.

2. A least squares variational formulation

2.1. Notations. As usual we partition Ω into elements in the sense that

Ω =

N⋃
k=1

Ωk, Ωk
⋂

Ωj = ∅, for k 6= j.

Here each Ωk may be curve polyhedron. We use hk to denote the diameter of Ωk
and set h = max{hk}. Let Th denote the partition comprised of elements {Ωk}Nk=1.
As usual we assume that the partition Th is quasi-uniform and regular.

Let γkj denote the common edge of two neighboring elements Ωk and Ωj , and set
γk = ∂Ωk∩∂Ω when the intersection is an edge of the element Ωk. For convenience,
define γ = ∪k 6=jγkj .

Let q ≥ 1 be an integer and choose p ≥ q+ 2. Throughout this paper we use the
following notations:
• V ph (Ωk) = {v ∈ H1(Ωk) : v is a polynomial whose order does not exceed p}.
• V ph (Th) =

∏N
k=1 V

p
h (Ωk).

• V ph (∂Ωk) = {v|∂Ωk
: v ∈ V ph (Ωk)}.

• W (γ) =
∏N
k 6=j H

− 1
2 (γkj).
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• W q
h(γkj) = {µ ∈ H1(γkj) : µ is a polynomial whose order does not exceed q}.

• W q
h(γ) =

∏
k 6=jW

q
h(γkj).

• W q
h(∂Ωk\∂Ω) = {µ|∂Ωk\∂Ω : µ ∈W q

h(γ)}.
• The jump of v across γkj : [v] = vk−vj , where v is a piecewise smooth function on

Th and vk = v|Ωk
.

• (u, v)Ωk
=
∫

Ωk
u · v dx, 〈u, v〉∂Ωk

=
∫
∂Ωk

u · v ds.

2.2. A continuous variational formulation. Let u ∈ H1(Ω). For each element
Ωk, set u|Ωk

= uk. For k > j, define λ ∈W (γ) as

λ|γkj
= (

∂uk
∂nk

+ iρuk)|γkj
= (−∂uj

∂nj
+ iρuj)|γkj

,

where ρ > 0, nk and nj separately denote the unit outward normal on ∂Ωk and
∂Ωj . It is clear that the solution u of (1.1) satisfies the local Helmholtz equation
on each element Ωk (k = 1, · · · , N)

−∆uk − κ2uk = f in Ωk,

∂uk
∂nk

± iρuk = ±λ on ∂Ωk\∂Ω,

∂uk
∂nk

+ iκuk = g on ∂Ωk ∩ ∂Ω.

(2.1)

Here the sign “ ± ” means that two inverse signs are used on the two side of each
local interface γkj = ∂Ωk ∩ ∂Ωj : it takes “+” on γkj ⊂ ∂Ωk, and it takes “-” on
γkj ⊂ ∂Ωj .

For each element Ωk, define the local sesquilinear form

a(k)(v, w) = (∇v,∇w)Ωk
− (κ2v, w)Ωk

± iρ〈v, w〉∂Ωk\∂Ω

+ i〈κv,w〉∂Ωk∩∂Ω, v, w ∈ H1(Ωk)

and the local functional

L(k)(v) = (f, v)Ωk
+ 〈g, v〉∂Ωk∩∂Ω, v ∈ H1(Ωk).

It is easy to see that the variational formulation of (2.1) is: to find uk(λ) ∈ H1(Ωk)
such that

a(k)(uk(λ), v) = L(k)(v) + 〈±λ, v〉∂Ωk\∂Ω, ∀ v ∈ H1(Ωk). (2.2)

We define the quadratic functional

J(µ) =
∑
γkj

∫
γkj

|uk(µ)− uj(µ)|2ds, µ ∈W (γ) (2.3)

and consider the following minimization problem: find λ ∈W (γ) such that

J(λ) = min
µ∈W (γ)

J(µ). (2.4)

It is clear that u is the solution of (1.1) if and only if J(λ) = 0, which means that
λ is the solution of the minimization problem (2.4).

In order to give a variational problem of (2.4), we write the solution of (2.1) as

uk(λ) = u
(1)
k (λ) + u

(2)
k , which respectively satisfy

a(k)(u
(1)
k (λ), v) = ±〈λ, v〉∂Ωk\∂Ω, ∀ v ∈ H1(Ωk)
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and

a(k)(u
(2)
k , v) = L(k)(v), ∀ v ∈ H1(Ωk).

Then J(µ) can be written as

J(µ) =
∑
γkj

∫
γkj

|
(
u

(1)
k (µ)− u(1)

j (µ)
)

+ (u
(2)
k − u

(2)
j )|2ds.

Define the sesquilinear form

s(λ, µ) =
∑
γkj

∫
γkj

(u
(1)
k (λ)− u(1)

j (λ)) · (u(1)
k (µ)− u(1)

j (µ))ds, λ, µ ∈W (γ)

and the functional

l(µ) = −
∑
γkj

∫
γkj

(u
(2)
k − u

(2)
j ) · (u(1)

k (µ)− u(1)
j (µ))ds, µ ∈W (γ).

Therefore the variational problem of the minimization problem (2.4) can be ex-
pressed as follows: find λ ∈W (γ) such that

s(λ, µ) = l(µ), ∀ µ ∈W (γ). (2.5)

2.3. The discrete variational formulation. Let λh ∈W q
h(γ). For each element

Ωk, define uh,k(λh) ∈ V ph (Ωk) by

a(k)(uh,k(λh), vh) = L(k)(vh) + 〈±λh, vh〉∂Ωk\∂Ω, ∀ vh ∈ V ph (Ωk). (2.6)

It is easy to see that the above problem is uniquely solvable.

As in the continuous situation, we decompose uh,k into uh,k = u
(1)
h,k(λh) + u

(2)
h,k,

which are respectively defined by

a(k)(u
(1)
h,k(λh), vh) = ±〈λh, vh〉∂Ωk\∂Ω, ∀ vh ∈ V ph (Ωk)

and

a(k)(u
(2)
h,k, vh) = L(k)(vh), ∀ vh ∈ V ph (Ωk).

From the computational point of view, the function u
(2)
h,k can be preliminarily cal-

culated, which will be appeared in the right side of the discrete system, but the

function u
(1)
h,k cannot be calculated until the function λh is obtained.

Define the discrete sesquilinear form

sh(λh, µh)=
∑
γkj

∫
γkj

(u
(1)
h,k(λh)−u(1)

h,j(λh))·(u(1)
h,k(µh)−u(1)

h,j(µh))ds, λh, µh ∈W q
h(γ)

and the functional

lh(µh) = −
∑
γkj

∫
γkj

(u
(2)
h,k − u

(2)
h,j) · (u

(1)
h,k(µh)− u(1)

h,j(µh))ds, µh ∈W q
h(γ).

Therefore the discrete variational problem of (2.5) can be written as follows: find
λh ∈W q

h(γ) such that

sh(λh, µh) = lh(µh), ∀ µh ∈W q
h(γ). (2.7)

After λh is solved from (2.7), we can easily compute uh,k in parallel by (2.6)
for every Ωk. Define uh ∈ V ph (Th) by uh|Ωk

= uh,k(λh) (k = 1, · · · , N). Then uh
should be an approximate solution of u. We would like to emphasize the discrete
system (2.7) has relatively less degrees of freedom, so it is cheaper to be solved.
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Let S be the stiffness matrix associated with the sesquilinear form sh(·, ·), and
let b denote the vector associated with lh(·). Then the discretization problem (2.7)
leads to the algebraic system

SX = b. (2.8)

From the definition of the sesquilinear form sh(·, ·), we know that the matrix S is
Hermitian positive definite, so the system (2.8) can be solved by the preconditioned
CG method with a positive definite preconditioner. The construction of an efficient
preconditioner for S is an important task (see the next section).

Remark 2.1. Since each local finite element space V ph (Ωk) consists of the standard
polynomials, instead of solutions of homogeneous Helmholtz equation in the plane
wave methods, from the viewpoint of algorithm the proposed method is practical to
general nonhomogeneous Helmholtz equations in inhomogeneous media.

Remark 2.2. As in the traditional Lagrange multiplier method, we can derive
another discrete system of λh by the constraints (for all element interfaces γkj)

〈uh,k − uh,j , µ〉γkj
= 0, ∀µ ∈W q

h(γ).

However, the coefficient matrix of the resulting system is still indefinite as (1.1)
(comparing the system (2.8)), which makes the solution of the system to be more
difficult.

3. A domain decomposition preconditioner

In this section, we are devoted to the construction of a preconditioner K for S.
Thanks to the Hermitian positive definiteness of the matrix S, we can construct
a (Hermitian positive definite) substructuring preconditioner absorbing some ideas
in the BDDC method first introduced in [10] (see Section 1 for simple descriptions
of the BDDC method). As we will see, the preconditioner designed in this section
has essential differences from the one defined in the standard BDDC method.

For convenience, we will define the preconditioner in operator form. To this end,
let S : W q

h(γ)→W q
h(γ) denote the discrete operator corresponding to the stiffness

matrix S, i.e.,
〈Sλh, µh〉 = sh(λh, µh), ∀λh, µh ∈W q

h(γ).

As usual we coarsen the partition as follows: let Ω be decomposed into a union
of D1, D2, . . . , Dn0

such that Dr is just a union of several elements Ωk ∈ Th and
satisfies (refer to the left graph of Figure 1)

Ω =

n0⋃
r=1

Dr, Dr

⋂
Dl = ∅ for r 6= l.

Let d denote the size of the subdomains D1, D2, · · · , Dn0
, and let Td denote the

partition comprised of the subdomains {Dr}n0
r=1.

For the construction of a substructuring preconditioner, we need to define a
suitable “interface” Γ such that the degrees of freedoms in all the subdomain in-
teriors (i.e., Ω\Γ) can be eliminated independently for different subdomains. We
first explain that, for the current situation, an interface Γ cannot be defined in the
standard manner, where Γ is just a union of all the intersections of two neighboring
subdomains. To this end, we want to investigate basis functions associated with
two neighboring subdomains Dr and Dl, which have the non-empty common part
∂Dr ∩ ∂Dl. Let e and e′ be two fine edges that satisfy e ∈ D̄r\(∂Dr ∩ ∂Dl) and
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e′ ∈ D̄l\(∂Dr ∩ ∂Dl), and let µe and µe′ denote two basis functions on e and e′

respectively. It can be checked that, if e and e′ are close to ∂Dr ∩∂Dl, then µe and
µe′ still have coupling, i.e., sh(µe, µe′) 6= 0. This means that, if the interface is de-
fined in the standard manner, namely, is defined as the union of all ∂Dr ∩ ∂Dl, the
degrees of freedom in subdomain interiors cannot be eliminated independently. Ac-
cording to this observation, in the current situation an interface should be defined
as a union of some elements instead of a union of some edges.

For each Dr, let Db
r ⊂ Dr be a union of the elements that touch the right and

the lower boundary of ∂Dr\∂Ω (refer to the right graph in Figure 1). We define an
interface as

Γ =

n0⋃
r=1

Db
r.

Of course, the definition of such an interface is not unique (see [31] and [41] for
similar definitions of interfaces), for example, an interface Γ can be defined as a
union of all the elements that touch the standard interface ∪k 6=j(∂Dk ∩ ∂Dj).

In the following we describe various subspaces of W q
h(γ) and the corresponding

solvers, which are needed in the construction of the desired preconditioner.
At first we define a subspace associated with each Dr. Set D0

r = Dr\Db
r (see the

right graph in Figure 1), and define the subspace for each subdomain D0
r

W q
h(D0

r) = {µ ∈W q
h(γ) : supp µ ⊂ D0

r}, r = 1, 2, . . . , n0.

The local solver on the local space W q
h(D0

r) is defined in the standard manner. Let
S0
r : W q

h(D0
r)→W q

h(D0
r) be the restriction of S on W q

h(D0
r)

〈S0
rϕ,ψ〉 = 〈Sϕ,ψ〉, ϕ, ψ ∈W q

h(D0
r).

Figure 1. The left graph: each small square with dotted lines de-
notes an element Ωk and each square with solid lines denotes a
subdomain Dr. The right graph: each rectangle with red dotted
lines denotes a subdomain D0

r , each L-shape or revere L-shape do-
main denotes a subdomain Db

r (the green shade domain), where
Db
r ∪D0

r = Dr.

For the definition of solvers associated with the interface, we need to give a de-
composition of the interface Γ. Let Vd denote the set of all the nodes corresponding
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to the coarse partition Td. For a coarse node V ∈ Vd, let DV denote the top left
corner element that touch the vertex V (see the left graph in Figure 2).

Figure 2. The left graph: the rectangle ABCD denotes a subdo-
main DV . The right graph: the rectangle ABCD denotes a subdo-
main Drl and the rectangle EFGH denotes a subdomain D̃rl.

Let Drl denote the union of the elements that touch the intersection ∂Dr ∩ ∂Dl

from the left side (or the upper side) but do not touch the lower (or the right)
endpoints of ∂Dr ∩ ∂Dl (see the right graph in Figure 2).

It is easy to see that the interface can be decomposed into

Γ =
(⋃
rl

Drl

)⋃( ⋃
V ∈Vd

DV

)
.

Next we define local interface spaces. Set

D̃rl = Drl ∪D0
r ∪D0

l .

and define the discrete sh(·, ·)-harmonic extension spaces

W q
H(D̃rl) = {µ ∈W q

h(γ) : supp µ ⊂ D̃rl; sh(µ,w) = 0,∀w ∈W q
h(D0

r) ∪W
q
h(D0

l )}.

Notice that the basis functions of these local spaces are not given explicitly, so the
variational problems defined on these spaces cannot be solved in the direct manner.
In order to overcome this difficulty, instead of computing such basis functions, as
usual (see, for example, [10]) we transform the corresponding local interface problem
into a residual equation , which is defined on the natural restriction space of the
global space W q

h(γ) on the subdomain D̃rl (such residual equation will be described
exactly in Step 2 of Algorithm 3.1). However, solution of the residual equation is
expensive since the restriction space contains many more basis functions than each
local space W q

h(D0
r), which is defined on a smaller subdomain D0

r than D̃rl.
In order to decrease the cost of calculation, we choose to reduce the sizes of the

subdomains D̃rl and define discrete sh(·, ·)-harmonic on the reduced subdomains.

We reduce D̃rl to D̃half
rl such that the resulting subdomains have almost the same

size d with Dr (see Figure 3).
Define the local spaces

W q
h(D̃half

rl ) = {µ ∈W q
h(γ) : supp µ ⊂ D̃half

rl }.
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Figure 3. The rectangle ABCD denotes a subdomain Drl and the

rectangle EFGH denotes a subdomain D̃half
rl

For µ ∈W q
H(D̃rl), define µhalfrl ∈W q

h(D̃half
rl ) such that µhalfrl |Drl

= µ|Drl
and µhalfrl

is discrete sh(·, ·)-harmonic in the complement domain D̃half
rl \Drl.

Define the discrete operator K0
rl : W q

H(D̃rl)→W q
H(D̃rl) by

〈K0
rlµ,w〉 = sh(µhalfrl , whalfrl ), µ ∈W q

H(D̃rl), ∀w ∈W q
H(D̃rl).

Notice that the action of (K0
rl)
−1 is implemented by solving a residual equation

defined on the “half” space W q
h(D̃half

rl ) (see Algorithm 3.1), so K0
rl can be regarded

as an “inexact” local interface solver based on the “compressed” harmonic extension

µhalfrl (refer to [31]). It is easy to see that the dimension of W q
h(D̃half

rl ) is about

half of the dimension of W q
h(D̃rl) and almost equals the dimension of W q

h(D0
r).

Then almost the same cost is needed for the solution of each subproblem in Step
2 and Step 1 (and Step 3) of Algorithm 3.1, which make the loading balance be

guaranteed in parallel calculation (in applications, we choose d ≈
√
h).

Finally we construct a coarse space W q
d (γ) by some local energy minimizations.

For a coarse node V ∈ Vd, let φ
(m)
V be a basis function in the subspace

W q
h(DV ) = {µ|DV

: µ ∈W q
h(γ)}.

Since the function φ
(m)
V is well defined only on the fine edges of DV , we need to

extend φ
(m)
V in a suitable manner such that φ

(m)
V has definitions on all the fine edges

of Th. The desired coarse space will be spanned by the extensions of all φ
(m)
V .

Let φ̃
(m)
V be the initial extension of φ

(m)
V such that φ̃

(m)
V is sh(·, ·)-harmonic on

each subspace W q
h(D0

r) and vanishes on all the fine edges in Γ\DV . In order to

define further extension of φ̃
(m)
V , let ΓV denote a union of the coarse edges that

touch the vertex V . For each Γrl ∈ ΓV , let Φ
(m)
V,rl ∈ W

q
h(D̃half

rl ) be the solution of
the minimization problem

min
Ψ∈W q

h(D̃half
rl )
{s(r)
h (φ̃

(m)
V + Ψ, φ̃

(m)
V + Ψ) + s

(l)
h (φ̃

(m)
V + Ψ, φ̃

(m)
V + Ψ)}, (3.1)
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where s
(r)
h (·, ·) denotes the restriction of sh(·, ·) on the fine edges on Dr. Then

Φ
(m)
V,rl ∈W

q
h(D̃half

rl ) can be obtained by solving the local equation∑
k=r,l

s
(k)
h (Φ

(m)
V,rl, v) = −

∑
k=r,l

s
(k)
h (φ̃

(m)
V , v), ∀v ∈W q

h(D̃half
rl ). (3.2)

Define
Φ

(m)
V = φ̃

(m)
V +

∑
Γrl∈ΓV

RtrlΦ
(m)
V,rl, (3.3)

where Rtrl denotes the zero extension operators from W q
h(D̃rl) into W q

h(γ). The

coarse space W q
d (γ) is spanned by all the basis functions Φ

(m)
V , namely,

W q
d (γ) = span{Φ(m)

V }.
Let the coarse solver Sd : W q

d (γ)→W q
d (γ) be the discrete operator which is the

restriction of S on W q
d (γ) as usual.

Now we can define the preconditioner K : W q
h(γ)→W q

h(γ) as

K−1 =
∑
r

(S0
r )−1Qr +

∑
Γrl

(K0
rl)
−1Qrl + S−1

d Qd,

where Qr, Qrl and Qd denote the L2 projectors into W q
h(D0

r),W
q
H(D̃rl) and W q

d (γ),
respectively.

The action of the preconditioner K−1 can be described by the following algo-
rithm.

Algorithm 3.1. For ξ ∈ W q
h(γ), the solution λξ = K−1ξ ∈ W q

h(γ) can be
obtained as follows:

Step 1. Computing λ0
r ∈W

q
h(D0

r) in parallel by

s
(r)
h (λ0

r, µh) = 〈ξ, µh〉, ∀µh ∈W q
h(D0

r), r = 1, 2, . . . , n0.

Step 2. Computing λrl ∈W q
h(D̃half

rl ) in parallel by∑
k=r,l

s
(k)
h (λrl, µh) = 〈ξ, µh〉 −

∑
k=r,l

s
(k)
h (λ0

r, µh), ∀µh ∈W q
h(D̃half

rl ).

Step 3. Computing λd ∈W q
d (γ) by

sh(λd, µh) = 〈ξ, µh〉 −
∑
r

s
(r)
h (λ0

r, µh), ∀µh ∈W q
d (γ).

Step 4. Set φ =
∑
λrl + λd, and compute harmonic extensions λHr ∈ W

q
h(Dr)

for all r in parallel, such that λHr = φ on Db
r and satisfies

s
(r)
h (λHr , µh) = 0, ∀µh ∈W q

h(D0
r), r = 1, 2, · · · , n0.

Step 5. Computing

λξ =
∑
r

λ0
r +

∑
r

λHr .

Remark 3.1. The minimization problem (3.1) is different from that in the BDDC
method. In the BDDC method, each minimization problem which determines coarse
basis functions is defined on one subdomain, so the solutions of the two minimiza-
tion problems associated with two neighboring subdomains have different values on
their common interface. In order to define coarse basis functions, in the BDDC
method one has to compute some average of the values of the two solutions on the
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common interface. Since the minimization problem (3.1) is defined on the subdo-

main D̃half
rl , the solution of this minimization problem has a unique value on the

interface Drl and the coarse basis functions can be directly obtained by (3.3). We
found that, if minimization problems are defined as in the BDDC method, then the
resulting preconditioner is unstable.

Remark 3.2. Since the stiffness matrix of Srh has almost the same structure as
the stiffness matrix S of the global system, the condition number of the stiffness
matrix of Srh cannot be significantly decreased comparing the original stiffness matrix
S. However, such a local stiffness matrix has much lower order than S, so each
subproblem in Step 1 of Algorithm 3.1 can be solved in a direct manner (using
LU decomposition), which is not sensitive to the condition number of this local
stiffness matrix, where the global Step 1 is implemented in parallel. Notice that
the variational problem (3.2) and the variational problem in Step 2 of Algorithm
3.1 correspond to the same stiffness matrix (with different right hands only). Thus
the computation for the coarse basis functions by solving every subproblem (3.2) in
parallel only increases a little cost by using LU decomposition made in Step 2 for
each local stiffness matrix (when Step 2 is implemented in the direct method).

Remark 3.3. When Ω is a general domain than a rectangle, we can first define a
domain decomposition such that every subdomain Dr is a polygon, and then define
a triangle partition on each subdomain Dr, all of which constitute a partition Th
of Ω. In this situation, the “interface” Γ and the reduced subdomain D̃half

rl can be
defined in a similar manner, but their shapes may be more complicated.

4. Main results

Throughout this paper, C denotes a generic positive constant that may have
different values in different occurrences, where C is always independent of ω, h, p
and q but may depend on the shape of Ω and the maximal value and minimal value
of c(x) on Ω. Before presenting the main results, we give several assumptions.
Assumption 1. The domain Ω is a strictly star-shaped; the function c(x) belongs
to W 1,∞(Ω).

The first condition in the above assumption appeared in many existing works
to build error estimates with little wave number pollution (see, for example, [11]
and [37]); the second condition was used in [3] to build stability result of analytic
solution.
Assumption 2. The mesh size h satisfies the condition: ωh ≤ C0 with a possibly
small constant C0 independent of ω, h, p and q (but may depend on the shape of
Ω and the maximal value and minimal value of the function c(x)).

The above assumption is weaker than that required in analysis of the HDG-type
methods. The following assumption has no restriction to the proposed method.
Assumption 3. The parameter ρ in the variational formula is not large: ρ ≤
C0 min{1, ω2h} for a possibly small constant C0 independent of ω, h, p and q.

From the viewpoint of algorithm, all the discretization methods based on poly-
nomial basis functions are practical for the case with variable wave numbers (in
inhomogeneous media). However, almost existing error estimates with little wave
number pollution were established only for the case with constant wave numbers
(see, for example, [11] and [37]). The main reason is that one does not know whether
the result on “stable decomposition of solution”, which was built in Theorem 4.10
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of [37] and plays a key role in the derivations of good error estimates, still holds for
the case with variable wave numbers. In this paper we try to investigate the possi-
bility that the proposed method possesses error estimates with little wave number
pollution even for the case of variable wave numbers. In order to cover the case of
variable wave number, we introduce an additional assumption.

For f̃ ∈ L2(Ω), consider a dual problem with Robin-type boundary condition
−∆φ− κ2φ = f̃ in Ω,

∂φ

∂n
− iκφ = 0 on ∂Ω.

(4.1)

Let Ṽ ph (Th) ⊂ H1(Ω) denote the continuous piecewise p-order polynomial space
associated with the partition Th.
Assumption 4. The finite element solution φh ∈ Ṽ ph (Th) of (4.1) possesses a weak
convergence with respect to p for large p

||∇(φ− φh)||0,Ω + ω||(φ− φh)||0,Ω . p−
1
2 ||f̃ ||0,Ω. (4.2)

This assumption can be met easily when c(x) is a constant. In fact, for this case
the following stronger result has been built in [37, Cor 5.10] under the assump-
tions that Ω is a strictly star-shaped domain with an analytic boundary and the
discretization parameters satisfy the mild conditions ωh

p ≤ C0 and p ≥ 1 + c0 logω:

||∇(φ− φh)||0,Ω + ω||(φ− φh)||0,Ω . hp−1||f̃ ||0,Ω. (4.3)

Therefore, when c(x) is a constant, Assumption 4 should be changed into: Ω has
an analytic boundary; p ≥ 1 + c0 logω (since Assumption 2 implies ωh

p ≤ C0).

Whether the error estimate (4.3) still holds for the case of variable c(x) seems an
open problem, but the weak error estimate (4.2) should be valid even for a variable
c(x) under the above assumptions. In this situation, Assumption 4 can be replaced
by the conditions that Ω has an analytic boundary and p ≥ 1 + c0 logω.

Now we list the main results, which will be proved in the next section. Firstly,
we give a result about local inf − sup condition.

Theorem 4.1. Let q ≥ 1 and p ≥ q + 2. For any µ ∈ W q
h(∂Ωk\∂Ω), there exits a

non-zero function v ∈ V ph (∂Ωk) such that

〈µ, v〉∂Ωk\∂Ω ≥ Cq−
1
2 ||µ||0,∂Ωk\∂Ω||v||0,∂Ωk\∂Ω, (4.4)

where C is a constant independent of ω, h , p and q.

Next we give a result on the coerciveness of the sesquilinear form sh(·, ·), which
implies that the discrete problem (2.7) is well posed.

Theorem 4.2. Let Assumption 1-Assumption 4 be satisfied. Suppose q ≥ 1 and
p ≥ q + 2. Then, for any µh ∈W q

h(γ), we have

sh(µh, µh) ≥ Cω−2h2p−1q−1
∑
γkj

‖µh||20,γkj
, (4.5)

where C is a constant independent of ω, h , p and q.

Finally, we give error estimates of the approximation uh. Define the subspace
W r− 1

2 (γ) =
∏
k 6=j H

r− 1
2 (γkj), which is equipped with the norm

||µ||r− 1
2 ,γ

=
(∑
γkj

||µ||2r− 1
2 ,γkj

) 1
2 , ∀ µ ∈W r− 1

2 (γ).
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For ease of notation, we also define the semi-norms (r ≥ 1)

|µ|r− 1
2 ,γ

=
(∑
γkj

|µ|2r− 1
2 ,γkj

) 1
2 , µ ∈W r− 1

2 (γ)

and

|v|r,Ω =
( N∑
k=1

|v|2r,Ωk

) 1
2 , v ∈

N∏
k=1

Hr(Ωk).

Set

Hr+1(Th) = {v ∈ H2(Ω) : v|Ωk
∈ Hr+1(Ωk),

∂v

∂n
|γkj
∈ Hr− 1

2 (γkj)}.

Theorem 4.3. Suppose that q ≥ 1 and p ≥ q + 2. Let Assumption 1-Assumption
4 be satisfied. Assume that the analytical solution u of the Helmholtz problem (1.1)
belongs to Hr+1(Th) with 1 ≤ r ≤ q (r ∈ N). Then the approximate solution uh
defined in Subsection 2.3 satisfies

|u− uh|1,Ω ≤ Chr−1
(
p−r|u|r+1,Ω + q−r|λ|r− 1

2 ,γ

)
(4.6)

and

||u− uh||0,Ω ≤ Cω−1hr−1
(
p−r|u|r+1,Ω + q−r|λ|r− 1

2 ,γ

)
, (4.7)

where C is a constant independent of ω, h , p and q.

Remark 4.1. Comparing Theorem 4.3 with Theorem 3.15 in [26] (and Theorem
3.4 in [38]), we can see that the proposed discretization method possesses almost
the same L2 convergence order as the plane wave methods (for the case of constant
wave number), which have fast convergence and small “wave number pollution”.
As pointed out in Section 1, the standard plane wave methods are not practical for
the case with variable wave numbers, but there is not this problem for the proposed
method (see Remark 2.1).

5. Proof of the main results

In this section, we give detailed proofs of the theorems stated in Section 4. Since
the proposed approximate solution (uh, λh) do not satisfy a mixed variational prob-
lem (as in the Lagrange multiplier methods) or a hybridizable variational problem
(as in the hybridizable discontinuous Galerkin methods), so the results cannot be
proved by the techniques developed in existing works. As we shall see, the proofs
are very technical, so we divide this section into three subsections, in which we will
build many auxiliary results.

For ease of notation, we use the shorthand notation x . y and y & x for the
inequality x ≤ Cy and y ≥ Cx, where C is a constant independent of ω, h, p and
q but may depend on the shape of Ω and the maximal value and minimal value
of c(x) on Ω. Throughout this this section, we use p and q to denote two positive
integers.

We first verify the local inf−sup condition given in Theorem 4.1 by using Jacobi
polynomials.
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5.1. Analysis on the local inf − sup condition. The main difficulty for the
proof of Theorem 4.1 is the fact that the functions in W q

h(∂Ωk\∂Ω) are defined
independently for different edges of ∂Ωk and may be discontinuous at the vertices
of ∂Ωk but the functions in V ph (∂Ωk) are defined globally on ∂Ωk and must be
continuous at the vertices of ∂Ωk. Because of this, we have to split the q-order
polynomial space into a sum of two polynomial subspaces, one of which consists of
all the q-order polynomials vanishing at the vertices of ∂Ωk, so that the construction
of a function v satisfying (4.4) for µ ∈ W q

h(∂Ωk\∂Ω) becomes easier by using this
splitting and Jacobi polynomial basis functions of this subspace (we can require
that such function v vanishes at all the vertices of ∂Ωk).

Set J = [0, 1] and let Pq stands for the space of all polynomials on J with orders
≤ q. Firstly, we give a space decomposition of Pq on J

Pq = P∗1 + P ′q, with P∗1 ⊥ P ′q. (5.1)

The specific definition of P∗1 and P ′q will be given next.
Let P1 and P ′q denote the linear part and high-order part of Pq, respectively.

Then the two basis functions of P1 are φ1 = x and φ2 = 1 − x. If q = 1, then
P ′q = ∅ and set P ∗1 = {φ1, φ2}. For a unified description below, we define φ∗1 = φ1

and φ∗2 = φ2 when q = 1, and write P ∗1 = {φ∗1, φ∗2}.
In the following we assume that q ≥ 2. Let {ψk}q−1

k=1 denote the basis functions
of the subspace P ′q. Define

φ∗1 = φ1 −
q−1∑
k=1

αkψk and φ∗2 = φ2 −
q−1∑
k=1

βkψk. (5.2)

Here the numbers {αk} and {βk} are determined by 〈φ∗1, ψk〉J = 0 and 〈φ∗2, ψk〉J =
0. Apparently we can get

(α1, α2, . . . , αq−1)t = A−1b1 and (β1, β2, . . . , βq−1)t = A−1b2,

where A=(〈ψk, ψj〉J)(q−1)∗(q−1) and b1 =(〈φ1, ψk〉J)(q−1)∗1, b2 =(〈φ2, ψk〉J)(q−1)∗1,
which means φ∗1, φ

∗
2 are uniquely determined. Let P∗1 = span{φ∗1, φ∗2}, which satisfies

the space decomposition (5.1).
Next we give a set of orthogonal basis functions of P ′q = span{ψ1, ψ2, . . . , ψq−1}

(q ≥ 2). In order to explicitly write the orthogonal basis functions and conveniently
compute the involved integrations, we use a set of Jacobi polynomials {Gk} (see
[45]). For convenience, we let the coefficient of the first Jacobi polynomial be 1.
Then, for p ≥ q + 2, the Jacobi polynomials are defined as

Gk = (−1)k−1 (k + 3)!

(2k + 2)!
x−2(1−x)−2 d

k−1

dxk−1
(xk+1(1−x)k+1), k = 1, · · · , p. (5.3)

It is known that∫ 1

0

x2(1− x)2GkGjdx =

{
0 k 6= j,

(k−1)!(k+1)!2(k+3)!
(2k+2)!(2k+3)! k = j.

We also have the recursion relations
G1 = 1, G2 = x− 1

2
,

Gk = (x− 1

2
)Gk−1 −

(k − 2)(k + 2)

4(2k − 1)(2k + 1)
Gk−2, 3 ≤ k ≤ p.
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Define

ψk =
(2k + 2)!

(k − 1)!(k + 1)!
x(1− x)Gk, k = 1, · · · , q, · · · , p. (5.4)

It is clear that ψk(0) = ψk(1) = 0 and∫ 1

0

ψkψjdx =

{
0 k 6= j,

k(k+1)(k+2)(k+3)
2k+3 k = j.

(5.5)

Furthermore {ψk}p−1
k=1 satisfy the recursion relations

ψ1 = 12x(1− x), ψ2 = 120x(1− x)(x− 1

2
),

ψk =
2(2k + 1)

k − 1
(x− 1

2
)ψk−1 −

k + 2

k − 1
ψk−2, 3 ≤ k ≤ p.

(5.6)

The functions {ψk}q−1
k=1 constitute a set of orthogonal bases of P ′q.

Lemma 5.1. Let q ≥ 2. For φ1 = x, φ2 = 1− x and {ψk}q−1
k=1 defined by (5.4), we

have

〈φ1, ψk〉J = 1 and 〈φ2, ψk〉J = (−1)k−1, k = 1, 2, . . . , q − 1.

Proof. Using mathematical induction and the recursion relations (5.6), we can easily
prove

〈φ1, ψk〉J =

∫ 1

0

xψkdx = 1

and

〈φ2, ψk〉J =

∫ 1

0

(1− x)ψkdx = (−1)k−1.

�
It is easy to see that the following two equalities hold for any positive integer m

m∑
k=1

2k + 3

k(k + 1)(k + 2)(k + 3)
=

1

3
− 1

(m+ 1)(m+ 3)
(5.7)

and
m∑
k=1

(−1)k−1(2k + 3)

k(k + 1)(k + 2)(k + 3)
=

1

6
+

(−1)m−1

(m+ 1)(m+ 2)(m+ 3)
. (5.8)

Lemma 5.2. Let φ∗1 = x and φ∗2 = 1 − x for q = 1. For q ≥ 2, let {φ∗1, φ∗2} be
defined as (5.2) with ψk given by (5.4). Then we have

〈φ∗1, φ∗1〉J = 〈φ∗2, φ∗2〉J =
1

q(q + 2)
, 〈φ∗1, φ∗2〉J =

(−1)q−1

q(q + 1)(q + 2)
(5.9)

and

||a1φ
∗
1||20,J + ||a2φ

∗
2||20,J ≤

q + 1

q
||a1φ

∗
1 + a2φ

∗
2||20,J , ∀ a1, a2 ∈ R. (5.10)
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Proof. Using (5.2), together with (5.5), (5.7) and Lemma 5.1, we deduce that

〈φ∗1, φ∗1〉J = 〈φ1, φ1〉J − bt1A−1b1 = 〈φ1, φ1〉J −
q−1∑
k=1

〈φ1, ψk〉2J
〈ψk, ψk〉J

=
1

3
−
q−1∑
k=1

2k + 3

k(k + 1)(k + 2)(k + 3)
=

1

q(q + 2)
.

Similarly, we have

〈φ∗2, φ∗2〉J =
1

q(q + 2)
.

On the other hand, using Lemma 5.1, (5.5) and (5.8), we get

〈φ∗1, φ∗2〉J = 〈φ1, φ2〉J − bt1A−1b2 = 〈φ1, φ2〉J −
q−1∑
k=1

〈φ1, ψk〉J 〈φ2, ψk〉J
〈ψk, ψk〉J

=
1

6
−
q−1∑
k=1

(−1)k−1(2k + 3)

k(k + 1)(k + 2)(k + 3)
= (−1)q−1 1

q(q + 1)(q + 2)
.

This gives the second equality of (5.9). The equality (5.10) can be easily obtained
from (5.9). �
Proof of Theorem 4.1. For an element Ωk, let nk denote the number of the edges
of Ωk and write its boundary as ∂Ωk =

⋃nk

j=1 Jj , where Jj is the jth edge of Ωk. If

Jj ⊂ ∂Ωk∩∂Ω, we set µ|Jj = 0. Then we only need to prove: for any µ ∈W q
h(∂Ωk),

there exits a function v ∈ V ph (∂Ωk), such that

〈µ, v〉∂Ωk
≥ Cp,q||µ||0,∂Ωk

||v||0,∂Ωk
,

where Cp,q is a positive constant which may only depend on p and q. Since Ωk is
regular, we can simply set Jj = [0, 1] by the scaling transformation.

By the space decomposition (5.1), the function µ ∈W q
h(∂Ωk) can be written as

µ|Jj =

q−1∑
k=1

ξkψk + a1φ
∗
1 + a2φ

∗
2, a1, a2, ξk ∈ R (5.11)

where {φ∗1, φ∗2} are two basis functions of P∗1 and {ψk}q−1
k=1 denote the orthogonal

basis functions of P ′q, see (5.4). Then we choose

v|Jj =

q−1∑
k=1

ξkψk +

p−1∑
k=q

〈a1φ
∗
1 + a2φ

∗
2, ψk〉Jj

〈ψk, ψk〉Jj
ψk, (5.12)

where {ψk}p−1
k=1 are defined by (5.4). It is clear that v|Jj (0) = v|Jj (1) = 0. Then we

have v ∈ V ph (∂Ωk).
Using the orthogonality condition (5.5), yields

〈µ, v〉Jj =

q−1∑
k=1

ξ2
k〈ψk, ψk〉Jj +

p−1∑
k=q

〈a1φ
∗
1 + a2φ

∗
2, ψk〉2Jj

〈ψk, ψk〉Jj
= ||v||20,Jj .

It follows that

〈µ, v〉∂Ωk
=

nk∑
j=1

〈µ, v〉Jj =

nk∑
j=1

||v||20,Jj = ||v||20,∂Ωk
.
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Thus, we only need to prove: there exists Cp,q, such that

||v||0,∂Ωk
≥ Cp,q||µ||0,∂Ωk

or ||v||0,Jj ≥ Cp,q||µ||0,Jj .
To do this, we use (5.5), (5.9) and Lemma 5.1, which gives

||v||20,Jj =

q−1∑
k=1

ξ2
k〈ψk, ψk〉Jj +

p−1∑
k=q

(2k + 3)(a1 + (−1)k−1a2)2

k(k + 1)(k + 2)(k + 3)

=

q−1∑
k=1

ξ2
k〈ψk, ψk〉Jj +

( 1

q(q + 2)
− 1

p(p+ 2)

)
(a2

1 + a2
2)

+
( (−1)q−1

q(q + 1)(q + 2)
− (−1)p−1

p(p+ 1)(p+ 2)

)
2a1a2.

Then, using (5.9) again, we have

||µ||20,Jj =

q−1∑
k=1

ξ2
k〈ψk, ψk〉Jj + a2

1〈φ∗1, φ∗1〉Jj + a2
2〈φ∗2, φ∗2〉Jj + 2a1a2〈φ∗1, φ∗2〉Jj

=

q−1∑
k=1

ξ2
k〈ψk, ψk〉Jj +

1

q(q + 2)
(a2

1 + a2
2) +

(−1)q−1

q(q + 1)(q + 2)
2a1a2.

So we choose

C2
p,q =

{
1− (q+1)(q+2)

(p+1)(p+2) p+ q = even,

1− (q+1)(q+2)
p(p+1) p+ q = odd,

satisfying
||u||20,Jj ≥ C

2
p,q||µ||20,Jj .

Since q ≥ 1 and p ≥ q + 2, we have C2
p,q ≥ 2

q+3 and so ||v||20,Jj & q−1||µ||20,Jj ,

namely,

〈µ, v〉Jj & q−
1
2 ||µ||0,Jj ||v||0,Jj .

It concludes the proof of the local inf − sup condition given by (4.4). �

Remark 5.1. If q ≥ 2 and p = 2q, we have C2
p,q ≥ 1

2 , which implies that

〈µ, v〉Jj & ||µ||0,Jj ||v||0,Jj .
Then, when q ≥ 2 and p = 2q, the inequality (4.4) can be replaced by the optimal
inf-sup condition

〈µ, v〉∂Ωk\∂Ω ≥ C||µ||0,∂Ωk\∂Ω||v||0,∂Ωk
.

5.2. Analysis on the coerciveness. The proofs of Theorem 4.2 and Theorem
4.3 will depend on a jump-controlled stability estimate (which will be given by
Proposition 5.1). A technical tool for the derivation of this stability estimate is a
Poincaré-type inequality given by Lemma 5.4. In order to prove this Poincaré-type
inequality, we have to develop a special technique: construct a globally continuous
p-finite element function to “approximate” a piecewise continuous p-finite element
function and derive a corresponding “approximate” result (Lemma 5.3). There
seems no similar technique and result in existing literature.

Let Ṽ ph (Th) ⊂ H1(Ω) denote the continuous piecewise p-order finite element
space associated with the partition Th. For a given function v ∈ V ph (Th) (* H1(Ω)),

we want to construct a correction function ṽ ∈ Ṽ ph (Th), which should satisfy the
estimates stated in Lemma 5.3.
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Let v ∈ V ph (Th). For each element Ωk, we set v|Ωk
= vk, which denotes the

restriction of v on the element Ωk. We need only to define a suitable correction
function ṽk of vk for each Ωk. After it is done, we then define the desired function
ṽ such that ṽ|Ωk

= ṽk. For ease of understanding, we want to describe the basic
idea for defining such function ṽk. Consider the standard decomposition

vk = v0
k + v∂k ,

where v∂k |∂Ωk
= vk|∂Ωk

and v∂k ∈ V ph (Ωk) is the discrete harmonic extension of

vk|∂Ωk
into Ωk. It is easy to see that v0

k|∂Ωk
= vk|∂Ωk

− v∂k |∂Ωk
= 0, which can

be naturally extended into Ω. However, in general we have v∂k |γkj
6= v∂j |γkj

, where
γkj = ∂Ωk ∩ ∂Ωj is an element edge.

Since we require that the desired function ṽ ∈ H1(Ω), we need to define a
correction ṽ∂k of v∂k in a special manner such that ṽ∂k |γkj

= ṽ∂j |γkj
. After it is done,

we naturally define

ṽk = v0
k + ṽ∂k ,

where ṽ∂k ∈ V
p
h (Ωk) is the discrete harmonic extension of ṽ∂k |∂Ωk

into Ωk.

In the following we give a definition of ṽ∂k |∂Ωk
. Let e denote an edge of ∂Ωk.

When e = ∂Ωk ∩ ∂Ω, we simply define ṽ∂k |e = v∂k |e. If e = ∂Ωk ∩ ∂Ωj , we define
ṽ∂k |e as follows.

As in the beginning of Subsection 5.1, we can define the spaces P∗1 and P ′p on
the edge e by the standard scaling technique. Then we have the decomposition

v∂k |e = v∂k1 + v∂k0,

where v∂k1 ∈ P∗1 and v∂k0 ∈ P ′p. Let {φ∗e1 , φ∗e2 } denote the two basis functions of P∗1 ,

and let v1 and v2 denote the two endpoints of the edge e. It is easy to see that v∂k1

can be written as

v∂k1 = vk(v1)φ∗e1 + vk(v2)φ∗e2 .

Set

Λvi = {r, Ωr contains vi as one of its vertices} (i = 1, 2),

and let nvi denote the number of all the elements that contain vi as their common
vertex, namely, the dimension of set Λvi

. For e = ∂Ωk ∩ ∂Ωj , define

ṽ∂k1|e =
1

nv1

∑
r∈Λv1

vr(v1)φ∗e1 +
1

nv2

∑
r∈Λv2

vr(v2)φ∗e2 (5.13)

and

ṽ∂k0|e =
1

2
(v∂k0 + v∂j0). (5.14)

Now we define ṽ∂k |e = ṽ∂k1|e+ ṽ∂k0|e for each e ⊂ ∂Ωk, and let ṽ∂k ∈ V
p
h (Ωk) be the

discrete harmonic extension of ṽ∂k |∂Ωk
. From the definition of ṽ∂k1, we know that

ṽ∂k |γkj
= ṽ∂j |γkj

. Thus we can define ṽk = ṽ∂k + v0
k. It is clear that ṽk|γkj

= ṽj |γkj
.

Finally we define ṽ by ṽ|Ωk
= ṽk and we have ṽ ∈ Ṽ ph (Th).

Lemma 5.3. For v ∈ V ph (Th), let ṽ ∈ Ṽ ph (Th) be defined above. Then we have

(

N∑
k=1

|v − ṽ|21,Ωk
+ h−2||v − ṽ||20,Ω)

1
2 . h−

1
2 p

1
2

(∑
γkj

||[v]||20,γkj

) 1
2 . (5.15)
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Proof. Notice that vk = v0
k + v∂k and ṽk = v0

k + ṽ∂k , and using the stability of the
discrete harmonic extension, we deduce that

N∑
k=1

|v − ṽ|21,Ωk
=

N∑
k=1

|vk − ṽk|21,Ωk
=

N∑
k=1

|v∂k − ṽ∂k |21,Ωk

.
N∑
k=1

|v∂k − ṽ∂k |21
2 ,∂Ωk

. h−1p

N∑
k=1

||v∂k − ṽ∂k ||20,∂Ωk

(5.16)

and

||v − ṽ||20,Ω =

N∑
k=1

||vk − ṽk||20,Ωk
=

N∑
k=1

||v∂k − ṽ∂k ||20,Ωk
(5.17)

.
N∑
k=1

(h2|v∂k − ṽ∂k |21,Ωk
+ h||v∂k − ṽ∂k ||20,∂Ωk

) . hp
N∑
k=1

||v∂k − ṽ∂k ||20,∂Ωk
.

It suffices to give an estimate of
N∑
k=1

||v∂k − ṽ∂k ||20,∂Ωk
.

Let e be an edge on ∂Ωk. When e = ∂Ωk ∩ ∂Ω, we have (v∂k − ṽ∂k )|e = 0, which
implies that ||v∂k − ṽ∂k ||0,e = 0.

If e = ∂Ωk ∩ ∂Ωj = γkj , we have (v∂k − ṽ∂k )|γkj
= (v∂k1− ṽ∂k1) + (v∂k0− ṽ∂k0). So we

get
||v∂k − ṽ∂k ||0,γkj

≤ ||v∂k1 − ṽ∂k1||0,γkj
+ ||v∂k0 − ṽ∂k0||0,γkj

. (5.18)

Let v1 and v2 denote two endpoints of γkj , and let Λvi (i = 1, 2) be the sets
defined before (5.13). It follows, from (5.13) and (5.14), that

v∂k1 − ṽ∂k1 =
1

nv1

∑
r∈Λv1

(vk − vr)(v1)φ∗e1 +
1

nv2

∑
r∈Λv2

(vk − vr)(v2)φ∗e2 (5.19)

and

v∂k0 − ṽ∂k0 =
1

2
(v∂k0 − v∂j0).

Notice that (v∂k − v∂j )|γkj
= (v∂k1− v∂j1) + (v∂k0− v∂j0), where (v∂k1− v∂j1) ∈ P∗1 and

(v∂k0 − v∂j0) ∈ P ′p. It is easy to see that

||v∂k0 − ṽ∂k0||0,γkj
=

1

2
||v∂k0 − v∂j0||0,γkj

≤ 1

2
||v∂k − v∂j ||0,γkj

=
1

2
||vk − vj ||0,γkj

. (5.20)

Clearly, we have k ∈ Λvi
(i = 1, 2). Define

Λk,1vi
= {r, r ∈ Λvi

, r 6= k, and γkr = ∂Ωk ∩ ∂Ωr is an edge} (i = 1, 2)

and

Λk,2vi
= {r, r ∈ Λvi

, r 6= k, and ∂Ωr ∩ ∂Ωj is the vertex vi} (i = 1, 2).

It is clear that Λvi
= {k}∪Λk,1vi

∪Λk,2vi
and Λk,1vi

∩Λk,2vi
= ∅. Then, for the first item

on the right side of (5.19), we have

1

nv1

∑
r∈Λv1

(vk − vr)(v1)φ∗e1 =
1

nv1

∑
r∈Λk,1

v1

(vk − vr)(v1)φ∗e1

+
1

nv1

∑
r∈Λk,2

v1

(vk − vr)(v1)φ∗e1 . (5.21)
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We first give an estimate of ||(vk−vr)(v1)φ∗e1 ||0,e for r ∈ Λk,1v1
. Let {φ∗γkr

1 , φ∗γkr

2 }
denote the two basis functions of P∗1 associated with the edge γkr. We already
assume that the partition Th is quasi-uniform, which yields

||φ∗e1 ||0,e . ||φ
∗γkr

1 ||0,γkr
and ||φ∗e2 ||0,e . ||φ

∗γkr

2 ||0,γkr
.

This, together with Lemma 5.2 (replacing q by p), leads to

||(vk − vr)(v1)φ∗e1 ||0,e . |vk − vr|(v1) ||φ∗γkr

1 ||0,γkr

≤
√
p+ 1

p
||v∂k1 − v∂r1||0,γkr

. ||v∂k − v∂r ||0,γkr

= ||vk − vr||0,γkr
= ||[v]||0,γkr

(r ∈ Λk,1v1
).

(5.22)

Next we estimate ||(vk − vr)(v1)φ∗e1 ||0,e for r ∈ Λk,2v1
. Without loss of generality,

we assume that there exists some element Ωl such that ∂Ωk ∩ ∂Ωl = γkl and
∂Ωl ∩ ∂Ωr = γlr are two (different) edges that have the common vertex v1. Then,
by the triangle inequality, we have

||(vk − vr)(v1)φ∗e1 ||0,e ≤ ||(vk − vl)(v1)φ∗e1 ||0,e + ||(vl − vr)(v1)φ∗e1 ||0,e.
We can estimate the two terms on the right side of the above inequality like (5.22),
and we obtain

||(vk − vr)(v1)φ∗e1 ||0,e . ||[v]||0,γkl
+ ||[v]||0,γlr (r ∈ Λk,2v1

). (5.23)

Let Ev1
denote the set of all the edges that have v1 as their common endpoint.

Substituting (5.22) and (5.23) into (5.21), yields

|| 1

nv1

∑
r∈Λv1

(vk − vr)(v1)φ∗e1 ||0,e.
∑
e∈Ev1

||[v]||0,e. (5.24)

In an analogous way with (5.24), we can verify that

|| 1

nv2

∑
r∈Λv2

(vk − vr)(v2)φ∗e2 ||0,e.
∑
e∈Ev2

||[v]||0,e.

Here Ev2
denotes the set of all the edges that have v2 as their common endpoint.

Plugging this and (5.24) in (5.19), leads to

||v∂k1 − ṽ∂k1||0,γkj
.
∑
e∈Ev1

||[v]||0,e +
∑
e∈Ev2

||[v]||0,e,

which, together with (5.20) and (5.18), gives

||v∂k − ṽ∂k ||0,γkj
.
∑
e∈Ev1

||[v]||0,e +
∑
e∈Ev2

||[v]||0,e.

Hence, we get

N∑
k=1

||v∂k − ṽ∂k ||20,∂Ωk
=
∑
γkj

||v∂k − ṽ∂k ||20,γkj
.
∑
γkj

||[v]||20,γkj
.

Finally, substituting this inequality into (5.16) and (5.17), we obtain

N∑
k=1

|v − ṽ|21,Ωk
. h−1p

∑
γkj

||[v]||20,γkj
and ||v − ṽ||20,Ω . hp

∑
γkj

||[v]||20,γkj
.

The estimate (5.15) is a direct consequence of the above inequalities. �
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In the following we want to build a Poincare-type inequality for the functions in
V ph (Th) by Lemma 5.3.

Lemma 5.4. Let Assumption 1-Assumption 4 be satisfied. Assume that, for some
λh ∈W q

h(γ), the function v ∈ V ph (Th) satisfy

a(k)(v, w) = 〈±λh, w〉∂Ωk\∂Ω (k = 1, 2, · · · , N), ∀w ∈ V ph (Th). (5.25)

Then

||v||20,Ω . h−1
∑
γkj

||[v]||20,γkj
. (5.26)

Proof. A standard technique to estimate L2 norm of a function is the introduction
of a suitable dual problem (see, for example, [26]). Consider the dual problem

−∆φ− κ2φ = v in Ω,

∂φ

∂n
− iκφ = 0 on ∂Ω.

(5.27)

Let φ ∈ H1(Ω) and φh ∈ Ṽ ph (Th) denote its weak solution and p-order finite element
solution, which are defined respectively by

(∇φ,∇ψ)Ω − (κ2φ, ψ)Ω − i〈κφ, ψ〉∂Ω = (v, ψ)Ω, ∀ψ ∈ H1(Ω) (5.28)

and

(∇φh,∇ψh)Ω − (κ2φh, ψh)Ω − i〈κφh, ψh〉∂Ω = (v, ψh)Ω, ∀ψh ∈ Ṽ ph (Th). (5.29)

Using (5.27) and Green’s formula, we obtain

||v||20,Ω =

N∑
k=1

(v, v)Ωk
=

N∑
k=1

(
(v,−∆φ)Ωk

− (v, κ2φ)Ωk

)
=

N∑
k=1

(
(∇v,∇φ)Ωk

− 〈v,∇φ·n〉∂Ωk
− (κ2v, φ)Ωk

)
=

N∑
k=1

(∇v,∇φ)Ωk
−

N∑
k=1

(κ2v, φ)Ωk
−
∑
γkj

〈[v],∇φ·n〉γkj
− 〈v, iκφ〉∂Ω

=

N∑
k=1

(∇v,∇φh)Ωk
−

N∑
k=1

(κ2v, φh)Ωk
−
∑
γkj

〈[v],∇φ·n〉γkj
+ i〈κv, φ〉∂Ω

+

N∑
k=1

(∇v,∇(φ− φh))Ωk
−

N∑
k=1

(κ2v, φ− φh)Ωk
. (5.30)

In the last equality, we introduced the finite element function φh since (5.25) holds
only for finite element function w (if v ∈ H1(Ωk) satisfies the equation (5.25) for
any w ∈ H1(Ωk), then the proof is trivial).

Letting w = φh in (5.25) and summing the resulting equality over k, and using
the fact that φh is continuous across the inner edges, gives

N∑
k=1

a(k)(v, φh) =

N∑
k=1

〈±λh, φh〉∂Ωk\∂Ω = 0,
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which implies that

N∑
k=1

(∇v,∇φh)Ωk
−

N∑
k=1

(κ2v, φh)Ωk
= −iρ

∑
γkj

〈[v], φh〉γkj
− i〈κv, φh〉∂Ω.

This, together with (5.30), leads to

||v||20,Ω = −iρ
∑
γkj

〈[v], φh〉γkj
− i〈κv, φh〉∂Ω −

∑
γkj

〈[v],∇φ·n〉γkj
+ i〈κv, φ〉∂Ω

+

N∑
k=1

(∇v,∇(φ− φh))Ωk
−

N∑
k=1

(κ2v, φ− φh)Ωk

=

N∑
k=1

(∇v,∇(φ− φh))Ωk
−

N∑
k=1

(κ2v, φ− φh)Ωk
+ i〈κv, φ− φh〉∂Ω

−
∑
γkj

〈[v],∇φ·n〉γkj
− iρ

∑
γkj

〈[v], φh〉γkj
. (5.31)

If we directly estimate the terms containing the error φ− φh, we cannot build the
inequality (5.26) unless a stronger assumption on the mesh size h is made. Because
of this, we have to introduce a globally continuous finite element “approximation”
of v such that the energy orthogonality of φ− φh can be used.

For v ∈ V ph (Th), we construct ṽ ∈ Ṽ ph (Th) as in Lemma 5.3. For ease of notation,
set

R =

N∑
k=1

(∇(v − ṽ),∇(φ− φh))Ωk
−

N∑
k=1

(κ2(v − ṽ), φ− φh)Ωk
+i〈κ(v − ṽ), φ− φh〉∂Ω.

Then (5.31) can be written as

||v||20,Ω = R+

N∑
k=1

(∇ṽ,∇(φ− φh))Ωk
−

N∑
k=1

(κ2ṽ, φ− φh)Ωk
+i〈κṽ, φ− φh〉∂Ω

−
∑
γkj

〈[v],∇φ·n〉γkj
− iρ

∑
γkj

〈[v], φh〉γkj
. (5.32)

Choosing ψ = ṽ in (5.28) and ψh = ṽ in (5.29), we get the difference

(∇(φ− φh),∇ṽ)Ω − (κ2(φ− φh), ṽ)Ω − i〈κ(φ− φh), ṽ〉∂Ω = 0, (5.33)

which is called as the energy orthogonality of φ− φh. The complex conjugation of
(5.33) becomes

(∇ṽ,∇(φ− φh))Ω − (κ2ṽ, φ− φh)Ω + i〈κṽ, φ− φh〉∂Ω = 0. (5.34)

Substituting (5.34) into (5.32), we obtain

||v||20,Ω = R−
∑
γkj

〈[v],∇φ·n〉γkj
− iρ

∑
γkj

〈[v], φh〉γkj
. (5.35)
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Let M =
∑
γkj

||[v]||20,γkj
. Using Cauchy-Schwarz inequality to the sums on the

right side of (5.35), yields

||v||20,Ω ≤ |R|+
∑
γkj

||[v]||0,γkj
||∇φ·n||0,γkj

+ ρ
∑
γkj

||[v]||0,γkj
||φh||0,γkj

≤ |R|+ (
∑
γkj

||∇φ·n||20,γkj
)

1
2M

1
2 + ρ(

∑
γkj

||φh||20,γkj
)

1
2M

1
2 . (5.36)

It suffices to estimate |R|. It is easy to see that

|R| .
N∑
k=1

||∇(v − ṽ)||0,Ωk
||∇(φ− φh)||0,Ωk

+

N∑
k=1

ω2||v − ṽ||0,Ωk
||φ− φh||0,Ωk

+ ω||v − ṽ||0,∂Ω||φ− φh||0,∂Ω

. (

N∑
k=1

||∇(v − ṽ)||20,Ωk
)

1
2 ||∇(φ− φh)||0,Ω + ω2||v − ṽ||0,Ω||φ− φh||0,Ω

+ ω||v − ṽ||0,∂Ω||φ− φh||0,∂Ω. (5.37)

It follows by Assumption 4 that

||∇(φ− φh)||0,Ω + ω||φ− φh||0,Ω . p−
1
2 ||v||0,Ω.

Then, by the ε-inequality (ε = ω−
1
2 < 1), we have

||φ− φh||0,∂Ω . ω
− 1

2 ||∇(φ− φh)||0,Ω+ω
1
2 ||φ− φh||0,Ω . ω−

1
2 p−

1
2 ||v||0,Ω.

Moreover, from Lemma 5.3, we have

(

N∑
k=1

||∇(v − ṽ)||20,Ωk
+ h−2||v − ṽ||20,Ω)

1
2 . h−

1
2 p

1
2M

1
2 .

Furthermore, by the trace inequality, we get

||v − ṽ||20,∂Ω =

N∑
k=1

||v − ṽ||20,∂Ωk∩∂Ω .
N∑
k=1

(
h||∇(v − ṽ)||20,Ωk

+ h−1||v − ṽ||20,Ωk

)
= h||∇(v − ṽ)||20,Ω + h−1||v − ṽ||20,Ω . pM.

Hence, substituting the above estimates into (5.37), we obtain

|R| . (1 + ωh+ +ω
1
2h

1
2 )h−

1
2M

1
2 ||v||0,Ω. (5.38)

On the other hand, by Assumption 1 and Theorem 1 of [3] the function φ satisfies

|φ|1,Ω + ω‖φ‖0,Ω . ‖v‖0,Ω.
As in the proof of Lemma 3.3 of [11], we can further verify that |φ|2,Ω . ω‖v‖0,Ω.
Thus we have the stability

ω−1|φ|2,Ω + |φ|1,Ω + ω‖φ‖0,Ω . ||v||0,Ω.
Then, by the trace inequality, we get∑

γkj

||∇φ·n||20,γkj
≤

N∑
k=1

||∇φ·n||20,∂Ωk
.

N∑
k=1

(h|φ|22,Ωk
+ h−1|φ|21,Ωk

)

= h|φ|22,Ω + h−1|φ|21,Ω . (h2ω2 + 1)h−1||v||20,Ω.

(5.39)
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and (using Assumption 4 again)∑
γkj

||φh||20,γkj
≤

N∑
k=1

||φh||20,∂Ωk
.

N∑
k=1

(h|φh|21,Ωk
+ h−1‖φh‖20,Ωk

)

. h|φ|21,Ω + h−1‖φ‖20,Ω + (h+ h−1ω−2)p−1‖v‖20,Ω

. (h2 + ω−2)h−1||v||20,Ω.

(5.40)

Substituting the inequalities (5.38), (5.39) and (5.40) into (5.36) and using As-
sumption 2 and Assumption 3, yields

||v||20,Ω . h−
1
2 ·M 1

2 ||v||0,Ω.

Finally, we obtain the desired inequality (5.26). �

Remark 5.2. The inequality (5.26) can be viewed as an extension of the Poincare
inequality held for plane wave functions to the piecewise polynomial functions in
V ph (Th). Comparing the inequality (5.26) with the Poincare-type inequality given
by Lemma 3.7 of [26] for the plane wave functions, we find that the right sides of
the two inequalities contain the same term h−1

∑
γkj
||[v]||20,γkj

, and (5.26) is more

succinct thanks to the condition (5.25) (there are extra terms in the inequality in
Lemma 3.7 of [26]). However, the proof of (5.26), which depends on the estimates
(5.15) and (4.3), is much more technical than that of the inequality in Lemma 3.7
of [26] since the considered functions do not satisfy the homogeneous Helmholtz
equation satisfied by the plane wave functions.

Remark 5.3. As pointed out in Remark 2.1, the proposed method is practical for
the case with variable wave numbers, but we have to use Assumption 4 to give the
theoretical analysis of (5.26). The main reason is that we do not know whether the
estimate (4.3) proved in [37] for constant wave numbers is still valid for the case
with variable wave numbers (the condition (4.2) that we used is much weaker than
(4.3)). We failed to build a similar inequality with (5.26) without Assumption 4.

In the rest of this paper, we always use a(k)(·, ·) to denote the local sesquilinear

form defined in Subsection 2.2. For v ∈
∏N
k=1H

1(Ωk), define

‖|v‖| = (

N∑
k=1

‖∇v‖20,Ωk
+ ω2‖v‖20,Ω)

1
2 .

Lemma 5.5. Let Assumption 3 be satisfied. Suppose q ≥ 1 and p ≥ q+ 2. Assume
that v ∈ V ph (Th) and λh ∈W q

h(γ) satisfy the relation

a(k)(v, w) = 〈±λh, w〉∂Ωk\∂Ω (k = 1, 2, · · · , N), ∀w ∈ V ph (Th). (5.41)

Then the following estimate holds∑
γkj

||λh||20,γkj
. h−1pq‖|v‖|2. (5.42)

Proof. By the local inf−sup condition given in Theorem 4.1, there exists a non-zero
function ψ ∈ V ph (Ωk), which is discrete harmonic in Ωk, such that

||λh||20,∂Ωk\∂Ω = ‖ ± λh||20,∂Ωk\∂Ω . q
〈±λh, ψ〉2∂Ωk\∂Ω

||ψ||20,∂Ωk

.
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Then, using (5.41), Cauchy inequality and Assumption 3, yields

||λh||20,∂Ωk\∂Ω . q ·
(
a(k)(v, ψ)

)2
||ψ||20,∂Ωk

. q
||∇v||20,Ωk

||∇ψ||20,Ωk
+ ω4||v||20,Ωk

||ψ||20,Ωk
+ ω2||v||20,∂Ωk

||ψ||20,∂Ωk

||ψ||20,∂Ωk

.

(5.43)

By the stability of discrete harmonic functions, the inverse estimate and Poincare
inequality, we deduce that

||∇ψ||20,Ωk
. |ψ|21

2 ,∂Ωk
. h−1p||ψ||20,∂Ωk

||ψ||20,Ωk
. h2||∇ψ||20,Ωk

+ h||ψ||20,∂Ωk
. hp‖ψ‖20,∂Ωk

+ h||ψ||20,∂Ωk
. hp||ψ||20,∂Ωk

.

Substituting this into (5.43), together with the trace inequality and Assumption 2,
yields

||λh||20,∂Ωk\∂Ω . q
(
||∇v||20,Ωk

h−1p+ ω4||v||20,Ωk
hp+ ω2(h||∇v||20,Ωk

+ h−1||v||20,Ωk
))

= q
(
(h−1p+ ω2h)||∇v||20,Ωk

+ (ω4hp+ ω2h−1)||v||20,Ωk

)
= h−1pq

(
(1 +

ω2h2

p
)||∇v||20,Ωk

+ (ω2h2 + p−1)ω2||v||20,Ωk

)
. h−1pq(||∇v||20,Ωk

+ ω2||v||20,Ωk
).

Summing up the above inequality over k, gives (5.42). �
By Lemma 5.4 and Lemma 5.5, we can prove a crucial auxiliary result given

below, which can be viewed as a jump-controlled stability estimate. As we will see,
this auxiliary result plays a key role in the proof of Theorem 4.2 and Theorem 4.3.
Proposition 5.1 Assume that q ≥ 1 and p ≥ q+2. Let Assumption 1-Assumption
4 be satisfied, and let v ∈ V ph (Th) satisfy

a(k)(v, w) = 〈±λh, w〉∂Ωk\∂Ω (k = 1, 2, · · · , N), ∀w ∈ V ph (Th). (5.44)

Then the following estimate holds

‖|v‖|2 . ω2h−1
∑
γkj

||[v]||20,γkj
. (5.45)

Proof. Choosing w = v in (5.44) and summing the resulting equality over k, gives

N∑
k=1

(
||∇v||20,Ωk

− (κ2v, v)Ωk
± iρ||v||20,∂Ωk\∂Ω + i〈κv, v〉∂Ωk∩∂Ω

)
=

N∑
k=1

〈±λh, v〉∂Ωk\∂Ω =
∑
γkj

〈λh, [v]〉γkj
.

Let M =
∑
γkj

||[v]||20,γkj
. Considering the module of the above equality and using

Cauchy-Schwarz inequality, yields

|
N∑
k=1

||∇v||20,Ωk
− (κ2v, v)Ω| ≤

∑
γkj

||λh||0,γkj
||[v]||0,γkj

≤
(∑
γkj

||λh||20,γkj

) 1
2M

1
2 ,
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which implies that

N∑
k=1

||∇v||20,Ωk
. ω2||v||20,Ω +

(∑
γkj

||λh||20,γkj

) 1
2M

1
2 .

Combining this inequality with (5.26) of Lemma 5.4, leads to

N∑
k=1

||∇v||20,Ωk
+ ω2||v||20,Ω . 2ω2||v||20,Ω +

(∑
γkj

||λh||20,γkj

) 1
2M

1
2

. ω2h−1M +
(∑
γkj

||λh||20,γkj

) 1
2M

1
2 .

(5.46)

Substituting (5.42) of Lemma 5.5 into (5.46), yields

‖|v‖|2 . ω2h−1M + (h−1pq‖|v‖|2)
1
2M

1
2 .

From the above inequality, we can deduce that

‖|v‖| . ω2h−1M,

which gives the desired result (5.45) �
Now we can easily prove Theorem 4.2 by Lemma 5.5 and Proposition 5.1.

Proof of Theorem 4.2. For λh ∈ W q
h(γ), let u

(1)
h,k(λh) be the function defined in

Subsection 2.3. From the definition of u
(1)
h,k(λh), we have

a(k)(u
(1)
h,k(λh), wh) = 〈±λh, wh〉∂Ωk\∂Ω, k = 1, · · · , N ; ∀wh ∈ V ph (Th).

Namely, u
(1)
h (λh) satisfies (5.41). It follows by Lemma 5.5 that∑

γkj

||λh||20,γkj
. h−1pq‖|u(1)

h (λh)‖|2. (5.47)

Obviously, u
(1)
h (λh) satisfies (5.44) too. It follows by Proposition 5.1 that

‖|u(1)
h (λh)‖|2 . ω2h−1

∑
γkj

||[u(1)
h (λh)]||20,γkj

.

This, together with (5.47), leads to∑
γkj

||λh||20,γkj
. ω2h−2pq

∑
γkj

||[u(1)
h (λh)]||20,γkj

.

Thus

sh(λh, λh) =
∑
γkj

||[u(1)
h (λh)]||20,γkj

& ω−2h2p−1q−1
∑
γkj

||λh||20,γkj
.

�

Remark 5.4. Remark 5.1 tells us that, when q ≥ 2 and p = 2q, a slightly better
result than (4.5) can be built

sh(λh, λh) =
∑
γkj

||[u(1)
h (λh)]||20,γkj

& ω−2h2p−1
∑
γkj

||λh||20,γkj
.
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5.3. Analysis on the error estimates. In order to prove Theorem 4.3, we need
more auxiliary results. We will decompose the error u− uh into three parts, where
the first part and the second part have some particular property and the third part is
a p-order finite element function. The third part can be estimated by Proposition
5.1, but the estimates of the first part and the second part are more technical,
which depend on a key auxiliary result (Lemma 5.6).

We first build the key auxiliary result mentioned above. For an element Ωk and
a function v ∈ H1(Ωk), we use the notation in this subsection

Fk(v) = ||∇v||20,Ωk
− (κ2v, v)Ωk

± iρ||v||20,∂Ωk\∂Ω + i〈κv, v〉∂Ωk∩∂Ω. (5.48)

It is clear that Fk(v) = a(k)(v, v).

Lemma 5.6. Let Assumption 2 and Assumption 3 be satisfied. For one element
Ωk, assume that v ∈ H1(Ωk) has the property

− (κ2v, 1)Ωk
± iρ〈v, 1〉∂Ωk\∂Ω + i〈κv, 1〉∂Ωk∩∂Ω = 0. (5.49)

Then
‖∇v‖20,Ωk

+ ω‖v‖20,Ωk
≤ C|Fk(v)|. (5.50)

Proof. Taking the module to (5.48) leads to∣∣||∇v||20,Ωk
− (κ2v, v)Ωk

∣∣ ≤ |Fk(v)| (5.51)

and ∣∣± ρ||v||20,∂Ωk\∂Ω + 〈κv, v〉∂Ωk∩∂Ω

∣∣ ≤ |Fk(v)|. (5.52)

We first assume that ∂Ωk∩∂Ω 6= ∅. It follows, by (5.52) and the trace inequality,
that

ω||v||20,∂Ωk∩∂Ω . |Fk(v)|+ ρ||v||20,∂Ωk\∂Ω

. |Fk(v)|+ ρh||∇v||20,Ωk
+ ρh−1||v||20,Ωk

.
(5.53)

Using Poincaré inequality and (5.53), yields

ω2||v||20,Ωk
. ω2h2||∇v||20,Ωk

+ ω2h||v||20,∂Ωk∩∂Ω

. ω2h2||∇v||20,Ωk
+ ωh|Fk(v)|+ ρωh2||∇v||20,Ωk

+ ρω||v||20,Ωk
,

which implies that

(1− ρCω−1)ω2||v||20,Ωk
. (ω2h2 + ρωh2)||∇v||20,Ωk

+ ωh|Fk(v)|.
Then, from Assumption 3, we have

ω2||v||20,Ωk
. ω2h2||∇v||20,Ωk

+ ωh|Fk(v)|. (5.54)

On the other hand, by (5.51) and (5.54), we deduce that

||∇v||20,Ωk
. ω2||v||20,Ωk

+ |Fk(v)| . ω2h2||∇v||20,Ωk
+ (1 + ωh)|Fk(v)|,

which gives
(1− Cω2h2)||∇v||20,Ωk

. |Fk(v)|.
This, together with (5.54), leads to

(1− Cω2h2)ω2||v||20,Ωk
. (ω2h2 + ωh(1− Cω2h2))|Fk(v)|.

Using Assumption 2, the above two inequalities give (5.50) when ∂Ωk ∩ ∂Ω 6= ∅.
In the following we assume that ∂Ωk ∩ ∂Ω = ∅. It follows by (5.49) that

ω2|Ωk||γΩk
(v)| . ρ|〈v, 1〉∂Ωk\∂Ω| . ρ|∂Ωk|

1
2 ||v||0,∂Ωk
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where γΩk
(v) = 1

|Ωk|
∫

Ωk
v dx. Thus

ω4|γΩk
(v)|2 . ρ2|∂Ωk| · |Ωk|−2||v||20,∂Ωk

.

This, together with the trace inequality (or ε−inequality), leads to

ω4||γΩk
(v)||20,Ωk

. ρ2|∂Ωk| · |Ωk|−1||v||20,∂Ωk

. ρ2h−1(h||∇v||20,Ωk
+ h−1||v||20,Ωk

)

= ρ2||∇v||20,Ωk
+ ρ2h−2||v||20,Ωk

.

(5.55)

Using Friedrichs’ inequality and (5.55), we deduce that

ω4||v||20,Ωk
≤ ω4||v − γΩk

(v)||20,Ωk
+ ω4||γΩk

(v)||20,Ωk

. ω4h2||∇v||20,Ωk
+ ρ2||∇v||20,Ωk

+ ρ2h−2||v||20,Ωk
.

So we get

(1− ρ2ω−4h−2)ω2||v||20,Ωk
. (ω2h2 + ρ2ω−2)||∇v||20,Ωk

.

Thus, by Assumption 3 , we have

ω2||v||20,Ωk
. ω2h2||∇v||20,Ωk

.

In addition, combining (5.51) with the above inequality, we get

||∇v||20,Ωk
. ω2||v||20,Ωk

+ |Fk(v)| . ω2h2||∇v||20,Ωk
+ |Fk(v)|.

Therefore we obtain (if Cω2h2 < 1)

(1− Cω2h2)||∇v||20,Ωk
. |Fk(v)|

and

(1− Cω2h2)ω2||v||20,Ωk
. ω2h2|Fk(v)|.

Using Assumption 2 again, the above two inequalities give (5.50) for the case that
∂Ωk ∩ ∂Ω = ∅. �

Next we use Lemma 5.6 to build two new auxiliary results, which involve an
auxiliary function ûh(λ) for λ ∈W (γ). For each element Ωk, let ûh,k(λ) ∈ V ph (Ωk)
be determined by the variational problem

a(k)(ûh,k(λ), vh) = L(k)(vh) + 〈±λ, vh〉∂Ωk\∂Ω, ∀ vh ∈ V ph (Ωk). (5.56)

Then define ûh(λ) ∈ V ph (Th) such that ûh(λ)|Ωk
= ûh,k(λ) (k = 1, · · · , N).

Lemma 5.7. Assume that u ∈ Hr+1(Th) with 1 ≤ r ≤ p. Let Assumption 2 and
Assumption 3 be satisfied. Then

|u(λ)− ûh(λ)|1,Ω ≤ Chrp−r|u|r+1,Ω

and

||u(λ)− ûh(λ)||0,Ω ≤ Cω−1hrp−r|u|r+1,Ω.



30

Proof. Let εu = u(λ) − ûh(λ) and γΩk
(εu) = 1

|Ωk|
∫

Ωk
εudx. Choosing v = vh in

(2.2) and taking the difference between (2.2) and (5.56), we can get

a(k)(εu, vh) = 0 ∀ vh ∈ V ph (Ωk), k = 1, 2, . . . , N. (5.57)

Set vh = 1 in the above inequality, we have

−(κ2εu, 1)Ωk
± iρ〈εu, 1〉∂Ωk\∂Ω + i〈κεu, 1〉∂Ωk∩∂Ω = 0.

Then εu has the property (5.49), so by Lemma 5.6 we obtain

||∇εu||20,Ωk
+ ω2||εu||20,Ωk

. |Fk(εu)|. (5.58)

It suffices to estimate |Fk(εu)|.
Let Qph : L2(Ωk) 7→ V ph (Ωk) denote the standard L2 projection operator. It is

clear that
εu = (I −Qph)u(λ) +Qphu(λ)− ûh(λ).

Choosing vh = Qphu(λ)− ûh(λ) in (5.57), we have

a(k)(εu, Q
p
hu(λ)− ûh(λ)) = 0, k = 1, 2, . . . , N.

Thus
Fk(εu) = a(k)(εu, εu) = a(k)(εu, (I −Qph)u(λ)).

Using the definition of a(k)(·, ·), Cauchy inequality and the assumption ρ ≤ ω, we
further get

|Fk(εu)| . |εu|1,Ωk
· |(I −Qph)u(λ)|1,Ωk

+ ω2‖εu‖0,Ωk
· ‖(I −Qph)u(λ)‖0,Ωk

+ ω‖εu‖0,∂Ωk
· ‖(I −Qph)u(λ)‖0,∂Ωk

(5.59)

By the trace inequality, we have

‖εu‖0,∂Ωk
. h

1
2 |εu|1,Ωk

+ h−
1
2 ‖εu‖0,Ωk

and

‖(I −Qph)u(λ)‖0,∂Ωk
. h

1
2 |(I −Qph)u(λ)|1,Ωk

+ h−
1
2 ‖(I −Qph)u(λ)‖0,Ωk

.

Substituting the above two inequalities into (5.59) and using Schwarz inequality,
yields

|Fk(εu)| . (|εu|21,Ωk
+ ω2‖εu‖20,Ωk

)
1
2

·
(
(1 + ω2h2)|(I −Qph)u(λ)|21,Ωk

+ (ω2 + h−2)‖(I −Qph)u(λ)‖20,Ωk

) 1
2 .(5.60)

Using the approximation of the projection operator (refer to [24]), we have

||∇(I −Qph)u(λ)||0,Ωk
. hrp−r|u(λ)|r+1,Ωk

and
||(I −Qph)u(λ)||0,Ωk

. hr+1p−(r+1)|u(λ)|r+1,Ωk
.

Plugging these in (5.60), leads to

|Fk(εu)| . (|εu|21,Ωk
+ω2‖εu‖20,Ωk

)
1
2 ·
(
(1+ω2h2 +

1

p2
+
ω2h2

p2
)h2rp−2r|u(λ)|2r+1,Ωk

) 1
2 .

Furthermore, by Assumption 2 we get

|Fk(εu)| . (|εu|21,Ωk
+ ω2‖εu‖20,Ωk

)
1
2 · hrp−r|u(λ)|r+1,Ωk

,

which, together with (5.58), gives

|εu|21,Ωk
+ ω2‖εu‖20,Ωk

. h2rp−2r|u(λ)|2r+1,Ωk
. (5.61)
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Then the estimates in this lemma can be obtained by summing (5.61) over k. �
Let Qqh : L2(γ) → W q

h(γ) denote the L2 projector, and let uh(Qqhλ) ∈ V ph (Ωk)
be defined as in (2.6), by choosing λh = Qqhλ.

Lemma 5.8. Suppose that q ≥ 1, p ≥ q + 2 and λ ∈W r− 1
2 (γ) with 1 ≤ r ≤ q + 1.

Let Assumption 1-Assumption 4 be satisfied. Then

|ûh(λ)− uh(Qqhλ)|1,Ω ≤ Chrq−r|λ|r− 1
2 ,γ

and

||ûh(λ)− uh(Qqhλ)||0,Ω ≤ Cω−1hrq−r|λ|r− 1
2 ,γ
.

Proof. Set ε̃u = ûh(λ) − uh(Qqhλ) and ελ = λ − Qqhλ. From (2.6) and (5.56), we
deduce that

a(k)(ε̃u, vh) = 〈±ελ, vh〉∂Ωk\∂Ω, ∀ vh ∈ V ph (Ωk), k = 1, 2, . . . , N. (5.62)

In particular, choosing vh = 1 in (5.62), we have

−(κ2ε̃u, 1)Ωk
± iρ〈ε̃u, 1〉∂Ωk\∂Ω + i〈κε̃u, 1〉∂Ωk∩∂Ω =

∫
∂Ωk\∂Ω

±ελds = 0.

Then, by applying Lemma 5.6 to ε̃u, we get

||∇ε̃u||20,Ωk
+ ω2||ε̃u||20,Ωk

. |Fk(ε̃u)|. (5.63)

On the other hand, set vh = ε̃u in (5.62), then we get

Fk(ε̃u)
.
= ||∇ε̃u||20,Ωk

− (κ2ε̃u, ε̃u)Ωk
± iρ||ε̃u||20,∂Ωk\∂Ω + i〈κε̃u, ε̃u〉∂Ωk∩∂Ω

= 〈±ελ, ε̃u〉∂Ωk\∂Ω = 〈±ελ, ε̃u − γΩk
(ε̃u)〉∂Ωk\∂Ω.

Here we have used the fact that γΩk
(ε̃u) = 1

|Ωk|
∫

Ωk
ε̃udx is a constant. It is easy to

see that

|Fk(ε̃u)| ≤ || ± ελ||− 1
2 ,∂Ωk\∂Ω||ε̃u − γΩk

(ε̃u)|| 1
2 ,∂Ωk

. || ± ελ||− 1
2 ,∂Ωk\∂Ω||∇ε̃u||0,Ωk

.

Substituting this into (5.63), yields

||∇ε̃u||20,Ωk
+ ω2||ε̃u||20,Ωk

. || ± ελ||2− 1
2 ,∂Ωk\∂Ω. (5.64)

By using the approximation of the projection operator Qqh, we have

|| ± ελ||− 1
2 ,∂Ωk\∂Ω . h

rq−r|λ|r− 1
2 ,∂Ωk\∂Ω.

Combining this with (5.64), leads to

|∇ε̃u|21,Ωk
. hrq−r|λ|r− 1

2 ,∂Ωk\∂Ω + ω2||ε̃u||20,Ωk
. h2rq−2r|λ|2r− 1

2 ,∂Ωk\∂Ω.

By summing the above inequalities over k, we obtain the desired estimates. �
In the following we use Proposition 5.1 to build an estimate of uh(Qqhλ) −

uh(λh).

Lemma 5.9. Suppose that q ≥ 1, p ≥ q+ 2 and u ∈ Hr+1(Th) with 1 ≤ r ≤ p. Let
Assumption 1-Assumption 4 be satisfied. Then

|uh(Qqhλ)− uh(λh)|1,Ω ≤ Chr−1(p−r|u|r+1,Ω + q−r|λ|r− 1
2 ,γ

)

and

||uh(Qqhλ)−uh(λh)||0,Ω ≤ Cω−1hr−1(p−r|u|r+1,Ω + q−r|λ|r− 1
2 ,γ

).
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Proof. Set εh = uh(Qqhλ)−uh(λh) and let ε̃λ = Qqhλ−λh. Notice that the function
uh(Qqhλ) is defined by (2.6) with λh = Qqhλ. Then, it follows by (2.6) that

a(k)(εh, w) = 〈±ε̃λ, w̄〉∂Ωk\∂Ω, ∀w ∈ V ph (Th), k = 1, 2, . . . , N. (5.65)

Setting v = εh in Proposition 5.1, we get

N∑
k=1

||∇εh||20,Ω + ω2||εh||20,Ω = ‖|εh‖|2 . ω2h−1
∑
γkj

||[εh]||20,γkj
. (5.66)

By the definition of λh, which corresponds to the minimal energy, we deduce
that ∑

γkj

||[εh]||20,γkj
≤
∑
γkj

||[uh(Qqhλ)]||20,γkj
+
∑
γkj

||[uh(λh)]||20,γkj

≤ 2
∑
γkj

||[uh(Qqhλ)]||20,γkj
= 2

∑
γkj

||[uh(Qqhλ)− u(λ)]||20,γkj
.

(5.67)

Here we have used the fact that the function u(λ) has the zero jump across each
edge γkj . Using the trace inequality (ε-inequality), yields

||[uh(Qqhλ)− u(λ)]||20,γkj
. h||∇(uh(Qqhλ)− u(λ))||20,Ωk

+ h−1||uh(Qqhλ)− u(λ)||20,Ωk

. h(||∇(uh(Qqhλ)− ûh(λ))||20,Ωk
+ ||∇(ûh(λ)− u(λ))||20,Ωk

)

+ h−1(||uh(Qqhλ)− ûh(λ)||20,Ωk
+ ||ûh(λ)− u(λ)||20,Ωk

).

Substituting this inequality into (5.67) and using Lemma 5.7 and Lemma 5.8, yields∑
γkj

||[εh]||20,γkj
. (h+ h−1ω−2)(h2rp−2r|u|2r+1,Ω + h2rq−2r|λ|2r− 1

2 ,γ
).

This, together with (5.66), leads to

N∑
k=1

||∇εh||20,Ωk
+ ω2||εh||20,Ω . (ω2 + h−2)h2r(p−2r|u|2r+1,Ω + q−2r|λ|2r− 1

2 ,γ
).

Then we immediately obtain the estimates in this lemma. �
Now we can easily prove Theorem 4.3 by Lemma 5.7-Lemma 5.9.

Proof of Theorem 4.3. By the triangle inequality, we have

||u(λ)− uh(λh)||0,Ω
≤ ||u(λ)− ûh(λ)||0,Ω + ||ûh(λ)− uh(Qqhλ)||0,Ω + ||uh(Qqhλ)− uh(λh)||0,Ω

and

|u(λ)− uh(λh)|1,Ω
≤ |u(λ)− ûh(λ)|1,Ω + |ûh(λ)− uh(Qqhλ)|1,Ω + |uh(Qqhλ)− uh(λh)|1,Ω.

Then, by the estimates given in Lemma 5.7, 5.8 and 5.9, we obtain

||u(λ)− uh(λh)||0,Ω . ω−1hr−1(p−r|u|r+1,Ω + q−r|λ|r− 1
2 ,γ

)

and

|u(λ)− uh(λh)|1,Ω . hr−1(p−r|u|r+1,Ω + q−r|λ|r− 1
2 ,γ

).

�
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Remark 5.5. The proposed method can be extended directly to the case with other
boundary conditions that can guarantee the well-posedness of the equations, pro-
vided that the subproblems defined on the elements touching the boundary ∂Ω are
imposed the corresponding boundary conditions (the analysis is simpler for the vari-
ational problems with part Dirichlet boundary condition). The proposed discretiza-
tion method can be also extended to three-dimensional problems, but the coarse
subspace involved in the construction of the preconditioner needs to be modified and
the analysis is more difficult (for example, the proofs of Theorem 4.1 and Lemma
5.3 needs to be changed).

6. Numerical experiments

In this section we report some numerical results to illustrate that the proposed
least squares method and domain decomposition preconditioner are efficient for
Helmholtz equations with large wave numbers.

In the discretization method described in Section 2, the parameter ρ can be
relatively arbitrarily positive number. We find that the different choices of ρ does
not affect the accuracy of the resulting approximations provided that the value of ρ
is less than 1. In this section, we simply choose ρ = 10−5 for numerical experiments.

For the considered example, the domain Ω is a rectangle so we adopt a uniform
partition Th for the domain Ω as follows: Ω is divided into some small rectangles
with a same size h, where h denotes the length of the longest edge of the elements.

To measure the accuracy of the numerical solution uh, we introduce the following
relative L2 error:

Err. =
||uex − uh||L2(Ω)

||uex||L2(Ω)
.

For a discretization method, when the value of ωh is fixed but ω increases (h
decreases), the relative L2 error Err. may obviously increase (if the number of basis
functions on each element does not increase). This phenomenon is called “wave
number pollution”. The efficiency of a discretization method for Helmholtz equa-
tions can be characterized by the degree of wave number pollution. For convenience,
we define a positive parameter δ to measure the degree of wave number pollution
as follows: the parameter δ is the minimal positive number such that, when ω in-
creases and h decreases to keep the value of ω1+δh being a constant, the relative
L2 error Err. does not increase. If δ = 0, the discretization method has no “wave
number pollution”. For the standard linear finite element method, the existing
results imply that δ = 1 (see [37]). A discretization method is ideal means that
δ � 1. For concrete examples, it is difficult to exactly calculate such parameter δ.
Because of this, we want to give a similar definition of δ, which can be explicitly
calculated.

When ω increases from ω1 to ω2, the mesh size h decreases from h1 to h2. We
fix the value ωh, i.e., ω2h2 = ω1h1. Let Err1 and Err2 denote the relative L2 errors
with ω = ω1 (h = h1) and ω = ω2 (h = h2), respectively. Define δ > 0 by

ω1+δ
2 h2

ω1+δ
1 h1

=
Err2

Err1
.

It is easy to see that the parameter δ can be expressed as

δ =
ln(Err2/Err1)

ln(ω2/ω1)
+

(
ln(h1/h2)

ln(ω2/ω1)
− 1

)
=

ln(Err2/Err1)

ln(ω2/ω1)
(since ω2h2 = ω1h1).
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For a given ω, we define the error order with respect to h in the standard manner,
namely,

order =
ln(Err2/Err1)

ln(h2/h1)
,

where Err1 and Err2 denote the relative L2 errors corresponding to h = h1 and
h = h2 (p, q are fixed), respectively.

Throughout this section we can simply choose p = q + 2 to avoid extra cost of
calculation.

6.1. Wave propagation in a duct with rigid walls. In this subsection, we
give some comparisons between the proposed method and the plane wave least
squares (PWLS) method for a homogeneous Helmholtz equation with constant wave
number. For the comparisons, we recall the basic ideas of the PWLS method (see
Subsection 2.3 in [31]). In the PWLS method, the solution space consists of plane
wave basis functions that exactly satisfy the considered homogeneous Helmholtz
equation, and the variational formula is derived by a minimization problem with
a quadratic subject functional defined by the jumps of function values and normal
derivations across all the element interfaces. Since the basis functions satisfy the
considered Helmholtz equation, one needs not to introduce auxiliary unknowns on
the element interfaces and so does not solve local Helmholtz equations on elements.

We consider the following model Helmholtz equation for the acoustic pressure u
(see [32]) {

−∆u− ω2u = 0 in Ω,
∂u
∂n + iωu = g on ∂Ω,

(6.1)

where Ω = [0, 2] × [0, 1], and g = ( ∂
∂n + iω)uex. The analytic solution uex of the

problem can be obtained in the closed form as

uex(x, y) = cos(kπy)(A1e
−iωxx +A2e

iωxx)

with ωx =
√
ω2 − (kπ)2, and the coefficients A1 and A2 satisfying the equation(

ωx −ωx
(ω − ωx)e−2iωx (ω + ωx)e2iωx

)(
A1

A2

)
=

(
−i
0

)
. (6.2)

Let “NLS” denote the novel least squares method proposed in this paper. Be-
sides, let p̂ be the number of plane wave basis functions on every elements. For
convenience, we use “dof.” to denote the number of degrees of freedom in the
resulting algebraic systems (which mean the system (2.8) for the NLS method).

In Table 1-Table 3, we compare the required numbers of degrees of freedom to
achieve almost the same accuracies of the approximate solutions generated by the
two methods.

Table 1
fixing ω = 20π and decreasing h (setting k = 19)

PWLS, p̂ = 12 NLS, (q, p)=(3,5)
h dof. Err. dof. Err.
1
28 18816 1.85e-4 12208 6.72e-5
1
36 31104 2.75e-5 20304 1.61e-5
1
44 46464 7.83e-6 30448 5.26e-6
1
52 64896 2.81e-6 42640 2.11e-6
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Table 2
fixing ω = 40π and decreasing h (setting k = 19)

PWLS, p̂ = 12 NLS, (q, p)=(4,6)
h dof. Err. dof. Err.
1
28 18816 1.24e-2 15260 4.57e-4
1
36 31104 2.19e-3 25380 7.26e-5
1
44 46464 2.67e-4 38060 1.80e-5
1
52 64896 5.99e-5 53300 6.02e-6

Table 3
fixing ωh = 5π/8 and increasing ω (setting k = 12)

PWLS, p̂ = 12 NLS, (q, p)=(3,5)
ω h dof. Err. dof. Err.

30π 1
48 55296 1.29e-4 36288 3.24e-5

35π 1
56 75264 3.43e-4 49504 3.56e-5

40π 1
64 98304 5.73e-4 64768 3.81e-5

45π 1
72 124416 7.85e-4 82080 4.00e-5

It can be seen from the above datas that, for the new least squares method, less
degrees of freedom in the solved algebraic system are enough to achieve almost the
same accuracies (with the same choices of ω and h). For the proposed method, a
little extra cost is needed when solving all the local problems defined on the elements
(in parallel). Besides, the system (2.8) has more complex structure than the one
in the PWLS method and so its preconditioner is more difficult to construct. In
summary, the proposed method is at least comparable to the plane wave method
even if the wave number is a constant (otherwise, the plane wave method may be
unpractical).

6.2. An example with variable wave numbers. In this subsection, we consider
the following Helmholtz equations with variable wave numbers

−∆u− κ2u = f in Ω,

∂u

∂n
+ iκu = g on ∂Ω,

(6.3)

where Ω = [0, 1]× [0, 1] and κ = ω
c(x,y) . We define the velocity field c(x) as a smooth

converging lens with a Gaussian profile at the center (r1, r2) = (1/2, 1/2) (refer to
[12])

c(x, y) =
4

3

(
1− 1

8
exp

(
− 32((x− r1)2 + (y − r2)2)

))
. (6.4)

The analytic solution of the problem is given by

uex(x, y) = c(x, y) exp(iωxy). (6.5)

For this example, the standard plane wave methods are unpractical. In Table 4
and Table 5, we list the accuracies of the approximate solutions generated by the
proposed least squares method, where the algebraic systems are solved in the exact
manner.
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Table 4
Degrees of wave number pollution: fixing ωh to be a constant and increasing ω

(and decreasing h)

ωh = 1, (q, p) = (2, 4) ωh = 2, (q, p) = (3, 5) ωh = 2, (q, p) = (4, 6)
ω h Err. δ h Err. δ h Err. δ
64 1

64 3.079e-5 1
32 2.8643e-5 1

32 1.690e-6
128 1

128 3.132e-5 0.024 1
64 2.913e-5 0.035 1

64 1.731e-6 0.034
256 1

256 3.241e-5 0.049 1
128 2.952e-5 0.019 1

128 1.753e-6 0.019
512 1

512 3.318e-5 0.034 1
256 2.981e-5 0.014 1

256 1.770e-6 0.014

Table 5
Convergence orders of the approximations with respect to h: fixing ω = 64 and

decreasing h

(q, p) = (2, 4) (q, p) = (3, 5) (q, p) = (4, 6)
ω h Err. order h Err. order h Err. order
64 1

32 4.484e-4 1
16 1.186e-3 1

16 1.381e-4
64 1

64 3.079e-5 3.864 1
32 2.843e-5 5.383 1

32 1.690e-6 6.352
64 1

128 2.016e-6 3.933 1
64 7.390e-7 5.266 1

64 2.639e-8 6.001
64 1

256 1.282e-7 3.975 1
128 2.174e-8 5.087 1

128 4.135e-10 5.996
64 1

512 8.068e-9 3.990 1
256 6.710e-10 5.018 1

256 6.731e-12 5.941

From the above two tables, we can see that the approximate solutions generated
by the proposed method indeed have high accuracies and have little “wave number
pollution”.

Since the resulting stiffness matrix is Hermitian positive definite, we can solve
the system by the CG method and the PCG method with the preconditioner con-
structed in Section 3. As usual we choose d ≈

√
h as the subdomain size in this

preconditioner to guarantee the loading balance. The stopping criterion in the
iterative algorithms is that the relative L2-norm of the residual of the iterative
approximation satisfies ε < 1.0e− 6 .

Moreover, let NCG
iter represent the iteration count for solving the algebraic system

by CG method and NPCG
iter represent the iteration count for solving the algebraic

system by PCG method with the DD preconditioner. When the wave number ω
increases (and the mesh size h decreases), the iteration count Niter (represent NCG

iter

or NPCG
iter ) also increases. In order to describe the growth rate of the iteration count

Niter with respect to the wave number ω, we introduce a new notation ρiter. Let

ω1 and ω2 be two wave numbers, and let N
(1)
iter and N

(2)
iter denote the corresponding

iteration counts, respectively. Then we define the positive number ρiter by

N
(2)
iter

N
(1)
iter

=
(ω2

ω1

)ρiter
.

For example, when ρiter = 1, the growth is linear; if ρiter → 0+, then the
preconditioner possesses the optimal convergence. For a preconditioner, the positive
number ρiter defined above is called “relative growth rate” of the iteration count.
Of course, we hope that the relative growth rate ρiter is small.
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In Table 6, Table 7 and Table 8, we compare the iteration counts and its “relative
growth rate” for the CG method and PCG method with the DD preconditioner
constructed in Section 3.

Table 6
Effectiveness of the preconditioner: the case with ωh ≈ 1 and (q, p) = (2, 4)

ω h d NCG
iter ρiterCG NPCG

iter ρiterPCG Err.
20π 1

64
1
8 1556 105 2.8825e-5

40π 1
121

1
11 2504 0.6864 139 0.4047 3.8198e-5

80π 1
256

1
16 5158 1.0426 191 0.4585 3.1632e-5

160π 1
484

1
22 9643 0.9027 251 0.3941 4.2254e-5

Table 7
Effectiveness of the preconditioner: the case with ωh ≈ 2 and (q, p) = (3, 5)

ω h d NCG
iter ρiterCG NPCG

iter ρiterPCG Err.
20π 1

36
1
6 451 77 1.4064e-5

40π 1
64

1
8 602 0.4166 104 0.4337 2.7665e-5

80π 1
121

1
11 967 0.6838 144 0.4695 3.9366e-5

160π 1
256

1
16 1714 0.8258 190 0.3999 3.6951e-5

Table 8
Effectiveness of the preconditioner: the case with ωh ≈ 2 and (q, p) = (4, 6)

ω h d NCG
iter ρiterCG NPCG

iter ρiterPCG Err.
20π 1

36
1
6 489 78 7.3846e-7

40π 1
64

1
8 646 0.4017 106 0.4425 1.5461e-6

80π 1
121

1
11 1002 0.6333 144 0.4420 2.2087e-6

160π 1
256

1
16 1758 0.8111 191 0.4075 1.5775e-6

The above data indicate that the proposed preconditioner is very efficient and
the iteration counts of the corresponding PCG method has small relative growth
rate when the wave number increases.
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[42] H. Riou, P. Ladevèze, B. Sourcis, The multiscale VTCR approach applied to acoustics prob-

lems, J. Comput. Acous., 16(2008), No. 4, 487-505.
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