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Explicit stabilized integrators for stiff optimal control problems

Ibrahim Almuslimani1 and Gilles Vilmart1

November 24, 2020

Abstract

Explicit stabilized methods are an efficient alternative to implicit schemes for the time
integration of stiff systems of differential equations in large dimension. In this paper we derive
explicit stabilized integrators of orders one and two for the optimal control of stiff systems.
We analyze their favorable stability properties based on the continuous optimality conditions.
Furthermore, we study their order of convergence taking advantage of the symplecticity of the
corresponding partitioned Runge-Kutta method involved for the adjoint equations. Numerical
experiments including the optimal control of a nonlinear diffusion-advection PDE illustrate
the efficiency of the new approach.

Keywords: optimal control, RKC, Chebyshev methods, symplectic methods, geometric inte-
gration, stability, adjoint control systems, double adjoint, Burgers equation, diffusion-advection
PDE.

AMS subject classification: 49M25, 65L04, 65L06

1 Introduction

In this paper, we introduce and analyze numerical methods for the optimal control of systems of
ordinary differential equations (ODEs) of the form

min
u

Ψ(y(T )); ẏ(t) :=
dy

dt
(t) = f(u(t), y(t)), t ∈ [0, T ]; y(0) = y0, (1)

where for a fixed final time T > 0 and a given initial condition y0 ∈ Rn, the function y :
[0, T ] → Rn is the unknown state function, u : [0, T ] → Rm is the unknown control function.
Here, f : Rm × Rn → Rn is the given vector field and Ψ : Rn → R is the given cost function,
which are assumed to be C∞ mappings. For simplicity of the presentation, we consider the case
of autonomous problems (with f independent of time) but we highlight that our approach also
applies straightforwardly to non-autonomous problems dy

dt (t) = f(t, u(t), y(t)).2

There are essentially two approaches for the numerical solution of optimal control problems:
the direct approach, which consists in directly discretizing (1) and then applying a minimization
method to the corresponding discrete minimization problem, and the indirect approach, which
is based on Pontryagin’s maximum principle, taking benefit of continuous optimality conditions
(adjoint equation). A natural approach for the accurate numerical approximation of such optimal
control problem (1) is to consider Runge-Kutta type schemes. It was shown in [11, Theorem 4.1]
by studying the continuous and discrete optimality conditions that additional order conditions for

1Université de Genève, Section de mathématiques, 2-4 rue du Lièvre, CP 64, CH-1211 Genève 4, Switzerland,
Ibrahim.Almuslimani@unige.ch, Gilles.Vilmart@unige.ch

2A standard approach is to consider the augmented system with z(t) = t, i.e. dz
dt

= 1, z(0) = 0 and define
ỹ(t) = (y(t), z(t))T , see e.g. [12, Chap. III] for details.
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the convergence rate are required in general by Runge-Kutta methods when applied to optimal
control problems, compared to the integration of standard initial valued ordinary differential
equations and conditions up to order 4 were derived. In [10], general order conditions were
derived, in addition to identifying symplecticity properties. This result is related to the order of
symplectic partitioned Runge-Kutta methods, and it implies in particular that applying naively
a Runge-Kutta method to (1) yields in general an order reduction phenomenon. This analysis
was then extended to other classes of Runge-Kutta type schemes in [17, 18, 14], see also [15, 8]
in the context of hyperbolic problems and multistep methods. The use of symplectic integrators
is motivated by the recent publication [20] which proves the convergence of forward-backward
iterative algorithm (Algorithm 2.3 in the present paper), to implement discretized optimal control
problems, when using a symplectic Runge-Kutta method. The work done in [20] generalizes that
of [19] in which the authors prove the global convergence of the algorithm in the continuous time
case. We also mention the paper [27] where automatic differentiation can be efficiently applied
for computing the gradient of the cost function under the assumption that optimal control order
conditions are satisfied. In our algorithms, the Jacobian of the vector field is given as an input,
however the idea of automatic differentiation could be coupled with our approach to compute
derivatives automatically, but this is not the purpose of the present paper.

In the case where the vector field f in (1) is stiff, due for instance to the multiscale nature
of the model, or due to the spatial discretization of a diffusion operator in a partial differential
equation (PDE) model, standard explicit integrators face in general a severe time step restriction
making standard explicit methods unreasonable to be used due to their dramatic cost. A standard
approach in this stiff case is to consider indirect implicit methods with good stability properties,
as studied in [14] in the context of implicit-explicit (IMEX) Runge-Kutta methods for stiff optimal
control problems. Note however that, already for initial value ODEs, such implicit methods can
become very costly for nonlinear stiff problems in large dimension, requiring the usage of Newton-
type methods and sophisticated linear algebra tools (preconditioners, etc.). Alternatively to using
implicit methods, in this paper we focus on fully explicit indirect methods, and introduce new
families of explicit stabilized methods for stiff optimal control problems. The proposed methods
rely on the so-called Runge-Kutta-Chebyshev methods of order one and its extension RKC of order
two [25]. Such explicit stabilized methods are popular in the context of initial value problems of
stiff differential equations, particularly in high dimensions in the context of diffusive PDEs, see
e.g. the survey [2]. It was extended to the stochastic context first in [4, 5] and recently in [3] for
the design of explicit stabilized integrators with optimally large stability domains in the context
of mean-square stable stiff and ergodic problems.

This paper is organized as follows. In Section 2, we recall standard tools on explicit stabilized
methods and classical results on standard Runge-Kutta methods applied to optimal control prob-
lems. In Section 3, we introduce the new explicit stabilized schemes for optimal control problems
and analyze their convergence and stability properties. Finally, Section 4 is dedicated to the
numerical experiments where we illustrate the efficiency of the new approach.

2 Preliminaries

2.1 Discretization, order conditions, and symplecticity

Let us first recall the definition of a Runge-Kutta method for ordinary differential equations
(ODEs),

ẏ(t) = F (y(t)), y(0) = y0, (2)

where y : [0, T ] → Rn is the unknown solution, F : Rn → Rn is a smooth vector field, and
y0 ∈ Rn is a given initial condition. We consider for simplicity a uniform discretization of the
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interval [0, T ] with N + 1 points for N ∈ N, and denote by h = T/N the stepsize. For a given
integer s and given real coefficients bi, aij (i, j = 1, . . . , s), an s-stage Runge-Kutta method,
yk ≈ y(tk), tk = kh, to approximate the solution of (2), is defined, for all k = 0, . . . , N − 1, by

yki = yk + h
s∑
j=1

aijF (ykj), i = 1, . . . , s, yk+1 = yk + h
s∑
i=1

biF (yki). (3)

The coefficients are usually displayed in a Butcher tableau as follows

aij
bi

, (4)

and we will sometimes use the notation (aij , bi). For more details about the order conditions of
Runge-Kutta methods in the context of initial value ODEs, we refer for example to the book [12,
Chap. III]. We denote by yk+1 = Φh(yk) the numerical flow of (3), while the time adjoint method
Φ∗h of Φh is the inverse map of the original method with reversed time step −h, i.e., Φ∗h := Φ−1

−h
[12, Sect. II.3]. We recall that the time adjoint of an s-stage Runge-Kutta method (aij , bi) (3)
is again an s-stage Runge-Kutta method with the same order of accuracy and its coefficients
(a∗ij , b

∗
i ) are given by a∗ij = bs+1−j − as+1−i,s+1−j and b∗i = bs+1−i, where i, j = 1, . . . , s.

If we discretize (1) using a Runge-Kutta discretization as above we naturally get the following
discrete optimization problem,

min Ψ(yN ); subject to:

yk+1 = yk + h

s∑
i=1

bif(uki, yki), yki = yk + h

s∑
j=1

aijf(ukj , ykj),
(5)

where i = 1 . . . , s, k = 0, . . . , N−1, and y0 = y0. We denote by pode the order of accuracy of the
method (3) applied to the ODE problem (2) and by poc the order of the method (5) for solving
the optimal control problem (1). Note that we always have poc ≤ pode. In general, poc < pode
because additional order conditions, described in [11, 10], have to be satisfied.

Let us denote by H(u, y, p) := pT f(u, y) the pseudo-Hamiltonian of the system where p is the
Lagrange multiplier (or the costate) associated to the state y. Applying Pontryagin’s maximum
(or minimum) principle, the first order optimality conditions of (1) are given by the following
boundary value problem,

ẏ(t) = f(u(t), y(t)) = ∇pH(u(t), y(t), p(t)),

ṗ(t) = −∇yf(u(t), y(t))p = −∇yH(u(t), y(t), p(t)),

0 = ∇uH(u(t), y(t), p(t)).

t ∈ [0, T ], y(0) = y0, p(T ) = ∇Ψ(y(T )).

(6)

Applying a Runge-Kutta integrator naively to (6) as an initial value system of ODEs combined
with the classical methodology of shooting methods, would lead to severe instability due to the
forward in time integration of the costate equation. For instance, for the optimal control of a
diffusion PDE problem such as ∂ty(t, x) = ∆y(t, x) + u(t, x), where ∆ is the Laplace operator,
y(t, x) is the state function, and u(t, x) is the control function (see also the diffusion-convection
PDE problem considered in Sect. 4.2), then the costate equation takes the form of a heat equation
with the wrong sign, ∂tp(t, x) = −∆p(t, x), which is naturally unstable if integrated forward in
time. This makes classical shooting methods not applicable in the context of stiff dissipative
optimal control problems considered in this paper. Alternatively, we consider a forward-backward
iterative algorithm as described below (Algorithm 2.3).
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Introducing Lagrange multipliers for the finite dimensional optimization problem (5), and
supposing that bi 6= 0 for all i = 1 . . . , s, a calculation [11, 10] yields the following discrete
optimality conditions

yk+1 = yk + h
s∑
i=1

bif(uki, yki), yki = yk + h
s∑
j=1

aijf(ukj , ykj),

pk+1 = pk − h
s∑
i=1

b̂i∇yH(uki, yki, pki), pki = pk − h
s∑
j=1

âij∇yH(ukj , ykj , pkj),

0 = ∇uH(uki, yki, pki), k = 0, . . . , N − 1 i = 1, . . . , s,

y0 = y0, pN = ∇Ψ(yN )

(7)

where the coefficients b̂i and âij are defined by the following relations which, as observed in [10],
correspond to the symplecticity conditions of partitioned Runge-Kutta methods for ODEs,

b̂i := bi, âij := bj −
bj
bi
aji, i = 1, . . . s, j = 1, . . . , s. (8)

Note that the vectors pk and pki are the Lagrange multipliers associated to yk and yki respectively.
Assuming that the Hessian matrix ∇2

uH(u, y, p) ∈ Rm×m is invertible along the trajectory of the
exact solution, by the implicit function theorem there exists a C∞ function φ such that u = φ(y, p)
and then (7) is equivalent to a partitioned Runge-Kutta (PRK) method. As noticed in [10], if
we consider the problem (6) as a Hamiltonian system, with the Hamiltonian function H(y, p) :=
H(Ψ(y, p), y, p), then the obtained PRK (7) scheme is symplectic thanks to the relations (8).

Theorem 2.1 (Theorem 4.1 in [11]). Consider a Runge-Kutta method (aij , bi) of order pode for
ODEs, where bi 6= 0, for all i = 1, . . . , s, applied to the optimal control problem (1). Consider
the optimality conditions (6), and assume that ∇2

uH(u, y, p) is invertible in a neighborhood of the
solution, then we have the following theorem. If we discretize (6) using an s-stage partitioned
Runge-Kutta method (aij , bi)−(âij , b̂i) of order p?ode for ODEs (as partitioned RK method), and the
condition (8) is satisfied, then the order poc of (5) satisfies poc = p?ode ≤ pode and the schemes (5)
and (7) are equivalent. In particular, for pode ≥ 2, equivalently

∑s
i=1 bi = 1 and

∑s
i,j=1 biaij = 1

2 ,
we get p?ode ≥ 2 and poc ≥ 2.

The proof of Theorem 2.1 relies on the commutativity of the following diagram [10, Sect. 2]
which means that methods (5) and (7), colorredwhere (7) is a symplectic partitioned Runge-
Kutta method, yield exactly the same outputs (up to round-off errors) if derived for Runge-Kutta
discretizations of (1) and (6) respectively. We also refer to the article [22] where the role of
symplectic partitioned Runge-Kutta methods involved in this commutative diagram is discussed.

(1) (5)

(6) (7)

optimality conditions

discretization

discretization

optimality conditions

Remark that in (7), if the method (aij , bi) is explicit, then (âij , b̂i) is in contrast an implicit
method. Hence it is useful to consider the costate equation backward in time and use the time
adjoint of (âij , b̂i) which turns out to be explicit as shown in Proposition 3.1 in Section 3. Indeed,
consider method (7) and proceed as in [11, 14],

pk+1 + h

s∑
i=1

b̂i∇yH(uki, yki, pki) = pki + h

s∑
j=1

âij∇yH(ukj , ykj , pkj),
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we then deduce from the identity bj − âij =
bj
bi
aji the following formulation where pN serves to

initialize the induction on k = N − 1, . . . , 0,

pk = pk+1 + h
s∑
i=1

bi∇yH(uki, yki, pki), pki = pk+1 + h
s∑
j=1

bj
bi
aji∇yH(ukj , ykj , pkj).

The above Runge-Kutta method (ãij , b̃i) := (
bj
bi
aji, bi) for the costate is in fact the time adjoint

of (âij , b̂i). Since the method (âij , b̂i) is called in the literature the adjoint method in the sense
of optimal control because it is applied to the adjoint equation (costate), we call the method

(ãij , b̃i) := (
bj
bi
aji, bi) the double adjoint of (aij , bi), and we rewrite method (7) as

yk+1 = yk + h

s∑
i=1

bif(uki, yki), k = 0, . . . , N − 1

yki = yk + h

s∑
j=1

aijf(ukj , ykj), k = 0, . . . , N − 1 i = 1, . . . , s

pk = pk+1 + h

s∑
i=1

b̃i∇yH(uki, yki, pki), k = N − 1, . . . , 0

pki = pk+1 + h

s∑
j=1

ãij∇yH(ukj , ykj , pkj), k = N − 1, . . . , 0 i = s, . . . , 1

0 = ∇uH(uki,ki , pki), k = 0, . . . , N − 1 i = 1, . . . , s

y0 = y0, pN = ∇Ψ(yN ).

(9)

Note that we integrate the state forward in time (increasing indices k) and the costate backward
in time (decreasing k).

An immediate consequence of Theorem 2.1 is that applying naively a Runge-Kutta method
yields in general an order reduction, as stated in the following remark.

Remark 2.2. Consider a Runge-Kutta method (aij , bi) of order pode = 2 and define (ãij , b̃i) :=
(aij , bi), in general the obtained partitioned Runge-Kutta method (9) is not of order poc = 2.

Indeed, the coupling order conditions
∑s

i,j=1 biâij = 1
2 and

∑s
i,j=1 b̂iaij = 1

2 are not automatically
satisfied in general. In particular, for (aij , bi) being the standard order two RKC method studied
in the next section below, it can be checked that poc = 1. This makes non trivial the construction
of an explicit stabilized scheme of order 2 for optimal control problems, as described in section
3.3. We will see that the notion of double adjoint of a Runge-Kutta method, as described above,
is an essential tool in our study.

To implement (9) (equivalent to (7)), we shall use the following classical iterative algorithm
which was proposed as a parallel algorithm with N sub-problems in [21, Algo. 4]. For simplicity
of the presentation, we only recall the non parallel algorithm, but emphasize that the parallel
version could also be used in our context with explicit stabilized schemes.

Algorithm 2.3. (see for instance [21, Algo. 4]). First start with an initial guess for the internal
stages of the control U0 = (u0

ki)
i=1,...,s
k=0...,N−1 where u0

ki ∈ Rm for all k and i. Denote by yl =

(ylk)k=0,...,N−1 and Y l = (ylki)
i=1,...,s
k=0...,N−1 the collection of the state values and its internal stages

respectively at iteration l, and analogously we use the notations pl and P l for costate and its
internal stages at iteration l. Suppose that at the iteration l, U l is known. For the next iteration
l + 1, the computation of U l+1 is achieved as follows.
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1. Compute Y l, P l, yl, pl as in (9), the computation is done forward in time for the state yk
and backward in time for the costate pk.

2. Compute ũl+1
ki solving the system ∇uH(ũl+1

ki , y
l
ki, p

l
ki) = 0, for all k and i using an analytical

formula if available, or a Newton method for instance.

3. Denoting Ũ l = (ũlki)
i=1,...,s
k=0...,N−1, define U l+1 by U l+1 = (1−θl)U l+θlŨ l+1, where θl is defined

to minimize the scalar function θ 7→ Ψ(U l+1) using a simple trisection method for instance,
where Ψ : U 7→ Ψ(yN ).

We stop when ‖U l+1 − U l‖ ≤ tol, where tol is a prescribed small tolerance.

In the recent paper [20], it was shown that the forward-backward sweep iteration defined
in Algorithm 2.3 used in implementing discretized optimal control problems converges when
using a symplectic Runge-Kutta discretization, which strengthens the interest of such symplectic
methods.

For simplicity, we assume in the rest of the paper that y0 = y0 always holds in (7).

2.2 Explicit stabilized methods

Stability is a crucial property of numerical integrators for solving stiff problems and we refer to
the book [13]. A Runge-Kutta method is said to be stable if the numerical solution stays bounded
along the integration process. Applying a Runge-Kutta method (3) to the linear test problem
(with fixed parameter λ ∈ C),

ẏ = λy, y(0) = y0, (10)

with stepsize h yields a recurrence of the form yk+1 = R(hλ)yk and by induction we get yk =
R(hλ)ky0. The function R(z) is called the stability function of the method and the stability
domain is defined as S := {z ∈ C; |R(z)| ≤ 1}, and yk remains bounded if and only if hλ ∈ S.
The same result also applies to the internal stages of the Runge-Kutta method, for all i = 1, . . . , s,
where s is the number of internal stages, yki = Ri(hλ)yk, for some function Ri. Remark that
R(z) is a rational function for implicit methods, but in the case of explicit methods the stability
function R(z) reduces to a polynomial. The simplest Runge-Kutta type method to integrate
ODEs (2) is the explicit Euler method yk+1 = yk+hf(yk) with stability polynomial R(z) = 1+z.
However, its stability domain S is small (it reduces to the disc of center −1 and radius 1 in the
complex plane) which yields a severe time step restriction and makes it very expensive for stiff
problems.

2.2.1 Optimal first order Chebyshev methods

The idea of explicit stabilized methods (as introduced in [25], see the survey [2]) is to construct
explicit Runge-Kutta integrators with extended stability domain that grows quadratically with
the number of stages s of the method along the negative real axis, and hence allows to use large
time steps typically for problems arising from diffusion partial differential equations. The family
of methods considered in [25] is known as “Chebyshev methods” since its construction relies on
Chebyshev polynomials Ts(x) satisfying Ts(cos θ) = cos(sθ). These polynomials allow us to obtain
a two-step recurrence formula and hence low memory requirements and good internal stability
with respect to round-off errors. The order one Chebyshev method for solving a stiff ODE (2) is
defined as an explicit s-stage Runge-Kutta method by the recurrence

yk0 = yk, yk1 = yk + µ1hF (yk0),

yki = µihF (yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, j = 2, . . . , s (11)
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yk+1 = yks,

where

ω0 := 1 +
η

s2
, ω1 :=

Ts(ω0)

T ′s(ω0)
, µ1 :=

ω1

ω0
, (12)

where η is called the damping parameter and is used to make the stability of the method robust
with respect to small perturbations as described below. Finally, for all i = 2, . . . , s,

µi :=
2ω1Ti−1(ω0)

Ti(ω0)
, νi :=

2ω0Ti−1(ω0)

Ti(ω0)
. (13)

One can easily check that the (family) of methods (11) has the same first order of accuracy as
the explicit Euler method (recovered for s = 1). Note that instead of the standard Runge-Kutta
method formulation (3) with coefficients (aij , bi), the one step method yk+1 = Φh(yk) in (11)
should be implemented using a recurrence relation (indexed by j) inspired from the relation (14)
on Chebyshev polynomials

Tj(z) = 2zTj−1(z)− Tj−2(z), (14)

where T0(z) = 1, T1(z) = z. This implementation (11) yields a good stability [25] of the scheme
with respect to round-off errors. The most interesting feature of this scheme is its stability
behavior. Indeed, the method (11) applied to (10) yields, with z = λh, yk+1 = Rηs(z)yk =
Ts(ω0+ω1z)
Ts(ω0) yk. A large real negative interval (−Cηs2, 0) is included in the stability domain of the

method S := {z ∈ C; |Rηs(z)| ≤ 1}. For the internal stages, we have analogously yki = Rηs,i(z)yk =
Ti(ω0+ω1z)
Ti(ω0) yk. The constant Cη = 2− 4/3 η +O(η2) depends on the so-called damping parameter

η and for η = 0, it reaches the maximal value C0 = 2 (also optimal with respect to all possible
stability polynomials for explicit schemes of order 1). Hence, given the stepsize h, for dissipative
vector fields with a Jacobian having large real negative eigenvalues (such as diffusion problems)
with spectral radius λmax at yn, the parameter s for the next step yn+1 can be chosen adaptively
as1

s :=

[√
hλmax + 1.5

2− 4/3 η
+ 0.5

]
, (15)

see [1] in the context of stabilized schemes of order two with adaptive stepsizes. The method (11)
is much more efficient as its stability domain increases quadratically with the number s of function
evaluations while a composition of s explicit Euler steps (same cost) has a stability domain that
only increases linearly with s. In Figure 1 we plot the internal stages for s = 10 and different
values η = 0 and η = 0.05 , respectively. We observe that in the absence of damping (η = 0),
the stability function (here a polynomial) is bounded by 1 in the large real interval [−2s2, 0] of
width 2 · 102 = 200. However, for all z that are local extrema of the stability function, where
|Rηs(z)| = 1, the stability domain is very narrow in the complex plane. Here the importance of
some damping appears, to make the scheme robust with respect to small perturbations of the
eigenvalues. A typical recommended value for the damping parameter is η = 0.05, see [26, 2]. The
advantage of this damping is that the stability polynomial is now strictly bounded by 1 and the
stability domain includes a neighborhood of the negative interval (−Cηs2, 0). This improvement
costs a slight reduction of the stability domain length from 2s2 to Cηs

2 where Cη ≥ 2− 4
3η.

1The notation [x] stands for the integer rounding of real numbers.
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(a) η = 0
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(b) η = 0.05

Figure 1: Internal stages (thin curves) and stability polynomials (bold curves) of the Chebyshev
method (11) for s = 10 with and without damping.

2.2.2 Second order RKC methods

To design a second order method, we need the stability polynomial to satisfy2 R(z) = 1+z+ z2

2 +
O(z3). In [9], Bakker introduced a correction to the first order shifted Chebyshev polynomials to
get the following second order polynomial

Rηs(z) = as + bsTs(ω0 + ω2z), (16)

where,

as = 1− bsTs(ω0), bs =
T ′′s (ω0)

(T ′s(ω0)2)
, ω0 = 1 +

η

s2
, ω2 =

T ′s(ω0)

T ′′s (ω0)
, η = 0.15. (17)

For each s, |Rηs(z)| remains bounded by ab + bs = 1− η/3 +O(η2) for z in the stability interval
(except for a small interval near the origin). The stability interval along the negative real axis
is approximately [−0.65s2, 0], and covers about 80% of the optimal stability interval for second
order stability polynomials, and the formula now for calculating s for a given time step h is

s :=

[√
hλmax + 1.5

0.65
+ 0.5

]
. (18)

Using the recurrence relation of the Chebyshev polynomials, the RKC method as introduced in
[25] is defined by

yk0 = yk, yk1 = yk0 + hb1ω2f(yk0),

yki = yk0 + µ′ih(f(yk,i−1)− ai−1f(yk0)) + ν ′i(yk,i−1 − yk0)

+ κ′i(yk,i−2 − yk0),

yk+1 = yks,

(19)

where,

µ′i =
2biω2

bi−1
, ν ′i =

2biω0

bi−1
, κ′i = − bi

bi−2
, bi =

T ′′i (ω0)

(T ′i (ω0)2)
, ai = 1− biTi(ω0), (20)

2Indeed, up to order two, the order conditions for nonlinear problems are the same as the order conditions for
linear problems [12, Chap. III].
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(a) Classical RKC (19).
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(b) New RKC (21).

Figure 2: Internal stages (thin curves) and stability polynomials (bold curves) of the classical
(19) and the new (21) RKC implementations for s = 10 internal stages.

for i = 2, . . . , s. As in (16), the stability functions of the internal stages are given by Rηi (z) =
ai + biTi(ω0 + ω2z), where i = 0, . . . , s − 1, and the parameters ai and bi are chosen such that
the above stages are consistent Rηi (z) = 1 + O(z). The parameters b0 and b1 are free (Rη0(z) is
constant and only order 1 is possible for Rη1(z)) and the values b0 = b1 = b2 are suggested in [24].
In this paper, to facilitate the analysis of the internal stability of the optimal control methods,
making the internal stages of the RKC method analogous to the Chebyshev method (11) of order
one, we introduce a new implementation of RKC method

yk0 = yk, yk1 = yk + µ1hF (yk0),

yki = µihF (yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s (21)

yk+1 = asyk0 + bsTs(ωo)yks,

where µ1 = ω2
ω0

, as, bs are given in (17), and the parameters µi and νi are defined by (analogously

to (13), using ω2 instead of ω1), µi = 2ω2Ti−1(ω0)
Ti(ω0) , νi = 2ω0Ti−1(ω0)

Ti(ω0) , for i = 2, . . . , s. This new

formulation (21) yields the same stability function Rηs(z) in (16) but different internal stages,
and it will be helpful when we introduce the double adjoint of RKC in Section 3. We recall that
for an accurate implementation, one should not use the standard Runge-Kutta formulations with
coefficients (aij , bi) for (11) and (19) since they are unstable due to the accumulated round-off
error for large values of s. In contrast, the low memory induction formulations (11) and (19) are
easy to implement and very stable with respect to round-off errors [25].

Note that (21) is not the same Runge-Kutta method as the standard RKC (19) from [25],
it has different internal stages but the same stability function Rηs(z) in (16) and hence order
pode = 2. In Figure 2 we can see that the internal stages of the new formulation (21) of RKC
have an analogous behavior compared to those of the first order Chebyshev method oscillating
around zero (see Figure 1), in contrast to those of the standard RKC (19), oscillating around the
value as > 0. In addition, comparing Figures 2b and 1b, we see that the internal stages of the
new RKC method (21) are the same as the order one Chebyshev method (11) up to a horizontal
rescaling ω2/ω1. This is because the s internal stages of the methods have the stability function
Ti(ω0 + ωjz)/Ti(ω0), i = 1, . . . , s for j = 1, 2 respectively.

Notice however that this modification of the standard RKC method (19) deteriorates the order
two of accuracy of the internal stages of the method, useful for PDEs with non homogeneous

9
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(a) Classical ROCK2.

-140 -120 -100 -80 -60 -40 -20 0

-1

-0.5

0

0.5

1

(b) Double adjoint of ROCK2.

Figure 3: Internal stages (thin curves) and stability polynomials (bold curves) of the ROCK2
method [6] and its double adjoint for optimal control for s = 13 stages.

boundary conditions [16, Chap. V].

Remark 2.4. Analogously to the standard RKC method (19), the new RKC formulation (21)
can be equipped with an error estimator to allow a variable time step control. Since the new
formulation (21) has the same stability function, one can use the same error estimator as pro-
posed in [23, Sect. 3.1]. In this paper we consider only a constant time step for simplicity of the
presentation but emphasize that a variable time step hn can be used for the new optimal control
method of order two.

Remark 2.5. Second order Runge-Kutta Orthogonal Chebyshev (ROCK2) methods, as introduced
in [6], are second order explicit stabilized methods for which the stability domain contains an
interval that covers around 98% of the optimal one for second order explicit methods. It would
be interesting to extend such second order methods with nearly optimally large stability domain
to the context of optimal control problems. It turns out however that such an extension based
on ROCK2 (or its order four extension ROCK4 [1]) is difficult and not analyzed in the present
paper. This difficulty arises from the severe instability of the internal stages of the double adjoint
of the standard ROCK2 method (see Figure 3) which would introduce large round-off errors for
stiff problems (large values of s), making the obtained optimal control method not reliable.

3 Explicit stabilized methods for optimal control

In this section, we derive new two term recurrence relations of the double adjoints of Chebyshev
method (11) and RKC method (21) that are numerically stable. Indeed, one cannot rely on
standard Runge-Kutta coefficients for the implementation of explicit stabilized schemes.

3.1 Double adjoint of a general Runge-Kutta method

Recall from (9) that the Butcher tableau of the double adjoint (ãij , b̃i) of (4) is

ãji

b̃i
:=

bj
bi
aji

bi
. (22)
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Proposition 3.1. If a Runge-Kutta method (aij , bi) (4) is explicit, then its double adjoint (22)
is explicit as well.

Proof. For an explicit Runge-Kutta method we have that aij = 0 for all j ≥ i i.e the matrix (aij)
is strictly lower triangular. Permuting the internal stages in (22) for i, j = s, . . . , 2, 1 does not
modify the method but yields the following Butcher tableau

bs+1−j

bs+1−i
as+1−j,s+1−i

bs+1−i
(23)

which is strictly lower triangular, and thus the method (22) is again explicit.

An immediate consequence of Proposition 3.1 is that for explicit methods, the stability func-
tion of the double adjoint is again a polynomial. In fact it turns out, as stated in Theorem 3.2
below, that for any Runge-Kutta method, the double adjoint (ãij , b̃i) has exactly the same sta-
bility function as (aij , bi). Note however that this result does not hold in general for the internal
stages (see Remark 2.5 about ROCK2).

Theorem 3.2. A Runge-Kutta method (aij , bi) and its double adjoint (ãij , b̃i) in (22) share the
same stability function R(z).

Proof. Let A = (aij), Ad = (aji bj/bi), and b = (bi), i, j = 1 . . . s. We recall the formula for the
stability function of the Runge-Kutta method (aij , bi),

R(z) =
det(I − zA+ z1bT )

det(I − zA)
, (24)

where 1 ∈ Rs is the line vector of size s containing only ones. Using a simple calculation, one can
show that ATd = DAD−1 where D = diag(bi). This implies that I − zATd = D(I − zA)D−1, and
since I− zATd = (I− zAd)T , thus det(I− zA) = det(I− zAd). Using the same diagonal matrix D
we have D1bTD−1 = 1T b, hence I−zATd +z1b = D(I−zA+z1b)D−1 and det(I−zATd +z1b) =
det(I − zA+ z1b) and hence the stability function of (ãij , b̃i) is again (24).

3.2 Chebyshev method of order one for optimal control problems

For clarity of presentation, we first study Chebyshev method of order one for optimal control
problems before introducing the second order RKC method. Applying the order one Chebyshev
method (11) to the problem (1) we get

min Ψ(yN ), such that

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s

yk+1 = yks,

(25)

where, k = 0, . . . , N −1, η > 0 is fixed, and the parameters µi, νi are defined as in (12) and (13).
For the implementation of Algorithm 2.3 based on the order one Chebyshev method (25)

for the state equation, the costate equation can be implemented efficiently using the recurrence
relations given by the following theorem.

11



Theorem 3.3. The double adjoint of scheme (25) is given by the recurrence

pN = ∇Ψ(yN ), pks = pk+1

pk,s−1 = pks +
µs
νs
h∇yH(uk,s−1, yk,s−1, pks)

pk,s−j =
µs−j+1αs−j+1

αs−j
h∇yH(uk,s−j , yk,s−j , pk,s−j+1)

+
νs−j+1αs−j+1

αs−j
pk,s−j+1

+
(1− νs−j+2)αs−j+2

αs−j
pk,s−j+2, j = 2 . . . , s− 1,

pk0 = µ1α1h∇yH(uk0, yk0, pk1) + α1pk1 + (1− ν2)α2pk2

pk = pk0

∇uH(uk,s−j , yk,s−j , pk,s−j+1) = 0, j = 1, . . . , s.

(26)

where k = N − 1, . . . , 2, 1, 0 and the coefficients αj are defined by induction as

αs = 1, αs−1 = νs,

αs−j = νs−j+1αs−j+1 + (1− νs−j+2)αs−j+2, j = 2 . . . s− 1.
(27)

The proof of Theorem 3.3 uses similar arguments to the proof of Theorem 2.1, with the
exception that we now rely on the recurrence formula (25) instead of the standard Runge-Kutta
formulation (6) to avoid numerical instability.

Proof of Theorem 3.3. The Lagrangian associated to the discrete optimization problem (25) is

L = Ψ(yN ) + p0 · (y0 − y0) +

N−1∑
k=0

{
pk+1 · (yks − yk+1)− pk0 · (yk − yk0)

+ pk1 · (yk0 + µ1hf(uk0, yk0)− yk1)

+

s∑
i=2

pki · (µihf(uk,i−1, yk,i−1) + νiyk,i−1

+ (1− νi)yki−2 − yki)
}
.

Here pk+1, pki, and p0 are the Lagrange multipliers. The optimality necessary conditions are thus
given by

∂L
∂yk

= 0,
∂L
∂yki

= 0,
∂L
∂pk

= 0,
∂L
∂pki

= 0,
∂L
∂uki

= 0, (28)

where k = 0, . . . , N − 1 and i = 0, . . . , s. By a direct calculation, we obtain the following system,

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s,

yk+1 = yks,

pN = ∇Ψ(yN ), pks = pk+1,

pk,s−1 = µsh∇yH(uk,s−1, yk,s−1, pks) + νspks,

pk,s−j = µs−j+1h∇yH(uk,s−j , yk,s−j , pk,s−j+1) + νs−j+1pk,s−j+1

+ (1− νs−j+2)pk,s−j+2, j = 2, . . . , s− 1,

pk0 = µ1h∇yH(uk0, yk0, pk1) + pk1 + (1− ν2)pk2,

pk = pk0,

∇uH(uk,s−j , yk,s−j , pk,s−j+1) = 0, j = 1, . . . , s,

(29)
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where k = 0, . . . , N − 1. In the above system, observe that the steps pki of the double adjoint are
not internal stages of a Runge-Kutta method, that is because they are not O(h) perturbations of
the pk+1, i.e. pki 6= pk+1+O(h), for instance, already for the first step pk,s−1 = νspk+1+O(h) with
νs = 2 +O(η). Since the pseudo-Hamiltonian H(u, y, p) is linear in p, we can rescale the internal
stages of the costate by a factor αj such that for p̂kj := α−1

j pkj , we obtain p̂kj = pk+1 + O(h).
We define

p̂ks := pks, p̂k,s−1 :=
pk,s−1

νs
= p̂ks +

µs
νs
h∇yH(uk,s−1, yk,s−1, p̂ks).

Substituting p̂k,s−2 in (29), we obtain

pk,s−2 = µs−1νsh∇yH(uk,s−2, yk,s−2, p̂k,s−1) + νs−1νsp̂k,s−1 + (1− νs)p̂ks,

the quantities p̂k,s−1 and p̂ks are equal to pk+1+O(h), hence pk,s−2 = (νs−1νs+1−νs)pk+1+O(h),
this implies that αs−2 = νs−1νs + 1− νs and therefore

p̂k,s−2 :=
pk,s−2

νs−1νs + 1− νs
=

pk,s−2

νs(νs−1 − 1) + 1
.

Following this procedure for pk,s−j , j = 2, . . . , s − 1, we arrive at the Runge-Kutta formulation
(26) of the double adjoint of scheme (25), where we go back to the notation pki instead of p̂ki.

Remark 3.4. A straightforward calculation yields that without damping (for η = 0), we have
αs−j = j + 1, and method (25)-(26) reduces to the following recurrence

yk0 = yk, yk1 = yk0 +
h

s2
f(uk0, yk0),

yki =
2h

s2
f(uk,i−1, yk,i−1) + 2yk,i−1 − yk,i−2, i = 2, . . . , s,

yk+1 = yks,

pN = ∇Ψ(yN ), pks = pk+1,

pk,s−1 = pks +
h

s2
∇yH(uk,s−1, yk,s−1, pks),

pk,s−j =
2j

(j + 1)s2
h∇yH(uk,s−j , yk,s−j , pk,s−j+1) +

2j

j + 1
pk,s−i+1

+
1− j
j + 1

pk,s−j+2, j = 2, . . . , s− 1,

pk0 =
h

s
∇yH(uk0, yk0, pk1) + spk1 + (1− s)pk2,

pk = pk0,

∇uH(uk,s−j , yk,s−j , pk,s−j+1) = 0, j = 1, . . . , s.

(30)

where k = 0, . . . , N − 1. In Section 3.4, we shall study the stability of (30) (without damping)
and of (25)-(26) (with damping).

3.3 RKC method of order 2

We consider the new implementation (21) of the RKC method applied to (1) for which the internal
stages behave similarly to that of the order one method, given by

min Ψ(yN ), such that

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s

yk+1 = asyk0 + bsTs(ω0)yks,

(31)
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where, k = 0, . . . , N − 1, η = 0.15, and again all the parameters are defined as for the Chebyshev
method using ω2 instead of ω1. The order two RKC method with formulation (31) for the state
equation can be implemented using Algorithm 2.3, the costate equation being implemented using
the recurrence relations given by the following Theorem 3.5. Its proof is analogous to that of
Theorem 3.3 and thus omitted.

Theorem 3.5. The double adjoint of the scheme (31) is given by the recurrence

pN = ∇Ψ(yN ), pks = pk+1,

pk,s−1 = pks +
µs
νs
h∇yH(uk,s−1, yk,s−1, pks),

pk,s−j =
µs−j+1αs−j+1

αs−j
h∇yH(uk,s−j , yk,s−j , pk,s−j+1)

+
νs−j+1αs−j+1

αs−j
pk,s−j+1,

+
(1− νs−j+2)αs−j+2

αs−j
pk,s−j+2, j = 2, . . . , s− 1,

pk0 = µ1α1h∇yH(uk0, yk0, pk1) + α1pk1 + (1− ν2)α2pk2 + aspk+1,

pk = pk0,

∇uH(uk,s−j , yk,s−j , pk,s−j+1) = 0, j = 1, . . . , s,

(32)

where the coefficients αj are defined using the induction

αs = bsTs(ω0), αs−1 = νsαs,

αs−j = νs−j+1αs−j+1 + (1− νs−j+2)αs−j+2, j = 2 . . . s− 1.
(33)

In Figure 4, we plot the stability function and the internal stages of the double adjoint (26)
of Chebyshev (11) and the double adjoint (32) of RKC (21). Comparing with Figures 1b and 2b,
we observe that the internal stages are not the same for the double adjoint methods compared
to the (11) and (21), while the stability function itself is identical as shown in Theorem 3.2 for a
general Runge-Kutta method.

3.4 Stability and convergence analysis

In this section, we study the stability of the double adjoint of the Chebyshev method (25) and
the RKC method (31). We recall that for the Chebyshev method of order one (resp. RKC of
order two) the stability domain contains the interval [−β(s, η), 0] where βCheb(s, η) ≈ (2−4η/3)s2

(resp. βRKC(s, η) ≈ 0.653s2 for η = 0.15).

Theorem 3.6. Consider the Chebyshev (25) and the RKC (31) methods. For η = 0, the stability
functions of the internal stages Rs,i(z) of the Chebyshev (resp. RKC) double adjoint (26) (resp.
(32)), are bounded by 1 for all z ∈ [−2s2, 0] (resp. [−2

3s
2 + 2

3 , 0]) and all s ∈ N.

The proof of Theorem 3.6 relies on the following lemma.

Lemma 3.7. Let s ≥ 1, and consider the double sequence γ̃ij indexed by i and j,

γ̃ij = 0 ∀ j > i, i = 0, . . . , s− 1,

γ̃0
0 = 1, γ̃1

0 = 0, γ̃1
1 = 2,

(34)
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(a) Double adjoint (26) for η = 0.05
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(b) Double adjoint (32) for η = 0.15

Figure 4: Internal stages (thin curves) and stability polynomial (bold curve) of the double adjoint
of the Chebyshev method (26) of order one and the RKC method (32) of order two for s = 10
internal stages.

γ̃i0 = γ̃i−1
1 − γ̃i−2

0 , γ̃i1 = 2γ̃i−1
0 + γ̃i−1

2 − γ̃i−2
1 i = 2, . . . , s− 1,

γ̃ij = γ̃i−1
j−1 + γ̃i−1

j+1 − γ̃
i−2
j i = 2, . . . , s− 1, j = 2, . . . , i,

(35)

Then,

γ̃ij = 0 ∀ j > i,

γ̃i0 =

{
1 if i is even

0 if i is odd
γ̃ij =

{
2 if i− j is even

0 otherwise

(36)

where i = 0, . . . , s− 1, j = 0, . . . , i.

Proof. It can be checked that the coefficients defined in (36) verify the induction (35). Hence
using the fact that they have the same initial terms (34), we conclude that they coincide by
induction on i and j.

Proof of Theorem 3.6. We first consider the Chebyshev method without damping applied to the
linear test problem y′ = λy , λ ∈ C, t ∈ (0, T ], y(0) = 1, with a uniform subdivision x0 = 0 <
x1 < · · · < xN = T of stepsize h. Using Remark 3.4, we obtain for k = 0:

yk0 = 1, yk1 = yk0 +
hλ

s2
yk0,

yki =
2ihλ

(i+ 1)s2
yk,i−1 +

2i

i+ 1
yk,i−1 +

1− i
i+ 1

yk,i−2, i = 2, . . . , s− 1,

yks =
hλ

s
yk,s−1 + syk,s−1 + (1− s)yk,s−2,

y1 = yks.

(37)

First, notice that since 2i
i+1 + 1−i

i+1 = 1, we have that for all i = 0, . . . , s, yki = (1 + O(h)) (by
induction). Setting z = hλ, it is sufficient to prove the identity

yki =
i∑

j=0

γijTj(1 +
z

s2
) (38)
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where yki is a convex combination of the polynomials Tj(1 + z
s2

),

i∑
j=0

γij = 1 and γij ≥ 0 ∀ i, j = 1, . . . s− 1, (39)

because |Tj(1 + z
s2

)| ≤ 1 for all j = 0, . . . , s and z ∈ [−β(s, 0), 0] = [−2s2, 0].
Since the Chebyshev polynomials form a basis of the vector space of polynomials, this already
justifies the existence of the expansion (38) with some real coefficients γij . The identity

∑i
j=0 γ

i
j =

1 follows from the fact that yki = 1 + O(h) and Tj(1 + z
s2

) = 1 + O(h) for all i, j = 0, . . . , s.
Now we can calculate these coefficients for the first two internal stages, Rs,0(z) = yk0 = yk =
1 = T0(1 + z

s2
), thus γ0

0 = 1. Analogously, Rs,1(z) = yk1 = yk0 + hλ
s2
yk0 = 1 + z

s2
= T1(1 +

z
s2

) we obtain γ1
0 = 0, γ1

1 = 1.
It remains to prove the positivity of the coefficients γij . Coupling (38) and (39), we obtain

Rs,i(z) = yki =
2i

i+ 1
(1 +

z

s2
)yk,i−1 +

1− i
i+ 1

yk,i−2

=
2i

i+ 1
(1 +

z

s2
)

i−1∑
j=0

γi−1
j Tj(1 +

z

s2
) +

1− i
i+ 1

i−2∑
j=0

γi−2
j Tj(1 +

z

s2
)

=
2i

i+ 1
γi−1

0 T1(1 +
z

s2
) +

i∑
j=2

i

i+ 1
γi−1
j−1Tj(1 +

z

s2
)

+

i∑
j=2

(
i

i+ 1
γi−1
j−1 −

i− 1

i+ 1
γi−2
j−2

)
Tj−2(1 +

z

s2
)

where we used (14). By comparison with (38), we obtain the following recurrence

γij = 0 ∀ j > i, i = 0, . . . , s− 1,

γ0
0 = 1, γ1

0 = 0, γ1
1 = 1, γi0 =

i

i+ 1
γi−1

1 − i− 1

i+ 1
γi−2

0 i = 2, . . . , s− 1,

γi1 =
2i

i+ 1
γi−1

0 +
i

i+ 1
γi−1

2 − i− 1

i+ 1
γi−2

1 i = 2, . . . , s− 1,

γij =
i

i+ 1
γi−1
j−1 +

i

i+ 1
γi−1
j+1 −

i− 1

i+ 1
γi−2
j i = 2, . . . , s− 1, j = 2, . . . , i.

Now defining γ̃ij = (i+1)γij , the above induction relations simplify to (34) and (35). The positivity

of γ̃ij , and hence of γij , follows from Lemma 3.7. For i = s, the stability is a consequence of
Theorem 3.2.

Analogously, the RKC method reads for η = 0,

yk0 = 1, yk1 = yk0 +
3hλ

s2 − 1
yk0,

yki =
6ihλ

(i+ 1)(s2 − 1)
yk,i−1 +

2i

i+ 1
yk,i−1 +

1− i
i+ 1

yk,i−2, i = 2, . . . , s− 1,

yks =
hλ

s
yk,s−1 +

s2 − 1

3s
yk,s−1 −

s3 − s2 − s+ 1

3s2
yk,s−2 +

2s2 + 1

3s2
y0,

y1 = yks,

(40)

and we follow the same methodology as above. Note that for RKC we have |Tj(1 + 3
s2−1

z)| ≤ 1

for all j = 0, . . . , s and z ∈ [−β(s, 0), 0] = [−2
3(s2− 1), 0]. Using the same notations we search for
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coefficients satisfying the following

yki =
i∑

j=0

γijTj(1 +
3

s2 − 1
z), where

i∑
j=0

γij = 1 and γij ≥ 0 ∀ i, j = 1, . . . s− 1. (41)

Remark that Rs,0(z) = yk0 = yk = 1 = T0(1 + 3
s2−1

z), hence γ0
0 = 1. Analogously, Rs,1(z) =

yk1 = yk0 + 3hλ
s2−1

yk0 = 1 + 3z
s2−1

= T1(1 + 3
s2−1

z), and we deduce that γ1
0 = 0, γ1

1 = 1.
Again we find a relation between these new coefficients to prove their positivity using yki =
2i
i+1(1 + 3

s2−1
z)yk,i−1 + 1−i

i+1yk,i−2. We get a recurrence of the same form as in the Chebyshev
double adjoint method (37) but with different parameter, proceeding in the same we obtain
exactly the same coefficients γij , which concludes the proof.

Remark 3.8. For the case of positive damping η > 0, the coefficients get very complicated and it
is difficult to find a recurrence relation between them in order to prove their positivity. However,
observing that all the coefficients in the recurrence relations of the internal stages of the methods
are continuous functions of η, then for all s, there exists η0(s) such that the internal stages are
stable (bounded) for all η ∈ [0, η0(s)]. Numerical investigations suggest that Theorem 3.6 remains
valid for all η > 0 i.e the methods remain stable with the stability functions of the internal stages
bounded by 1, for all integers s ≥ 1 for Chebyshev and s ≥ 2 for RKC, and all η > 0. We have
verified this numerically for s ≤ 200.

We conclude this section by the following convergence theorem for the new explicit stabilized
methods for stiff optimal control problems.

Theorem 3.9. The method (25)-(26) (resp. (31)-(32)) has order 1 (resp. 2) of accuracy for the
optimal control problem (1).

Proof. The proof follows immediately from Theorem 2.1 with poc = pode = 2 for the RKC
method.

Remark 3.10. The proposed explicit stabilized integrators for optimal control problems could be
combined with the idea of implicit-explicit (IMEX) integrators as proposed in [14], where RKC
type methods would replace the implicit part in the IMEX integrator. This idea is already proposed
in [28, 7] in the context of advection-diffusion-reaction problems. In [28], the diffusion part is
discretized with an RKC method which typically has a large number of internal stages, and the
advection-reaction part is integrated using a 4-stage explicit Runge-Kutta method. In [7], the
method integrates the diffusion term using ROCK2 method, the advection term using a 3-stage
explicit method, and the nonlinear reaction term is solved implicitly. Such an extension is however
out of the scope of the paper.

4 Numerical experiments

In this Section, we illustrate numerically our theoretical findings of convergence and stability of
the new fully explicit methods for stiff optimal control problems, first on a stiff three dimensional
problem and second on a nonlinear diffusion advection PDE (Burgers equation).
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(b) ε = 10−3.

Figure 5: Convergence plot of RKC (31)-(32) applied to problem (43).

4.1 A linear quadratic stiff test problem

We start this section by a simple test problem taken from [11]:

min
1

2

∫ 1

0
(u2(t) + 2x2(t))dt subject to

ẋ(t) =
1

2
x(t) + u(t), t ∈ [0, 1], x(0) = 1.

(42)

The optimal solution (u∗, x∗) is given by u∗(t) = 2(e3t−e3)

e3t/2(2+e3)
, x∗(t) = 2e3t+e3

e3t/2(2+e3)
. As studied in [14]

we modify problem (42) into a singularly perturbed (stiff) problem to illustrate the good stability
properties of our new method. For a fixed ε > 0, we consider the following stiff optimal control
problem,

min c(1) subject to

ċ(t) =
1

2
(u2(t) + x2(t) + 4z2(t)), c(0) = 0,

ẋ(t) = z(t) + u(t), x(0) = 1,

ż(t) =
1

ε

(
1

2
x(t)− z(t)

)
, z(0) =

1

2
,

(43)

Figure 5 shows the convergence behavior, using the new RKC method (31)-(32), of the error
in infinity norm between the solutions of the stiff problem (43) for ε = 10−1 and ε = 10−3 and
different sizes of the time step hi = 2−i, i = 0, . . . , 5 and the reference solution is obtained with
h = 2−7. We observe lines of slope 2 which confirms the theoretical order two of accuracy of
the scheme (Theorem 3.9). In the stiff case (ε = 10−3), the method uses s = 4 to calculate
the reference solution and s = 40, 28, 20, 14, 10, 7 respectively for the different time steps used to
illustrate the convergence, these values coincide with the theoretical values that can be obtained
using (18). Analogously to the case of stiff ODEs, the cost of scheme (31)-(32) is O(ε−

1
2 ) function

evaluations of f , while using Euler method with its double adjoint would cost O(ε−1).
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4.2 Optimal control of Burgers equation

To illustrate the performance of the new method, we consider the following optimal control
problem of a nonlinear diffusion advection PDE corresponding to the Burgers equation

min
u∈L2([0,T ];L2(Ω))

J(u) =
1

2
‖y(T )− ytarget‖2L2(Ω) +

α

2

∫ T

0
‖u(t)‖2L2(Ω)

subject to

∂ty(t, x) = µ∆y(t, x)− ν

2
∂x(y2(t, x)) + u(t, x) in (0, T )× Ω,

y(0, x) = g(x) in Ω,

y(t, x) = 0 on ∂Ω,

(44)

where µ, ν > 0, in dimension d = 1 with domain Ω = (0, 1) and the final time is given by T = 2.5.
Here the control u is a part of the source that we want to adjust in order to achieve a given final
state ytarget : Ω→ R.

We use a standard central finite difference space discretization for the state equation, and
the trapezoid rule to discretize in space the norm L2(Ω). We consider M + 2 points in space
xm = m∆x, with grid mesh size ∆x = 1

M+1 , and we denote by ym(t) the approximation to

y(t, xm), and define the vector Y (t) = (y0(t), y1(t), . . . , yM+1(t)) ∈ RM+2. Similar notations are
used for U and P . We obtain the following optimal control problem semi discretized in space,

min
U(t)∈RM+2

Ψ(c(T ), Y (T )) =
1

2(M + 1)

M+1∑
m=0

′
(ym(T )− ytarget(xm))2 + αc(T )

subject to

ċ(t) =
1

2(M + 1)

M+1∑
m=0

′
u2
m(t), c(0) = 0,

ẏm(t) = Fm(U(t), Y (t)) :=
µ

∆x2
(ym+1 − 2ym + ym−1)

− ν

4∆x2
(y2
m+1 − y2

m−1) + um,

ym(0) = g(xm), m = 0, . . . ,M + 1,

(45)

where m = 0, . . .M+1 and the primed sum denotes a normal sum where the first and the last term
are divided by 2 and we define y0 = yM+1 = 0 to take into account the homogeneous Dirichlet
boundary conditions. The function F : RM+2 → RM+2 with components Fm : RM+2 → R is
obtained from the standard central finite difference discretization of the right hand side of the
state equation (44), and adapted to the boundary conditions. The corresponding adjoint system
is

ṗc(t) = 0, pc(T ) = ∇cΨ = α,

Ṗ (t) = −∇Y F (U(t), Y (t))P,
(46)

where P is a vector of length M + 2 containing the costate values pm, m = 0, . . . ,M + 1. In all
our experiments we take µ = 0.1, ν = 0.02, g(x) = 3

2x(1−x)2, and ytarget(x) = 1
2 sin(10x)(1−x).

In Figure 6 we plot the optimal control function (Fig. 6b) and the corresponding state function
(Fig. 6a) obtained using scheme (31)-(32). When we use a small value for α in the model, we
allow larger control values and thus a final state very close to the target (Fig. 6c), otherwise the
control will be more limited and then the final state will not be that close to the target (Fig. 6d).
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(c) Final and target states for α = 0.01.
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(d) Final and target states for α = 0.02.

Figure 6: State, final state, and control, of problem (44). Figures (a), (b), and (c) are obtained
using ∆x = 1/100, ∆t = T/30, and s = 24 stages, and α = 0.01. Figure (d) uses the same ∆x, g
and ytarget but α = 0.02.

Note that the method required s = 24 stages for ∆x = 1/100 and ∆t = 2.5/30, while using an
Euler method with its double adjoint would require ∆t ≤ ∆tmax,Euler := ∆x2/2 at most. Hence,
the standard Euler method would be ∆t/(s∆tmax,Euler) ' 70 times more expensive in terms of
number of function evaluations for ∆x = 1/100, a factor that grows arbitrarily as ∆x→ 0.

In Figure 7, we plot the convergence curves for the state and control functions of the new
RKC method (31)-(32) applied to the diffusion problem discretized in space (45), where the
number of stages s is computed adaptively using (18). We recover again lines of slope two, which
corroborate the order two of the method. Although our convergence analysis is valid only in finite
dimensions (Theorem 3.9), this suggests that the convergence of order two persists in the PDE
case. For comparison, we also included the results for the following standard diagonally implicit
Runge-Kutta method of order two, inspired from [14, Table 5.1] in the context of stiff optimal
control problems, and given by the following Butcher tableau where γ = 1 −

√
2/2 (making the

method L-stable),
γ

1− 2γ γ

1/2 1/2

(47)
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(b) Error in the control.

Figure 7: Convergence plot of the RKC method (31)-(32) and the implicit method (47) applied
to problem (45) for many time steps ∆ti = T/2i, i = 3, . . . , 8, ∆x = 1/100, and α = 0.02, The
reference solution is obtained using ∆t = T/212, s = 3.

Although for a fixed timestep, the second order implicit method (47) appears about two times
more accurate than the RKC method (31)-(32) for the control and almost of the same accuracy
for the state, we emphasize that these convergence plots do not take into account the extra cost
of the implicitness of method (47). Indeed, the cost and difficulty of the implementation of the
implicit methods (nonlinear iterations, preconditioners, etc.) would typically deteriorate in larger
dimensions and for a nonlinear diffusion operator, as it is already the case for initial value PDEs
[2], while as an explicit stabilized scheme, the RKC method (31)-(32) can be conveniently imple-
mented in the spirit of the simplest explicit Euler method.
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