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Abstract

When frying potato snacks, it is typically observed that the dough, which is submerged in hot
oil, after some critical time increases its buoyancy and floats to the surface. The lift-off time is
a useful metric in ensuring that the snacks are properly cooked. Here we propose a multiphase
mathematical model for the frying of potato snacks, where water inside the dough is evaporated
from both the top and bottom surfaces of the snack at two receding evaporation fronts. The vapour
created at the top of the snack bubbles away to the surface, whereas the vapour released from the
bottom surface forms a buoyant blanket layer. By asymptotic analysis, we show that the model
simplifies to solving a one-dimensional Stefan problem in the snack coupled to a thin-film equation
in the vapour blanket through a non-linear boundary condition. Using our mathematical model,
we predict the change in the snack density as a function of time, and investigate how lift-off time
depends on the different parameters of the problem.

Keywords:

1. Introduction

Frying is one of the most common and oldest forms of food cooking. Frying has multiple
functions including to sterilise, dehydrate and create product texture [1]. Generally there are two
types of frying: shallow-fat frying and deep-fat frying. Here we focus on deep fat frying in which
the food product being cooked is fully immersed in the oil. During deep-fat frying, some food
products undergo density changes that cause them to rise within the oil bath. This process can
be exploited in food manufacturing, either as a way of determining the stage of cooking, or as a
mechanism to collect the food from the hot oil. For example, in the production of potato snacks,
uncooked snacks are submerged in hot oil by a conveyor belt; as the dough cooks they become
buoyant and then detach from the conveyor belt. This must happen at precisely the right moment
in order to maximise product quality and the productivity of the process. To ensure that the
snacks robustly detach at the right time, a better quantitative understanding of the underlying
mechanism is needed. In particular, there are two major contributions to buoyancy due to the
generation of steam, which either escapes from the snack causing a reduction in density, or becomes
trapped underneath the snack in a vapour blanket.

1All authors contributed equally to this work, and are placed in alphabetical order.
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Several different mathematical modelling approaches can be found within the food frying lit-
erature. For a comprehensive summary of all relevant types of models, see [13]. Many of these
emphasise transport mechanisms of gases and liquids in porous media [6, 8, 13, 14, 20]. A com-
monly used modelling approach is the crust-core model, in which there are two regions: a dry
crust where the water has evaporated, and a wet core. In the crust-core approach, mass and
energy equations are used to describe the heat and flow in each region, and a moving boundary
tracks the evaporation front at the crust-core interface. One major concern in the deep-fat frying
literature is oil uptake into the snack, and several experiments have been gathered regarding this
issue [5,10,15,16,21]. However, most of these models focus on the oil absorbtion post-frying, since
this is when most of the oil (approximately 80%) enters the snack [14, 20]. Another important
objective of many of these studies is to predict quality changes (puffiness, shrinkage, etc) in the
snacks as they fry [10, 13, 20]. Some models also account for the decrease in the temperature of
the oil due to moisture loss from the chip [6, 13].

A dominant feature of the frying process is the evaporation of the water, which can be observed
both from bubbles rising to the surface, and in a vapour layer surrounding the snack. Despite the
formation of a vapour blanket being mentioned in several papers (see for instance [8] where it is
stated that the bubbles impede oil inflow through the bottom boundary) this process has not been
described in mathematical terms before within the deep-fat frying literature. In other contexts,
film boiling has been studied and expressions for the vapour layer thickness have been derived,
as well as bubble generation and release frequencies [4, 7]. However, none of the above studies
address the density changes undergone due to the formation of the vapour blanket, and lift-off is
not investigated at all. Furthermore, the effect of the vapour layer, which is a poor conductor, on
the heat transfer in the snack is also not discussed.

In this study, we focus on predicting when a snack becomes buoyant, which happens within
a few seconds of being introduced into the fryer. Thus, we do not consider structural changes,
which occur later on in the frying process; or oil-uptake, which primarily occurs post-frying. We
follow the crust-core modelling approach, and we introduce the novel detail of the formation of a
vapour layer under the snack. We show that the timescales associated with evaporation indicate
that the formation of the vapour blanket is the dominant mechanism for lift-off. We model the
growth of the vapour blanket by coupling a thin film equation to the moving-boundary problem
in the snack. We show that the insulating features of the vapour blanket play an important role
in the dynamics of the evaporation fronts. Whilst all of the models in the above literature are
solved numerically by either finite differences or finite volumes, here we combine both numerical
and analytical results and compare them together. In particular, we derive closed form solutions
for the long-time behaviour of the evaporation fronts and the shape of the vapour blanket, which
are useful for the manufacturing process. Furthermore, we show that lift-off times are crucially
dependent on the heat transfer properties of the snack.

The remainder of this paper is organised as follows. In Section 2 we introduce the non-
dimensional mathematical model for the thermal and flow problems within the snack and vapour
blanket. By exploiting the small size of some dimensionless groups, the problem simplifies to solv-
ing an energy conservation equation for each region and a thin-film equation for the vapour blanket.
A formula that relates the density of the snack to the vapour blanket thickness and the position
of the evaporation fronts is also given. We first solve our model numerically in Section 3 using
the enthalpy method, and we are able to identify several regimes in the frying process: a heating
period, the formation of the vapour blanket, and a regime where the bubble volume is constant.
Motivated by these numerical results, and considering that the Stefan number of the problem is
large, in Section 4 we investigate a further simplification to the model, called the quasi-steady
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4: Vapour blanket

2: Snack dough + water

Hot oil

1: Snack dough + water vapour

3: Snack dough + water vapour

z = s2(x, t)

z = s1(x, t)

z = 1

z = 0

z = −h(x, t)

Vapour bubbles

Figure 1: Schematic diagram of the different regions in the snack.

limit. In this limit, where the only time-dependence of the system originates from the motion of
the evaporation fronts, we obtain analytical solutions that agree well with the numerical results,
and provide insight to the frying behaviour. We discuss our key findings and their relevance to
the snack frying process in Section 5.

2. A Multiphase model for snack frying

In Figure 1, we illustrate the scenario considered. We focus on the two-dimensional case, as
shown in the diagram, but we keep the formulation of our mathematical model in three dimensions
to be as general as possible. We propose that the snack is divided into four regions, containing
different combinations of dough, water and water vapour. Initially, we assume the dough to be
entirely composed of a liquid (water) and solid phase (potato), which is defined as region 2 in our
diagram. When the snack is introduced into the fryer, the water begins to evaporate, starting from
the exterior. This creates two outer layers containing water vapour and solid, which we denote
regions 1 and 3. As the water evaporates from the upper evaporation front, it is bubbled away
into the surrounding oil. By contrast, water evaporating from the lower front forms a vapour layer
beneath the snack, which we denote region 4.

In this section, we present a non-dimensional mathematical model for the frying of a long
thin snack, which consists of energy, mass and momentum conservation equations for each of the
different regions of the snack. We simplify these equations by exploiting small parameters in the
system. For predicting lift-off time, we introduce a relation between the density of the snack, the
size of the vapour blanket and the position of the evaporation fronts.

2.1. Mathematical model

First, we present the governing equations for each of the regions in Figure 1. We keep all the
equations in non-dimensional form for convenience, but later we provide further discussion on the
derivation, including a list of how each non-dimensional parameter is defined. As illustrated in the
diagram, the domain is long and thin with aspect ratio ε = H/L� 1. We model regions 1 and 3
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using an advection-diffusion equation for the temperature, and Darcy’s law for the fluid

1

St

∂Ti
∂t

+ Pe

(
wi
∂Ti
∂z

+ ε2ui · ∇xyTi

)
=
∂2Ti
∂z2

+ ε2∇2
xyTi, i = 1, 3, (1)

ui = −∇Pi, i = 1, 3, (2)

0 =
∂2Pi

∂z2
+ ε2∇xyPi, i = 1, 3, (3)

where Ti(xi, t) is the temperature, ui(x, t) = (ui, vi, wi) is the velocity of the fluid, and Pi(x, t)
is the pressure. Subscripts are used to denote the different regions and ∇xy = ( ∂

∂x
, ∂
∂y
, 0) is the

gradient in the x-y plane. Our dimensionless parameters are the Péclet number Pe, and the Stefan
number St. We assume that the flow in the core region 2 of the snack is negligible, and so there
is no need for any mass or momentum equations. The heat equation in this region is

C

St

∂T2

∂t
= K1

(
∂2T2

∂z2
+ ε2∇2

xyT2

)
, (4)

where K1 and C are the ratios of thermal conductivities and volumetric heat capacities between
regions 2 and 1. In region 4, we have an advection-diffusion equation for the temperature and the
Navier-Stokes equations for the fluid flow,

Pe

K2

(
1

τ

∂T4

∂t
+ u4 · ∇T4

)
=
∂2T4

∂z2
+ ε2∇2

xyT4, (5)

Re

(
1

τ

∂u4

∂t
+ u4 · ∇u4

)
= −β

[
∂P4

∂x
,
∂P4

∂y
,

1

ε2

∂P4

∂z

]T

+
∂2u4

∂z2
+ ε2∇2

xyu4 −
Re

Fr2 ẑ, (6)

∇ · u4 = 0, (7)

where K2 is a ratio of thermal conductivities between regions 4 and 1, τ is the ratio of the timescale
of evaporation to the timescale of evolution of the vapour blanket z = −h, Re is the Reynolds
number, Fr is the Froude number, and β is a measure of the relative size of the hydrostatic pressure
of the oil acting on the gas in region 4 and the pressure drop needed to maintain the Darcy gas
flux in regions 1 and 3. On the boundaries at z = 1 and z = −h, we have Newton’s law of heating

1

N

∂T1

∂z
= 1− T1, z = 1 (8)

K2

N
√

1 + ε2(∇xyh)2

(
∂T4

∂z
+ ε2∇xyh · ∇xyT4

)
= T4 − 1, z = −h, (9)

where N is the Nusselt number, measuring the ratio between heat transfer at the boundary and
heat conduction in the snack. At the boundary, z = −h, we have the kinematic and dynamic
boundary conditions

1

τ

∂h

∂t
= w4 − u4 · ∇xyh, z = −h, (10)

D · n =
β

ε

(
P4 − h−

κ

Bo

)
n, z = −h, (11)
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where Bo is the Bond number, κ is the curvature, D is the strain rate tensor, and n is the normal
to the vapour blanket, given by

κ =
∇2

xyh

(1 + ε2(∇xyh)2)3/2
, (12)

D =

 2ε∂u4

∂x
ε2(∂v4

∂x
+ ∂u4

∂y
) ε2 ∂w4

∂x
+ ∂u4

∂z

ε2(∂u4

∂y
+ ∂v4

∂x
) 2ε∂v4

∂y
ε2 ∂w4

∂y
+ ∂v4

∂z
∂u4

∂z
+ ε2 ∂w4

∂x
∂v4
∂z

+ ε2 ∂w4

∂y
2ε∂w4

∂z

 (13)

n =
1√

1 + ε2(∇h)2

−ε∂h∂x−ε∂h
∂y

1

 . (14)

On the evaporation fronts, z = si for i = 1, 2, we require that the temperature matches the
evaporation temperature of water

T1 = T2 = 0, z = s1, (15)

T2 = T3 = 0, z = s2. (16)

We also have a Stefan condition describing the motion of the evaporation fronts. This condition
can be derived by balancing the latent energy required to vaporise water with difference in heat
flux on either side of the boundary. This gives us

ṡ1 = K1
∂T2

∂z
− ∂T1

∂z
+ ε2∇xys1 · ∇xy(T1 −K1T2), z = s1, (17)

ṡ2 = K1
∂T2

∂z
− ∂T3

∂z
+ ε2∇xys2 · ∇xy(T3 −K1T2), z = s2. (18)

The change in density undergone when the water vaporises creates a flow in regions 1 and 3. As
discussed by [17], the equations that describe this volume change generated flow are(

1− 1

R

)
ṡ1 = −w1 + ε2u1 · ∇xys1, z = s1, (19)(

1− 1

R

)
ṡ2 = −w3 + ε2u3 · ∇xys2, z = s2, (20)

where R is the ratio of the density of water to the density of steam. This signifies the volume
change that happens when the water is vaporised, which drives the gas flow.

Finally, at the interface between the snack and the vapour blanket, we have continuity of
temperature, mass, pressure, and heat flux

T3 = T4, P3 = ε−2βΓP4, K2
∂T4

∂z
=
∂T3

∂z
, z = 0, (21)[

ε2u3, ε
2v3, w3

]
= [u4, v4, w4] z = 0, (22)

where Γ is the non-dimensional permeability of the snack. The dimensionless initial conditions are
given by

T2(x, t) = T ∗, (23)

s1(x, y, 0) = 1, (24)

s2(x, y, 0) = 0, (25)

h(x, y, 0) = 0. (26)

5



In Table 1 we list the dimensionless parameters of the system, their definitions in terms of dimen-
sional parameters, and their approximate values. The dimensional parameters appearing in Table

Parameter Definition Value
St Lvαρl/(ρ1cp,1(To − Te)) 8.4
C cp,2ρ2/(cp,1ρ1) 2.1
ε H/L 1.1× 10−2

Pe cp,4(To − Te)/Lv 5.8× 10−2

K1 k2/k1 1.4
K2 k4/k1 4.2× 10−2

τ αρl/ρv 5.8× 102

Re k1(To − Te)/(Lvµv) 9.2× 10−1

β LvgρvρoH
5/(k1L

2µv(To − Te)) 6.5× 10−1

Γ χ/H2 2.0× 10−4.
N hcH/k1 1.3
T ∗ (Ta − Te)/(To − Te) −1.1
Bo ρogL

2/γ 1.1× 103

R ρl/ρv 1.7× 103

Fr (k1(To − Te)/ρvLvH
2)
√
L/g 4.3

Table 1: Dimensionless parameters and their approximate numerical values.

1 are: Lv, the latent heat of vaporisation of water; α, the porosity of the snack; χ, the permeability
of the snack; hc, the heat transfer coefficient; γ, the interfacial tension between water and oil; g, the
acceleration due to gravity; H, the height of the snack; L, the length of the snack; µv, the viscosity
of water vapour; To, Tl, Ta, the temperature of the oil, the evaporation temperature of water, and
the ambient air temperature of the snack before entry into the oil; and ρo, ρl, ρv, the density of oil,
water, and vapour, respectively. Finally, we have some compound parameters for regions 1, 2, and
3, each with a subscript denoting the relevant region. These are: ρj, the compound density; kj the
compound thermal conductivity; and cp,j, the compound specific heat capacity, with j = 1 − 4.
These compound parameters have been determined by taking a volume-weighted-average of the
parameters for the individual phases (solid snack, water, vapour) in each region (see for instance,
[11]). For example, ρ1 = αsρs + αvρv, where each α represents a mass fraction.

2.2. Model simplifications

Having calculated the non-dimensional parameters in Table 1, we are motivated to consider
the asymptotic limit of

Pe, ε, Re, Bo−1, Pe/K2, Pe/K2τ, Re/τ, ε2K1, Re/Fr2, 1/R→ 0. (27)

Note that although a few of these parameter groups associated with the vapour layer (Re, Pe/K2)
are marginal in this scaling, we have also carried out a more complex scaling in which the thick-
nesses of regions 3 and 4 are scaled separately. This scaling confirms that all the dimensionless
quantities listed above are small.

Under these limits, the only coupling between the flow and thermal problems is through the
boundary conditions (10), (11), (19) and (20). The simplified governing equations for the heat
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problem are

1

St

∂T1

∂t
=
∂2T1

∂z2
, s1 ≤ z ≤ 1, (28)

C

St

∂T2

∂t
= K1

∂2T2

∂z2
, s2 ≤ z ≤ s1, (29)

1

St

∂T3

∂t
=
∂2T3

∂z2
, 0 ≤ z ≤ s2. (30)

The only dependence of the heat problem on the thickness of the vapour blanket h is through the
lower boundary condition. Hence, the complete set of boundary conditions for the heat problem
are

1

N

∂T1

∂z
= 1− T1, z = 1, (31)

T1 = T2 = 0, z = s1, (32)

ṡ1 = K1
∂T2

∂z
− ∂T1

∂z
, z = s1, (33)

T2 = T3 = 0, z = s2, (34)

ṡ2 = K1
∂T2

∂z
− ∂T3

∂z
, z = s2, (35)

1

N

∂T3

∂z

(
hN

K2

+ 1

)
= T3 − 1, z = 0, (36)

where equation (36) is derived by solving for T4 and inserting the solution into (21). Specifically,
T4 is given in terms of T3 and h by

T4 =
1

N

∂T3

∂z

∣∣∣∣
z=0

(
(z + h)N

K2

+ 1

)
+ 1. (37)

In order to obtain an equation for h, we need to follow a series of steps. Firstly, taking the third
component of the simplified version of (6) together with the reduced form of (11) we obtain P4 = h
throughout region 4. Now, u4 can be found simply by integrating the reduced form of the first
two components of (6), as well as (7). Substituting this into the kinematic condition (10) gives

1

τ

∂h

∂t
=
β

3
∇xy ·

(
h3∇xyh

)
− w4|z=0. (38)

Finally, by considering the fluid problem in region 3, and using the simplified version of (20), we
see that w4|z=0 = ṡ2. Thus, the governing thin-film equation for the vapour blanket becomes

1

τ

∂h

∂t
=
β

3
∇ ·
(
h3∇h

)
+ ṡ2. (39)

We would expect that at the edges of the snack, h would take some finite value and the pressure
would be equivalent to the hydrostatic pressure of the oil. However, in our thin film equation (39)
we cannot impose both conditions, so we choose

h = 0, at δΩ0, (40)

as the lateral boundary condition, where Ω0 is the cross-section of the snack at z = 0, and δΩ0 is
the boundary of Ω0.
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Note that whilst the vapour blanket thickness depends spatially on x and y, h = h(x, y, t), the
temperature only depends on z, except for the boundary condition (36). Hence, it is convenient
to replace h in (36) by an average film thickness h̄ =

∫
∂Ω0

h dxdy. Making this substitution, the
thermal problem is purely in terms of z, and the vapour blanket problem is in terms of x and y.
We can simplify even further by assuming that the snack is uniform in the y direction, giving us a
one-dimensional model for the thermal problem in z, and a one-dimensional model for the vapour
blanket problem in x. This is the approach that we take for the remaining of the paper.

2.3. Density calculation and lift-off time

A necessary condition for the snack to detach from the conveyor belt is that its density is less
than that of the surrounding oil. The reduction of the density of the snack is due to two processes.
Firstly there is loss of mass as water evaporates into steam and leaves the snack. Secondly the
formation of the vapour blanket increases the volume of the snack.

The dimensionless density, ρ, is scaled by the density of oil, ρo, so that ρ = 1 when the snack
is neutrally buoyant. The density is given by

ρsnack(t) =
1

1 +
∫ 1

0
h dx

(
ρv
ρo

∫ 1

0

h dx+
ρl
ρo
αl(s1 − s2) +

ρv
ρo
αv [1− (s1 − s2)] +

ρs
ρo
αs

)
. (41)

The denominator is the volume of the snack, including the volume of the bubble given by integrating
over h. The numerator is the mass of the snack broken into contributions from the gas in the bubble,
liquid water in region 2, water vapour in regions 1 and 3 and the solid component of the snack.
Therefore, the non-dimensional lift-off time, which we denote t∗, is the first time2 for which

ρsnack(t∗) < 1. (42)

3. Numerical Approach

Our first approach is to solve the problem (28)-(30), (39) numerically using the enthalpy method
[3,18]. The non-dimensional temperature is related to the non-dimensional enthalpy in the follow-
ing way:

T =


StK1

C
θ : θ < 0,

0 : 0 ≤ θ ≤ 1,

St(θ − 1) : θ > 1.

(43)

The enthalpy method conveniently reduces the problem to solving the single partial differential
equation

∂θ

∂t
=
∂2T

∂z2
, (44)

within the entire domain 0 ≤ z ≤ 1, where θ and T are related via (43). We use the method of
lines with an explicit forward Euler scheme to solve (39) and (44), where at each time step we
update T using the relation (43).

We plot the solution in Figure 2, illustrating the evolution of both the temperature, the vapour
blanket, and the resultant snack density. We identify several clear regimes in the frying process,

2Note that in reality, there may be some surface tension effects holding the snack down to the solid substrate,
therefore delaying lift-off time. However, since these depend on the specific surface properties of the fryer substrate,
we do not study such effects here.
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t = 0 t = 0.02

t = 0.3 t = 0.8

a) b)

c) d)
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Figure 2: (a,b,c,d) Numerical solution at t = 0, 0.02, 0.1, 0.8, showing a colour plot of the temperature in the snack,
a corresponding line plot of the temperature, and the film thickness beneath the snack. (e) Density evolution over
time, indicating the critical density for lift-off ρ = ρoil. (f) Evolution of the evaporation fronts s1 and s2.
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which we indicate in the density plot. Initially the snack is plunged into the oil at room temper-
ature, and so the first regime consists of a heating period, bringing the temperature within the
snack to the evaporation temperature. During this regime the snack is entirely composed of liquid
and solid (region 2). Once the temperature is near the boiling point everywhere, and equal to
the boiling temperature at the edges of the snack, the latent heat begins to be removed. As the
latent heat is removed from the edges of the snack, two evaporation fronts recede into the interior
of the snack, bubbling away vapour through the top and bottom. This is the second regime of the
process, during which the vapour blanket is formed, and inflates very rapidly, causing a sudden
drop in density. The vapour blanket quickly reaches a steady state, bringing us to the final regime.
During this regime, the evaporation fronts continue to move inwards (hence it is called the quasi-
steady regime), and the temperature within each region is approximately linear with z, which is
due to the large Stefan number [2,3,12]. Meanwhile the bubble remains at near-constant volume,
which can only be explained by a constant growth rate of the evaporation front ṡ2 in (39).

The lift-off time of the snack can be taken as the time at which the density falls below the oil
density (42). For the parameters used here, this corresponds to a time of t = 0.1, or in dimensional
terms, 1 second, which is in agreement with observations in the frying industry. A key result from
our model is that the lift-off time is largely controlled by the inflation of the vapour blanket. In
fact, since the bubble inflation is so rapid, one can approximate the lift-off time as the time needed
for first evaporation. Hence, as a proxy for the lift-off time, one can simply solve the initial heat
diffusion problem (first regime) and find the time at which the temperature in the snack becomes
uniformly equal to the evaporation temperature. If we do so, one of the key parameters that
determines the lift-off time is the Nusselt number N, which is a measure of the heat conduction
at the boundaries. In the literature the Nusselt number for snacks varies between 0.3 and 1.3.
Therefore, in Figure 3 we plot the variation of approximate lift-off time with Nusselt number,
where we also indicate some lift-off times calculated by solving the full numerical problem for t∗

such that ρ(t∗) < 1. The lift-off time is a monotonic decreasing function of N, as expected. In
dimensional terms lift-off occurs for times between 0.5 and 2.6 seconds.

As a further motivation for our vapour blanket model, suppose instead we were to ignore the
vapour blanket, and just solve the classic Stefan problem with Newton heating boundary conditions
(i.e. h = 0). In this case, we skip the second regime since there is no bubble inflation, and simply
move from a heat diffusion regime to a quasi-steady regime. From Figure 2e) we see that the
density decay in the quasi-steady regime is much slower than that caused by bubble inflation.
This results in a lift-off time closer to t = 1, which in dimensional terms corresponds to more than
10 seconds, and this is a factor of ten larger than experimental observations. Hence, this serves as
a good indication that our vapour blanket model is accurate, and provides the essential ingredients
to predict the lift-off time during frying.

Motivated by the above simulations, we now consider a further limiting case of the mathematical
model called the quasi-steady limit. In this limit, we can further simplify the governing equations
and find some analytical results that provide useful insight to the problem.

4. Quasi-steady limit

The quasi-steady limit corresponds to when the thermal problem (28)-(30) becomes indepen-
dent of time except through the motion of the evaporation fronts. This limit, which is typical in
such phase change problems, is a result of the fact that the Stefan number is large [2, 3, 12]. To
study this limit, we restrict our attention to the second and third regimes of the above simulations.
That is to say, we replace the above initial conditions of room temperature with initial conditions
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Figure 3: Variation of the non-dimensional lift-off time with Nusselt number, showing approximate time calculated
by solving the proxy heat diffusion problem until the snack reaches evaporation temperature, and the precise times
calculated by solving the full numerical problem until ρ(t∗) < 1.

at the evaporation temperature T (t = 0) = 0. As before, we restrict our attention to the case
where the evaporation fronts move uniformly, such that s1, s2 and T1-T3 are independent of x and
y. Hence, the temperature in each region is given by

Ti = Ai(t)z +Bi(t), (45)

for some functions Ai, Bi, for i = 1− 4. Applying the boundary conditions (31)-(36), we obtain

T1 =
z − s1

1 + 1/N− s1

, (46)

T2 = 0, (47)

T3 =
s2 − z

1/N + h̄/K2 + s2

, (48)

ṡ1 =
−1

1 + 1/N− s1

, (49)

ṡ2 =
1

1/N + h̄/K2 + s2

. (50)

The last equation (50) contains the spatial average of h, which is found by solving the thin-film
equation

1

τ

∂h

∂t
=
β

3

∂

∂x

(
h3∂h

∂x

)
+

1

1/N + h̄/K2 + s2

, (51)

together with the boundary conditions h = 0 at x = 0, 1 from (40). We can solve (49) immediately,
finding

s1 =
1

N

(
1 + N−

√
1 + 2N2t

)
. (52)

The form of (52) reveals the classic t1/2 similarity behaviour that is discussed for classic Stefan
problems in the literature [9, 19]. The remaining unknowns h and s2 are found by solving the
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a) b)

Figure 4: Solution to the quasi-steady approximation. (a) Evolution of the thin film h at various times. (b)
Evolution of the lower evaporation front s2(t).

coupled system (50)-(51). In Figure 4 we display the numerical solution to this system, calculated
using the method of lines, as before. We see a fast early-time growth of the evaporation front s2,
causing a rapid inflation of the bubble over a timescale of around t = 0.01. After this inflation
period, the growth rate of s2 is almost constant, and consequently the bubble shape reaches a
steady state, which is consistent with Figure 2.

To understand the apparent steady state, let us consider the evolution equation for the lower
evaporation front (50). It is not immediately obvious that (50) yields a constant growth rate
solution. However, the non-dimensional conductivity ratio is very small K2 ≈ 0.04, and s2 in
Figure 4 is also very small, suggesting that perhaps the variables s2 and h ought to be rescaled by
K2 appropriately. Since, for the steady state solution, we expect h to be independent of time but
dependent on space, and we expect the evaporation front to move at a linear growth rate, we seek
a rescaling of the form

s2 = Kc
2(a+ bt) +O(K2c

2 ), (53)

h = Kd
2H(x) +O(K2d

2 ), (54)

for some unknown coefficients a, b, c, d > 0. By inserting the above into (50)-(51), we can see that
a steady state is only possible (to leading order) if we choose

d− 1 + c = 0, (55)

4d = c, (56)

which has solution c = 4/5 and d = 1/5. Taking the limit of small K2, the resulting system of
equations is

b =
1

βH̄
, (57)

1

3

(
H3Hx

)
x

+
1

βH̄
= 0, (58)

where H̄ =
∫ 1

0
H dx is the average film thickness, which is a constant in the steady state. We can
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a)

ρ = ρoil

b)

c)

Increasing t

d)

Figure 5: Long time results from the quasi-steady approximation. (a) Evolution of the thin film h at various times,
compared to the analytical solution for the steady state. (b) Density ρ(t) as a function of time, indicating the
lift-off density ρ = ρoil. (c) Evolution of the lower Stefan boundary s1(t), compared to the analytical solution

for the steady state ṡ1 = K
4/5
2 /H̄. (d) Temperature profiles T (z, t) at different times between t = 0 and t = 1,

indicating liquid and vapour regions.

solve (58) to give H in terms of its average value

H =

(
6x(1− x)

H̄β

)1/4

. (59)

and H̄ is found by integrating (59), which gives

H̄ =

(
Γ(5/4)

Γ(3/4)

(
8π2

27β

)1/4
)4/5

, (60)

where Γ is the Euler Gamma function. Note that the above is only valid for times much smaller
than t ≈ K

−4/5
2 ≈ 13. However, the snack frying process all takes place within 0 ≤ t ≤ 1, so

this is acceptable. Note also that the linear behaviour of s2 with respect to time is different from
the square root behaviour of s1 observed in (52). Hence, the vapour blanket completely changes
evaporation at the lower boundary.
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In Figure 5 we display a comparison of the results from the quasi-steady limit, including the
steady state, to the original numerical solution from Figure 2. For the comparison, we look at the
long-time evolution of the film thickness, the density, the evaporation fronts and the temperature
within the snack. We see that in all cases there is close agreement between the numerical solution
to the full problem, the quasi-steady solution and the steady state. There is a slight discrepancy
(∼ 5%) for the steady state solution to the thin film, and this can be explained by the asymptotic
approximation (54). This discrepancy could be mitigated by going to higher order terms in the
asymptotic expansion.

There is also a slight disagreement (∼ 5%) between the early-time density predictions of the
numerical solution to the full problem and the quasi-steady solution. This can be explained by the
way in which we calculate the speed of the lower evaporation front ṡ2, which largely controls the
density at early times via the inflation of the vapour blanket. In the quasi-steady approximation
we calculate the evaporation front s2 using a numerical discretisation scheme in time to solve (50),
with time step δt = 2× 10−7, providing very smooth results. On the other hand, in the numerical
solution to the full problem, since we calculate the temperature using the enthalpy method, which
does not require tracking the position of the fronts, the evaporation front is calculated by finding
the grid point that separates liquid and gas phases. Since the grid spacing is finite, this leads to
non-smooth step changes in s2 and spikes in the time-derivative of s2, which we have attempted to
smooth using a damping method. Nevertheless, even with a time step δt = 2×10−7, this produces
inevitable error associated with the inflation of the vapour blanket, and this is reflected in the
slight disagreement for the density prediction at early times.

Closer agreement can be attained with an even smaller spatial discretisation, but due to the
explicit discretisation method, this results in lengthy computation times. Hence, interestingly the
quasi-steady solution, though it only applies to an asymptotic limit, is generally more accurate
than the numerical solution to the full problem. Since the critical time of interest is the lift-off
time, which still shows close agreement between these two approaches, we do not consider this
discrepancy to be very important.

Finally, in Figure 5 c,d) we display a comparison of the predictions of the evaporation fronts
and the temperature. On a macroscopic level, there is very close agreement, and in particular the
steady state solution performs remarkably well. After a time of t = 1, or 10 seconds in dimensional
terms, nearly half the liquid in the snack has evaporated and the density has dropped by a factor
of around 2. The overall thickness of the vapour blanket is nearly equal to the total width of the
snack, which is also consistent with experimental observations.

5. Conclusions

We considered a mathematical model of potato-snack frying in order to obtain an estimate for
the lift-off time of the snack from the conveyor belt. To that end, we modelled the frying process
as a Stefan problem with two propagating evaporation fronts where the liquid in the dough turns
into vapour and decreases the density of the snack. In addition, a key feature in our model is the
presence of a vapour blanket that forms underneath the snack as liquid evaporates. The moving
vapour fronts and the vapour blanket were assumed to be the two main mechanisms for density
reduction of the snack and, therefore, its eventual lift-off from the belt. Numerical results of the
full system, using the enthalpy method, revealed that, indeed, both of these mechanisms were
essential to predict a physically realistic lift-off time of the order of a second. Furthermore, we
considered a simplified quasi-steady model due to the large Stefan number. Numerical solutions
to the reduced problem agreed very well with solutions to the full system and thus allow for a
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computationally cheaper way to investigate properties of our model and, in particular, the lift-off
time.

One of the key dimensionless parameters that emerged as part of our analysis was the Nusselt
number N, which is the ratio between heat transfer at the snack boundary and heat conduction in
the snack interior. We investigated how changing N affects the lift-off time of the snack. This is
important to snack manufacturers since changing the dough, for example, can change the material
properties and hence the parameters of the system. Having the dependence of the lift-off time on
these parameters is useful in determining the optimal cooking strategies.

To further improve the prediction of lift-off time for the snack there should be a consideration
of other forces. These could include interfacial tension between the snack and belt as well as the
peeling energy required to overcome the dough elasticity. As a result the orientation of the snack
on the belt and indeed the belt design and material could have a further impact on the lift-off time
of the snack.
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